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Featured Application: The proposed method can be applied to planning of reference paths for
autonomous wheeled robots and intelligent vehicles maneuvering in cluttered environments.

Abstract: Provably correct and computationally efficient path planning in the presence of various
constraints is essential for autonomous driving and agile maneuvering of mobile robots. In this paper,
we consider the planning of G3-continuous planar paths with continuous and limited curvature
in a motion environment that is bounded and contains obstacles modeled by a set of (non-convex)
polygons. In practice, the curvature constraints often arise from mechanical limitations for the
robot, such as limited steering and articulation angles in wheeled robots, or aerodynamic constraints
in unmanned aerial vehicles. To solve the planning problem under those stringent constraints, we
improve upon known path primitives, such as Reeds–Shepp (RS) and CC-steer (curvature-continuous)
paths. Given the initial and final robot configuration, we developed extend-procedure computing
paths that can approximate RS paths with arbitrary precision, but guaranteeing G3-continuity.
We show that satisfaction of all stated path constraints is guaranteed and, contrary to many other
methods known from the literature, the method of checking for collisions between the planned path
and obstacles is given by a closed-form analytic expression. Furthermore, we demonstrate that our
approach is not conservative, i.e., it allows for precise maneuvers in tight environments under the
assumption of a rectangular robot footprint. The presented extend procedure can be integrated
into various motion-planning algorithms available in the literature. In particular, we utilized the
Rapidly exploring Random Trees (RRT*) algorithm in conjunction with our extend procedure to
demonstrate its feasibility in motion environments of nontrivial complexity and low computational
cost in comparison to a G3-continuous extend procedure based on η3-splines.

Keywords: path planning; mobile robots; curvature constraints; state constraints; extend procedure;
G3-continuity; car-like kinematics

1. Introduction

In this paper, we focus on the development of a path primitive and the so-called extend procedure
(i.e., a local planning algorithm generating a path connecting two robot configurations), which is crucial
for many path-planning algorithms utilized in the navigation of mobile robots. Despite a large body of
work concerning path planning for mobile robots and autonomous vehicles (e.g., References [1,2]),
this problem remains a challenge, especially in the presence of various constraints arising in practical
scenarios. On one hand, mechanical limitations of the robot, such as limited steering and articulation
angles in wheeled robots, or aerodynamic constraints in unmanned aerial vehicles, result in path
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curvature limits. On the other hand, the presence of a bounded-motion environment with obstacles
and forbidden areas leads to state constraints imposed on the robot, which reduces the set of feasible
paths. It is also important to maintain a high degree of path continuity to achieve smooth control
of the robot and increase the comfort of passengers or the safety of the payload. To account for all
these constraints, we built upon our approach introduced in Reference [3], where we proposed the
extend procedure generating G3-continuous planar paths (that is, paths with continuous curvature
derivative with respect to curve arc length) taking into account a limited curvature of motion in
cluttered environments. In contrast to Reference [3], we present the new extend procedure for the
carlike kinematics taking into account vehicle-body dimensions in planning collision-free paths,
admitting the nonconvex polygonal obstacles present in the operational space. As a consequence,
the motion-planning strategy presented in the current paper inherits beneficial properties of the
original approach presented in Reference [3], but extends its potential applications to more practical
path-planning scenarios.

2. Prerequisites and Problem Statement

While our considerations are quite general, meaning that the planar paths planned with our
approach can be applied to various systems and planning tasks, let us consider a rear-driven
carlike-vehicle kinematics as an illustratory example used throughout this paper. This is shown in
Figure 1. Using results from Reference [4], one can model this system by decomposition into unicycle
vehicle-body kinematics ˙̄q = G(θ)v and steering dynamics β̇ = u1 as follows:

˙̄q =

1 0
0 cos θ

0 sin θ

 [v1

v2

]
= G(q̄)v, (1)

β̇ = u1, v = [v1 v2] ,
[

u2
L tan β u2

]>
∈ R2, (2)

u = [u1 u2]
> ∈ R2,

where q = [β θ x y]> = [β q̄>]> = [β θ q̃>]> ∈ Q = [−βm, βm] × R× P denotes a configuration
vector with βm < π/2 being a steering angle limit, P ⊆ R2 denotes a position space, v corresponds
to vehicle-body kinematics-control input, with v1 being vehicle-body angular velocity, and v2

corresponding to longitudinal velocity of the guidance point q̃ = [x y]> illustrated in Figure 1, while u
is the control input of carlike kinematics comprising steering angle rate u1 and longitudinal velocity
u2 ≡ v2. As a result of limited steering angle β ∈ [−βm, βm], the following constraint is present:

|κ| ≤ 1
L

tan βm =: κB, (3)

where

κ ,
v1

v2
=

1
L

tan β (4)

is the motion curvature of the robot, whereas L denotes the distance between the rear and the front
axle (see Figure 1).

Let us assume that control input u is continuous, which is often desirable in practical applications.
According to Equation (2), this implies that β̇ is continuous. Since β̇ is related to curvature κ(t) by
Equation (4), one concludes that admissible trajectories of the carlike kinematics must have curvature
κ(t) of class C1 (with a continuous time derivative), which satisfies Equation (3). As a consequence
of such requirements, admissible paths for the carlike kinematics must be G3-continuous, that is,
for a path q̃d(s) = [xd(s) yd(s)]>, its curvature κd(s) must be at least of class C1. In this paper we
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consider three problems of planning such G3-continuous paths. They shall be solved under the
following assumptions:

A1. Planned positional path q̃d(s) starts at s = 0 and finishes at s = s f in, i.e., s ∈ [0, s f in], s f in ≥ 0,
where s corresponds to the arc-length parameter.

A2. Initial reference steering angle βd(s = 0) and final reference steering angle βd(s = s f in) are fixed
to 0, i.e., βd(s = 0) = βd(s = s f in) = 0.

A3. Initial steering rate dβd
ds (s = 0) and final steering rate dβd

ds (s f in) are fixed to 0, i.e., dβd
ds (0) =

dβd
ds (s f in) = 0.

A4. P f ⊆ P is a free subset of position space bounded by a single (nonconvex) polygon and
containing (nonconvex) polygonal obstacles.

Assumption A1 is a consequence of not knowing the resultant path length in advance.
Assumptions A2 and A3 have been taken for simplicity of considerations since they help to fix
the path structure. Assumption A2 can be lifted by simply changing the initial order of path segments,
as explained in the description of the proposed extend procedure. Assumption A4 is used to efficiently
check for satisfaction of state constraints by the reference path.

Problem 1. Feasible path planning in free space. Given a collision-free initial and vehicle-body configurations
q̄dinit and q̄d f in plan a G3-continuous path q̃d(s) admissible for the car-like kinematics, such that q̄d(s = 0) =
q̄dinit and ∃s f in q̄(s f in) = q̄d f in. Curvature κd(s) of path q̃d(s), is limited as follows

∀s ∈ [0, s f in] |κd(s)| ≤ κB. (5)

Problem 2. Feasible path planning. Solve Problem 1 by planning a collision-free path, that is, the additional
constraint

∀s ∈ [0, s f in] q̃d(s) ∈ P f

shall be satisfied.

Problem 3. Feasible path planning with rectangular footprint. Solve Problem 1 by planning a collision-free
path for a robot with rectangular footprint, that is, the reference path shall additionally satisfy

∀s ∈ [0, s f in] V(q̄d(s)) ∈ P f , (6)

where q̄d(s) = [θd(s)q̃d(s)]> is the reference vehicle-body configuration along the path, and θd(s) is the
reference robot orientation tangent to path q̃d(s), while V(q̄d(s)) ( R2 is a position space subset occupied
by rectangular footprint of the robot (see Figure 1). Rectangular footprint V(q̄d(s)) can be expressed in local
coordinate frame {L} of reference vehicle-body configuration q̄d(s) as follows:

V L , {xL, yL : −c ≤ xL ≤ a ∧
∣∣∣yL
∣∣∣ ≤ b/2}.

Note that even though we only plan a position path q̃d(s), orientation component θd(s) is known
due to the differential flatness of vehicle-body kinematics. The foundations for solving Problem 1
are given in Sections 4.1–4.3, whereas the final solution is presented in Section 4.4. In Section 4.5, we
extend our solution to Problem 1 with collision checking, such that it is capable of solving Problem 2
when coupled with a global motion-planning algorithm (e.g., sampling-based planner). Similarly, in
Section 4.6 we extended the collision-checking method to rectangular robots. In Section 4.6 we discuss
applications of the proposed extend procedure, and show how it can be applied to solve Problem 3.
Before fully explaining our approach, let us briefly survey current path-planning primitives in the
next section.
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Figure 1. (a) A carlike robot with a rectangular footprint. (b) A level-curve representation of a transition
path segment T, with path shown in red.

3. Related Work

Planning paths of limited curvature has been addressed with various methodologies. The most
relevant properties of selected known approaches have been gathered in Table 1. A fundamental result
from Reference [5] characterizes the shortest paths of bounded curvature as particular combinations
of line segments and circle arcs, i.e., Reeds–Shepp (RS) paths. Note that this result does not consider
obstacles, which have been partially taken into account for Dubins paths in Reference [6]. The drive
toward paths with continuous curvature and a continuous-curvature arc-length derivative has led to
the development of the CC-steer method [7] and its G3-continuous variant introduced in Reference [8].
Our work can also be viewed as a G3-continuous extension of the CC-steer method. However, contrary
to the approach from Reference [8], our transition segments are not represented by curvature profiles.
We propose transition segments with explicit representation of x as a function of y, which can easily
be used with known path-following controllers (e.g., Reference [9]). We also devised a closed-form
expression utilized to check for collisions between our G3-continuous path primitive and an obstacle,
which leads to efficient and exact collision checking. There has also been some work on improving
the computational cost of finding RS-like paths in Reference [10]; however, path-continuity and
collision-checking issues for paths of high continuity were not explicitly addressed, to the best of
our knowledge.

One can also find various methods of generating paths with a different structure to RS paths.
For example, polynomial spline-based path primitives such as η3-splines [11] and η4-splines [12] have
been developed. Their advantages are generality, conceptual simplicity, and high continuity. However,
collision and curvature-constraint checking must usually be done numerically in the case of such
primitives, which leads to significant computational cost. Furthermore, the parameters of such
primitives can be hard to tune, even though this was partially addressed in Reference [13]. Another
group of path primitives and extend procedures relies on B-splines [14–16] providing a limited
curvature, curvature continuity (but not G3-continuity), and parameters that are easy to tune. Collision
checking is done numerically in this case as well.

There are also various application-specific methods using the path primitives mentioned
above, such as planning algorithms for environments with a roadlike structure similar to
References [17,18], a method used to design curvature profiles of paths passing through waypoints [19],
a spline-based approach exploiting sum-of-squares optimization to handle exact collision checking,
or an elastic-band-like algorithm [20]. Those methods share the various benefits and drawbacks of
different path primitives. However, thanks to the proposed path primitive, our approach combines
G3-path continuity with analytically guaranteed curvature limits, as well as fast and exact analytic
collision checking. To the best of our knowledge, such a combination of features is not exhibited by
most known path primitives, as shown in Table 1.
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Table 1. Comparison of the proposed G3-continuous path primitive with known path primitives.

Path Primitive Continuity Bounded κ Collision Checking Length Computation

Reeds–Shepp [5] G1 yes analytic analytic
η3-splines [11] G3 no numerical numerical
η4-splines [12] G4 no numerical numerical
Clothoid-based G2 yes numerical analytic

Fermat’s spiral [21] G2 yes numerical numerical
Low-order B-Splines [14,15] G2 yes numerical numerical
Cubic curvature splines [8] G3 yes numerical numerical

High-order B-splines G3+ no approx. analytic numerical
HC-Steer [10] G1 yes analytic numerical

G3-continuous path primitive G3 yes analytic numerical

4. The G3-Continuous Extend Procedure

4.1. Main Concept

We introduce the so called G3-continuous path primitive, which consists of a transition segment
(further explained in Section 4.2), a circle arc, a reversed transition segment, and a line segment.
Similarly to the form of path encoding taken from Reference [5], we introduce a language for encoding
paths with three words corresponding to path segments:

• T(w1, w2, µ) denotes a transition segment connecting w1 with w2 (defined in Section 4.2),
• C(w1, w2) is a circular arc of radius 1/κc connecting w1 with w2,
• S(w1, w2) corresponds to a straight line connecting w1 with w2,

where wk , [wkθ wkx wky]
> = [wkθ w>k ]> for k = 1, 2, 3, 4, 5 correspond to the reference vehicle-body

configurations at endpoints of path segments. Using this encoding, one can describe the proposed
G3-continuous path primitive connecting w1 with w5 as

T(w1, w2, µ1)C(w2, w3)T(w4, w3, µ2)S(w4, w5).

The geometric interpretation of our G3-continuous path primitive is shown in Figure 2 (please,
note the intentionally reversed order of the arguments in T(w4, w3, µ2) in the above formula; it simply
corresponds to a reversal of the segment’s endpoints). Note that, by taking transition segments of zero
length, one can obtain an RS path. Depending on a choice of parameters µ1, µ2, one can compromise
between path length and smoothness resulting from longer transition segments. Since properties of RS
paths are well known and problems such as collision checking or curvature limit checking are trivial in
their case, we focused on transition segments in the sequel, and show how solutions to Problems 1–3
can be obtained with their help.

The extend procedure utilizing the G3-continuous path primitive consists of the following
main stages:

1. Choose parameters µ1, µ2, and curvature κc 6= 0.
2. Find a sequence of G3-continuous path primitives connecting two prescribed vehicle-body

configurations.
3. Check for collisions.
4. Return computed path or a collision signal.
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Figure 2. (a) Structure and parameters of the proposed G3-continuous path primitive. (b) Collision
checking between transition segment and a line segment connecting pi and ri. Only points pi and ni

have to be checked for collisions because point ri lies outside the domain of interest.

4.2. Transition Segments and G3-Continuous Path Primitives

Since computing the endpoints of a line segment and a circle arc given its radius and length is
straightforward, we explicitly only define relations concerning transition segments T(w1, w2, µ). Let us
denote variables expressed in a local coordinate frame fixed at point w1 by (·)1, that is, w1

2 corresponds
to w2 expressed in coordinates of w1. A transition segment connecting vehicle-body configuration w1

with w2 is defined by the following curve, expressed in the coordinates of endpoint w1:

x1 = f (y1) =


−sgn(w1

2x)|y1|
2

[(
y1

p

)µ
−
(

y1

p

)−µ
]

for y1 6= 0,

0 for y1 = 0,
(7)

p , w1
2y exp


∣∣∣arsinh

(
w1

2x/w1
2y

)∣∣∣
µ

 , w1
2y =

K
κc

y∗, w1
2x =

K
κc

x∗, (8)

with

K =
y∗
(
−µ + µ2 x∗

r

)
− (r)2 (1 + µ2 − 2µ x∗

r
)3/2 , r ,

√
(x∗)2 + (y∗)2, x∗ = f (y∗),

y∗ =

((
4
3

p5 − p3

)1/3
− −6µ3 + µ2 + 2µ + 3

(6µ + 3) (µ + 1)2 + p2

)1/2µ

,



Appl. Sci. 2018, 8, 2127 7 of 15

whereas

p1 = −6µ4 − 5µ3 + 3µ2 + 5µ + 3,

p2 =
4µ2 (18µ4 + 3µ3 − 17µ2 − 11µ + 7

)
9p1 (µ + 1)4 (2µ + 1)2 ,

p3 =
(p1)

3

27(2µ + 1)3(µ + 1)9 +
(2µ− 1)(µ− 1)3

(4µ + 2)(µ + 1)3 − p4,

p4 =
p1(−6µ4 + 5µ3 + 3µ2 − 5µ + 3)

6(2µ + 1)2(µ + 1)6 ,

p5 =

√
µ6(µ− 1)3(−36µ4 + 33µ2 − 29)

(2µ + 1)4(µ + 1)9 ,

where y∗ is a rational function of µ ∈ (0.5, 1), κc ∈ [−κB, κB] \ {0} denotes the curvature of adjacent
circle arc C, while µ ∈ (0.5, 1) is a design parameter influencing the supremum value of curvature
arc-length derivative |dκd(s)/ds| during the transition segment and its length, as shown in Figures 3
and 4.
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Given a particular value of µ and transition segment endpoint w1, one can compute coordinates
of the other endpoint w2 from Equation (8). The curve representing a transition segment is given by
Curve (7) with particular value of parameter p resulting from Equation (8). Curve (7) was derived and
analyzed in Reference [22]. It corresponds to an integral curve of the convergence vector field from the
Vector Field Orientation (VFO) control law for the waypoint-following task. Its beneficial properties,
proved in Reference [22], are instrumental in the construction and analysis of the G3-continuous path
primitive. Given such a G3-continuous path primitive structure, we analyze its properties in the sequel.

Remark 1. Transition segments are not explicitly parameterized by arc-length s, but they can immediately be
used with path-following controllers utilizing level curves, such as the one from Reference [9].

4.3. Path Continuity and Curvature Limit Satisfaction Analysis

Let us begin by showing that Curvature Limit (5) is satisfied. Since κc ∈ [−κB, κB] \ {0}, circle
arcs and line segments satisfy the path curvature limit by construction. The curvature limit is also
satisfied by both transition segments, since their curvature is limited by κc, as proven in Property 2 in
Reference [22].

We now turn to path continuity. To ensure G3-continuity of the proposed primitive, one must
guarantee that, for every transition segment T, the following relations hold:

lim
s→s1

κd(s) = 0 lim
s→s1

dκd
ds

(s) = 0, κd(s2) = κc,
dκd
ds

(s2) = 0,

where s1 and s2 are the values of s, such that q̄d(s1) = w1 and q̄d(s2) = w2. Note that a limit is
sufficient to ensure G3-continuity in the case of point s1, since at this point only a connection with line
segments or boundary conditions of the path can occur, which guarantees continuity on the other side
of the transition segment connection.

Condition κd(s2) = κc is immediately satisfied since point w1
2y is defined in such a way, that

it corresponds to the point of maximal curvature for the transition segment (assuming µ ∈ (0.5, 1),
which is satisfied in our case) as shown in the proof of Property 2 in Reference [22]. Since a curvature
maximum occurs at s2, it also implies that dκd

ds (s2) = 0 holds, because s2 is a stationary point of
κd(s). In the proof of Property 2 from Reference [22], we have also shown that limy1→0 κ f (y1) = 0 for
µ ∈ (0.5, 1), where κ f denotes curvature of the transition segment as a function of y1. We conclude
that this implies lims→s1 κ(s) = 0.

Therefore, it remains to show that lims→s1
dκd
ds (s) = 0. Let us recall that, by the definition of

curve’s curvature, a transition segment curve T has a curvature that can be represented as

κ f (y1) =

d2 f 1

d(y1)2(
1 +

(
d f
dy1

)2
)3/2 . (9)

One can also compute the arc-length derivative of curvature
dκ f
ds as follows:

dκ f

ds
=

dκ f (y1)

dy1
dy1

ds
=

dκ f (y1)

dy1 sinθd(s) =
dκ f (y1)

dy1
m sgn (µ) y1√
f (y1)2 + (y1)2

, (10)

where m = const > 0, whereas the second equality results from the consideration of Equation (1)
expressed in terms of parameter s (i.e., t = s), and the last equality results from the definition of θd(s)
tangent to the transition segment T, which can be found from the definition of the VFO convergence
vector field as shown in, e.g., Reference [22]. Then, differentiation of Equation (9) with respect to s and
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substitution of the result into the final form of Equation (10) results in a relation, which, after some
tedious algebra, can be written as follows

dκ f

ds
=

8 µ sgn
(
w1

2x
)
(1− 5µ + (y1)2µ h1 + (y1)4µ h2 + (y1)6µ h3)(

(y1)1−2µ((y1)2µ + 1)7/2(1− µ2)5
) ,

h1 = −6µ4 + 6µ3 + 3µ2 − 5µ + 3,

h2 = −6µ4 − 5µ3 + 3µ2 + 5µ + 3,

h3 = 2µ4 + 7µ3 + 9µ2 + 5µ + 1.

This clearly implies that, for µ > 0.5, limit limy1→0
dκ
ds (s) = 0. As a consequence, lims→s1

dκ
ds (s) = 0,

which concludes our analysis and proves that the proposed primitive is G3-continuous.

4.4. Computing Reeds–Shepp-Like Paths Using a G3-Continuous Path Primitive

In our extend procedure, we assume that parameters µ1, µ2, and κc are selected or randomly
sampled by the global planning algorithm. For simplicity of considerations, we also assume
µ1 = µ2, but the proposed procedure can be trivially adapted for the case of µ1 6= µ2. Finding
parameters of two G3-continuous primitives T(w1, w2, µ1)C(w2, w3)T(w4, w3, µ2)S(w4, w5) and
T(w5, w6, µ3)C(w6, w7)T(w8, w7, µ4)S(w8, w9) connecting prescribed vehicle-body configurations
w1 and w5 is a nontrivial task. However, one can leverage extensions of the procedure devised by
Reeds and Shepp, which were presented in Reference [7] and later Reference [8]. This path-construction
procedure requires knowledge of auxiliary circles, on which endpoints w4 and w8 of the transition
segments must lie. One must also know the difference between an orientation tangent to this circle
and orientation tangent to the transition segment at endpoints w4 and w8. This difference is denoted
by ν in Figure 2.

The reference path is computed during an extend procedure as follows:

1. The four possible transition segments T1, T2, T3, T4 starting at the prescribed initial vehicle body
configuration are computed (Curve (7)). They correspond to forward motion with curvature κc,
forward motion with curvature −κc, backward motion with curvature κc, and backward motion
with curvature −κc. See Figure 5 for visual interpretation.

2. Step 1 is repeated for the four possible transition segments, T5, T6, T7, T8, ending at a prescribed
final vehicle-body configuration.

3. For every transition segment T(w1, w2, µ) computed up to this step, find center q̃c = [xc yc]>

of the auxiliary circle, on which the next transition segment must lie according to a simple
geometric formula:

q̃c = [w2x w2y]
> + 1/κc[− sin w2θ cos w2θ ]

>.

4. For every transition segment T(w1, w2, µ) computed up to this step, find auxiliary circle radius R
as follows:

R =
∥∥∥ q̃c − [w1x w1y]

>
∥∥∥ .

5. For every transition segment T(w1, w2, µ) without a fixed value of w1, find ν, which is
straightforward given the knowledge of transition segment Curve (7) and the auxiliary circle.

6. For every circle segment C(w1, w2), compute its remaining unknown endpoint using the
algorithm from Reference [7].

7. If motion cost J is defined, compute the cost for all the paths and choose the optimal path.
Otherwise, return a random path, or all found paths (depending on the utilized global
planning algorithm).
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Figure 5. Visualization of the path computation procedure. Free endpoint positions must lie on
auxiliary circles of radius R. Such circle arc lengths can be computed that allow for the connection of
two free endpoints (i.e., endpoints of paths connected to the initial and final configuration, respectively)
by a line segment without discontinuity in the reference orientation.

Note that the choice of µ should depend on the assumed motion costs. For example, if smooth
paths are desired, then our computational studies summarized in Figure 4 show that choosing µ = 0.82
leads to the paths with minimal |dκd(s)/ds|. On the other hand, for the shortest paths, choose µ close
to 0.5. The proposed extend procedure solves Problem 1; however, to solve the other problems one
must account for obstacles. This is solved in the next sections.

4.5. Satisfaction of State Constraints for Point Robots

Thanks to Assumption A4, set P f can be described by all the obstacle edges and environment
boundary edges (see Figure 2) gathered in the set of N line segments:

E , {(pi, ri)}N
i=0 , pi = [pix piy]

>, ri = [rix riy]
>, (11)

where pi and ri are endpoints of an i-th line segment. Condition (2) from Problem 2 is satisfied if
no line segments from set E are crossed by the reference path. It is straightforward to analytically
check this condition for circle arcs C and line segments S. We now show how to check this condition
analytically for a transition segment T(w1, w2, µ) with w1

2x > 0, since the proposed approach is easy to
generalize for other cases.

After expressing edge pi and ri in the coordinates of a transition segment endpoint w1, one
concludes that a transition segment does not collide with line segment (pi, ri) if

∀k ∈ [0, 1] and d1
x such that d1

x ∈ [0, w1
2x] sgn

(
f (d1

y)− d1
x

)
= const, (12)

where
d = [dx dy]

> = kpi + (1− k)ri.

This condition is illustrated in Figure 2. To explain, we consider curve f as a function and conclude
that all points from the i-th line segment must lie either entirely above or below its graph. However,
since the transition segment is bounded by its endpoints w1 and w2, we only consider such points from
the i-th line segment that lie in subdomain [0, w1

2x] of curve f corresponding to the transition segment.
Condition (12) can be checked for the whole i-th line segment by simply checking it just for the

maximal and minimal value of d1
x satisfying the left-hand-side conditions from Equation (12) and
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an additional critical point ni , [nix niy]
> computed according to Equation (42) from Reference [22].

At critical point ni, the orientation tangent to curve f is also tangential to the i-th line segment; thus, ni
is the point closest to or farthest from a line containing the i-th line segment. Note that, contrary to the
approach from Reference [22], we check point ni only if ∃k ∈ [0, 1], such that dx = nix.

4.6. Satisfaction of State Constraints for Robots with Rectangular Footprint

Following Reference [15], we only perform collision checking for the key points of a rectangular
robot footprint. Namely, it was proven in Reference [15] that, apart from initial and final configuration,
it is sufficient to check for the clearance of 0.5b m (see Figure 1) around the path and check for collisions
of point po on the robot footprint (see Figure 2). The collision-checking procedure is performed
as follows:

1. Using a simple algebra check if all footprint edges in the initial and final vehicle-body
configurations are collision free.

2. Inflate the obstacles by 0.5b m. Perform the collision checking using our proposed fast method
verifying condition (12).

3. Upon the instantaneous center of rotation compute the orientation θo tangent to instantaneous
velocity of the point po (see Figure 2). Check for collisions of circle arcs and transition segments
connected to a vehicle-body configuration [θo p>o ]> with modified curvature κa = κo(κc) instead
of κc, where

κo(κ) = 1/
√
(1/κ + b/2)2 + L2, (13)

where κo is the motion curvature of the point po which is furthest from the path, whereas κ is the
curvature of robot motion.

As shown in Figure 6, the approach taken in Step 3 is conservative for the transition segments
because by taking κa for collision checking, one assumes the motion curvature of point p0 to change
linearly with respect to the curvature of the robot motion. However, it is also computationally efficient,
and, as shown by our computational examples, its conservativeness does not hinder maneuverability
of the robot in tight environments due to the ability to plan short transition segments.

0 0.05 0.1 0.15 0.2 0.25

 [m -1]
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

o
 [m -1]

a
 [m -1]

B

Figure 6. Curvature κo of motion for the outer vehicle point p0 (see Equation (13)), which is furthest
from the path, expressed as a function of path curvature κd for a = 5.9 m and b = 2.5 m. Dashed line
corresponds to a conservative inner approximation of this relation utilized during collision checking.

One can reason about the completeness of the presented extend procedure as follows.
The proposed G3-continuous extend procedure leads to the solution of Problem 3 for its application to
every complete global planning algorithm if there exists a collision-free RS path with ε-clearance for
ε > 0 solving this problem without the constraint of G3-continuity of the reference path. To illustrate
why this is the case, let us consider that Equation (13) is not conservative for κ(s) = 0 and κ(s) = κB,
that is, κo = κa = 0 and κo = κa = κB, respectively. Furthermore, due to Property 2 from Reference [22]
and continuity of y∗, one concludes that y∗ → 0 as µ→ 0.5. This means that, as µ→ 0.5, the length of
the transition segments tends to 0, and paths obtained from the concatenation of our G3-continuous
path primitives approximate RS paths arbitrarily closely. Therefore, if there exists a feasible RS path
that is no closer to obstacles than ε, one can always find such µ sufficiently close to 0.5, so that the
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maximal distance between the RS path and corresponding G3-continuous path is less than ε, meaning
that the G3-continuous path is feasible.

5. Computational Results

To verify feasibility and effectiveness of planning with the proposed G3-continuous path primitive,
it was investigated how it impacts computation times for the most crucial primitive operations in
path planning, such as collision checking, checking of curvature-constraint satisfaction (κ checking),
and extension procedure computation. Similarly, we tested the computational performance of our
approach in path-planning scenarios S1–S3, shown in Figures 7–9. The proposed extend procedure was
integrated with the RRT* motion-planning algorithm (see Reference [23] for details). All simulations
were performed with the following parameters: L = 5.7 m, b = 2.5 m, a = 5.9 m, βm = 0.96 rad.

We used motion cost J , l̄ +
∫ s f in

0

(
dκ
ds (s)

)2
ds, where l̄ corresponds to the total path length. Note

that the planning procedure was finished when the obtained motion cost was within 5% of the value
precomputed over the time of 600 s.
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Figure 7. Planned path and curvature profile for forward parking Scenario S1. Only forward robot
motion was allowed.
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Figure 8. Planned path and curvature profile for parking Scenario S2. Both forward and backward
robot motion were allowed.
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Figure 9. Planned path and curvature profile for Scenario S3 corresponding to a lane-change-like maneuver.

The computation times obtained in MATLAB are presented in Tables 2 and 3. One can observe
that the G3 path continuity of our approach comes with the price of increased computational cost in
comparison to the classic RS paths with curvature discontinuities. This was expected, since one has
to specifically account for additional transition segments during collision checking, and also check
a larger amount of paths due to availability of additional combinations of transition segments and
circle arcs. However, we note that the computational cost for the more general η3-splines, which are
also G3-continuous, is significantly higher than in our approach. This observation holds even if one
assumes that numerical checking of curvature constraints and collision checking can be performed in
parallel. Unsurprisingly, since collision-checking procedures can account for over 90% of planning time,
those computational performance tendencies propagate to computation times of a full path-planning
procedure for example Scenario S2. Such results suggest that our approach can represent a viable
alternative when the planning of G3-continuous paths is necessary due to task-specific constraints or
the mechanical construction of the robot.

Table 2. Average computation times of primitive operations for 1000 random scenarios.

Path Primitive Collision Checking (µs) κ Checking (µs) Extend Procedure (µs)

Reeds–Shepp 24 0 27
η3-splines 1397 1264 63

G3-continuous path primitive 124 0 67

Table 3. Average computation times in MATLAB for 10 planning trials in Scenario S2.

Path Primitive Planning Time of S2 (S)

Reeds-Shepp 27
η3-splines 86

G3-continuous path primitive 39

Figures 7 and 8 illustrate the results of path planning with the proposed G3-continuous extend
procedure for parking Scenarios S1 and S2, whereas in Figure 9 we show a challenging lane-change-like
maneuver in Scenario S3. During Scenario S3, only forward robot motion was assumed admissible.
Obstacles are shown in black, whereas the planned path is in blue. The magenta rectangles correspond
to robot footprints at the endpoints of path segments comprising G3-continuous path primitives,
whereas the green and red rectangles illustrate the initial and final robot configuration, respectively.
It can be seen that planning is successfully performed in a severely constrained environment despite
the conservative approximation utilized in our collision-checking algorithm. Curvature profiles and
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curvature arc-length derivative profiles are continuous; however, in some cases, e.g., in Scenario S3,
relatively low µ values corresponding to relatively high curvature arc-length derivative values have
been planned. This is due to the environment boundaries, which prohibited smoother curvature
profiles, since those would lead to collision between the environment boundaries and the robot
footprint, specifically point po of the footprint. One can also find that, in some cases, paths contain
more reversals (changes in motion strategy), because additional space is needed for transition segments,
which allow smooth evolution of path curvature. Such a tendency can be eliminated by putting a
bigger emphasis on path length in the planning motion cost; however, this inevitably leads to low µ

values and less smooth paths.

6. Conclusions

The G3-continuous path primitive proposed in this paper allows for an extension of the
well-known RS paths, and constitutes an easy-to-implement component for various path planners
available in the literature. The proposed method guarantees that planned paths are collision-free,
satisfy curvature constraints, and preserve continuity of the curvature arc-length derivative. It is worth
emphasizing the computational efficiency of the method due to the fact that distance between the
robot with a rectangular footprint and obstacles can be effectively checked in a continuous domain
using the derived analytical formulas. As opposed to other solutions (e.g., those using clothoid-based
approaches), the introduced G3-continuous path primitives are represented by closed-form expressions,
which can be conveniently utilized by path-following feedback controllers. Upon the results included
in the paper, one may conclude that the proposed planning strategy provides all the mentioned
beneficial properties under a reasonable computational cost when compared to other methods known
from the literature.
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