
 1

Improved Algorithms for a Lot-Sizing Problem with Inventory Bounds and
Backlogging

Hark-Chin Hwang

Department of Industrial Engineering, Chosun University

375 Seosuk-Dong, Dong-Gu, Gwangju 501-759, South Korea, hchwang@chosun.ac.kr

Wilco van den Heuvel
Econometric Institute and Erasmus Research Institute of Management, Erasmus University Rotterdam, P.O. Box

1738, 3000 DR Rotterdam, The Netherlands, wvandenheuvel@ese.eur.nl

March 9, 2010

Econometric Institute Report EI2010-17

__

Abstract

This paper considers a dynamic lot-sizing problem with storage capacity limitation in which back-

logging is allowed. For general concave production and inventory costs, we present an O(T2) dy-
namic programming algorithm where is the length of the planning horizon. Furthermore, for
fixed-charge and nonspeculative costs, we provide O(Tlog T) and O(T) algorithms, respectively.
This paper therefore concludes that the time complexity to solve the bounded inventory lot-sizing
problem with backlogging is the same as the complexity to solve the uncapacitated lot-sizing
problem for the commonly used cost structures.

Keywords: Lot-sizing; Storage capacity; Inventory and Production; Algorithms
__

1. Introduction

In this paper we consider a dynamic lot-sizing problem with backlogging and a bound on the inventory

level. In the problem, we are given the (deterministic) demands for a fixed number of periods. In each

period, demand can be satisfied (i) by production in the period itself, (ii) from inventory built up in previ-

ous periods, or (iii) by backlogging in future periods. We assume that the warehouse has a finite capacity,

which means that the on-hand inventory level is bounded from above in each period. The cost structures

in our model all exhibit economies of scale as commonly used in the literature. They include a concave

cost structure, a (general) fixed-charge cost structure and a fixed-charge cost structure without speculative

motives.

Since the O(T2) algorithm for the uncapacitated lot-sizing problem of Wagner and Whitin [23], there have

been great efforts to generalize the model and solve it efficiently. Zangwill [25] generalized the uncapaci-

tated problem to consider backlogging and solved it in O(T3) time under concave costs. Utilizing the mo-

 2

notonicity properties in the planning horizon theorem, Federgruen and Tzur [6] developed O(Tlog T) and

O(T) algorithms for fixed-charge and nonspeculative cost structures, respectively. The same results were

obtained independently by Wagelmans et al. [22] and Aggarwal and Park [2]. The approaches used in

Federgruen and Tzur [6] and Wagelmans et al. [22] are based on essentially the same geometric technique,

which we call the points-approach, that maintains a lower convex hull (envelope) of given points. How-

ever, Aggarwal and Park [2] solve the lot-sizing problem by matrix searching algorithms utilizing the so-

called Monge property. They presented an improved O(T2) backlogging algorithm over the algorithm of

Zangwill [25] under concave costs. Van Hoesel et al. [21] extended the idea of the geometric technique in

Wagelmans et al. [22] and presented a generalized approach for solving special dynamic programming

problems. They also introduced a dual method of the points-approach, which we call the lines-approach,

that constructs a lower convex envelope of given lines.

The lot-sizing problem with warehouse storage capacity (or bounded inventory) was first studied by Love

[11] under general concave production and inventory holding/backlogging costs. Pochet and Wolsey [14],

Atamtürk and Küçükyavuz [3] and Wolsey [24] performed a polyhedral study on the problem with fixed-

charge costs. In case of nonspeculative costs, Pochet and Wolsey [14] provided linear programming ex-

tended formulations for the bounded inventory problem with and without production capacities. Atamtürk

and Küçükyavuz [3] presented valid inequalities for the case that inventory holding cost has a fixed setup

to deal with a situation of an outsourced warehouse. Wolsey [24] studied the bounded inventory problem

in relation to the lot-sizing problem with production time windows. In this problem the production of

demand k should happen during some time window [ak, bk] and it must be satisfied in period bk. Wolsey

[24] showed that the bounded inventory problem is equivalent to the lot-sizing problem with non-

inclusive production time windows. Similar to this result, Van den Heuvel and Wagelmans [19] proved

the equivalence of the bounded inventory problem with the lot-sizing problem with a remanufacturing

option (Richter and Sombrutzki [16]) and the lot-sizing problem with cumulative capacities (Sargut and

Romeijn [17]). Consequently, the lot-sizing problem with inventory bounds is shown to be the same as

those with non-inclusive time windows, a remanufacturing option or cumulative capacities.

We now review the solution algorithms developed for the bounded inventory problem. Love proposed an

O(T3) algorithm for the problem with concave production and inventory holding/backlogging costs. Gu-

tiérrez et al. [7, 8] designed another O(T3) algorithm, which is shown to be fast in practice. Under the

fixed-charge cost structure, Toczylowski [18] developed an O(T2) algorithm by reducing multi-graph

edges in a shortest path graph. For the same problem with a generalized fixed-charge holding cost struc-

ture, Atamtürk and Küçükyavuz [4] proposed an O(T2) algorithm.

 3

The contribution of this paper is as follows. It has been an open question whether there exists a more effi-

cient algorithm than the O(T3) algorithm of Love [11] for the bounded inventory lot-sizing problem with

backlogging and a concave cost structure. We show that a slightly less general version of the problem can

be solved in O(T2), by exploiting the Monge property inherent in the problem, as has been done in Ag-

garwal and Park [2] for the uncapacitated problem. Our model is slightly less general because only carried

forward inventory is bounded, while Love [11] considers a bound on the amount of backlogged items as

well. For the problem with fixed-charge and nonspeculative costs, we generalize the results of Gutiérrez

et al. [9] and Liu [10] to the backlogging case and present O(Tlog T) and O(T) algorithms based on the

geometric technique of Van Hoesel et al. [21]. Part of this geometric technique consists of maintaining a

lower convex hull of points and updating it with new points. Because in our problem we also need to de-

lete points from the lower convex hull, we cannot apply this approach directly. To overcome this, espe-

cially for the problem with fixed-charge costs, we combine it with the results of Brodal and Jacob [5] who

proposed an algorithm to (dynamically) maintain a convex hull of points. For the problem with nonspecu-

lative costs, we apply the lines-approach and generalize it to a line-segments-approach to handle the dele-

tion problem in maintaining lower envelopes of lines.

In conclusion, we show that the time complexity to solve the bounded inventory lot-sizing problem with

backlogging is the same as to solve the uncapacitated lot-sizing problem. Together with the result of Van

den Heuvel and Wagelmans [19], this means that the lot-sizing problems with bounded inventory, non-

inclusive time windows, a remanufacturing option and cumulative capacities can all be solved in the same

complexity as the uncapacitated lot-sizing problem. We finally note that Gutiérrez et al. [9] and Liu [10]

recently developed an O(Tlog T) algorithm for the fixed-charge cost structure and an O(T) algorithm for

the nonspeculative cost structure, by using the results of Wagelmans et al. [22]. Although the recursive

equations in Gutiérrez et al. [9] are correct, their proposed O(Tlog T) time implementation does not pro-

vide an optimal solution in general (as shown by the counterexample in Van den Heuvel et al. [20]). Fur-

thermore, it also turns out that the algorithm of Liu [10] does not obtain an optimal solution in general

within their claimed running time (Onal [12]).

The remainder of the paper is organized as follows. In Section 2 we formulate the problem and provide

basic optimality properties. Section 3 deals with the concave cost case, while in Section 4 and Section 5

we develop algorithms to solve the fixed-charge and nonspeculative cost cases, respectively. The paper is

concluded in Section 6.

 4

2. Problem Formulation and Optimality Properties

Let T denote the length of planning horizon. For each period t  {1, 2, , T} we define the following

notation.

 dt: demand in t.

 ut: effective storage capacity in t; without loss of generality, we assume that each storage

capacity ut satisfies ut  dt  ut1. If not, we obtain this property by setting ut  min{ut 

dt  dt1    dt1: t  t  T}, as this does not change the set of feasible solutions (Toc-

zylowski [18], Atamtürk and Küçükyavuz [3]). For feasibility, we also assume that ut 

dt.

 xt: production level in t. We assume that xt units are all produced and available at the beginning

of period t.

 It
: on-hand inventory level at the end of t.

 It
: backlog inventory level at the end of t.

 It: inventory level in t, defined as It  It
  It

.

 pt(xt): concave production cost function in t for the amount xt  0.

 ht(It
): concave inventory cost for keeping It

  0 units at the end of period t.

 bt(It
): concave inventory cost for backlogging It

  0 units at the end of period t.

The cost functions pt(xt), ht(xt) and bt(xt) are assumed to be concave with pt(0)  ht(0)  bt(0)  0. The

model is said to have a fixed-charge cost structure if

pt(xt)  Kt  ptxt if xt  0, ht(xt)  htxt and bt(xt)  btxt,

where Kt is the setup cost, and pt, ht and bt are the unit production, holding and backlogging costs in pe-

riod t, respectively. Moreover, if it holds that pt  bt  pt1  pt  ht for t  1, 2, , T1, the cost structure

is called nonspeculative. For notational convenience, we let vs,t  vs  vs1  …  vt if s  t and vs,t  0 if s

 t, for any sequence of values vs, vs1, , vt. So ds,t represents the cumulative sum of demands from s

through t.

The lot-sizing problem with storage capacity is modeled as follows:

 5

 
1

1 1

1

0 0

Min () () ()

Subject to

() (), 1, , , (1)

, 1, , , (2)

0,

0, 0, 0, 1, , .

T

t t t t t t
t

t t t t t t

t t t

T T

t t t

p x h I b I

I I x d I I t T

I x u t T

I I I I

x I I t T

 



   
 


   

 

 

     
  
   
   









Constraint (1) represents the inventory balance equation and constraint (2) the storage capacity limits.

Most research on the lot-sizing problem with storage limitation puts the storage constraint on the final

inventory levels, i.e., It  ut (Love [11]; Atamtürk and Küçükyavuz [3, 4]; Wolsey [24]), which means

produced units are immediately shipped to customers with demand in period t without storage. In our

model, we assume that each produced (or purchased) unit is always stored first before being shipped to a

customer having demand in the current or a future period, resulting in the constraint on the initial inven-

tory levels, i.e., It1  xt  ut. Note that if 1tI 
 > 0, then 1tI 

 = 0, so that the constraint becomes 1tI 
  xt 

ut. For backlogged demands, however, we assume that production (or purchasing) fulfills them instanta-

neously without any storage, so that we do not have an upper bound on the level of backlogged inventory.

In this case 1tI 
 = 0 and 1tI 

 > 0, so that the constraint becomes xt  1tI 
  ut and hence there is no upper

bound on the backlogging level. We note that the two problems with a bound on either the initial or the

final inventory level are equivalent because of the balance equation (1) (Gutiérrez et al. [7]).

We now provide an explicit feasibility test scheme in regard to the storage limitation in each period s.

Since the inventory and production in period s cannot supply more than us units, we need to identify the

period’s maximum coverage by the us units. We define n(s) to be the latest period by which every demand

ds, ds1, …, dn(s) can be fulfilled:

n(s)  max{t: ds,t  us, t  s, s1, …, T},

where n(0)  0. Now we consider the opposite case of n(s). Given a period t, we are interested in the ear-

liest period that can cover up the demand dt, which is denoted as m(t):

m(t)  min{s: ds,t  us, s  1, 2, …, t},

 6

where m(0)  0.

A period s is called a regeneration period if Is  0, which has been used for the ZIO (zero-inventory) pol-

icy in uncapacitated problems. This policy states that if periods s1 and t are consecutive regeneration

periods, then a single production during {s, s1, ..., t} covers all the demands ds, ds1, , dt. If us units are

available at the beginning of period s, i.e., Is1  xs  us, we say that period s is a warehouse period. A pe-

riod is called an inventory period, if it is either a regeneration or a warehouse period. Furthermore, a pe-

riod s is called a production period if xs  0. Finally, production period s is called a warehouse production

period if s is a warehouse period. We further introduce two important types of production periods:

 Production period s is called a complete (production) period if a regeneration period t  s pre-

cedes any production periods after s; that is, no production period exists between production peri-

ods s and t. In this case, the initial inventory level plus the production quantity in period s exactly

covers the demands during periods {s, s1, , t}, that is Is1  xs  ds,t.

 Production period s is called a successive (production) period if a production period t  s precedes

any regeneration period; no regeneration period exists between the two periods s and t. As we

shall see later, any successive period will be a warehouse production period.

Note that the ZIO policy applies to complete productions but does not for successive productions. We

also note that any complete period is not a successive period, and vice versa. In developing the dynamic

programming procedures, we will mostly use complete and successive periods. The term warehouse pe-

riod will be used for explicitly designating the quantity up to the maximum level at the start of a period.

Most lot-sizing problems can be represented as a concave cost network flow problem from which opti-

mality properties of the extreme point solution can be characterized. It is well known that the unsaturated

flow corresponding to an extreme point solution contains no cycle (Zangwill [26]). Applying the no-cycle

property to the bounded inventory problem, we have the following relationships between inventory and

production periods (Love [11]):

 (i) between any two consecutive inventory periods there is at most one production period,

(ii) between any two consecutive production periods there is at least one inventory period.

Considering the effective storage capacity assumption, these properties also read as follows.

 7

Property 1 (Love [11], Gutiérrez et al. [8]). There exists an optimal schedule such that each period s sat-

isfies xs(Is1  xs  us)(Is1  xs  ds,t)  0 for some t, s  t  T.

Based on this property, Love [11] and Gutiérrez et al. [7, 8] were able to develop optimal solution proce-

dures with complexity O(T3). Note that if Is1  xs  ds,t for some t, s  t  T, then period s is a complete

production period. Love’s second property shows the existence of an inventory period between produc-

tion periods but does not point out the inventory period explicitly. However, the effective storage capacity

assumption with Property 1 makes it possible to specify the inventory (warehouse) period between pro-

duction periods when the inventory period is not a regeneration period. In the following, we show that

any successive production period has items up to its storage capacity. In other words, any successive pro-

duction period is by definition an inventory (warehouse) period. This property can also be derived by ap-

plying the no-cycle property.

Property 2. There exists an optimal schedule such that Is1  xs  us for each successive period s.

Suppose that s is a production period and t is the first regeneration period after period s. If period s is suc-

cessive (implying that s is a warehouse period), then a production period i  t, exists with Ii1  0. If this

period i is complete, then there is no more productions during {i1, i2, , t}. Otherwise, there is an-

other production period between i and t. Consequently, between consecutive regeneration periods, there

are two production patterns: a single complete production occurs or a series of successive productions

take place followed by a complete production. This observation together with Love’s properties shows

that inventory periods (regeneration periods) and production periods (successive production periods) play

a structural role in extreme point solutions. We will solve the bounded inventory problem by decompos-

ing a solution based on regeneration and successive production periods. The decomposition by regenera-

tion periods will generate a new self-contained subproblem while the decomposition by successive pro-

duction periods will allow us to determine production quantities. Since each successive production period

is a warehouse period, our decomposition is essentially based on inventory periods as was done by Love

[11]. In the following sections we will derive a dynamic programming algorithm that is based on the de-

composition into regeneration periods and successive production periods. To that end, we define the fol-

lowing variables:

 F(s) is the minimum cost of producing demands ds, ds1, , dT under the situation that period s1 is

a regeneration period. We let F(T1)  0. Note that the optimal solution is given by F(1).

 8

 G(s) is the minimum cost of producing demands ds, ds1,, dT under the condition that

(i) period s is a successive production period, and

(ii) production cost in period s is not included.

We let G(T)  .

Before proceeding to the next section, we present notations associated with holding and backlogging

costs:

 h(s, t): the holding cost for fulfilling demands ds1, , dt with ds1,t units at the end of period s,

i.e., h(s, t) 
1

1,()
t

i i ti s
h d


 .

 b(s, t): the backlogging cost for fulfilling demands ds, ds1, , dt1 with ds,t1 units at the begin-

ning of period t, i.e., b(s, t) 
1

,()
t

i s ii s
b d



 .

 h(s, t): the holding cost for supplying demands ds1, , dt when having us units in period s (so

having us  ds,t  0 units at the end of period t), i.e., h(s, t)  ,()
t

i s s ii s
h u d


 .

The term h(s, t) describes the inventory carrying cost when period s is a complete period with its regen-

eration in period t. Similarly, b(s, t) is the inventory backlogging cost when period s1 is a regeneration

period with period t the first production period after period s. The cost h(s, t1) denotes the inventory

carrying cost when period s is successive with its next production in period t. Note that in the definition of

h(s, t1), the demands ds, ds+1, ..., dt1 are fulfilled by the initial inventory and production in period s

without supply by backlogging from period t, so t  n(s) + 1. Now consider the case t  n(s)1, which

means that demands ds, ..., dn(s) are all supplied from period s and demands dn(s)2, ..., dt1 are supplied

from period t. The demand dn(s)1 may be supplied by both periods s and t. Since we know that us units are

available at the beginning of period s, the total amount supplied from period t should be ds,t1  us. These

ds,t1  us units are supplied for demands dn(s)1, d n(s)2, ..., dt1 with backlogging cost b(s, t) defined as:

 b(s, t): the backlogging cost for supplying demands dn(s)1, dn(s)2, ..., dt1 using ds,t1  us units at

the beginning of period t, i.e., b(s, t) 
1

,() 1
()

t

i s i si n s
b d u



 
 .

Hence, if t  n(s)1, the total holding and backlogging cost during {s, s1, ..., t1} equals

 9

h(s, n(s))  b(s, t). (3)

Finally, note that using the recursion h(s1, t)  h(s, t)  hs1(ds,t), we can compute all values h(s, t) in

O(T2) time. A similar recursion holds for the computation of h(s, t), b(s, t) and b(s, t). This means that all

inventory and backlogging related costs can be computed in O(T2) time by preprocessing.

3. Concave Costs

In this section, we first describe an ordinary O(T3) dynamic programming algorithm for concave costs,

and then show how it can be implemented in O(T2) time using the matrix-searching algorithm as in Ag-

garwal and Park [2].

3.1 An O(T3) Dynamic Programming Algorithm

To obtain the optimal solution F(1), we will determine F(s) and G(s) by a backward dynamic program-

ming algorithm iterating from s  T to 1. In the remainder of this section we will further decompose the

cost terms F(s) and G(s). The primary purpose of this is to make possible the efficient computation of

F(s) and G(s), by exploiting the Monge property in the next subsection. First, let F(s, i) denote the cost

F(s) under the restriction that the first production after regeneration period s1 occurs at period i which is

complete, 1  s  i  T. Similarly, G(s, i) denotes the cost under the constraint that the successive produc-

tion period s has its next production in period i which is complete, 1  s  i  T. To determine the produc-

tion quantity of a complete period, we need to further specify the regeneration period after the complete

period. To this end, we introduce the cost terms fi(s, t), and gi(s, t):

 fi(s, t) is the minimum cost of producing demands ds, ds1, , dT, 1  s  i  t  n(i), under the con-

straints that

(i) s1 and t are consecutive regeneration periods,

(ii) period i is the only production period during {s, ..., t}, which means that period i is

complete.

 gi(s, t) is the minimum cost of producing demands ds, ds1, , dT, 1  s  i  t  n(i), under the con-

straints that

 10

(i) s is a successive period with its next production period i, which is complete,

(ii) the production cost in period s is not included,

(iii) period t is the first regeneration period after period i.

Similar to G(s), the cost gi(s, t) also does not include the production cost of period s.

In the following we will show how the cost terms F(s, i), fi(s, t), G(s, i) and gi(s, t) are used for determin-

ing F(s) and G(s).

Computing F(s). Since Is1  0, there must be at least one production during {s, s1, ..., T}. Let i be the

first production period at or after period s. We further suppose that period i is complete. Then, in this case

we have, by definition,

F(s)  F(s, i).

Next, suppose that period i is a successive production period. With the information that i is successive, the

cost for satisfying demands di, di1, , dT is G(i). Then consider the cost during {s, s1, ..., i1}. Since

we have no production during {s, s1, ..., i1}, the backlogging level at the end of period i1 goes up to

ds,i1 (i.e., Ii1   ds,i1), for which backlogging cost b(s, i) occurs. Note that Ii1  xi  ui by Property 2,

which means xi  ui  ds,i1. Since the cost G(i) does not include the production cost pi(ui  ds,i1) of period

i, we need to count it here. Thus, the cost F(s) in this case is obtained as

F(s)  b(s, i)  pi(ui  ds,i1)  G(i). (4)

Combining the two formulas for F(s) with the initial condition of F(T1)  0, we have:

, 1

(1) 0,

(,) : ,
() min

(,) () () : .i i s i

F T

F s i s i T
F s

b s i p u d G i s i T

 

 
      

 (5)

Computing F(s, i) and fi(s, t). Since period i is complete in the computation of F(s, i), there exists a re-

generation period t before any other subsequent production period. Note that demands di, di1, ..., dt

should be fulfilled by the inventory and production in period i, which is no greater than ui. That is, it

should hold that di,t  ui or t  n(i). Then, for 1  s  i  T, the cost F(s, i) can be simply derived from fi(s,

 11

t) by the formula:

F(s, i)  min{fi(s, t): i  t  n(i)}. (6)

We now explain how to compute fi(s, t). Since period t is a regeneration period, the cost during {t1,

t2, ..., T} is F(t1). The demands during {i1, ..., t} are supplied by carrying inventory in period i with

cost h(i, t). We consider the production quantity in period i. Since period s1 is a regeneration period, the

production in period i should supply demands ds, ds1, ..., dt, that is, xi  ds,t with cost pi(ds,t). Note that the

backlogging cost during {s, ..., i1} is b(s, i). Hence, we have, for 1  s  i  t  n(i)  T,

fi(s, t)  b(s, i)  pi(ds,t)  h(i, t)  F(t1). (7)

Computing G(s). Let i be the next production period of s. Suppose that period i is complete. Then, in this

case we have, by definition,

G(s)  G(s, i).

We next consider the case that period i is successive. Note that Ii1  (Is1  xs)  ds,i1. Since period s is

successive (and so a warehouse period), it supplies us units (Is1  xs  us), which means that Ii1  us 

ds,i1. This with the fact that period i is also successive implies that xi  ui  us  ds,i1, incurring production

cost of pi(ui  us  ds,i1). The cost during {s1, ..., i1} depends on whether the available amount in pe-

riod s can fully supply demands ds1, ..., di1, which is the case where i  n(s) 1. If i  n(s) 1, then the

cost is given by h(s, i1). Otherwise if i  n(s) 1, the cost is h(s, n(s))  b(s, t) as shown in (3). Thus, in

this case, we obtain

, 1

, 1

(, 1) () (), if () 1,
() min

(, ()) (,) () (), otherwise.
i i s s i

i i s s i

h s i p u u d G i s i n s
G s

h s n s b s i p u u d G i




        
       

 (8)

With the initial condition of G(T)  , we have a complete formula for G(s) as follows:

 12

, 1

, 1

() ,

(,) : ,

() min (, 1) () () : () 1.

(, ()) (,) () () : () 1 .
i i s s i

i i s s i

G T

G s i s i T

G s h s i p u u d G i s i n s

h s n s b s i p u u d G i n s i T




 

  

        

         

 (9)

Computing G(s, i) and gi(s, t). We first take the computation of G(s, i) into account where period i is

complete. Let t be the first regeneration period at or after period i. Note that demands di, di1, ..., dt should

be fulfilled by the inventory and production in period i, which is no greater than ui. That is, it should hold

that di,t  ui or t  n(i). Thus, for 1  s  i  T, we have

G(s, i)  min{gi(s, t): i  t  n(i)}.

We finally explain the formula for gi(s, t). As in (7), we can see that the cost during {i1, ..., T} is h(i, t) 

F(t1). Since (Is1xs)  xi  ds,t and Is1xs  us, we have xi  ds,t  us incurring production cost of pi(ds,t 

us). The holding and backlogging cost during {s1, ..., i1} depends on i  n(s) 1 or i  n(s) 1 as in (9).

Hence, for 1  s  i  t  n(i)  T, gi(s, t) can be obtained by

,

,

(, 1) () (,) (1) : () 1.
(,) min

(, ()) (,) () (,) (1) : () 1 .
i s t s

i
i s t s

h s i p d u h i t F t s i n s
g s t

h s n s b s i p d u h i t F t n s i T

                    
 (10)

Note that all values fi(s, t), 1  s  i  t  n(i), and gi(s, t), 1  s  i  t  n(i), are computed in O(T3) time

for all i  1, 2, …, T. Since the computations of F(s) by (5) and G(s) by (9) take O(T2), the bottleneck is

the computation of fi(s, t) and gi(s, t).

3.2 An Improved O(T2) Algorithm for Concave Costs

In this section, we present efficient implementations of fi(s, t) and gi(s, t) based on the Monge property.

Aggarwal and Park [2] show that an n  n matrix e  {e(s, t)} is inverse-Monge if each value e(s, t) can be

represented as

e(s, t)  as  at  p(yt  ys),

 13

where as, at, ys and yt are constants with y1  y2    yn and y1  y2    yn, and p is a concave func-

tion. It is well-known that the matrix-searching algorithm of Aggarwal et al. [1] can obtain the column or

row minima of the inverse-Monge matrix e in time O(n); that is, all the values min{e(s, t): t  1, 2, …, n}

for s  1, 2, …, n can be computed in O(n) time. Using this algorithm Aggarwal and Park [2] were able to

solve the uncapacitated lot-sizing problem with backlogging in O(T2) time, improving on the O(T3) algo-

rithm of Zangwill [25]. From now on we fix i and view fi as a T  T matrix with its elements fi(s, t). In

particular, we are interested in the submatrix fi(s, t) with indices (s, t) satisfying 1  s  i and i  t  n(i).

Lemma 1. The submatrix {fi(s, t):1  s  i, i  t  n(i)} is inverse-Monge for i  1, 2, …, T.

Proof. For a given period i, consider the element fi(s, t)  b(s, i)  pi(ds,t)  h(i, t)  F(t1). The term b(s,

i) only depends on period s, while the term h(i, t)  F(t1) only depends on period t. However, the pro-

duction cost term pi(ds,t) relies on both periods s and t. By rewriting ds,t  d1,t  d1,s1 and by noting that d1,1

 d1,2    d1,t, we conclude that the submatrix {fi(s, t): 1  s  i, i  t  n(i)} is inverse-Monge. �

Suppose that each value F(t1) is preprocessed for i  t  n(i). Furthermore, suppose that the terms h(s, t),

b(s, t), b(s, t), h(s, t) and ds,t are all preprocessed in O(T2) time for 1  s  t  T. Then, each cost term

fi(s, t) is evaluated in constant time by (7). By the fact that the submatrix of {fi(s, t)} is inverse-Monge, we

can obtain its corresponding row (or column) minima in O(T) time. That is, every value of min{fi(s, t): i 

t  n(i)} for s  1, 2, …, i is computed in O(T). Note that these minima are exactly the values F(s, i) in (6)

for s  1, 2, …, i and they are used to calculate (5).

Similar to fi(s, t), we will also determine gi(s, t) by using the matrix-searching algorithm. Again, we fix

the period i. Then, gi(s, t) is only defined for m(i1)  s < i and i  t  n(i). So, for fixed i, formula (10)

can be rewritten as

,

,

(, 1) () (,) (1) : (1) , (),
(,) min

(, ()) (,) () (,) (1) :1 (1), ().
i s t s

i
i s t s

h s i p d u h i t F t m i s i i t n i
g s t

h s n s b s i p d u h i t F t s m i i t n i

                        

Let gi(s, t)  h(s, i1)  pi(ds,t  us)  h(i, t)  F(t1) and gi(s, t)  h(s, n(s))  b(s, i)  pi(ds,t  us)  h(i,

t)  F(t1), so that gi(s, t)  min{gi(s, t), gi(s, t)}. Then, using analogous arguments as in Lemma 1, we

can prove the following.

 14

Lemma 2. Both the submatrices {gi(s, t): m(i1)  s  i, i  t  n(i)} and {gi(s, t): 1  s  m(i1), i  t 

n(i)} are inverse-Monge for i  1, 2, …, T.

Let G(s, i)  min{gi(s, t): i  t  n(i)} for each s with m(i1)  s  i, and G(s, i)  min{gi(s, t): i  t 

n(i)} for each s with 1  s  m(i1). Then all the values G(s, i) for m(i1)  s  i, and G(s, i) for 1  s 

m(i1) are obtained in O(T) by applying the matrix-searching algorithm. Now we present the whole pro-

cedure for computing an optimal solution. The algorithm proceeds by complete periods i  T, T1, …, 1.

At stage i, suppose that we are given the following values:

 F(t) for i1  t  T1 and G(t) for i1  t  T,

 F(s, t) for 1  s  t, i1  t  T, and G(s, t) for 1  s  t1, i1  t  T.

Then the following steps are performed at stage i:

Step 1. Compute G(i) by (9).

Step 2. Compute the row minima of the submatrix {fi(s, t): 1  s  i, i  t  n(i)} by the matrix-

searching algorithm, obtaining the values F(1, i), F(2, i), …, F(i, i) in (6).

Step 3. Compute F(i) by (5).

Step 4. Compute the row minima of the submatrix {gi(s, t): m(i1)  s  i, i  t  n(i)} and {gi(s, t):

1  s  m(i1), i  t  n(i)} by the matrix-searching algorithm, obtaining the values G(s, i)

for 1  s  m(i1) and G(s, i) for m(i1)  s  i. Set G(s, i)  G(s, i) for 1  s  m(i1) and

G(s, i)  G(s, i) for m(i1)  s  i.

Note that the Steps 14 in each stage are executed in O(T) time and hence the overall complexity of the

algorithm is O(T2).

Theorem 1: The lot-sizing problem with inventory bounds, backlogging and concave costs can be solved

in O(T2) time.

4. Fixed-charge Costs

In this section we consider the problem under a fixed-charge cost structure, which means that

 15

pt(xt)  Kt  ptxt if xt  0, ht(xt)  htxt and bt(xt)  btxt,

where Kt is the setup cost, and pt, ht and bt are unit production, holding and backlogging costs in period t,

respectively. For the nonspeculative cost structure it is further assumed that pt  bt  pt1  pt  ht for t  1,

2, , T1. We first describe an O(T2) recursive procedure, and then show how it can be implemented in

O(Tlog T) and O(T) time for fixed-charge and nonspeculative costs, respectively.

4.1 An O(T2) Dynamic Programming Algorithm

We will also use the cost terms F(s) and G(s) as in the concave cost case to solve the fixed-charge and

nonspeculative cost problems. However, for efficient implementations under these specific cost structures,

we will utilize a new cost term f(i) for each complete production period i instead of fi(s, t) and gi(s, t) in

the previous section:

 f(i) denotes the minimum cost of supplying demands di, di1, …, dT under the constraints that

(i) i is a complete production period,

(ii) the setup cost Ki in period i is not included.

Since f(i) satisfies the demands di, di1, …, dT by only productions during {i, i1, ..., T}, we can solve the

problem with the assumption that Ii1  0. We also note that f(i) describes the cost from period i through

the final period T while fi(s, t) and gi(s, t) consider the costs taking into account a regeneration period t.

We first develop the formula for f(i) followed by the ones for F(s) and G(s).

Computing f(i). Suppose that period t is the first regeneration period at or after period i. Then the cost

during {i, i1, …, t} is pidi,t  h(i, t) and that during {t1, t2, …, T} is F(t1). Thus, the formula for f(i)

is given as

f(i)  min{pidi,t  h(i, t)  F(t1): i  t  n(i)}. (11)

Computing F(s). Let i be the first production period at or after period s. We further suppose that period i

is complete. Then, demands ds, ds1, …, di1 are satisfied by backlogging from production in period i.

Since the unit production cost in period i is pi, it takes b(s, i)  pids,i1 to fulfill the demands ds, ds1, …,

 16

di1. Note that the cost during {i, i1, …, T} is f(i) since period i is complete. Because f(i) does not in-

clude the setup cost Ki, the formula for F(s) in this case, denoted by F1(s), is given as

F1(s)  min{b(s, i)  Ki  pids,i1  f(i): s  i  T}. (12)

On the other hand, if period i is successive, then the cost is the same as in (4), which we denote by F2(s),

F2(s)  min{b(s, i)  Ki  pi(ui  ds,i1)  G(i): s  i  T}. (13)

So the complete formula for F(s) is given by:

1 2

(1) 0,

() min{ (), ()}.

F T

F s F s F s

 


 (14)

Computing G(s). Let i be the next production period after period s  T. We first consider the case that

period i is complete. We further suppose that i  n(s)1. Then demands ds, ds1, …, di1 are all supplied by

the us units available in period s, with holding cost h(s, i1), leaving Ii1  us  ds,i1 units at the end of

period i1. If we know the regeneration period t  i, then the production quantity in period i equals xi  ds,t

 us, so that

G(s)  h(s, i1)  Ki  pi(ds,t  us)  h(i, t)  F(t1).

Because this formula requires additional information on regeneration period t, we do not achieve the aim

of efficient computation immediately. Observe now that the formula for G(s) can be rewritten as:

G(s)  h(s, i1)  Ki  pi(ds,i1  us)  pi(di,t)  h(i, t)  F(t1).

In this revised formula, we see that the last term pi(di,t)  h(i, t)  F(t1) coincides with the cost f(i) hav-

ing a regeneration period in t. Thus, we are allowed to let

G(s)  h(s, i1)  Ki  pi(ds,i1  us)  f(i).

 17

Note that the quantity ds,i1  us can be negative since we assumed that i  n(s)  1. So, when ds,i1  us is

negative, subtracting the cost for the Ii1 ( us  ds,i1) units in advance enables us to use f(i), which has no

inventory at the beginning of period i. Using this formula, however, may not result in an optimal solution,

since it is valid only when the production quantity in period i, in the optimal schedule corresponding to

f(i), is no less than us  ds,i1. Therefore, we define f(i) as the production quantity in period i in the sched-

ule corresponding to f(i) (i.e., f(i)  di,t for some t). So, we need to ensure f(i)  us  ds,i1. In conclusion,

the appropriate formula in this case, denoted by G1(s), is given as

G1(s)  min{h(s, i1)  Ki  pi(ds,i1  us)  f(i): f(i)  us  ds,i1, s  i  n(s)1}. (15)

We can easily see that the case f(i)  us  ds,i1 is not feasible. Namely, the production quantity in period i

equals f(i)  (us  ds,i1), which is negative in this case. Gutiérrez et al. [9] prove the existence of such pe-

riod i with f(i)  us  ds,i1. In fact, period i = n(s) + 1 satisfies this condition.

We next consider the case that period i is complete with i  n(s)1. In this case, ds,i1  us is nonnegative.

So, we can apply the following formula safely.

G2(s)  min{h(s, n(s))  b(s, i)  Ki  pi(ds,i1  us)  f(i): n(s)1  i  T}. (16)

When period i is successive, we can apply formula (8), which is denoted separately as follows.

G3(s)  min{h(s, i1)  Ki  pi(ui  us  ds,i1)  G(i): s  i  n(s)  1}, and (17)

G4(s)  min{h(s, n(s))  b(s, i)  Ki  pi(ui  us  ds,i1)  G(i): n(s)1  i  T}. (18)

In summary, G(s) is computed as follows:

1 2 3 4

() ,

() min{ (), (), (), ()}.

G T

G s G s G s G s G s

 


 (19)

Note that the costs f(s), F1(s), F2(s), and Gj(s), j  1, …, 4, for all s  T, T1, …, 1, are obtained in O(T2)

time. Thus we also obtain F(s) by (14) and G(s) by (19) for all s  T, T1, …, 1 in O(T2) time.

 18

We will now show how to improve the running time of the algorithm by using known results from the

literature. As was done in Section 3.2, we might improve the computational complexity by applying the

algorithms of Aggarwal and Park [2] for fixed-charge and nonspeculative costs. However, their algo-

rithms are complex and it seems not easy to adapt them to the bounded inventory problem with fixed-

charge and nonspeculative costs. Instead, we will utilize the geometric technique of Wagelmans et al. [22],

a points-approach which is formalized in Van Hoesel et al. [21]. The geometric technique is used to solve

dynamic programming problems of the following form:

(n  1)  0,

(i)  Ai  min{(j)  Bj  Ci(Di  Dj): i  j  n1},
(20)

where Ai, Bi, Ci and Di are known constants for 1  i  n.

We now briefly review the main ideas of the geometric technique. An important part of the algorithm is to

update a lower convex hull (envelope) of points. To be more precise, at stage i we are given the values

(i1), (i2), ..., (n1) to determine the subsequent value (i). Associated with these values, we have

a set Si consisting of the points (Di1, (i1)  Bi1), (Di2, (i2)  Bi2), ..., (Dn1, (n1)  Bn1) in a two

dimensional plane, where Dn1  Bn1  0. We are interested in the lower part of the convex hull of Si, also

called the lower convex hull, which we denote by Hi. Namely, given the extreme points of Hi, we can eva-

luate the minimum value of min{(j)  Bj  Ci(Di  Dj): i  j  n1} by finding the line with slope Ci tan-

gent to the lower convex hull, say (x)  (j)  Bj  Ci(x  Dj) for some j, i  j  n1, and then computing

(Di). This can be done in O(log n) time by binary search, which is an improvement on a straightforward

linear approach. We let eval(Ci, Di, Hi) be the value (Di). Hence, the new value of (i) is equal to Ai 

eval(Ci, Di, Hi), leading to a new point (Di, (i)  Bi).

Then for the set Si1  Si  {(Di, (i)  Bi)} in the subsequent stage, we need to update the convex hull Hi

to obtain Hi1. If Di is monotone, say increasing, the lower convex hull can be maintained by a stack as a

data structure. However, if such monotonicity does not exist for Di, we need to employ a more compli-

cated data structure like a height balanced or 2-3 tree for efficiency (Van Hoesel et al. [21]). In case of the

uncapacitated lot-sizing problem, the constants Di correspond to the cumulative sum of demands from

period i to period T (di,T), which is increasing as period i decreases. Because of this property, updating the

lower convex hull takes linear time in total. Hence, Wagelmans et al. [22] were able to solve the unca-

 19

pacitated problem in O(nlog n) time using a stack. Even when Di is not monotone, problem (20) can still

be solved in O(nlog n) time using a 2-3 tree data structure (Van Hoesel et al. [21]).

Unfortunately, the geometric technique cannot be directly applied to the dynamic programming formula-

tion for the bounded inventory problem. As we shall see later, the main reason is that points must be de-

leted from the lower hull because periods might become infeasible over stages. Hence, we need a deletion

operation to update the lower hull. Note that updating the lower hull associated with problem (20) only

deals with the insertion of points. Therefore, we need a more general approach than the approach de-

scribed above.

In the area of computational geometry a significant amount of research has been performed in construct-

ing and maintaining the convex hull of a set of points. The static version of the problem focuses on con-

structing a convex hull for a given set of points (so all points are known in advance), while the dynamic

version concerns updating a convex hull each time when a new point is added to the set or a point is de-

leted from the set. The maintenance of the lower hull for solving the dynamic program (20) can be con-

sidered as a dynamic version of the convex hull problem with insertion operations only. Furthermore, in

the context of computational geometry, the problem (20) can be referred to as a dynamic problem with

extreme-point query (tangential line query) in a given direction (slope) Ci. Such dynamic problems re-

peatedly evaluate a given query in each update when a point is added to or removed from a convex hull.

The complexity of a dynamic algorithm is determined by the query time and the insertion and deletion

times.

Overmars and van Leeuwen [13] show that given a convex hull of n points, the (dynamic) insertion and

deletion of a single point can be done in O(log2 n) time in worst case (see also Preparata and Shamos

[15]). Hence, the overall maintenance of the n points with a basic query like extreme-point query in a giv-

en direction takes O(nlog2 n) time. Brodal and Jacob [5] further improved the algorithm. Their algorithm

performs the dynamic maintenance of n points and the basic queries in O(nlog n) time, which means that a

single deletion or insertion can be done in O(log n) amortized time. This result will be used in the next

section.

4.2 An Improved O(Tlog T) Algorithm for Fixed-charge Costs

The complexity reduction requires efficient computation of the elementary inventory cost h(s, t), b(s, t),

h(s, t) and b(s, t). From the standard technique of cost decomposition (Aggarwal and Park [2], Van Hoe-

 20

sel et al. [21]), we can rewrite h(s, t) to a more simplified form, h(s, t)   h(1, s)  h1,s1d1,s  h(1, t) 

h1,s1d1,t, which is represented in a more compact form as h(s, t)  cs  ct  h1,s1d1,t where cs and ct are

constants only depending on periods s and t, respectively (in this case, cs   h(1, s)  h1,s1d1,s and ct 

h(1, t)). Since the terms cs and ct, h1,s1 and d1,t are obtained in linear time, we can compute h(s, t) in O(1)

time for a given s and t. Similarly, we can represent the other three costs in the following forms:

b(s, t)  cs  ct  d1,s1b1,t1,

h(s, t)  cs  ct  (d1,s1  us)h1,t, and

b(s, t)  cs  ct  (d1,s1  us)b1,t1,

where cs (ct) again are constants only depending on period s (period t). From now on, we assume all the

inventory related costs are preprocessed in O(T) time.

We will slightly change the recursion formulas of f(), Fj() and Gj() in the previous section to define their

appropriate functions for lower convex hulls. Based on the lower hulls, we will provide a systematic pro-

cedure to compute the values f(), Fj() and Gj(). We start with f(i) in (11).

Lower convex hull for f(i). Because h(i, t)  ci  ct  h1,i1d1,t and di,t  d1,t  d1,i1, we can change f(i) in

(11) into the following form:

f(i)  Ai  min{F(t1)  Bt  (pi  h1,i1)(d1,i1  d1,t): i  t  n(i)}, (21)

where Ai and Bt are appropriate constants relying only on periods i and t, respectively, which can be com-

puted in O(1) time when needed. Furthermore, let Hf(i, n(i)) be the lower hull of the points in {(d1,t,

F(t1)  Bt): i  t  n(i)}. Using the hull Hf(i, n(i)), we can obtain the value f(i) by the following equation

f(i)  Ai  eval((pi  h1,i1), d1,i1, Hf(i, n(i))). (22)

Lower convex hulls for F1(s) and F2(s). By the equation b(s, i)  cs  ci  d1,s1b1,i1 and the fact that ds,i1

 d1,i1  d1,s1 we can rewrite F1(s) in (12) as

F1(s)  As  min{f(i)  Bi  d1,s1(ps  b1,s1  (pi  b1,i1)): s  i  T},

 21

and F2(s) in (13) as

F2(s)  As  min{G(i)  Bi  d1,s1(ps  b1,s1  (pi  b1,i1)): s  i  T},

where the constants As, Bi, As and Bi can all be obtained in O(1) when needed. Then, we define the cor-

responding hulls
1FH (s, T) and

2FH (s, T) of F1(s) and F2(s) for the sets of points

{(pi  b1,i1, f(i)  Bi): s  i  T} and {(pi  b1,i1, G(i)  Bi): s  i  T}.

Given the hulls
1FH (s, T) and

2FH (s, T), we get the value F(s) by

F(T1)  0,

F(s)  min{As  eval(d1,s1, ps  b1,s1,
1FH (s, T)), As  eval(d1,s1, ps  b1,s1,

2FH (s, T))}.
(23)

Note that the horizontal axis of the hull
1FH (s, T) (and of

2FH (s, T)) corresponds to the cost pi  b1,i1,

while in other lot-sizing papers the horizontal axis corresponds to cumulative demands. This explains why

we are able to improve on the O(T2) algorithm of Liu [10], who also applies the geometric technique to

solve the fixed-charge problem.

Lower convex hull for G1(s). By the formula h(s, i1)  cs  ci1  (d1,s1  us)h1,i1, and the fact that ds,i1

 us  d1,i1  d1,s1  us, we can rewrite G1(s) in (15) as follows:

G1(s)  As
1  min{f(i)  Bi

1  (us  d1,s1)(ps  h1,s1  (pi  h1,i1)): f(i)  us  ds,i1, s  i  n(s)1},

where As
1 and Bi

1 are constants depending only on periods s and i, respectively. Suppose that we have al-

ready computed f(T), f(T1), ..., f(s1) and hence know the values f(T), f(T1), ..., f(s1). We define s as

the feasible set of periods with respect to the successive period s, i.e., s  {i: f(i)  us  ds,i1, s  i 

n(s)1}. We use
1GH (s) to denote the lower hull of the points in {(pi  h1,i1, f(i)  Bi

1): i  s}.

Lower convex hulls for G2(s)G4(s). The formulas for the costs G2(s)G4(s) in (16)(18) can be rewrit-

ten as

 22

G2(s)  As
2  min{f(i)  Bi

2  (us  d1,s1)(ps  b1,s1  (pi  b1,i1)): n(s)  1  i  T},

G3(s)  As
3  min{G(i)  Bi

3  (us  d1,s1)(ps  h1,s1  (pi  h1,i1)): s  i  n(s)  1},

G4(s)  As
4  min{G(i)  Bi

4  (us  d1,s1)(ps  b1,s1  (pi  b1,i1)): n(s)1  i  T},

where As
j and Bi

j (j  2, 3, 4) are constants depending only on periods s and i, respectively, which can be

computed in constant time when needed. We use
2
(() 2,),GH n s T

3
(1, () 1),GH s n s 

and
4
(() 2,)GH n s T to denote the hulls for the recursions G2(s), G3(s) and G4(s), respectively.

Given the lower hulls
1
()GH  

4
()GH  , we can compute G(s) as follows:

1

2

3

4

1
1, 1 1, 1

2
1, 1 1, 1

3
1, 1 1, 1

4
1, 1 1, 1

() ,

(, , ()),

(, , (() 2,)),
() min

(, , (1, () 1)),

(, , (() 2,)).

s s s s s G s

s s s s s G

s s s s s G

s s s s s G

G T

A eval u d p h H

A eval u d p b H n s T
G s

A eval u d p h H s n s

A eval u d p b H n s T

 

 

 

 

 

   


    
    


   

 (24)

Now we provide the formal steps to compute values f(), Fj() and Gj() systematically. The algorithm con-

sists of T stages, each requiring at most O(log T) time. At stage s, suppose that we are given the following

values and hulls:

 f(t), F(t), G(t) for t  s1, ..., T, and

 Hf(s, n(s)), (1,)
jFH s T , j  1, 2,

1
()G sH  ,

3
(1, () 1)GH s n s  , (() 2,)

jGH n s T , j  2, 4.

Then the following steps are executed at stage s:

Step 1. Evaluate f(s) and G(s) by (22) and (24), respectively.

Step 2. With the values f(s) and G(s), construct hulls (,)
jFH s T from (1,)

jFH s T , j  1, 2. Then,

compute F(s) by formula (23) based on the hulls (,)
jFH s T , j  1, 2.

Step 3. Construct hulls Hf(s1, n(s1)),
3
(, (1) 1)GH s n s   , ((1) 2,)

jGH n s T  , j  2, 4. Obtain the

hull
1 1()G sH   from

1
()G sH  .

 23

We now consider the complexity of the algorithm. The computation of the functional values f(s), G(s) and

F(s) in the Steps 1 and 2 of stage s can be done in O(log T) if the appropriate lower hulls are given. Thus,

we focus on the construction of the hulls. Note that most lower hulls consist of points corresponding to an

interval of periods except for the hull
1
()G sH  . In this case the set s is not necessarily an interval of pe-

riods. The construction of a hull with points from an interval of periods can be easily implemented. For

instance, the creation of Hf(i1, n(i1)) from Hf(i, n(i)) can be carried out by deleting the points {(d1,t,

F(t1)  Bt): n(i1)  t  n(i)} and then inserting the (single) point (d1,i1, F(i)  Bi1) into Hf(i, n(i)). Dur-

ing the execution of the stages from T to 1, each point is added (or deleted) at most once. Every step can

be done in O(log T) amortized time by using the algorithm of Brodal and Jacob [5], implying that the total

computing time in association with the hulls Hf(i, n(i)) is O(Tlog T). Similarly, the constructions of the

hulls corresponding to the costs F1(), F2() and G2()G4() take at most O(Tlog T) time.

We finally consider the time complexity with regard to the hull
1
()GH  of the cost G1(). Since the set s

( {i: f(i)  us  ds,i1, s  i  n(s)1}) may not be an interval of periods, we should be careful in adding

and deleting points in the transition from
1
()G sH  to

1 1()G sH   . We assume that the set s of the hull

1
()G sH  is ordered by period number so that we can easily remove points from the set s that violate the

second condition of s1, s1  i  n(s1)1. For the addition and deletion in association with the first

condition f(i)  us  ds,i1, we define s as a set of infeasible periods i with respect to period s, i.e. periods

i with f(i)  us  ds,i1 for each i  s, s1, ..., T. The set s is ordered by non-increasing values of f(i). Then,

we remove each period i with f(i)  us1  ds1,i1 from the set s, and if s1  i  n(s1)1, insert it into

s. Note that this will happen at most once for every period i. Finally, for period s1, if f(s)  us1  ds1,

then we insert s into the set s with value f(s) to obtain s1. Otherwise, we insert s into the set s to ob-

tain s1. We note that during the process of making s1 from s, we also obtain the new lower hull

1 1()G sH   . Since all the addition and deletion operations can be executed in O(Tlog T), the time to con-

struct
1
()GH  is at most O(Tlog T). We, therefore, conclude that the algorithm consisting of Steps 13 can

be implemented in O(Tlog T) time.

Theorem 2: The lot-sizing problem with inventory bounds, backlogging and fixed-charge costs can be

solved in O(Tlog T) time.

5. Nonspeculative Costs

 24

This section first refines the formulas for the fixed-charge costs in the previous section to appropriate

forms for the nonspeculative costs. In spite of the simplified formulas, it seems still not easy to obtain an

improved algorithm over the O(Tlog T) algorithm for the fixed-charge costs if we use the points-approach.

This also suggests that the lines-approach, a dual method of the points-approach, which maintains a lower

envelope of lines, does not lead to an efficient algorithm. However, with a slight generalization of the

lines-approach, which we will refer to as the line-segments-approach, we can get an efficient O(T) algo-

rithm for the nonspeculative costs. With the refined formulas in Section 5.1, we shortly introduce the

lines-approach in Section 5.2 to better understand the line-segments-approach, which will be described in

Section 5.3.

5.1 Adjustment of the Fixed-charge Procedure for Nonspeculative Costs

From the characteristics of the nonspeculative cost structure, pt  bt  pt1  pt  ht for each t  1, 2, ,

T1, we have a useful structural property, allowing for a more efficient implementation.

Property 4. Under a nonspeculative cost structure, there exists an optimal schedule such that if t is a pro-

duction period, then 1tI 
  It

  0.

This property implies that if we have a production in period t, there is no in-flow supply from productions

of other periods and so the demand dt is fulfilled by its own production. Suppose that period s is a succes-

sive period with its next production period at i. Since Ii

1  0 by Property 4, the us units at the beginning

of period s (Is1  xs  us) cannot completely satisfy demands up to period i1. This implies that us  ds,i1,

and hence n(s)1  i  T. Hence, the cost G1(s) of formula (15) and the cost G3(s) of formula (17) are not

needed so that the formula (24) for G(s) is modified to

2

4

2
1, 1 1, 1

4
1, 1 1, 1

() ,

(, , (() 2,)),
() min

(, , (() 2,)).

s s s s s G

s s s s s G

G T

A eval u d p b H n s T
G s

A eval u d p b H n s T

 

 

 

     
   

During the construction of convex hulls
2
()GH  and

4
()GH  , points are only added; no points are deleted.

Since us  d1,s1 and ps  b1,s1 are decreasing as s decreases due to the nonspeculative cost assumption, we

can use a stack to maintain the lower convex hulls. For the same reason, we can also use a stack for keep-

ing the extreme points of the lower hulls
1
()FH  and

2
()FH  . Thus, we can compute all the values regard-

 25

ing the lower hulls
2
()GH  ,

4
()GH  ,

1
()FH  and

2
()FH  in O(T) if we utilize the results in Wagelmans et al.

[22].

Finally, we consider the construction of the convex hull Hf() for the cost f(). In this case we should take

into account the deletion of points from the hull, since the set of points associated with Hf(i, n(i)) consists

of the interval of periods [i, n(i)] where n(i) might not be T. Because of this deletion operation on Hf(i,

n(i)), it seems not easy to not improve the geometric algorithm based on the points-approach. Although

this deletion operation is considered in Liu [10], it turns out that his algorithm is incorrect. It can be

shown that, after the deletion operation and updating the left part of the hull, it may not be convex any-

more (Onal [12]). This means that the algorithm does not find an optimal solution in general.

5.2 Geometric Technique Based on the Lines-approach

The geometric technique based on the lines-approach maintains a lower envelope of lines instead of

points. Given a set of linear functions t(x)  yt  rtx with intercept yt and slope rt for t   where  is a set

of finite indices (periods), the envelope is given by the minimum of the lines: env(x|)  min{t(x): t  }.

Note that the env(x|) is a piecewise linear concave function which is described by at most ||  1 break-

points and where || denotes the number of elements of . To use the lines-approach, we adjust formula

(21) in an appropriate form as follows:

f(i)  Ai  min{F(t1)  Bt  d1,t(pi  h1,i1): i  t  n(i)},

where Ai and Bt denote constants depending only on periods i and t, respectively. Suppose that we are

given values F(t1) for t  T, T1, ..., i. The linear functions t(x) in association with f(i) are then defined

as t(x)  F(t1)  Bt  d1,tx, referred to as the line of period t, for i  t  n(i). The envelope of these lines

is given as

envf(x|i, n(i))  min{F(t1)  Bt  d1,tx: i  t  n(i)}.

We note that the index set  of the envelope is given here by the interval [i, n(i)] where we removed the

brackets in the above formula for notational convenience. Using the envelope function envf(), we can ob-

tain the value f(i) by the following equation

f(i)  Ai  envf(pi  h1,i1|i, n(i)).

 26

As period index t decreases, we note that the slope d1,t of the period decreases since d1,t1  d1,t while the

query value pt  h1,t1 of the period increases due to the nonspeculative cost assumption of pt  pt1  ht1.

Clearly, if n(i)  T, then we can solve the recursion for f(i) in O(T) using the result in Van Hoesel et al.

[21].

5.3 An O(T) Algorithm for Nonspeculative Costs

The ordinary lines-approach does not apply to the inventory bounded problem in which n(i) is not equal

to T, which requires the deletion of lines from an envelope. Consider a 6-period problem for which the

first three lines 6, 5 and 4 are given as in Figure 1(a) where the intercept F(t1)  Bt of line t is de-

noted as yt and the query value pt  h1,t1 is denoted as xt. If period 6 is reachable from period 4 (i.e., 6 

n(4)), we can find envf(x4|4, n(4)) using line 6: envf(x4|4, n(4))  y6  d1,6x4 because line 6 is the lowest

for query value x4. On the other hand, if 6  n(4), we cannot use the envelope but we have to delete the

line 6 from the envelope. This removal causes that latent breakpoints may be exposed, which seems to

prevent a linear time implementation. In Figure 1(a), the removal of line 6 exposes a breakpoint between

lines 5 and 4. To avoid such difficulty, we use a line-segments-approach, a generalized version of the

lines-approach, which will allow us to focus on insertion operations only (and hence no deletion opera-

tion).

(a) (b) (c)

Figure 1. Envelope of line segments.

Note that line 6 is used only for evaluating f(i) for each i such that 6  [i, n(i)]. In other words, line 6 is

used only for f(i) such that i  [m(6), 6]. This means that the valid domain of line 6 in terms of x-

coordinate is the interval [p6 h1,5, pm(6) h1,m(6)1]. Hence from now on we are not interested in the entire

 27

domain of a line but in its valid line segment. Figure 1(b) shows the segment of line 6 when the valid

domain is [x6, x5], which is the case when m(6)  5. Furthermore, the segments of lines 5 and 4 are also

illustrated for the cases when m(5)  4 and m(4)  2. For each line t we define its valid line segment t

by F(t1)  Bt  d1,tx where x  [pt h1,t1, pm(t) h1,m(t)1]. Then we can find f(i) by using the lower enve-

lope of these line segments so that we let

envf(x|i, n(i))  min{ ()t x : i  t  n(i)} for x  [pi h1,i1, pm(i) h1,m(i)1].

It should be noted that the envelope is not necessarily continuous (and concave), However, the envelope

is piecewise linear, non-decreasing and left continuous on its domain. Moreover, the slopes of the pieces

are non-increasing on the domain when starting from the left. Furthermore, every piece starts and ends at

(i) a query value, or (ii) at the intersection point of two line segments. For instance, the envelope in Figure

1(b) has three pieces represented by intervals [x6, x5], [x5, x4] and [x4, x2] and every piece starts and ends at

a query value. However, the envelope of Figure 1(c), obtained after the insertion of line segment 3 , has

an interval [x4, x1] consisting of two pieces, where the first piece ends and the second piece starts at the

intersection of the line segments 4 and 3 .

Suppose that we are given envf(x|i, n(i)) with its intervals corresponding to the pieces. We deal with the

insertion of a line segment 1i of period i  1 with its domain [x, x]. Recall that x and x correspond to

pi1 h1,i2 and pm(i1) h1,m(i1)1, respectively. Let [xi, xi] be the domain of the last piece in the envelope.

Note that xi  x as pi h1,i1 is non-decreasing as i decreases. Now there are two possibilities: line seg-

ment 1i does or does not intersect the last piece. In the first case, (part of) line segment 1i is inserted

in the lower envelope and we are done. Note that 1i will not intersect any other piece as the envelope is

non-decreasing and the slopes are non-increasing on the relevant domain. In the latter case, the last piece

can be removed from the envelope and the next piece needs to be considered. Again, line segment 1i

does or does not intersect this piece and we either insert (part of) line segment 1i or we remove the

piece. We continue in this way until (part of) the segment 1i is inserted. Note that every piece is re-

moved only once. So the construction of the envelopes can be done in linear time when using a stack to

maintain the envelope. Hence, we can obtain envf(x|i1, n(i1)) from envf(x|i, n(i)) in amortized constant

time.

 28

Furthermore, the evaluation of envf(x|i1, n(i1)) for the query value x = pi h1,i1 can be done in amor-

tized constant time as well. Namely, for the evaluation of a query value x, we start at the left most piece

and move to the right until we find the piece that contains x. In the next iteration we start from this piece

and again we move to the right until we find the piece that contains the query value. It not difficult to see

that this can be done in linear time, when a stack is used to maintain the lower envelope. Hence, we can

evaluate every f(i) in O(T) time.

Following steps 13 in Section 4.2 and combining the computations of envf() using the line-segments-

approach with those of the convex hulls
2
()GH  ,

4
()GH  ,

1
()FH  and

2
()FH  using the points-approach, we

can solve the problem with nonspeculative costs in O(T) time.

Theorem 3: The lot-sizing problem with inventory bounds, backlogging and nonspeculative costs can be

solved in O(T) time.

6. Conclusion

In this paper we solved the bounded inventory lot-sizing problem with backlogging for three different

cost structures by applying well-known matrix-searching and geometric techniques for the uncapacitated

lot-sizing problem. By identifying the Monge property under a concave cost structure, we were able to

develop an O(T2) time algorithm based on the matrix-searching technique. For the fixed-charge problem

we presented an O(Tlog T) algorithm using the points-approach, a geometric technique of maintaining a

lower convex envelope of points. In addition, we provided an O(T) algorithm for the nonspeculative prob-

lem using a line-segments-approach, a geometric technique that maintains a lower convex envelope of

line segments.

We can conclude that the inventory bounded lot-sizing problem is not harder than the traditional unca-

pacitated lot-sizing problem from a complexity point of view. This may suggest that more generalizations

of the uncapacitated lot-sizing problem can be solved efficiently when the storage constraint is imposed.

One such problem is the lot-sizing problem with constant production capacity, which can be solved in

polynomial time if we have no storage limitation. Wolsey [24] provides an O(T3) time algorithm for the

lot-sizing problem with production and storage capacity limitation under a fixed-charge cost structure. It

is interesting to investigate whether there are algorithms with the same complexity as those for the capaci-

tated-lot-sizing problems for the various cost structures. Finally, we need to mention that our problem is a

special case of the original bounded inventory problem of Love [11], since Love considered not only a

 29

bound on the on-hand inventory level but also a bound on the backlogging level. Although our problem is

restricted to the inventory level, the results in this paper may possibly be extended to the more general

problem.

Acknowledgements

We appreciate the help of Dr. Riko Jacob regarding our questions on the dynamic convex hull algorithms.
Furthermore, we thank Mehmet Onal for pointing out the mistake in Liu [10].

References
[1] A. Aggarwal, M.M. Klawe, S. Moran, P.W. Shor and R. Wilber, Geometric applications of

a matrix-searching algorithm. Algorithmatica 2 (1987), 195-208.

[2] A. Aggarwal and J.K. Park, Improved algorithms for economic lot-size problems. Operations Re-

search 41 (1993), 549-571.

[3] A. Atamtürk and S. Küçükyavuz, Lot sizing with inventory bounds and fixed costs: Polyhedral study

and computation, Operations Research 53 (2005), 711-730.

[4] A. Atamtürk and S. Küçükyavuz, An O(n2) algorithm for lot sizing with inventory bounds and fixed

costs. Operations Research Letters 36 (2008), 297-299.

[5] G.S. Brodal and R. Jacob, Dynamic planar convex hull, in: Proc. 43rd Annual Symp. on Foundations

of Computer Science, 2002, pp. 617-626.

[6] A. Federgruen and M. Tzur, A simple forward algorithm to solve general dynamic lot-sizing models

with n periods in O(n log n) or O(n) Time. Management Science 37 (1991), 909925.

[7] J. Gutiérrez, A. Sedeño-Noda, M. Colebrook and J. Sicilia, A new characterization for the dynamic

lot size problem with bounded inventory. Computers & Operation Research 30 (2003), 383-395.

[8] J. Gutiérrez, A. Sedeño-Noda, M. Colebrook and J. Sicilia, A polynomial algorithm for the produc-

tion/ordering planning problem with limited storage. Computers & Operation Research 34 (2007),

934-937.

[9] J. Gutiérrez, A. Sedeño-Noda, M. Colebrook and J. Sicilia (2008) An efficient approach for solving

the lot-sizing problem with time-varying storage capacities. European Journal of Operational Re-

search 189, 682-693.

[10] T. Liu, Economic lot sizing problem with inventory bounds. European Journal of Operational Re-

search 185 (2008), 204-215.

[11] S.F. Love, Bounded replenishment and inventory models with piecewise concave costs. Management

Science 20 (1973), 313-318.

[12] M. Onal, Private communication (2010).

 30

[13] M.H. Overmars and J. van Leeuwen, Maintenance of configurations in the plane, Journal of Com-

puter and System Sciences 23 (1981), 166-204.

[14] Y. Pochet and L.A. Wolsey, Polyhedra for lot-sizing with Wagner-Whitin costs. Mathematical Pro-

gramming 67 (1994), 297-323.

[15] F.P. Preparata and M.I. Shamos, �Computational geometry, an introduction�, Springer-

Verlag, New York, 1985.

[16] K. Richter and M. Sombrutzki, Remanufacturing planning for the reverse Wagner/Whitin models,

European Journal of Operational Research 121 (2000), 304–315.

[17] F.Z. Sargut and H.E. Romeijn, Lot-sizing with non-stationary cumulative capacities, Operations Re-

search Letters 35 (2007), 549–557.

[18] E. Toczylowski, An O(T2) algorithm for the lot-sizing problem with limited inventory levels. IEEE

Symposium on Emerging Technologies & Factory Automation 3, 1995, pp. 7885.

[19] W. Van den Heuvel and A.P.M. Wagelmans, Four equivalent lot-sizing models. Operations Research

Letters 36 (2008), 465470.

[20] W. Van den Heuvel, J. Gutierrez and H.-C. Hwang, A note on "An efficient approach for solving the

lot-sizing problem with time-varying storage capacities". (in preparation), 2010.

[21] C.P.M. Van Hoesel, A.P.M. Wagelmans and B. Moerman, Using geometric techniques to improve

dynamic programming algorithms for the economic lot-sizing problem and extensions. European

Journal of Operational Research 75 (1994), 312331.

[22] A.P.M. Wagelmans, S. Van Hoesel and A. Kolen, Economic lot sizing: an O(n log n) algorithm that

runs in linear time in the Wagner-Whitin case. Operations Research 40 (1992), S145S156.

[23] H.M. Wagner and T.M. Whitin, Dynamic version of the economic lot-size model. Management Sci-

ence 5 (1958), 8996.

[24] L.A. Wolsey, Lot-sizing with production and delivery time windows. Mathematical Programming

Series A 107 (2006), 471-489.

[25] W.I. Zangwill, A deterministic multi-period replenishment scheduling model with backlogging

Management Science 13 (1966), 105119.

[26] W.I. Zangwill, Minimum concave cost flows in certain networks Management Science 14 (1968),

429-450.

