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We consider the n-period economic lot sizing problem, where the cost coefficients are not restricted in sign. In their
seminal paper, H. M. Wagner and T. M. Whitin proposed an O(n?) algorithm for the special case of this problem, where
the marginal production costs are equal in all periods and the unit holding costs are nonnegative. It is well known that
their approach can also be used to solve the general problem, without affecting the complexity of the algorithm. In this
paper, we present an algorithm to solve the economic lot sizing problem in O(nlog n) time, and we show how the
Wagner-Whitin case can even be solved in linear time. Our algorithm can easily be explained by a geometrical
interpretation and the time bounds are obtained without the use of any complicated data structure. Furthermore, we
show how Wagner and Whitin’s and our algorithm are related to algorithms that solve the dual of the simple plant

location formulation of the economic lot sizing probiem.

In 1958, Wagner and Whitin published their seminal
paper, “Dynamic Version of the Economic Lot
Size Model.” Their approach to solve the economic
lot sizing problem still stands as a classical application
of dynamic programming and it is frequently used in
practice; for instance, in MRP packages the algorithm
is often used to solve subproblems that occur in com-
plex production structures.

In this paper, we consider the economic lot sizing
problem for which the marginal production costs may
differ between periods and all cost coefficients are
unrestricted in sign. The problem originally treated by
Wagner and Whitin is a special case of this problem
because they assumed identical marginal production
costs and nonnegative unit holding costs. However, it
is well known that the Wagner-Whitin algorithm can
easily be modified to deal with the general case. For
both cases the algorithm runs in O(n?) time, where n
is the number of periods of the problem instance; for
an efficient implementation, see Evans (1985). In their
paper, Wagner and Whitin suggested a way to lower
the computational burden; related results can be
found in Zabel (1964), Eppen, Gould and Pashigian
(1969), and Lundin and Morton (1975). However,
although possibly useful in practice, these results do
not affect the complexity of the algorithm.

We will present an algorithm to solve the economic
lot sizing problem that runs in O(nlog n) time and
show how a special case—including the Wagner-
Whitin case— can be solved in O(n) time. The algo-
rithm is based on a well known dynamic programming
formulation which uses a backward recursion. Assum-
ing production in a given period, the recursion for-
mula prescribes an optimal next production period.
Our algorithm identifies periods that will never be
chosen as production periods in an optimal produc-
tion plan. The crucial idea is that from the remaining
periods it is relatively easy to select an optimal next
production period.

Aggarwal and Park (1990), and Federgruen and
Tzur (1991) independently obtained results similar to
those presented in this paper. However, our approach
is significantly different from theirs and the main
advantage of our method is that it can be explained
easily by giving an insightful geometric interpretation.

In Section 1, we discuss the economic lot sizing
problem and make some preliminary remarks. Our
algorithm is explained in Section 2 and the necessary
modifications to solve the Wagner-Whitin case in
linear time are discussed in Section 3. The algorithm
was discovered by solving the dual of the simple plant
location formulation of the economic lot sizing
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problem, and in Section 4 we show how the structure
of this dual enables us to solve it by inspection. Two
algorithms are given: a greedy forward algorithm that
corresponds to the Wagner-Whitin approach and a
nongreedy backward algorithm that is essentially the
algorithm of Section 2. Concluding remarks can be
found in Section 5.

1. THE ECONOMIC LOT SIZING PROBLEM

In the economic lot sizing problem (ELS) one is asked
to satisfy at minimum cost the known nonnegative
demands for a specific commodity in a number of
consecutive periods (the “planning horizon™). It is
possible to store units of the commodity to satisfy
future demands, but backlogging is not allowed. For
every period, the production costs consist of two com-
ponents: a cost per unit produced and a fixed setup
cost that is incurred whenever production occurs in
the period. In addition to the production costs, there
are holding costs which are linear in the inventory
level at the end of the period. Both the inventory at
the beginning and at the end of the planning horizon
are assumed to be zero. We can always assume that
the demand in the last period is positive, because
otherwise we could delete this period without really
changing the problem.

Note that we do not make any assumption about
the sign of the cost coefficients. This is motivated by
the fact that instances of ELS often occur as subprob-
lems while solving complex production problems.
When, for instance, Langrangian relaxation is used,
these subproblems may have negative cost coefficients.

It is useful to consider some mathematical formu-
lations of ELS. Let n be the length of the planning
horizon and d,, p,, f,, h, denote, respectively, the
demand, marginal production cost, setup cost and
unit holding cost in period i, i = 1, . .., n. Given the
problem description above, the most natural way to
formulate ELS as a mixed-integer program is by using
the following variables:

x,: the number of units produced in period i;
s,: the number of units in stock at the end of
period i;

_ J1 if a setup occurs in period i
Y 0 otherwise.

Define d, = YJ_, d, 1 < i < j < n, then a correct
formulation of ELS is as follows.

Formulation |

Minimize Y, (p.x, + £y, + h.s,)

=1
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subject to
X+ 85 —85,=d, fori=1,...,n
dny,—x, 20 fori=1,...,n
So=5,=0

20, 5,20,y,€{0,1} fori=1,...,n.

Because s, = ¥iei x, — ¥l d,, i=1, ..., n, we can
eliminate these variables from the formulation. This
results in the next formulation.

Formulation Il

Minimize Z (C,x, +f;y1) - Z hl dll
1=1 =1

subject to

ix,=d,,,

=1

ilx,zd,, fori=1,...,n-1
=

dny,—x,=20 fori=1,...,n
x,20, y€{0,1} fori=1,...,n

Here ¢, =p, + ¥, h,i=1, ..., n.. Note that the
last summation in the objective function is a constant
and can therefore be omitted. This reformulation is
useful because it shows us that we can restrict our
analysis to instance of ELS where the holding costs
are zero.

From now on, we shall work with the marginal
production costs ¢,, i = 1, ..., n. As mentioned
before, we do not make any assumption about the
sign of these costs. The fact that such an assumption
is unnecessary follows from the first constraint of I,
which implies that adding the same amount to all
marginal production costs shifts the objective function
of all feasible solutions by the same amount. Hence,
not the values, but rather the differences between
marginal production costs play a role in determining
the optimal solution. The algorithm that we present
in the next section assumes nonnegative setup costs.
However, this does not mean that instances with
negative setup costs cannot be solved. If £, < 0, then it
will always be profitable to set up in period / (even if
there is no production in that period). By redefining
the setup costs for those periods to be zero, we obtain
a problem instance with nonnegative setup costs.
Solving this instance and adding all negative setup
costs to the obtained solution value gives the optimal
value of the original instance.




A third formulation played an important role in
discovering the algorithm that we are going to present.
In this formulation the x,-variables are disaggregated
into variables x,:

x,: the number of units produced in period i to satisfy
demand of period ¢ = i.

The formulation is as follows.

Formulation Il

Minimize Y, (fiy. + ¢, 2 Xu)
=1

=1

subject to

! fort=1,...,n
z Xy =d,

=1

dy,—x,20 fori=1,...,n,

fort=1i,...,n

x. =0, y,€{0,1} fori=1,...,n,

fort=1,...,n.

This formulation is a scaled version of the so-called
simple plant location formulation of ELS, in which
one uses the variables:

z,. the fraction of demand of period ¢ satisfied by
production in period i < £;

(i.e., z. = x./d,if d,> 0). It has been shown in Krarup
and Bilde (1977) that the LP-relaxation of that for-
mulation has optimal solution in which the y-variables
are integer; of course, this must also hold for the LP-
relaxation of III. Although the dual programs of both
relaxations are essentially the same, it is more conven-
ient to solve the dual of the relaxation of III, especially
when we want to allow zero-demand in some periods.
In Section 4, we shall present algorithms to solve this
dual.

ELS is traditionally not solved by explicitly using
any of the formulations above, but by dynamic pro-
gramming. The key observation to obtain a dynamic
programming formulation of the problem is that it
suffices to consider only feasible solutions in which
the inventory at the beginning of production periods
is zero (the “zero-inventory property™); in other words,
production in period i equals 0 or d, for some k = i.
This property was stated first by Wagner and Whitin
(1958) for their special case. Later, Wagner (1960)
showed that the property even holds under the
assumption of concave production costs (see also
Zangwill 1968).

In the next section, we shall present our algorithm
which is essentially a backward dynamic program-
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ming algorithm. For the sake of completeness, we note
here that a similar algorithm based on a forward
recursion can be derived. However, the latter algo-
rithm uses a somewhat more complicated data struc-
ture than the one given below; for details we refer to
Van Hoesel (1991).

2. AN O(nlogn) ALGORITHM TO SOLVE ELS

In this section, we assume that all setup costs are
nonnegative. We define G (¢) to be the cost of an
optimal solution to the instance of ELS with a
planning horizon consisting of periods ¢ to n, ¢ =
1, ..., n. Furthermore, G (n + 1) is defined to be zero.
Because of the zero-inventory property the following
recursion holds:

min fi+cdu-1+G()

<t<n+l1

ifd,>0

G@)= min[G(i+1), min f,+c,d,,,_|+G(t)]

1+l<t<n+]

ifd,=0. (1)

The recursion formula states that if d, > 0 it is neces-
sary to set up in period i; we produce for a number of
consecutive periods and follow an optimal strategy for
the remaining periods. If d, = 0 it is also possible to
omit the setup and just follow the optimal strategy
from period i + 1 onward.

Using (1) for calculating G (i) involves the compar-
ison of n — i + | expressions. A straightforward
application of this recursion leads to an O(n?) algo-
rithm. We shall show that given G(¢) for ¢ =
i+ 1, ..., n+ I, it is possible to determine
min,qenijcidi -1 + G(@t)} in O(logn) time. Be-
cause of (1), this implies that G (i) can be deter-
mined in O(log #) time.

To facilitate the exposition we plot the points
d, G@) fort=1i+1,...,n+ 1, as in Figure 1,
where cumulative demand is put on the horizontal
axis and the vertical axis corresponds to the mini-
mal costs. Note that one of the plotted points must
be the origin because (d,+1.., G(n + 1) = (0, 0). Let
LE denote the lower convex envelope of the plotted
points, then we define on [0, d,,..] the function g by
g(z) = w if and only if (z, w) € LE. It follows that
g{d,+1.,) = G(i + 1), because if d,+, = 0 then, according
to (1), all plotted points with a coordinate d,.,, on
the horizontal axis cannot lie below (d,+1 ., G(i + 1)).
Furthermore, it is clear that g is a piecewise linear
convex function on [0, d,,,.,] (see Figure 1).

A value z € (0, d.+,,,) in which g changes slope is
called a breakpoint of g. We also define z = 0 and
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G(it]) - - m e e e e

0 f
0 410

Figure 1. Diagram of minimal cost versus cumulative
demand.

Z = d,,1,» to be breakpoints. It is obvious that if z
is a breakpoint, then (z, g(z)) = (d.,, G(¢) for some
period t € {i + 1, ..., n + 1}. Suppose that there
are r breakpoints of gand let i + 1 = ¢(1) < ... <
t(r) = n + 1 denote the corresponding periods. These
periods will be called efficient, because we shall show
that only these periods need to be considered for the
determination of min,<,+.{c, d..—1 + G(2)}.

Proposition 1. Let t(p), p = 1, ..., r, denote the
efficient periods, then

min C,d,,l_l + G(t) = min C,d,,l(p)_l + G(t(p)).
l<p=sr

<t=n+1

Proof. Suppose that j, i + 1 <j < n + 1 is not an
efficient period and & and / are the two consecutive
efficient periods, such that k < j < . The slope of g
on [dy, di:] is equal to [G (k) — G (!))/dy.~1, hence

Gk) = G() d

=1+
A1

Furthermore, we know that G(j) = g(d,.).
First assume that ¢, = [G (k) — G(!))/dx, -1, then

cldl,j—l + G(J)

= cxdz,k—l + cldk,j—l +g(d_/n)

Gk)—G()
A1

LGR=GW)

-1
dk,l—- 1

=cC, dz,k-—l + G(k)

g(djn) = G(l) +

?C,d,,k_l‘f‘ ko-1+G(l)

This means that ¢,d,,-, + G(j) is dominated by
¢.d,x-1 + G (k). For the case, ¢; < [G (k) — G(/))/dx-
we can prove that c,d, -, + G(j) = ¢, d, ;- + G(I):

cldu-l + G(])

= Cldl,/—l -C d;.l—l + g(d_/ll)

Gk)-G()
dk,/—l

+G(k)—G(l)d

i1 !
=cd - +G().

Hence, we have shown that for the determination of
min,<n+1{¢,d,—1 + G(2)} it suffices to consider only
the efficient periods.

= cldl.l—l -

di+G(!)

For a geometric interpretation of the proof of
Proposition 1 consider Figure 2, where ¢, is assumed
greater than the slope of g on [d),, diw]. Note that
¢.d, ;-1 + G(j)is exactly the coordinate on the vertical
axis of the intersection point of the vertical line
through (d,., 0) and the line with slope ¢, that passes
through (d,., G(j)). Of course, the corresponding
values for the other periods can be determined anal-
ogously. We have proven that (d,,, ¢.d,,-1 + G(J))
never lies below (d.,, ¢.d x-1 + G(k)).

From the discussion above it is also clear how we
can determine min ¢ < {¢,d, -1 + G(¢(p))} geomet-
rically (see Figure 3): For every efficient period ¢ we
determine the intersection point of the vertical line
through (d.., 0) and the line with slope ¢, that passes
through (d,,, G(t)). The coordinate on the vertical

cidi,j-l+ L€ ) U --

P,'
€38 sert Ol oo b

S S

d d d d d

0 La jn kn itln

2

Figure 2. Geometric interpretation of proof
Proposition 1.
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Figure 3. Geometric determination of minimum
value.

axis of the lowest of these intersection points is equal
t0 Min 1<p<r{C.dop-1 + G((P))}. This means that we
are in fact looking for the line with slope ¢, that
supports the epigraph of g. In Figure 3 it is clear that
the slope of g is smaller than ¢, on [0, dyq.] and
greater than ¢, on [dg», d.+1.x]. For a formal proof of
this property it is sufficient to prove the following fact.

Proposition 2. Let k and [, k < I, be two consecutive
efficient periods. If
Gy - G() <e

dk,l—l
then
C,d,,k._l + G(k) < C,d,,l_l + G(l),
otherwise, ¢.d, -, + G(k) = ¢,d, ;- + G(I).
Proof. Suppose that [G(k) — G(1)l/dik.-1 < ¢, then
G (k) < ¢,disy + G(I). Adding c.d, «—, on both sides
of the inequality sign results in ¢, d, - + G(k) <

c.d, 1 + G(l). In the other case, the proof is com-
pletely analogous.

From Proposition 2 and the convexity of g on
[0, d.41.], it follows that ¢ d. -1 + G((q) =
min << {C.d, i1 + G(E(P))} if we take

q:= min[r, min{pl lsp<r
ang U =GP+ 1»“’}]’

dr(p),t(p+l)—1

because then
cldl.l(p)—l + G(t(p)) = ctdl,l(p+l)—l + G(t(p + 1))

forp=1,...,9—1
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and
cd i1 + GUP)<Cd i psn-1 + GE(p+ 1)
forp=gq,...,r—1.

A crucial observation at this point is that once the
efficient periods are known, that is, given the ordered
ratios

Gp) —Gup + 1)

dr(p),l(pﬂ)—l

=1,...,r—1,

we can determine #(g) in O(logn) time by binary
search.

Note that the choice of #(g) as the next production
period after i clearly has a sensible economic interpre-
tation: the ratios

Gp) = Gup + 1)

dl(p),l( p+1)-1

=1,...,r—1,

are marginal costs per unit of demand, and we produce
up to the period where this quantity drops below the
marginal production costs of period i.

After G (i) has been determined for a certain i > 1,
we want to proceed with the analogous calculation of
G(i — 1). However, first we must update the set of
efficient periods. Geometrically we can apply the
following procedure: add the point (d.,., G(i))
and find the smallest efficient period ¢(s), such that
the slope of the line segment connecting (d,,, G (i))
t0 (dion» G(2(s))) is greater than the slope of the
line segment connecting (dy s+, GU(s + 1)) to
(dyn» G((5))). The new set of efficient periods
consists of period i and the periods #(s) to #(r) (see
Figure 4).

(€160 1N Mt

G()-|-——--------——--~1

[-%

0 dt(‘S). n in

Figure 4. Updating the lower convex envelope.
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To define #(s) formally a few remarks are needed.
We adopt the convention that if d, = 0, then the
efficient period i + I is replaced by the efficient period
i. It is trivial that in the case where d, = 0 and G (/) =
G (i — 1), all other efficient periods remain efficient,
ie., we let s := 2. Otherwise, it always holds that
s < ¢. To see this, suppose that ¢ < r. By the defini-
tion of t#(g) and because G(i) = f, + g1 +
G (1(g)) the following holds

GO -G o > GWUg) — Gg + 1)
du(q)—l T

and this implies that s < ¢.
We then define s as:

dl(q)v’(flﬂ)—l

5= min[q, min{vls~ P<q, dypn-1>0

and

G(@) = GUp) | GU(p) = G(p + l»H_

dr,t(p)—l dt(p),t(p+l)-l

Note that d,,,-1 = 0 can only occur if #{(p) = i + 1

and d, = 0. Hence, the condition d, -, > 0 guaran-

tees that if d, = 0 the period i + 1 is no longer efficient.
To find s we simply compare

G@) — G@(p)
dr,r(p)—l

to
Gp) - Gp + 1)

dt(p),l(p+l)-1

for increasing p, 1 < p < ¢, and stop as soon as the
first expression is greater than the second. Note that
if a period is not efficient during the calculation of
G (i), it can never be efficient during the calculation
of G(j) for all j < i; i.e., a period becomes inefficient
at most once.

Before giving a complete description of the algo-
rithm a few remarks may clarify that it can indeed be
implemented to run in O(n log n) time. First note that
the marginal production costs c,, i=1, ..., n, can be
calculated from p,and 4,,i =1, ..., n, in O(n) time.
Redefining the setup costs is of the same complexity.
In the implementation below we assume nonnegative
setup costs; the modifications needed otherwise are
straightforward. Furthermore, it is not necessary to
calculate d, for all pairs 7, j with 1 </ <j < n. At the
start of the algorithm we only calculate the coefficients
dw, i=1,...,n(again in linear time). Because d, =
din~ dy10, 1 <0< j<n, these coefficients can then
be obtained in constant time when needed.

The main part of the algorithm consists of # iter-
ations: G (i) is calculated in iteration n — i + 1. The
implementation below uses a list (“stack”) L that
contains the efficient periods at the beginning of iter-
ation n — i + 1 in increasing order. As noted before,
we can find the period #(g) by binary search in L. The
total time spent on searching is therefore O(n log n).
In every iteration we have to make a few comparisons
to determine the period #(s). After every comparison,
we either conclude that we have found #(s) or we have
to continue by considering the next period in L. The
first case occurs exactly once in every iteration, i.e., in
total » times. In the second case, we delete a period
from L. As every period is deleted from L at most
once, this case can occur no more than # times. Thus,
the overall complexity of calculating G(1) is
O(nlog n). At the end of the algorithm an optimal
solution is constructed in linear time using informa-
tion obtained during the iterations. The output is
given in terms of the x- and y-variables used in models
I and II of Section 1. Initially L is empty and all
variables are equal to zero.

The next description should be self-explanatory,
except for /( p) which is used to indicate the successor
ofpin L.

Algorithm

(Input: p, h € R", f, d € R%,
Output: x € R”, y € B").
Initialization

calculate c,and dp, i=1,..., 1
addn+ 1toL.

Iterations

Fori:=ndownto | do
begin

search for ¢(i) := min[n +1,

min{pEL|p<n+l

Gp) - GlWw)
and dpn - dl(p).n < CI}:I’
G():=f + cldin — dynynl + G(q(i)),

if (d, = 0 and G(i + 1) < G(;)) then,

begin
G@Hy=Gu+1
s:=[(i+1)
end
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else
begin
ifd;>0,thens:=i+1 elses:=/[(+1)
while
GW) = G(s) _ G —GU(s) .
( d, —d., < . — dior and s < q(1)>
do s:=I(s)
end
delete all pwithi + | < p<sfrom L
addito L
end.

Construction of an optimal solution
i=1
whilei<n do
if(d,=0and G(i)=G(i + 1)), theni:=i+ 1else
begin

X, = dm - dq(z).n
y=1
i:=q(i)

end.

3. THE WAGNER-WHITIN CASE

Wagner and Whitin originally proposed their algo-
rithm for the special case in which p, = pand h, = 0,
i =1, ..., n. For the marginal production costs
c,=p.+ 3 h,itfollowsthatc, =z e, i=1,...,
n — 1. The discussion of the complexity of our algo-
rithm in the previous section makes clear that apart
from the binary searches, the number of elementary
operations is O(n). We shall now show that when the
marginal production costs are nonincreasing over time
we can replace the binary searches by a much simpler
search strategy that requires in total O(n) compari-
sons. Hence, the Wagner-Whitin model is an interest-
ing special case of a class of lot sizing problems that
can be solved in linear time.

In our exposition, we shall use the same notation
as in the descripton of the algorithm at the end of
the previous section. Consider iteration n — i + 1,
1 < i < n, in which we determine

q(i) == min[n + 1, min{p ellp<n+1

G@p) — GU(p)
and dpn - dl(p),n = C}],

where L is the current list of efficient periods.
First suppose that g(i + 1) & L, then it must have
occurred in iteration n — i that s > ¢(i + 1). But this
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is only possible if d,+; =0, G(i + 1) = G(i + 2) and
g(i + 1) = i + 2. In that case, L has been updated by
simply replacing period i + 2 by period i + 1. Hence,
[(i + 1) is the same period as the successor of i + 2 in
iteration n — i. It follows that

G+ —-GUE+1) _ GIi+2)—GUGE+ 1))

d:+l,!(:+l)—l

d1+2,1(1+l)—1

< Cit1 = Cta

where the strict inequality follows from the definition
of g(i + 1). We conclude that g(i) =i + 1.

Now suppose that g(i + 1) € L. Note that as
long as g(i + 1) is efficient it has the same succes-
sor /(i + 1) in L. Using again the definition of
q(i + 1) we obtain

G+ 1) =GUEE+ 1) . .

dq(t+l),f(q(t+l))—1

Hence, it follows that in this case g(i) < q(i + 1).

We can adapt the implementation of the algorithm
as follows: Let m( p) denote the predecessor of pin L.
Initialize s and g(n + 1) to n + | and replace the
“search for g(i)” by the following statements:

ifs>q(i+ 1), theng(i):=i+ 1 else
begin
q(i) :== m(q(i + 1))
G(q(i) — G((g())
¢ dq(,),n - dl(q(t)),n =

do g(i) := m(q(i))
q(@) == 1(q(i))

end.

whil

After each comparison in the while-loop we either
conclude that ¢(i) has been found or that we must
make at least one more comparison. The first case
occurs exactly once per iteration. The second case
implies that we found a period p such that g(j) < p
for all j < i. For every period p this conclusion is
drawn at most once. The total complexity of the
algorithm is therefore O(n).

Wagner and Whitin’s “Planning Horizon Theorem”
states that if we consider the forward recursion, then
the last production period in the optimal solution for
periods 1 to i + 1 is not smaller than the last produc-
tion period in the optimal solution for periods 1 to i.
The fact that g(i) < g(i + 1), 1 < i < n, means that a
similar result holds with respect to recursion (1). As
far as we know, this result has never before been stated
explicitly in the literature.
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Table I

Input Data (Y-, h.dy; = 3860)

i dm ﬁ [
1 630 85 12
2 561 102 11
3 532 102 10
4 496 101 9
5 435 98 8
6 374 114 7
7 348 105 6
8 314 86 5
9 247 119 4
10 202 110 3
11 135 98 2
12 56 114 1

To end this section, we give the results of our
algorithm for the example from Wagner and Whitin
(1958). The (transformed) input data are displayed in
Table I.

The output is given in Table II and should be
interpreted as follows: Iterations correspond to rows.
The first column of every row contains the period i
for which we are calculating G(i). In the second
column we show the efficient periods at the beginning
of the corresponding iteration. For the efficient
periods between brackets we have already concluded
that g(;) is less than these periods for j < i. The values
of g(i) and G (i) are given in the next two columns.
The last column contains the ratio

G@) - GU®G)
dl,n - d!(t),n

that is calculated at the end of the iteration. To find
q(i) we compare ¢, with the ratios of the efficient
periods that are not between brackets, starting with
the largest one. We stop as soon we find a ratio that
is greater than c,.

The optimal policy is to produce in periods 1, 3, 5,
8, 10 and 11. Because of the transformation of the
cost coefficients we should subtract 3,860 from the
value 4,724 to obtain the optimal value 864.

4. SOLVING THE DUAL OF THE SIMPLE
PLANT LOCATION FORMULATION

In this section, we show how our algorithm relates to
one that solves the dual of the LP-relaxation of the
simple plant location formulation of ELS. In fact the
algorithm presented in the previous section was devel-
oped after an O(n log n) algorithm to solve this dual
had been found. As mentioned in Section 1, we know
that the LP-relaxation of the simple plant location

formulation has an integer optimal solution. This fact
was first proven in Krarup and Bilde who suggested
an O(n?) algorithm to solve this formulation. For
convenience, we shall consider a slightly different
formulation, viz. the LP-relaxation of model III of
Section 1. For the dual the only consequence is that
the variables are scaled differently. Apart from the fact
that this facilitates the exposition, this dual is easier to
treat when zero-demand is allowed.

The dual of the LP-relaxation of III is the following
program.

Program D

n n
Maximize ), do, — Y. A,
=1 =1

subject to

n

Ydw,—\<f fori=1,...,n

=1

v, —w, ¢, fori=1,...,n,
fort=i...,n

Wy, A, =0 fori=1,...,n,
fort=4,...,n

v, free fort=1,...,n.

In an optimal solution we can always take w, :=
max{0, v, — ¢,}. If £, = 0, then the restriction y, < 1 in
the LP-relaxation of III is superfluous and therefore
the corresponding dual variable A, can be taken equal
to zero. If f; < 0 we can take A\, = —f; and solve the
remaining problem. This corresponds to the way neg-
ative setup costs have been treated before, We there-
fore show how to solve the following program, where
fiz0,i=1,..., n

Table II
Results of Algorithm

i Efficient Periods gqi) G(i) Ratio
12 13 13 170 3.04
113,12 13 368 273
10 13,11 11 679  4.64
9 (13)11,10 11 935  5.69

(13)11, 10,9 10 1325 582

7 (13,11)10,9, 8 8 1634  9.09

6 (13,11,10,9)8,7 8 1859  8.90

5 (13,11,10,9)8,6 8 2391 8.1

4 (13,11,10,9)8,5 S 3041  10.66

3 (13,11,10,9,8) 5, 4 5 3463 1172

2 (13,11, 10,9,8)5, 4,3 4 3858 13.62

1 (13,11,10,9,8,5)4, 3,2 3 4724 1287
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Program D’

n
Maximize Y, d,v,
t=1

subject to

INCE:

dmax{0, v, —c¢}<f fori=1,...,n.

This program is highly structured and can be solved
by inspection. One way of doing that is by considering
the variables in the order of increasing index: If
d, = 0 we can give v,, an arbitrary value, otherwise we
let

. 2t dmaxi{0, v, — ¢
u,:=m1n{c,+f,— St {0, v, ’},
(5%} dj

i.e., given v, t < j, v, is assigned a value as large as
possible. The solution constructed in this greedy for-
ward way is clearly feasible and to prove optimality
we first show that if d, # 0 and d,,, # 0, then
U; 2 U410

Let k < j be such that

fi — 42k dmax{0, v, — ¢}
d, )

U, = Ck +
Thus v, = ¢ and fi — Yl dmax{0, v, — ¢} = 0.
Because

fk - 2’;=k d,max{O, v, — Ck}
dj-f-l

UJ+1 -..<~. Ck +

it follows that v,,; < ¢ < v,. Since the variables
corresponding to periods with zero-demand can be
given an arbitrary value, we may assume that the
constructed solution satisfies v, = v, j = 1, ...,
n-—1.

Now define F(j) to be the cost of an optimal
solution to the ELS with the planning horizon con-
sisting of periods 1 to j, j = 1, ..., n. To prove
optimality of the solution it is sufficient to show that
-1 dw, = F(j), because by duality and the structure
of (D), 3= dv, < F(j) must hold. The proof is by
induction on j, starting with j = 1 for which the
statement is trivial.

For j > 1 we only have to consider the case of
d, # 0, because, otherwise, F(j) = F(j — 1). Let
k < j be such that

fk - Z';;}( dxmax{(), v, — Ck}
d, ’

U,=Ck+
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then

k-1

d,U, = de] +fk + 2 dtvt
t=1

M\

Il

=1

J-1
+ Y d(v— max{0, v, — ci}).
1=k

Using the induction hypothesis Y- d,v, = F(k — 1),
and the fact that v, = v, = ¢, <, we obtain

-~

dw, = fi + adyy + F(k — 1). )
]

~
[

Because

F()=minf, + ¢ d, + F(i — 1),
=)

(2) implies that ¥4~ d,v, = F(j), which together with
Y41 d,v, < F(j) yields the desired result.

From our discussion above (in particular, equa-
tion (2)) it is clear that solving D’ in the greedy forward
way directly provides an optimal solution of ELS and
is closely related to the forward dynamic programming
approach of Wagner and Whitin. In fact this dual
algorithm is the algorithm given in Krarup and Bilde,
where it was presented in a more general context.

An alternative approach to solve D’ is closely related
to the algorithm presented in Section 2. It will not
come as a surprise that this algorithm works backward,
i.e., variables and constraints are considered in order
of decreasing index. Contrary to the forward algo-
rithm, we cannot follow a greedy strategy: While
determining a proper value for v, we may have to
revise, at the same time, values of some variables v,,
¢t > j. It is somewhat surprising that in spite of this,
the algorithm can be implemented to run in O(n log n)
time, while the greedy forward algorithm has a com-
plexity of O(n?). The gain in complexity comes from
the fact that we can again determine certain important
indices by binary search and revising values of vari-
ables can subsequently be done in constant time. In
our exposition we shall try to clarify the correspon-
dence to the algorithm of Section 2.

Throughout the algorithm the idea is to keep the
variables such thatv, = v, j=1i,...,n— 1. Here |
is the index of the variable and the constraint that we
are considering in the current iteration. At the begin-
ning of the iteration the variables v,., to v, satisfy
the constraints indexed / + 1 to # and will always have
the following property. There are indices { + 1 =
[(1) <...< t(r) =n+ 1, such that Vup) = Vup+1)
and v, = vy, forall t with 2(p) <t <t(p+ l)and p=
1,...,r— 1. (Here v, is defined sufficiently small.)
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Furthermore, it holds that d,+1-1 # 0 and
Yi=up A0, = G(t(p)) forall p<r.

We shall call this the staircase property. Of course,
the indices (1) to #(r) correspond to the efficient
periods of Section 2. Note that

G(p) — G(p + 1))
dt(p),t(pﬂ)-l '

v(t(p) =

We are now going to show how to obtain a solution
vy, t = i, such that this solution satisfies the constraints
indexed i to n and the staircase property holds, i.e., in
particular ¥/, d,v, = G (i). The current slack in con-
straint / is

& :=f— Y dmax(0, v, — c)

1=i+1

(g)-1

=fi— X dv.—c),
=1+1
where g := min[r, min{p|1 < p<randv,<c}].
We distinguish between three cases.

Case 1. d, = 0. By taking v/ := v,, t > i, and
v/ = v/y1, we obtain a solution with all the desired
properties, because

Zdtvl/ = 2 du! = Z dw;,

1=1+1 =1+1

G@i+1)=G3),
and by duality, 37, d,v/ < G(i).
Case 2. d, # 0 and dv,., < ¢ d, + 6,. Let v/ =

¢,+6,/d,andv; =v,, t>i,thenv//= v/,,, constraints
i to n are satisfied and

cdi+ 86 + Y dv!

t=1+1

Hg)—1 n

= cldl +ﬁ - 2 dl(vt - Cl) + Z dlvl

t=1+1 1=1+1

n
=ﬁ + C,d,,,(q)_l + z d,l)l

t=t(q)
=fi + ¢.dg-1 + G(2(q)) = G(i).
Again, we conclude that Y1, d,v/ = G(i).

Case 3. d,v,+1 > c,d, + §,. Satisfying constraint i with
a solution v/, t = i, ..., n, such that v/ = v/,,, t =

I, ..., n — 1, is now only possible if v/ < v, for
some ¢, i + 1 <t <1(q) — 1. Consider an arbitrary u,
2 < u < g and suppose that we would choose the
solution 0, := vy, i <t < Hu), b,=v, tuy <t <n,
then the slack in constraint ; would be

H{uy—1

6 —d@, —-c)+ 2 d(v, - ;)

1=1+1

Hu)~1

=6 —d(w—c)+ D dv,~ V)

1=1+1

Hg)-1

=f- E di(v,i—c,)

1=1+1

tHu)—1

—dwtc)+ Y dlvi—viw)

t=1+1

Hq)~1

=fi+cd g1 — V) @rsu—1 — 2 dw,

t=t(u)
=fi+ g1 = Vi Grar-1 = G (L)) + G (1(g)). (3)

The value of expression (3) must increase for increas-
ing u and it is certainly positive for u = g. Let s be the
smallest index, such that (3) is positive if # = 5. In
other words, s is the smallest index among 1 to ¢, such
that by letting all variables with a smaller index be
equal to v,s, while not changing the values of the
other variables, constraint i is satisfied. Let 6, be the
corresponding slack, i.e.,

62 = fi + Cdiug-1 = Vo) Arus-1
- G(1(s) + G(t(g) > 0.
The solution v/, ¢ = i, is now defined as:
U = Uy + 62/diy-1, t=1,...,1(s) =1
v/ i=v,, t=1(s).
The new solution satisfies constraint i with equality
and the constraints / + | to » are also satisfied because

v/ < v, t =1+ 1. Moreover, the staircase property
holds because

tHs)—1 n

dv! = Y dv! + > du,

1=t(s)

M =

= Uiy diss—1 + 62 + G(L(5))
=Ji + ¢.dug + G(1(q)).

It fOllOWS that 2{;1 dtvt’ = G(l) = ﬁ + Cldl,l(q)—] +
G(t(g)). Now the equivalence of the choice of s
here and in Section 2 becomes clear: (3) is positive
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if and only if
G (i) = Vi Ay — GEwW) >0
L G0 = Gew) _

d!,l(u)—l r
_Gw) ~ Gu + 1)
dl(u).t(u+])—l '

This completes the description of an iteration of the
backward algorithm to solve D’ (and at the same time
ELS).

The reader should have no difficulties in finding
an implementation of the algorithm that runs in
O(n log n) time. The crucial observation to be made
is that the solution is always completely determined
by the values vy, p=1,...,r— L

5. CONCLUDING REMARKS

We have shown that ELS can be solved in O(n log r)
time and how this fact is related to the special structure
of the dual of the simple plant location formulation.
Furthermore, we showed that the Wagner-Whitin case
can be solved in linear time.

The algorithm presented here has some similarities
with the algorithm to solve ELS that can be found in
Van Hoesel, Kolen and Wagelmans (1991). This last
algorithm is based on solving the dual of a complete
linear description of the convex hull of feasible solu-
tions of formulation II, which was found by Barany,
Van Roy and Wolsey (1984). It also works backward,
but instead of considering the periods one by one it
can be regarded as only calculating G (¢) for the periods
¢ that are efficient after the last iteration of the
algorithm in Section 2. The algorithm is of the
greedy type and runs in O(n?) time. A nongreedy
O(n log n) algorithm to solve the same dual may well
exist.

In Van Hoesel (1991), the approach described in
Section 2 is generalized and applied to other lot sizing
problems. For instance, it turns out that the model in
which backlogging is allowed can be solved in
O(nlogn) time. (Using the different approaches this
result has also been obtained by Aggarwal and Park
1990, and Federgruen and Tzur 1991.)

In this paper, we have focused on the theoretical
properties of our algorithm. However, it scems worth-
while to study the performance of the algorithm on
practical problems. For instance, a proper implemen-
tation of the algorithm can be expected to be com-
putationally more efficient than the efficient imple-
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mentation of the Wagner-Whitin algorithm described
in Evans (1985), while requiring less storage. The
algorithm could also be competitive with various
widely used heuristics (see, e.g., Baker 1989), although
these may produce solutions that are more attractive
from other points of view. For limited computational
results we refer to Van Hoesel.
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