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Abstract: Currently, screen content images (SCIs) are widely used in our modern society. However, 

since SCIs have distinctly different properties compared to natural images, traditional quality 

assessment methods of natural images cannot precisely evaluate the quality of SCIs. Thus, we 

propose a blind quality evaluation method for SCIs based on regionalized structural features that 

are closely relevant to the intrinsic quality of SCIs. Firstly, the features of textual and pictorial 

regions of SCIs are extracted separately. For textual regions, since they contain noticeable 

structural information, we propose improved histograms of oriented gradients extracted from 

multi-order derivatives as structural features. For pictorial regions, since human vision is sensitive 

to texture information and luminance variation, we adopt texture as the structural feature; 

meanwhile, luminance is used as the auxiliary feature. The local derivative pattern and the 

shearlet local binary pattern are used to extract texture in the spatial and shearlet domains, 

respectively. Secondly, to derive the quality of textual and pictorial regions, two mapping 

functions are respectively trained from their features to subjective values. Finally, an activity 

weighting strategy is proposed to combine the quality of textual and pictorial regions. 

Experimental results show that the proposed method achieves better performance than the 

state-of-the-art methods. 

Keywords: screen content image; blind quality evaluation; regionalized structural features; 

improved histogram of oriented gradient; local derivative pattern; shearlet local binary pattern 

 

1. Introduction 

Recently, screen content images (SCIs) have been widely applied as a form of information 

representation in our modern society owing to the popularization of multimedia applications 

including remote screen sharing, Cloud and mobile computing, commodity advertisements of 

online shopping websites and real-time online teaching [1,2]. In many actual engineering 

applications, including compression, storage, transmission and display, the visual quality of SCIs 

will inevitably be degraded owing to distortions including noise, blur, contrast variation, blockiness 

and quantization loss. Undoubtedly, the quality degradation of SCIs will significantly affect the 

visual perception of observers. Thus, it is necessary and meaningful to develop quality evaluation 

methods for SCIs in actual engineering applications. 

Over recent decades, a large number of image quality assessment (IQA) methods have been 

elaborately designed and applied in the field of digital image processing. The peak signal-to-noise 

ratio (PSNR) is a conventional IQA method and has been applied extensively. However, it has 
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inferior prediction performance since it only deals with the difference between pixels and does not 

take into account the perceptual properties of human vision. To overcome this drawback, the 

research community has proposed many advanced full-reference (FR) IQA metrics that require the 

entire information of the reference image. These metrics skillfully model intrinsic properties of the 

human visual system (HVS) and representative metrics include structure similarity (SSIM) [3], 

feature similarity [4], visual information fidelity [5], gradient magnitude similarity deviation (GMSD) 

[6], the internal generative mechanism (IGM) metric [7] and deep similarity [8]. In [3], the quality of 

an image is measured by combining the changes from the luminance, contrast and structure. In [4], 

two complementary low-level features, namely the phase congruency and the image gradient 

magnitude, are adopted to characterize the image local quality. In [5], the loss of image information 

is quantified and used to assess the visual quality of an image. In [6], the standard deviation of the 

gradient magnitude similarity map is calculated as the quality index of an image. In [7], according 

to the IGM theory, an autoregressive prediction method is used to decompose an image into the 

predicted and disorderly parts whose distortions are measured by the structural similarity and the 

PSNR, respectively. In [8], the local similarities of features generated by the convolutional neural 

network (CNN) are calculated and pooled together to assess the quality of an image. 

Additionally, alongside the FR IQA metrics, some reduced-reference (RR) IQA metrics [9], and 

no-reference/blind IQA metrics [10], have also been presented over recent decades. The RR IQA 

metrics only need partial information of the reference image, while the no-reference (NR) IQA 

metrics need no information from the reference image. Many blind IQA methods first extract 

quality-aware features and then these features are supplied into a machine learning model to obtain 

the quality assessment result. Mittal et al. [11], presented a blind IQA metric called BRISQUE in 

which the naturalness of an image is quantified and natural scene statistics (NSS) features of locally 

normalized luminance values are adopted. Li et al. [12], presented a blind IQA metric which adopts 

two types of features, namely the luminance features represented by the luminance histogram and 

the structural features denoted by the histogram of the local binary pattern (LBP) of the normalized 

luminance. Li et al. [13], designed a blind IQA metric based on structural features denoted by the 

gradient-weighted histogram of the LBP computed from gradient values. In [14–15], the statistical 

histograms of the texture information of an image are extracted as quality-aware features to describe 

the distortion degree of the image. In [16], NSS features extracted from reference images are used to 

learn a multivariate Gaussian model and then this learned model is used to evaluate the quality of 

distorted images. 

Although the IQA methods mentioned above obtain superior performance, they have been 

specially developed to predict the quality of natural images and cannot be used to precisely assess 

the quality of SCIs. The reason for this is that SCIs have some distinctly different characteristics 

compared to natural images. Firstly, their contents are different. Generally, texts, natural images, 

slides and logos are mixed in an SCI and so an SCI has rough edges, simple shapes, thin lines and a 

small number of colors. Two typical examples of SCIs are shown in Figure 1. However, a natural 

image contains continuous-tone content with slow-varying edges, complicated structures, thick lines 

and more colors. Secondly, their statistical distributions are different. In general, after luminance 

values of a natural image are processed by the mean subtracted contrast normalized (MSCN) 

operation, their statistical distribution can be modeled by a Gaussian function [11]. By comparison, 

for an SCI, this statistical distribution behaves like a Laplacian contour [17] and the curve of this 

statistical distribution varies dramatically. Specifically, the center of this curve has a keen-edged 

pimpling and the remaining parts are still wavy [18]. Thirdly, their image activity levels [19], are 

different. Because the pixel values of an SCI have greater variations in local regions, the activity 

measurement value of an SCI is greater than that of a natural image [18]. As SCIs and natural images 

have these different properties, users have completely different viewing experiences regarding the 

quality degradation of SCIs and natural images. Therefore, the existing IQA methods developed for 

natural images are inappropriate to assess the quality of SCIs. 
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(a) (b) 

Figure 1. Two typical examples of the screen content images (SCIs) in the SIQAD database. (a) “cim 1” 

and (b) “cim19”. 

To date, a few algorithms have been proposed to perform the quality evaluation of SCIs. The 

earliest study of the quality assessment of SCIs was conducted by Yang et al. [18], who proposed an 

FR screen content image quality assessment (SCIQA) method called SPQA. In this method, for 

textual layers of SCIs, both luminance and sharpness similarities are calculated, while for pictorial 

layers of SCIs, only the sharpness similarity is computed. Respective quality values of textual and 

pictorial layers are combined as the overall quality score of a distorted SCI by employing a 

weighting activity map. However, the predictive performance of the SPQA method needs to be 

improved further. Fang et al. [20], proposed an FR SCIQA method, in which the similarity of 

structural features denoted by the gradient information is calculated to estimate the quality of 

textual regions of the SCI and the similarities of luminance features and structural features denoted 

by the LBP features are computed to predict the quality of pictorial regions of the SCI. Ni et al. [21], 

explored the edge variation of SCIs in depth and employed three edge characteristics including the 

contrast, width and direction of edges, which are extracted from a parametric edge model. Fu et al. 

[22], adopted a two-scale difference-of-Gaussian (DOG) filter to extract the edges of an SCI and the 

similarities of small-scale edges are calculated and combined by using larger-scale edges as 

weighting values. Wang et al. [23], designed an FR SCIQA method based on edge characteristics 

extracted from gradient values, which include the edge sharpness, the edge brightness change, the 

edge contrast change and the edge chrominance. In [24], the local similarities of two chrominance 

components and Gabor features generated by the imaginary part of the Gabor filer are computed 

and combined to produce the assessment score. In [25], statistical features of the primary visual and 

uncertainty information are used to design an RR SCIQA metric. Wang et al. [26], proposed an RR 

quality assessment method of compressed SCIs in which wavelet domain features including the 

mean, variance and entropy of wavelet coefficients are used to learn a regression model. Rahul et al. 

[27], presented an RR SCIQA method based on feature points identified by the cascade DOG filters. 

The aforementioned methods of SCIs [21–27] have one common drawback: they employ the same 

feature representation method to characterize the quality degradation of the entire content of SCIs 

and do not take different steps to deal with the different contents of SCIs. Since human eyes have an 

obviously different visual experience to the distortions of the textual and pictorial contents 

contained in SCIs, it is unreasonable to employ the same features to denote the quality degradation 

of the textual and pictorial content of SCIs. Additionally, these FR or RR methods require the entire 

or partial information of reference SCIs which cannot be acquired in the majority of actual cases. 

Gu et al. [28], put forward an NR SCIQA model in which one free energy feature and twelve 

structural degradation features are extracted to train the assessment model. Yue et al. [29], designed 

a blind SCIQA method based on the CNN, in which both the predicted and unpredicted parts 

obtained according to the IGM theory are inputted into the CNN. However, in [28,29], predictive 

values generated by objective FR SCIQA methods rather than subjective ratings values are used as 
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training labels, which may result in a deviation. In [30], local and global sparse representations are 

conducted to design an NR SCIQA model. Lu et al. [31], performed the blind quality assessment of 

SCIs based on statistical orientation features and structural features denoted by the LBP histograms 

of nine gradient maps. Min et al. [32], proposed an NR quality evaluation method of compressed 

SCIs in which the features of corners and edges at multiple scales are integrated by using a 

multi-scale weighting strategy. Fang et al. [33], presented a blind SCIQA model by considering both 

local features denoted by the histograms of locally normalized luminance values and global features 

denoted by the histograms of the texture features extracted from gradient maps. Gu et al. [17], 

developed a blind assessment model of SCIs comprising four elements, namely picture complexity, 

screen content statistics, brightness and sharpness. Although these existing blind evaluation models, 

which were specifically developed for SCIs, obtain better prediction performance compared to 

traditional evaluation models of natural images, they still cannot obtain a high prediction accuracy 

and there is still a great deal of room to enhance their performances. Thus, the blind quality 

assessment of SCIs remains a challenging problem and needs to be further investigated in depth by 

the research community. 

To further improve the predictive accuracy of existing blind evaluation methods of SCIs, in this 

study, we propose a blind SCIQA method based on regionalized structural features (BSRSF) which 

are closely relevant to the intrinsic quality of SCIs. Firstly, considering very different characteristics 

of the textual and pictorial content in an SCI, the SCI is segmented into two completely different 

types: textual regions and pictorial regions. Secondly, to derive respective assessment values of 

textual and pictorial regions, their features are respectively extracted by applying different methods 

according to their characteristics and then they are separately supplied to machine learning models, 

i.e., support vector regression (SVR). Specifically, given the noticeable structural information 

contained in textual regions, the structural information is used as the quality-aware feature of 

textual regions. For pictorial regions, since human vision is sensitive to texture information and 

luminance variation, texture features are used as structural features; meanwhile, the luminance 

information is used as the auxiliary feature. Finally, an activity weighting strategy is proposed to 

fuse the assessment values of textual and pictorial regions as the final assessment value of this 

degraded SCI. Experimental results show that the proposed BSRSF method achieves better 

prediction performance than other existing blind SCIQA methods on SIQAD and SCID, which are 

often employed as validation databases of SCIs. In contrast to the existing blind SCIQA methods, the 

main contributions of the proposed BSRSF metric are as follows: 

1) We propose improved histograms of the oriented gradients, which are extracted from the 

multi-order derivatives. In the proposed method, these histograms are adopted as structural 

features to predict the quality of textual regions of SCIs. 

2) We extract texture features from both the spatial and shearlet domains as structural features of 

pictorial regions. The statistical histograms of the local derivative pattern are used as texture 

features in the spatial domain. We propose a new local pattern descriptor called the shearlet 

local binary pattern to represent texture features in the shearlet domain. To the best of our 

knowledge, this is the first attempt to extract texture features from the shearlet domain. 

3) We propose an activity weighting strategy to combine the visual quality of textual and pictorial 

regions. This strategy is based on the activity degree of different regions in the SCI, in which the 

weights are extracted from gradient values of this SCI. 

The remaining content of this paper is organized as follows. The detailed content of the 

proposed BSRSF method is presented stage-by-stage in Section 2. Experimental results are given in 

Section 3. Finally, the conclusions of this paper are presented in Section 4. 

2. Proposed Method 

In this section, the proposed BSRSF method is described in detail. The framework of the BSRSF 

method is illustrated in Figure 2, which includes two parts: the training process and the evaluation 

process. For the training process, the training SCIs are divided into textual and pictorial regions and 
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then their features are individually extracted and fed into respective learning tools, namely the SVR. 

Meanwhile, subjective ratings values of the training SCIs are also fed into the SVR to train the 

corresponding regression models. For the evaluation process, we first employ the same partition 

and feature extraction methods and the features extracted from textual and pictorial regions of a 

distorted SCI are directly fed into corresponding regression models. Then, we can derive respective 

assessment scores of textual and pictorial regions. Finally, assessment scores of textual and pictorial 

regions are incorporated together as the final objective assessment score of this distorted SCI. 

 

Figure 2. The framework of the proposed BSRSF method. 

2.1. SCI Partition 

Up to now, the research community has put forward a number of image segmentation 

methods, such as superpixel segmentation methods [34,35], watershed-based segmentation 

methods [36,37], and active contour models [38,39]. In this paper, a text segmentation method in [19], 

is used to divide an SCI into two completely different types: textual regions and pictorial regions. In 

this method, a coarse-to-fine strategy is used to segment the textual content from an inputted SCI. 

Firstly, a local image activity measure algorithm is used to partition an SCI into pictorial regions and 

coarse texture regions, which include the textual content and a small amount of the pictorial content 

with high activity. Next, to remove fake text in coarse textual regions, the refinement procedure 

based on textual connected components is further applied to coarse texture regions. An example of 

this segmentation method is shown in Figure 3. 

  

(a) (b) 

Figure 3. An example of the segmentation method of an SCI; (a) and (b) are textual and pictorial 

regions of (b) from Figure 1, respectively. 
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2.2. Feature Extraction of Textual Regions 

In the proposed BSRSF metric, structural features of textual regions of an SCI are extracted from 

the values of multi-order derivatives. The framework of the feature extraction of textual regions is 

depicted in Figure 4. 

 

Figure 4. The extraction of structural features of textual regions. 

It is well known that a mass of characters exists in textual regions of SCIs and characters have 

diverse edges. Thus, textual regions of SCIs possess noticeable structural characteristics. The existing 

literature indicates that the multi-order derivatives can accurately describe the structural 

characteristics and the derivative information of different orders is closely correlated with different 

structural characteristics [40,41]. The first-order derivative information is correlated with the slope 

and elasticity of a landscape, the second-order derivative information can represent the curvature of 

a landscape [40], and the higher-order derivative information can provide tiny distinguishing 

structural details of a landscape [41]. Thus, the derivative information of different orders can 

efficiently denote the structural changes of an image, which have an important effect on the 

perceptual distortion of SCIs. Further, since derivative values of different orders have different 

characteristics, they should be combined to supply more comprehensive structural information for 

IQA methods. 

To accurately depict the local structure of textual regions in SCIs, the magnitude and 

orientation of multi-order derivatives should be incorporated together. Therefore, in this paper, an 

improved histogram of oriented gradient (IHOG) descriptor is proposed to extract statistical 

features of the magnitude and orientation of multi-order derivatives. The histogram of oriented 

gradient (HOG) descriptor considers the statistical distribution of the gradient directions in a small 

patch of an image; meanwhile, the gradient magnitudes in this small patch are also incorporated 

into the HOG. The HOG descriptor was initially proposed to deal with the problem of human 

detection [42]. The underlying notion of the HOG descriptor is that the feature of the object shape in 

a small patch can be depicted accurately by the statistical distribution of the gradient values of this 

patch and the actual gradient values of this patch do not need to be known. Specifically, for the 

IHOG descriptor, the original gray values of textual regions are viewed as the zero-order derivative 

of textual regions and then the HOG descriptor of the zero-order derivative is calculated by 

employing the magnitude and orientation of the first-order derivative; the HOG descriptor of the 

first-order derivative is derived based on the magnitude and orientation of the second-order 

derivative; and similarly, the HOG descriptor of the nth-order derivative is calculated based on the 

magnitude and orientation of the (n + 1)th-order derivative. 

Firstly, in this paper, the Prewitt filter is adopted to calculate the multi-order derivatives since 

its computation is simple. The first-order derivative of textual regions of an SCI is calculated as 

𝑑ℎ
1(𝑥, 𝑦) = 𝑆𝑇(𝑥, 𝑦) ∗ 𝑃ℎ, 𝑃ℎ =

1

3
[
−1 0 1
−1 0 1
−1 0 1

] (1) 
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𝑑𝑣
1(𝑥, 𝑦) = 𝑆𝑇(𝑥, 𝑦) ∗ 𝑃𝑣, 𝑃𝑣 =

1

3
[
−1 −1 −1
0 0 0
1 1 1

] (2) 

where 𝑑ℎ
1(𝑥, 𝑦) and 𝑑𝑣

1(𝑥, 𝑦) denote the first-order derivation values of the horizontal and vertical 

orientations, respectively; 𝑆𝑇(𝑥, 𝑦) is the gray values of textual regions of an SCI; the symbol ∗ 

stands for the convolution operation; and 𝑃ℎ and 𝑃𝑣 represent the Prewitt filters in the horizontal 

and vertical orientations, respectively. 

The magnitude 𝑀1(𝑥, 𝑦) and orientation 𝑂1(𝑥, 𝑦) of the first-order derivative are calculated 

as 

𝑀1(𝑥, 𝑦) = √𝑑ℎ
1(𝑥, 𝑦)2 + 𝑑𝑣

1(𝑥, 𝑦)2 (3) 

𝑂1(𝑥, 𝑦) = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑑𝑣

1(𝑥, 𝑦)

𝑑ℎ
1(𝑥, 𝑦)

 (4) 

Similarly, to compute the magnitude and orientation of the second-order derivative, the Prewitt 

filter is employed based on the results of the first-order derivative. In the same manner, the 

nth-order derivative can be calculated based on the results of the (n − 1)th-order derivative. 

Secondly, the IHOG features of textual regions of the SCI are computed. Textual regions are 

split into non-overlapping blocks; each block includes four neighboring cells and each cell comprises 

8 × 8 pixels. For each cell, we calculate the statistical histogram of the orientation of the first-order 

derivative. In this histogram, the horizontal coordinate denotes the orientation of the first-order 

derivative, which is divided into nine intervals. Each orientation interval is 40°. If the orientation of 

the first-order derivative of one pixel belongs to an interval, the magnitude of the first-order 

derivative of this pixel is accumulated onto the corresponding ordinate value of this interval. Since 

each orientation interval corresponds to one HOG feature, each cell generates nine HOG features 

and each block produces 36 HOG features. To compress the strength of the HOG features in a block, 

the normalization operation is conducted by employing the L2 norm, which is given as 

ℎ𝑁,𝑚,𝑗 =
ℎ𝑚,𝑗

||ℎ𝑚
⃑⃑ ⃑⃑  ⃑||2 + 𝜀

, ℎ𝑚
⃑⃑ ⃑⃑  ⃑ = [ℎ𝑚,1, ℎ𝑚,2, … , ℎ𝑚,36] (5) 

where hm,j and hN,m,j denote the jth HOG feature of the mth block before and after the normalization 

operation, respectively; the symbol || · ||2 represents the operation of the L2 norm; ℎ𝑚
⃑⃑ ⃑⃑  ⃑ denotes the 

vector, which is comprised of 36 HOG features in the mth block; and ε stands for a small constant 

and is set to 0.1. 

The HOG features of the zero-order derivative of textual regions are calculated by the average 

values of overall blocks in textual regions, which are given as 

ℎ𝑎,𝑗
0 =

1

𝑁𝐵
∑ ℎ𝑁,𝑚,𝑗

𝑁𝐵

𝑚=1

    (𝑗 = 1,2, … ,36) (6) 

where ℎ𝑎,𝑗
0  denotes the jth HOG feature of the zero-order derivative of textual regions and NB 

represents the number of the blocks in textual regions. As a result, the zero-order derivative of 

textual regions produces 36 HOG features. 

Similarly, we calculate the HOG features of other-order derivatives. In this paper, HOG 

features of only zero-, first- and second-order derivatives are adopted and HOG features of 

higher-order derivatives whose orders are greater than two are not adopted. Figure 5 shows the 

examples of the IHOG features of textual regions. Seven distortion types of distorted SCIs in Figure 

5 include Gaussian noise (GN), Gaussian blur (GB), motion blur (MB), contrast change (CC), JPEG 

compression (JPEG), JPEG2000 compression (JP2K) and layer-segmentation based compression 

(LSC). In Figure 5, (b1–b8) are the HOG features of the first-order derivative of textual regions 

contained in corresponding (a1–a8). From (b1–b8) of Figure 5, we can see that textual regions of 
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distorted SCIs with different distortion types result in different IHOG features. Thus, the IHOG 

features have the discriminative ability for different distortion types. 

    

(a1) (a2) (a3) (a4) 

    
(a5) (a6) (a7) (a8) 

    
(b1) (b2) (b3) (b4) 

    
(b5) (b6) (b7) (b8) 

Figure 5. The examples of the IHOG features of textual regions; (a1) is a reference SCI, (a2–a8) are 

distorted SCIs and distortion types of (a2–a8) are GN, GB, MB, CC, JPEG, JP2K and LSC, 

respectively; (b1–b8) are the histogram of orientated gradient (HOG) features of the first-order 

derivative of textual regions contained in the corresponding subgraphs (a1–a8). 

In this paper, the total IHOG features FT of textual regions of an SCI are derived as 

𝐹𝑇 = [ℎ𝑎,𝑗
0 , ℎ𝑎,𝑗

1 , ℎ𝑎,𝑗
2 ;  𝑗 = 1,2, … ,36] (7) 

where ℎ𝑎,𝑗
0 , ℎ𝑎,𝑗

1  and ℎ𝑎,𝑗
2  denote the jth HOG features of zero-, first- and second-order derivatives, 

respectively. 

2.3. Feature Extraction of Pictorial Regions 

In this paper, the detailed process of the feature extraction of pictorial regions is depicted in 

Figure 6. Here, the features of texture variation in both the spatial and shearlet domains are used as 

structural features of pictorial regions. Additionally, the luminance information is also used as the 

complementary feature of pictorial regions. 
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Figure 6. The process of the feature extraction of pictorial regions. 

2.3.1. Texture Features of Pictorial Regions in the Spatial Domain 

Human vision is very sensitive to the texture variation of an image and so the texture feature 

should be considered adequately in an IQA model. Generally, the LBP, which can encode the 

pristine microstructures of an image, is used as the local texture descriptor of an image [43]. 

However, the LBP has two evident drawbacks: first, in the coding principle of the LBP, the code of a 

pixel does not consider the directional information of local image structures; second, the LBP is only 

the first-order derivative pattern and it does not contain the more detailed discriminative 

information from high-order derivatives. Thus, the application of the LBP in the IQA model will 

result in comparatively poor predictive performance. To overcome these two drawbacks, Zhang et al. 

[41], presented the local derivative pattern (LDP), which can describe the local structural primitives 

of an image by extracting more detailed texture features from high-order derivatives in four 

directions. In [44,45], the LDP is adopted to construct the FR IQA model. Inspired by the above 

literature, in the proposed NR BSRSF method, the LDP is introduced to extract the discriminative 

texture features of pictorial regions in the spatial domain. The detailed extraction process of texture 

features in the spatial domain is illustrated in Figure 6. 

The formula of the LDP is defined as 

𝐿𝐷𝑃𝜃
𝑛(𝑝) = ∑ 𝑓(𝐺𝜃

𝑛−1(𝑝) × 𝐺𝜃
𝑛−1(𝑝𝑖))2

𝑖

𝑁𝐴−1

𝑖=0

 (8) 
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𝑓(𝐺𝜃
𝑛−1(𝑝) × 𝐺𝜃

𝑛−1(𝑝𝑖)) = {
0, 𝐺𝜃

𝑛−1(𝑝) × 𝐺𝜃
𝑛−1(𝑝𝑖) ≥ 0

1, 𝐺𝜃
𝑛−1(𝑝) × 𝐺𝜃

𝑛−1(𝑝𝑖) < 0
 (9) 

where 𝐿𝐷𝑃𝜃
𝑛(𝑝) denotes the nth-order LDP value of the pixel 𝑝 along the direction θ whose values 

include 0○, 45○, 90○ and 135○; NA represents the number of pixels which are adjacent to the pixel 

𝑝; 𝐺𝜃
𝑛−1(𝑝) and 𝐺𝜃

𝑛−1(𝑝𝑖) stands for (n-1)th-order derivative values of the pixel p and the ith pixel pi 

which is adjacent to the pixel p, respectively; and f is a binary function. In (8), the nth-order LDP is 

coded by using (n − 1)th-order derivative values. Additionally, the LBP can be considered to be a 

form of the first-order derivative of the LDP. 

Here, the statistical distributions of the LDP, namely the histograms of the LDP, are used as 

feature descriptors. After calculating the LDP code of each pixel of pictorial regions, we calculate the 

occurrence histograms of the LDP as follows: 

𝐻𝑛,𝜃,𝑘
𝐿𝐷𝑃 =

1

𝑁𝑃
∑𝑓(𝐿𝐷𝑃𝜃

𝑛(𝑝), 𝐵(𝑘))

𝑁𝑃

𝑝=1

 (10) 

𝑓(𝐿𝐷𝑃𝜃
𝑛(𝑝), 𝐵(𝑘)) = {

1,       𝐿𝐷𝑃𝜃
𝑛(𝑝) ∈ 𝐵(𝑘) 

0,       otherwise             
 (11) 

where 𝐻𝑛,𝜃,𝑘
𝐿𝐷𝑃  denotes the value of the kth bin in the histogram of the nth derivative along the 

direction θ; k stands for the bin index of this histogram and its value varies from 1 to 10; n is the 

derivative index and its value includes 1, 2 and 3; NP denotes the number of the total pixels in 

pictorial regions; and 𝐵(𝑘) represents the interval between two adjacent bins in the histogram. 

When n is equal to 1, θ is meaningless and so 𝐻𝑛,𝜃,𝑘
𝐿𝐷𝑃  is changed into 𝐻1,𝑘

𝐿𝐷𝑃. For each order of LDP 

along one direction, one histogram with 10 bins can be generated and these bins of this histogram 

are used as structural features.  

In view of both computational complexity and accuracy, the first three orders of local derivative 

patterns (LDPs), namely the first-, second- and third-order LDPs, are adopted in the proposed 

BSRSF method. Since the first-order LDP, namely the LBP, does not consider directional information, 

the first-order LDP has only one histogram. The second- and third-order LDPs are calculated from 

four directions so they generate four histograms, respectively. Thus, 90 quality-aware texture 

features in the spatial domain are generated in the proposed method. Figure 7 shows the examples 

of the second-order LDP histograms along the direction 0○. From Figure 7, we can observe that 

pictorial regions of degraded SCIs with different distortion types can generate different LDP 

histograms. Consequently, the LDP histograms are discriminative in identifying the distortion 

types. 

    

(a1) (a2) (a3) (a4) 

    
(a5) (a6) (a7) (a8) 
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Figure 7. The examples of texture features of pictorial regions in the spatial domain; (a1–a8) are the 

second-order LDP histograms along the direction 0○  of pictorial regions contained in the 

corresponding subgraphs (a1–a8) of Figure 5. 

In this work, the entire LDP features 𝐹𝑃
𝐿𝐷𝑃  of pictorial regions in the spatial domain are 

obtained as follows: 

FP
LDP = [Hn,θ,k

LDP ;  n = 1,2,3;  θ = 0○, 45○, 90○, 135○;  k = 1,2, … ,10 ] (12) 

2.3.2. Texture Features of Pictorial Regions in the Shearlet Domain 

For picture regions, besides the texture features in the spatial domain, the texture features in the 

shearlet domain are also employed as structural features in this study. In [14], the generalized local 

binary pattern (GLBP) operator is proposed to extract texture features from four subband images 

produced by the Laplacian of Gaussian filters and in the GLBP operator, the central pixel is 

compared with neighboring pixels by using a threshold. In [15], the wavelet local binary pattern 

operator is proposed to extract texture features from subbands generated by the wavelet transform. 

Inspired by these two pattern operators, in this paper, we propose a new texture descriptor called 

the shearlet local binary pattern (SLBP), which is used to extract texture features from the subbands 

generated by the shearlet transform. The extraction process of the texture features of pictorial 

regions in the shearlet domain is shown in Figure 6. 

Firstly, the discrete nonseparable shearlet transform (DNST) [46], is applied to pictorial regions 

of an SCI. The shearlet transform can mimic the multi-channel mechanism of the HVS and has some 

advantages over the wavelet transform. As the DNST can be regarded as a model of human vision, 

texture features in the shearlet domain are more discriminative in an IQA model. The formula of the 

DNST is given as 

𝐵𝑠,𝑑 =< 𝑆𝑃 , 𝜓𝑠,𝑑 > (13) 

where 𝐵𝑠,𝑑 denotes the subband at the sth scale and the dth direction, s represents the scale index, d 

is the direction index, 𝑆𝑃 stands for the gray values of pictorial regions of an SCI and 𝜓𝑠,𝑑 denotes 

the discrete nonseparable shearlet. In this study, the number of scales of the DNST is set to 4 and the 

numbers of directions in four scales are set to 8, 8, 4 and 4 from finer to coarser scales, respectively. 

Then, a total of 24 subbands are derived. 

Secondly, to extract texture features in the shearlet domain, the SLBP operator is applied to 

shearlet transform coefficients. Here, for each subband of the DNST, the proposed uniform and 

rotation invariant SLBP is defined as 

𝑆𝐿𝐵𝑃𝑁𝐶,𝑅,𝑇
𝑠,𝑑 (𝑐) = { ∑ 𝑔(𝐵𝑖 − 𝐵𝑐)

𝑁𝐶−1

𝑖=0

, if 𝑈(𝐵𝑐) ≤ 2

𝑁𝐶 + 1,                           otherwise     

 (14) 

𝑔(𝐵𝑖 − 𝐵𝑐) = {
1, (𝐵𝑖 − 𝐵𝑐) ≥ 𝑇

0, (𝐵𝑖 − 𝐵𝑐) < 𝑇
 (15) 

𝑈(𝐵𝑐) = |𝑔(𝐵𝑁𝐶−1 − 𝐵𝑐) − 𝑔(𝐵0 − 𝐵𝑐)| + ∑ |𝑔(𝐵𝑖 − 𝐵𝑐) − 𝑔(𝐵𝑖−1 − 𝐵𝑐)|

𝑁𝐶−1

𝑖=1

 (16) 

where 𝑆𝐿𝐵𝑃𝑁𝐶,𝑅,𝑇
𝑠,𝑑 (𝑐) represents the SLBP value of the coefficient 𝑐 in the subband at the sth scale 

and the dth direction; NC denotes the quantity of the coefficients which are adjacent to the coefficient 

Bc; R is the radius of the neighborhood of the coefficient 𝑐; Bc and Bi stand for the intensity values of 

the central coefficient c and the ith adjacent coefficient, respectively; 𝑔 denotes a binary function; T 

represents a threshold value; and 𝑈(𝐵𝑐) is the uniform pattern of the SLBP. Here, 𝑁𝐶 and R are set 

to 4 and 1, respectively; T has three values, namely −2, 0 and 5. Then, for each value of T, 𝑆𝐿𝐵𝑃𝐴,𝑅,𝑇
𝑠,𝑑 (𝑐) 

generates six results which vary from 0 to 5. 
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Finally, the histogram of the SLBP is calculated as 

𝐻𝑠,𝑑,𝑇,𝑘
𝑆𝐿𝐵𝑃 =

1

𝑁𝑆
∑𝑓(𝑆𝐿𝐵𝑃𝐴,𝑅,𝑇

𝑠,𝑑 (𝑐), 𝑘)

𝑁𝑆

𝑐=1

 (17) 

𝑓(𝑆𝐿𝐵𝑃𝐴,𝑅,𝑇
𝑠,𝑑 (𝑐), 𝑘) = {

1,     𝑆𝐿𝐵𝑃𝐴,𝑅,𝑇
𝑠,𝑑 (𝑐) = 𝑘 

0,     otherwise            
 (18) 

where 𝐻𝑠,𝑑,𝑇,𝑘
𝑆𝐿𝐵𝑃  denotes the value of the kth bin in the histogram of the subband at the sth scale and 

the dth direction in which the threshold T is used, k ranges from 0 to 5 and NS represents the number 

of the total coefficients in this subband. For one value of the threshold T, we can obtain one 

histogram with six bins from one subband and these six bins of this histogram are used as structural 

features. Since 24 subbands are generated and the threshold T with three values is used for each 

subband in the proposed BSRSF method, we can obtain 72 histograms. 

Figure 8 shows the examples of texture features of pictorial regions in the shearlet domain. 

Each subgraph of (a1–a8) of Figure 8 contains two concatenated SLBP histograms calculated from 

the two DNST subbands at the first scale and the first and second directions. From Figure 8, we can 

observe that pictorial regions of distorted SCIs with different distortion types can produce different 

SLBP histograms. So, the SLBP histograms are discriminative in categorizing distortion types. 

    

(a1) (a2) (a3) (a4) 

    
(a5) (a6) (a7) (a8) 

Figure 8. The examples of texture features of pictorial regions in the shearlet domain; (a1–a8) are the 

SLBP histograms of pictorial regions contained in the corresponding subgraphs (a1–a8) of Figure 5. 

Each subgraph of (a1–a8) contains two concatenated SLBP histograms. 

All of the SLBP features 𝐹𝑃
𝑆𝐿𝐵𝑃 of pictorial regions are obtained as 

𝐹𝑃
𝑆𝐿𝐵𝑃 = [𝐻𝑠,𝑑,𝑇,𝑘

𝑆𝐿𝐵𝑃 ;  𝑇 = −2, 0, 5;  𝑘 = 0,1, … ,5 ] (19) 

2.3.3. Luminance Features of Pictorial Regions 

Besides the texture information of an image, human vision also has high sensitivity to the 

luminance variation of an image which can induce obvious distortions and so the luminance 

features also have a high correlation with the perceptual quality of an image. In this study, the 

luminance information is used as the complementary feature of pictorial regions. In [11], the 

distribution of MSCN values is modeled approximately by the generalized Gaussian function (GGF), 

the distributions of pairwise products of the neighboring MSCN values in four directions are 

modeled approximately by the asymmetric generalized Gaussian function (AGGF) and 18 

parameters of GGF and AGGF are adopted as luminance features of the image. However, this 

feature representation method has a drawback that fitting errors will inevitably be produced by this 
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approximate modeling method. To overcome this drawback, in this paper, the statistical histogram 

is adopted as the representation form of the luminance information since the histogram does not 

produce fitting errors. The calculation process of luminance histograms is illustrated in Figure 6. To 

be specific, the histograms of MSCN values and four pairwise products of neighboring MSCN 

values are used as the luminance features of pictorial regions. Additionally, we also consider the 

statistical information from the local average values and local contrast values of pictorial regions. 

Local average values can mimic the point spread function of the optics in human eyes and local 

contrast values have a close relationship with the image quality. Likewise, their histograms are 

calculated as luminance features. The MSCN operation is conducted as follows: 

𝑆𝑃
𝑀(𝑥, 𝑦) =

𝑆𝑃(𝑥, 𝑦) − 𝑆𝑃
𝐴(𝑥, 𝑦)

𝑆𝑃
𝜎(𝑥, 𝑦) + 𝑐

 (20) 

where 𝑆𝑃
𝑀(𝑥, 𝑦) denotes the MSCN value; 𝑆𝑃(𝑥, 𝑦) represents the gray values of pictorial regions; 

𝑆𝑃
𝐴(𝑥, 𝑦)  and 𝑆𝑃

𝜎(𝑥, 𝑦)  denote the local average value and local contrast value in a 7 × 7 

neighborhood centered on (x, y), respectively; and c represents a constant and is set to 1. 𝑆𝑃
𝐴(𝑥, 𝑦) 

and 𝑆𝑃
𝜎(𝑥, 𝑦) are computed as  

𝑆𝑃
𝐴(𝑥, 𝑦) = ∑ ∑ 𝜔𝑚,𝑛𝑆𝑃(𝑥 + 𝑚, 𝑦 + 𝑛)

3

𝑛=−3

3

𝑚=−3

 (21) 

𝑆𝑃
𝜎(𝑥, 𝑦) = √ ∑ ∑ 𝜔𝑚,𝑛(𝑆𝑃(𝑥 + 𝑚, 𝑦 + 𝑛) − 𝑆𝑃

𝐴(𝑥, 𝑦))2
3

𝑛=−3

3

𝑚=−3

 (22) 

where {𝜔𝑚,𝑛|𝑚 = −3,…3; 𝑛 = −3,…3} denotes a set of unit-volume Gaussian weights. 

Four pairwise products 𝑆𝑃
𝐻(𝑥, 𝑦), 𝑆𝑃

𝑉(𝑥, 𝑦), 𝑆𝑃
𝐷1(𝑥, 𝑦) and 𝑆𝑃

𝐷2(𝑥, 𝑦) of the MSCN values along 

four different directions in a 3 × 3 neighborhood are computed as 

𝑆𝑃
𝐻(𝑥, 𝑦) = 𝑆𝑃

𝑀(𝑥, 𝑦)𝑆𝑃
𝑀(𝑥, 𝑦 + 1) (23) 

𝑆𝑃
𝑉(𝑥, 𝑦) = 𝑆𝑃

𝑀(𝑥, 𝑦)𝑆𝑃
𝑀(𝑥 + 1, 𝑦) (24) 

𝑆𝑃
𝐷1(𝑥, 𝑦) = 𝑆𝑃

𝑀(𝑥, 𝑦)𝑆𝑃
𝑀(𝑥 + 1, 𝑦 + 1) (25) 

𝑆𝑃
𝐷2(𝑥, 𝑦) = 𝑆𝑃

𝑀(𝑥, 𝑦)𝑆𝑃
𝑀(𝑥 + 1, 𝑦 − 1) (26) 

For MSCN values, four pairwise products, local average values and local contrast values, their 

absolute values are calculated first and then their statistical histograms are computed as 

𝐻𝑊,𝑘
𝐿 =

1

𝑁𝑃
∑ 𝑓(|𝑆𝑃

𝑊(𝑥, 𝑦)|, 𝐵(𝑘))

(𝑥,𝑦)

 (27) 

𝑓(|𝑆𝑃
𝑊(𝑥, 𝑦)|, 𝐵(𝑘)) = {

1, |𝑆𝑃
𝑊(𝑥, 𝑦)| ∈ 𝐵(𝑘)

0,         otherwise               
 (28) 

where 𝐻𝑊,𝑘
𝐿  denotes the value of the kth bin of the histogram; k stands for the bin index of the 

histogram and its value varies from 1 to 10; NP represents the number of pixels in pictorial regions; 

𝐵(𝑘) is the interval between two neighboring bins in the histogram; and W denotes the type index of 

the histograms. The value of W includes M, A, σ, H, v, D1 and D2. M, A and σ stand for MSCN values, 

local average values and local contrast values, respectively. H, v, D1 and D2 represent four pairwise 

products of MSCN values. In this way, each histogram generates 10 bins which are employed as 

luminance features. 

Figure 9 illustrates the examples of luminance features of pictorial regions. Each subgraph of 

(a1–a8) of Figure 9 contains the histogram of MSCN values of pictorial regions contained in 

distorted SCIs caused by different distortion types. From Figure 9, we can observe that different 
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histograms of MSCN values are produced for pictorial regions of distorted SCIs with different 

distortion types. Thus, luminance features are effective to characterize the quality degradation of 

pictorial regions of degraded SCIs caused by different distortion types. 

    

(a1) (a2) (a3) (a4) 

    
(a5) (a6) (a7) (a8) 

Figure 9. The examples of luminance features of pictorial regions; (a1–a8) are the histograms of 

MSCN values of pictorial regions contained in the corresponding subgraphs (a1–a8) of Figure 5. 

The entire luminance features 𝐹𝑃
𝐿 of pictorial regions of an SCI are derived as 

𝐹𝑃
𝐿 = [𝐻𝑊,𝑘

𝐿 ;𝑊 = 𝑀,𝐴, 𝜎, 𝐻, 𝑣, 𝐷1 , 𝐷2;  𝑘 = 1,2, … ,10] (29) 

Finally, the entire features 𝐹𝑃 of pictorial regions of an SCI are derived by combining structural 

features and luminance features as 

𝐹𝑃 = [𝐹𝑃
𝐿𝐷𝑃, 𝐹𝑃

𝑆𝐿𝐵𝑃, 𝐹𝑃
𝐿] (30) 

2.4. Regression Models 

In this paper, the SVR-based machine learning technique is adopted to implement the complex 

nonlinear mapping relationship between quality-aware features and subjective evaluation values, 

which has been depicted in Figure 2. The SVR is frequently used to pool high-dimensional data. The 

predictive value 𝑄𝑇 of textual regions of an SCI is calculated as 

𝑄𝑇 = 𝐹𝑢𝑛𝑇(𝐹𝑇) (31) 

where FT denotes the features of textual regions of this SCI which are extracted in (7) and FunT 

represents a regression model which has been trained beforehand by employing the SVR. Here, the 

ε-SVR [47] is used to conduct the regression model learning and FunT is given as 

𝐹𝑢𝑛𝑇(𝑥) = ∑(𝛽𝑗 − 𝛽𝑗
∗)𝐾(𝑥𝑗 , 𝑥)

𝐽

𝑗=1

+ 𝑏 (32) 

𝐾(𝑥𝑗 , 𝑥) = 𝑒−𝜌||𝑥𝑗−𝑥||2 (33) 

where 𝛽𝑗 and 𝛽𝑗
∗ (0 ≤ 𝛽𝑗, 𝛽𝑗

∗ ≤ 𝐶) denote the Lagrange multipliers, C represents the tradeoff error 

parameter, b is a bias parameter, J represents the number of support vectors, xj denotes the jth 

support vector, x denotes the feature vector of textual regions, 𝐾(𝑥𝑗 , 𝑥) is a radial basis function 

(RBF) kernel and 𝜌 denotes the width of the RBF kernel. More detail about the ε-SVR can be found 

in [47]. 



Algorithms 2020, 13, 257 15 of 23 

Similarly, we can derive the predictive value 𝑄𝑃 of pictorial regions of an SCI as 

𝑄𝑃 = 𝐹𝑢𝑛𝑃(𝐹𝑃) (34) 

where FP represents the features of pictorial regions of SCIs extracted in (30) and FunP denotes the 

trained regression model. 

2.5. Weighting Combination 

Above, we obtain the predictive values of textual and pictorial regions of an SCI. To derive the 

overall predictive value of this SCI, in this study, we propose an activity weighting strategy to fuse 

the predictive values of textual and pictorial regions and this strategy is based on the properties of 

human vision. In general, human vision has greater sensitivity to the high-frequency content (for 

example, edges and textures) than the background content with slight variation in an image. Thus, 

the degradation of the high-frequency content is easier to find by human vision than the background 

content. In this study, to quantify the high-frequency characteristic in an SCI, the activity measure of 

the gradient map of this SCI is adopted. 

The activity measure can describe the change degree of the image content [19]. Here, the 

activity measure map 𝐴(𝑥, 𝑦) of an image 𝑓(𝑥, 𝑦) is defined as 

𝐴(𝑥, 𝑦) = 𝛾𝑉1(𝑥, 𝑦) + (1 − 𝛾)𝑉2(𝑥, 𝑦) (35) 

where 𝑉1(𝑥, 𝑦) denotes the one-distance variation in diagonal orientations; 𝑉2(𝑥, 𝑦) represents the 

two-distance change in the horizontal and vertical orientations; and 𝛾  stands for a weighting 

coefficient to tune the combination of 𝑉1(𝑥, 𝑦) and 𝑉2(𝑥, 𝑦). In [19], the optimum performance of the 

activity measure can be achieved when 𝛾 ranges from 0.3 to 0.5. More detail about 𝛾 can be found 

in [19]. In this paper, 𝛾 is set to 0.4. 𝑉1(𝑥, 𝑦) and 𝑉2(𝑥, 𝑦) are defined as 

𝑉1(𝑥, 𝑦) = (𝑓(𝑥, 𝑦) − 𝑓(𝑥 − 1, 𝑦 − 1))
2
+ (𝑓(𝑥, 𝑦) − 𝑓(𝑥 + 1, 𝑦 + 1))

2

+ (𝑓(𝑥, 𝑦) − 𝑓(𝑥 − 1, 𝑦 + 1))
2
+ (𝑓(𝑥, 𝑦) − 𝑓(𝑥 + 1, 𝑦 − 1))2 

(36) 

𝑉2(𝑥, 𝑦) = (𝑓(𝑥 − 1, 𝑦 − 1) − 𝑓(𝑥 + 1, 𝑦 + 1))
2
+ (𝑓(𝑥 − 1, 𝑦 + 1) − 𝑓(𝑥 + 1, 𝑦 − 1))2 (37) 

In this paper, the Prewitt filter is used first to compute the gradient map of textual and pictorial 

regions via (3) and 𝑀1(𝑥, 𝑦) in (3) denotes this gradient map. Secondly, we compute the activity 

measure maps 𝐴𝑇
𝐺(𝑥, 𝑦) and 𝐴𝑃

𝐺(𝑥, 𝑦) of the gradient maps of textual and pictorial regions via (35), 

respectively. Finally, in this paper, the predictive value 𝑄 of a distorted SCI is defined as 

𝑄 =
1

𝐴𝑇
𝑀,𝐺+𝐴𝑃

𝑀,𝐺 (𝐴𝑇
𝑀,𝐺𝑄𝑇 + 𝐴𝑃

𝑀,𝐺𝑄𝑃) (38) 

where 𝑄𝑇  and 𝑄𝑃  denote, respectively, the predictive values of textual and pictorial regions 

calculated in (31) and (34); and 𝐴𝑇
𝑀,𝐺 and 𝐴𝑃

𝑀,𝐺 represent the mean activity measure values of the 

gradient maps of textual and pictorial regions in this SCI, respectively. 𝐴𝑇
𝑀,𝐺 and 𝐴𝑃

𝑀,𝐺 are defined 

as 

𝐴𝑇
𝑀,𝐺 =

1

𝑁𝑇
𝐺 ∑ 𝐴𝑇

𝐺(𝑥, 𝑦)

𝑁𝑇

𝑛=1

 (39) 

𝐴𝑃
𝑀,𝐺 =

1

𝑁𝑃
𝐺 ∑ 𝐴𝑃

𝐺(𝑥, 𝑦)

𝑁𝑃

𝑛=1

 (40) 

where 𝑁𝑇
𝐺  and 𝑁𝑃

𝐺  denote the numbers of pixels in the gradient maps of textual and pictorial 

regions, respectively. 
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3. Experimental Results 

3.1. Experimental Protocol 

To validate the advantages of the proposed BSRSF method, comparison experiments are made 

on the two SCI databases SIQAD [18], and SCID [21]. The SIQAD includes 20 original SCIs and 980 

impaired SCIs caused by seven degradation types and seven degradation levels. These seven 

degradation types comprise GN, GB, MB, CC, JPEG, JP2K and LSC. The SCID consists of 40 raw SCIs 

and 1800 degraded SCIs. For each raw SCI in the SCID, nine degradation types and five degradation 

levels are applied and these degradation types include GN, GB, MB, CC, JPEG, JP2K, color 

saturation change (CSC), color quantization with dithering (CQD) and high-efficiency video coding 

(HEVC). 

Here, three generally employed criteria are used to evaluate the predictive ability of IQA 

models: the Pearson linear correlation coefficient (PLCC), Spearman rank-order correlation 

coefficient (SROCC) and root mean squared error (RMSE). PLCC and SROCC are used to test the 

predictive accuracy and monotonicity, respectively. RMSE is used to test the predictive consistency. 

If an IQA model can simultaneously derive larger PLCC and SROCC values and smaller RMSE 

values, this model achieves better predictive performance. Since the predictive values generated 

from different IQA models have diverse dynamic scopes, in this paper, a mapping function is used 

to map predictive values into a uniform scope: 

𝑓(𝑣) = 𝛼1 (0.5 −
1

1 + 𝑒(𝛼2(𝑣−𝛼3))
) + 𝛼4𝑣 + 𝛼5 (41) 

where 𝑣 denotes a predictive value, 𝑓(𝑣) represents the mapped predictive value and (𝛼1, 𝛼2,

… , 𝛼5) stand for the parameters to be fitted. 

3.2. Performance Comparison Experiments 

In this study, the proposed BSRSF method is compared with the following existing IQA models: 

PSNR, SSIM [3], GMSD [6], SPQA [18], ESIM [21], SFUW [20], SQI [48], RRSCI [25], BRISQUE [11], 

GWH-GLBP [13], IL-NIQE [16], BQMS [28], SIQE [17], NRLT [33] and BLIQUP-SCI [29]. Among 

these models, PSNR, SSIM, GMSD, SPQA, ESIM, SFUW and SQI are FR IQA models, RRSCI is an RR 

IQA model and BRISQUE, GWH-GLBP, IL-NIQE, BQMS, SIQE, NRLT and BLIQUP-SCI are blind 

IQA models. Additionally, SPQA, ESIM, SFUW, SQI, RRSCI, BQMS, SIQE, NRLT and BLIQUP-SCI 

have been specifically devised to evaluate the quality of SCIs. 

For three FR metrics SPQA, SQI and SFUW, and one RR metric RRSCI, the experimental results 

are directly obtained from their references. For the rest of the FR metrics, the results are calculated by 

running the source codes provided by their authors. For the blind metrics, the results of BLIQUP-SCI 

are directly taken from its reference. For the rest of the blind metrics, their source codes are used to 

derive experimental results. For the proposed BSRSF metric and learning-based blind metrics 

including BRISQUE, GWH-GLBP, IL-NIQE, BQMS, SIQE and NRLT, an SCI database is randomly 

split into two subsets: the training subset and the evaluation subset. The training subset includes 80% 

SCIs of this database and the evaluation subset includes 20% SCIs of this database. The distorted 

SCIs in the training subset are used to train the model and then this trained model is used to evaluate 

the quality of distorted SCIs in the evaluation subset. This train–evaluate operation is repeated 1000 

times on this database and the median experimental results across 1000 train-evaluate operations are 

reported. In the proposed metric, the LibSVM package [49], is employed as the SVR tool. When the 

ε-SVR is employed to learn the regression models, two parameters (C, 𝜌) of the ε-SVR need to be 

decided. In our experiments, a grid search in the logarithm space is used to estimate the optimal 

values of C and 𝜌 [47]. For the regression model of textual regions of SCIs, the optimal values of (C, 

𝜌) are found to be (16,384, 2) and (256, 16) on SIQAD and SCID, respectively. For the regression 

model of pictorial regions of SCIs, the optimal values of (C, 𝜌) are found to be (8192, 4) and (512, 0.5) 

on SIQAD and SCID, respectively. Experimental results are tabulated in Tables 1 and 2, and the best 

two results of each row are highlighted in boldface. Furthermore, as the papers of SPQA, SQI and 
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BLIQUP-SCI do not provide the experimental results for SCID, these results are absent in these two 

tables. 

Table 1. Performance comparison of the proposed BSRSF model and full-reference (FR) models. 

Databases Criteria PSNR SSIM GMSD SPQA ESIM SQI SFUW BSRSF 

SIQAD 

PLCC 0.5869 0.7561 0.7259 0.8584 0.8788 0.8644 0.8910 0.8905 

SROCC 0.5605 0.7566 0.7305 0.8416 0.8632 0.8548 0.8800 0.8714 

RMSE 11.5876 9.3676 9.4684 7.3421 6.8310 7.1782 6.4990 7.2569 

SCID 

PLCC 0.7622 0.7343 0.8337 - 0.8630 - 0.8590 0.7024 

SROCC 0.7512 0.7146 0.8138 - 0.8478 - 0.8950 0.7204 

RMSE 9.1682 9.6133 7.8210 - 7.1552 - 7.3100 9.8849 

Table 2. Performance comparison of the proposed BSRSF model and reduced-reference (RR) and 

blind models. 

Databases Criteria RRSCI BRISQUE GWH-GLBP 
IL- 

NIQE 
BQMS SIQE NRLT 

BLIQUP- 

SCI 
BSRSF 

SIQAD 

PLCC 0.8014 0.7684 0.7903 0.3996 0.8108 0.7905 0.8387 0.7705 0.8905 

SROCC 0.7655 0.7094 0.7233 0.3496 0.7619 0.7609 0.8197 0.7990 0.8714 

RMSE 8.5620 8.2565 8.7480 13.2082 9.3110 8.7775 7.5847 10.0200 7.2569 

SCID 

PLCC 0.6602 0.6137 0.6468 0.2569 0.6338 0.6457 0.6324 - 0.7024 

SROCC 0.7526 0.5795 0.6348 0.2432 0.6132 0.6022 0.6387 - 0.7204 

RMSE 11.5401 12.2565 12.2831 13.6863 10.9519 10.9343 10.6327 - 9.8849 

From Table 1, we can draw three conclusions. Firstly, the proposed NR BSRSF method has a 

competitive predictive ability in comparison to the FR SCI evaluation methods which include SPQA, 

ESIM, SQI and SFUW; meanwhile, it achieves preferable performance in contrast with the traditional 

FR natural image evaluation methods which include PSNR, SSIM and GMSD. Secondly, for SCIs, 

the four dedicated SCI evaluation models which include SPQA, ESIM, SQI and SFUW achieve better 

performance than the traditional IQA models which include PSNR, SSIM and GMSD. The reason for 

this is that these dedicated models carefully deal with the distinctions between the visual 

characteristics of textual and pictorial regions in SCIs, while traditional IQA methods equally 

consider the visual characteristics of textual and pictorial content in SCIs. Finally, among these FR 

methods, ESIM and SFUW are the top two prediction methods.  

From Table 2, it is clear that the designed NR BSRSF model achieves the maximal PLCC and 

SROCC scores and the minimum RMSE score on the two SCI databases. For SIQAD, the BSRSF 

method achieves, respectively, improvements of 6.2% and 6.3% against the other top blind method 

(NRLT) for PLCC and SROCC; meanwhile, it achieves an improvement of 4.3% against the other top 

blind method (NRLT) for RMSE. For SCID, the BSRSF method also derives similar experimental 

results. These results indicate that the proposed BSRSF method attains the best predictive ability 

among the compared blind and RR methods. Furthermore, the natural image evaluation methods 

which include BRISQUE, GWH-GLBP and IL-NIQE are weak in terms of evaluating the quality of a 

distorted SCI, because these methods do not carefully consider the features of the textual content in 

SCIs. In particular, IL-NIQUE delivers the worst predictive ability among all of the compared 

methods and the reason for this is that the NSS features employed in IL-NIQUE are unsuitable to 

represent the visual perception of distorted SCIs. 

3.3. Performance Comparison for Different Distortion Categories 

To completely evaluate the predictive capability of the proposed BSRSF method for the 

distorted SCIs induced by different distortion types, we conduct comparison experiments of the 

BSRSF method and other methods on seven distortion types of the SIQAD database. The 

experimental results, namely the PLCC scores, are listed in Table 3. For each distortion type, three 
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optimal PLCC scores in this table are indicated in boldface. On the basis of the experimental results 

in this table, we can draw two conclusions. Firstly, compared with other methods, the proposed 

BSRSF method obtains preferable experimental results for the majority of distortion types. To be 

more specific, the BSRSF method can derive accurate assessment results for six distortion types: GN, 

GB, MB, JPEG, JP2K and LSC. The reason for this is that the blur and compression can change the 

local structures of SCIs and the features used by the BSRSF method can precisely denote the 

degradation degree of local structures. Secondly, for the distortion type CC, the BSRSF method 

obtains a comparable PLCC score compared to the other top-three methods. In short, for different 

distortion types, the proposed BSRSF metric achieves better or clearly competitive predictive 

capability compared to other metrics, which further validates the robustness of the BSRSF metric. 

Table 3. PLCC scores of metrics for seven degradation types in SIQAD. 

Metrics GN GB MB CC JPEG JP2K LSC 

FR Metrics 

PSNR 0.9053 0.8603 0.7044 0.7401 0.7545 0.7893 0.7805 

SSIM 0.8806 0.9014 0.8060 0.7435 0.7487 0.7749 0.7307 

GMSD 0.8956 0.9094 0.8436 0.7827 0.7746 0.8509 0.8559 

SPQA 0.8921 0.9058 0.8315 0.7992 0.7696 0.8252 0.7958 

ESIM 0.8891 0.9234 0.8886 0.7641 0.7999 0.7888 0.7915 

SQI 0.8829 0.9202 0.8789 0.7724 0.8218 0.8271 0.8310 

SFUW 0.8870 0.9230 0.8780 0.8290 0.7570 0.8150 0.7590 

RR Metrics RRSCI 0.8798 0.8810 0.8465 0.6812 0.7638 0.6807 0.7110 

Blind Metrics 

BRISQUE 0.8423 0.8247 0.7783 0.5548 0.7018 0.6823 0.5615 

GWH-GLBP 0.8537 0.8917 0.8297 0.4973 0.5687 0.7043 0.5678 

IL-NIQE 0.7667 0.5304 0.4136 0.1171 0.2945 0.4172 0.1754 

BQMS 0.8353 0.8048 0.6969 0.5125 0.6686 0.7059 0.6562 

SIQE 0.8590 0.8531 0.7817 0.5905 0.7639 0.7637 0.7752 

NRLT 0.9101 0.8903 0.8865 0.7994 0.7851 0.7035 0.7219 

BLIQUP-SCI 0.9015 0.9453 0.6341 0.7278 0.6691 0.6001 0.4253 

BSRSF 0.9307 0.9405 0.9364 0.7807 0.8547 0.8554 0.8701 

3.4. Statistical Significance Comparison 

To further validate the advantages of the proposed BSRSF metric against other blind metrics, 

we compare the statistical significance of the BSRSF metric and other blind metrics. In this study, we 

perform F-tests on the SROCC scores derived by these metrics. F-tests are carried out at the 5% 

significance level. The experimental results on SIQAD are listed in Table 4, where “1” shows that the 

row method outperforms the column method in terms of statistical significance, “−1” shows that the 

contrary meaning and “0” shows that the row and column methods are not distinguishable in terms 

of statistical significance. From Table 4, we can observe that all comparison results of the BSRSF 

method to other compared methods are marked with “1”. Thus, the BSRSF method completely 

statistically exceeds all compared blind methods. 

Table 4. Experimental results of F-tests on SIQAD. 

Metrics BRISQUE GWH-GLBP IL-NIQE BQMS SIQE NRLT BLIQUP-SCI BSRSF 

BRISQUE 0 1 1 −1 −1 −1 −1 −1 

GWH-GLBP −1 0 1 −1 −1 −1 −1 −1 

IL-NIQE −1 −1 0 −1 −1 −1 −1 −1 

BQMS 1 1 1 0 0 −1 −1 −1 

SIQE 1 1 1 0 0 −1 1 −1 

NRLT 1 1 1 1 1 0 0 −1 

BLIQUP-SCI 1 1 1 1 −1 0 0 −1 

BSRSF 1 1 1 1 1 1 1 0 
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3.5. Order Selection of Derivatives of IHOG Features Used in Textual Regions 

As mentioned above, the IHOG features of the multi-order derivatives are adopted as 

structural features of textual regions of an SCI. Here, we investigate which combination method of 

HOG features of the different-order derivative is optimal for structural features of textual regions. 

Table 5 listed the experimental results of the order selection of derivatives used in the IHOG 

features on SIQAD. In Table 5, “Com-0” denotes that the HOG features of only the zero-order 

derivative are used, “Com-1” denotes that the HOG features of zero- and first-order derivatives are 

adopted, “Com-2” denotes that the HOG features of zero-, first- and second-order derivatives are 

used, “Com-3” denotes that the HOG features of zero-, first-, second- and third-order derivatives 

are used, “Com-4” denotes that the HOG features of zero-, first-, second-, third- and fourth-order 

derivatives are used and “Com-5” denotes that the HOG features of zero-, first-, second-, third-, 

fourth- and fifth-order derivatives are used. Figure 10 shows the curve of PLCC values for different 

combinations of HOG features. From Table 5 and Figure 10, we can observe that the PLCC value 

gradually increases from “Com-0” to “Com-2” while the PLCC value gradually decreases from 

“Com-2” to “Com-5”. Among the five combination methods, “Com-2” achieves the maximal PLCC 

value. According to the experimental results, we select “Com-2” as the final combination method. 

Namely, in this paper, the HOG features of zero-, first- and second-order derivatives are adopted as 

structural features of textual regions. 

Table 5. Experimental results of the order selection of derivatives for IHOG features on SIQAD. 

Criteria Com-0 Com-1 Com-2 Com-3 Com-4 Com-5 

PLCC 0.8654 0.8801 0.8905 0.8865 0.8805 0.8795 

 

Figure 10. The curve of PLCC values for different combinations of HOG features. 

3.6. Effect of Features From Textual and Pictorial Regions 

The quality-aware features used by the proposed BSRSF metric are derived from two kinds of 

regions in SCIs: textual and pictorial regions. To investigate the impact of the employed features 

from textual and pictorial regions in the BSRSF metric, we devised two metrics: Metric-T and 

Metric-P. Metric-T uses only the features of textual regions and does not use the features of pictorial 

regions. The predictive value 𝑄𝑇 for textual regions in (31) is used as the final assessment value of 

Metric-T. On the contrary, Metric-P adopts only the features of pictorial regions and discards the 

features of textual regions. The predictive value 𝑄𝑃 of pictorial regions in (34) is used as the final 

assessment value of Metric-P. Here, the BSRSF metric is compared with these two metrics and the 

experimental results on SIQAD are listed in Table 6. 
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Table 6. Effects of features from textual and pictorial regions on SIQAD. 

Criteria Metric-T Metric-P BSRSF 

PLCC 0.8727 0.7829 0.8905 

SROCC 0.8524 0.7684 0.8714 

RMSE 7.7843 8.3547 7.2569 

From Table 6, two conclusions can be drawn. Firstly, the BSRSF metric employing the features 

from two kinds of regions achieves better predictive ability than Metric-T and Metric-P, which 

employ features from only one kind of region. This indicates that, to improve the performance of the 

quality evaluation method of SCIs, it is necessary to simultaneously deal with the features from the 

two kinds of regions. Secondly, the performance of Metric-T is much better than that of Metric-P, 

which shows that the features of textual regions are more important than those of pictorial regions. 

Certainly, the features of pictorial regions have an indispensable effect for the overall quality 

evaluation of SCIs. 

4. Conclusions 

In this work, we put forward a new blind quality assessment metric of SCIs by considering 

regionalized structural features. Specifically, the improved histograms of oriented gradients 

computed from the multi-order derivatives are used as the structural features of textual regions of 

SCIs, and structural features of pictorial regions of SCIs include LDP histogram features in the 

spatial domain and SLBP histogram features in the shearlet domain. Additionally, the luminance 

information is also taken into account as the complementary feature of pictorial regions. The 

SVR-based scheme is used to incorporate these features and derive the predictive scores of textual 

and pictorial regions. Furthermore, we devise an activity weighting strategy to fuse the predictive 

scores of textual and pictorial regions as the final assessment value of the SCI. Experimental results 

indicate that the proposed BSRSF metric is well coherent with subjective judgments and achieves 

preferable predictive capability compared to the existing blind metrics for SCIs. 

At present, the research work of the NR SCIQA is still in the initial stage and there is still a great 

deal of room to further optimize and improve the performance of the NR SCIQA methods. Our 

future studies will focus on the following six directions. Firstly, since the proposed method does not 

achieve the best predictive performance for the distortion type CC compared to other methods, we 

will further investigate structural features which are appropriate to the distortion type CC. 

Structural features of SCIs should be explored in more depth from the perspective of human 

physiology and psychology. Secondly, since subjective evaluation values are still needed to train the 

regression models in the proposed method, we will investigate a completely blind quality 

assessment method of SCIs in which subjective ratings values can be omitted. Thirdly, since both the 

segmentation of SCIs and the calculation of multiple features of textual and pictorial regions increase 

the computational complexity of the proposed method, the proposed method may be not suitable for 

real-time applications and so we will further improve the efficiency of the proposed method and 

simultaneously retain the effectiveness of the proposed method. Fourthly, more appropriate 

machine learning techniques, such as deep learning approaches, will be devised to further improve 

the predictive accuracy of the evaluation method. Deep learning approaches have been widely 

applied in many fields which include speech recognition, natural language processing, audio 

recognition and bioinformatics, and have already achieved satisfactory performance. Fifthly, we 

plan to develop a unified model that can simultaneously perform the faithful quality evaluation of 

SCIs and natural images. Finally, we will investigate the quality assessment of color SCIs and 

screen content videos (SCVs). Perceptual chrominance features should be considered adequately in 

quality evaluation models of color SCIs. Additionally, although the natural videos quality 

assessment methods have been extensively investigated in the past decades, studies of the quality 

assessment of SCVs have still not been carried out until now. 
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