
applied  
sciences

Review

AI-Based Modeling and Monitoring Techniques for
Future Intelligent Elastic Optical Networks

Xiaomin Liu, Huazhi Lun, Mengfan Fu, Yunyun Fan, Lilin Yi, Weisheng Hu and Qunbi Zhuge *

Shanghai Institute for Advanced Communication and Data Science, State Key Laboratory of Advanced Optical
Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University,
Shanghai 200240, China; xiaomin.liu@sjtu.edu.cn (X.L.); huazhi.lun.sjtu@gmail.com (H.L.);
mengfan.fu@sjtu.edu.cn (M.F.); fanyunyun@sjtu.edu.cn (Y.F.); lilinyi@sjtu.edu.cn (L.Y.); wsh@sjtu.edu.cn (W.H.)
* Correspondence: qunbi.zhuge@sjtu.edu.cn

Received: 27 November 2019; Accepted: 27 December 2019; Published: 3 January 2020
����������
�������

Abstract: With the development of 5G technology, high definition video and internet of things,
the capacity demand for optical networks has been increasing dramatically. To fulfill the capacity
demand, low-margin optical network is attracting attentions. Therefore, planning tools with higher
accuracy are needed and accurate models for quality of transmission (QoT) and impairments are the
key elements to achieve this. Moreover, since the margin is low, maintaining the reliability of the
optical network is also essential and optical performance monitoring (OPM) is desired. With OPM,
controllers can adapt the configuration of the physical layer and detect anomalies. However,
considering the heterogeneity of the modern optical network, it is difficult to build such accurate
modeling and monitoring tools using traditional analytical methods. Fortunately, data-driven artificial
intelligence (AI) provides a promising path. In this paper, we firstly discuss the requirements for
adopting AI approaches in optical networks. Then, we review various recent progress of AI-based
QoT/impairments modeling and monitoring schemes. We categorize these proposed methods by
their functions and summarize advantages and challenges of adopting AI methods for these tasks.
We discuss the problems remained for deploying AI-based methods to a practical system and present
some possible directions for future investigation.

Keywords: optical transmission; optical networks; machine learning; artificial intelligence; quality of
transmission; optical performance monitoring; failure management

1. Introduction

The progress of 5G mobile networks, internet of things and cloud services has raised high
demands and new requirements for the capacity and reliability of optical networks. To serve the rapidly
increasing number of internet service users, the technologies of optical networks are continuously
evolving. The development of elastic optical networks (EON) [1] enables network controllers to
scale up or down resources in order to utilize spectrum resources efficiently [2]. However, the EON
architecture increases network complexity because of the various configurations of links and signals,
which makes it more challenging to maintain the high transmission quality of a lightpath from the
beginning of life (BoL) to the end of life (EoL). Since a large amount of data is transmitted in each link,
even a brief disruption of traffic flows can lead to disastrous degradation [2]. Therefore, improving the
reliability of optical networks is also important.

To reach a high capacity, optical networks should better utilize network resources. In many
scenarios, since a planning tool cannot accurately estimate the quality of transmissions (QoT), a high
design margin is mandatory, which accounts for the difference between the planned metrics and the
real value to ensure proper operations of networks [3]. A high margin can lead to the underutilization

Appl. Sci. 2020, 10, 363; doi:10.3390/app10010363 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/2076-3417/10/1/363?type=check_update&version=1
http://dx.doi.org/10.3390/app10010363
http://www.mdpi.com/journal/applsci


Appl. Sci. 2020, 10, 363 2 of 18

of spectrum resources. Therefore, to build a low margin optical network to increase network
capacity, a more accurate planning tool is needed to estimate the QoT prior to link deployment or
reconfiguration [4]. In this case, an accurate QoT model is essential and impairment models can
improve the accuracy of the QoT model. On the other hand, to improve the reliability of optical
networks, controllers should be capable of obtaining the real-time status of networks to prevent the
serious degradation of systems. To achieve this, advanced optical performance monitoring (OPM)
techniques are essential to enable needed functionalities to monitor the QoT and impairments. If failures
occur in optical networks, the monitoring mechanisms should be capable of detecting, identifying and
localizing them. Therefore, in summary, the modeling and monitoring techniques are the key building
blocks for the next generation EON. The basic architecture of the modeling and monitoring techniques
is shown in Figure 1.
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Figure 1. Applications of modeling and monitoring techniques in optical networks.

For the modeling, some models are applied to judge whether one lightpath meets the requirement
for establishment in terms of the QoT [4]. Some are applied to estimate the specific value of the
QoT or impairments [5]. In EON, there are some challenges for traditional analytical models. Firstly,
there exists typically a tradeoff between complexity and accuracy. Some sophisticated analytical
models, e.g., the split-step Fourier method (SSFM) [6], are capable of capturing different impairments
with great precision, but the complexity may be prohibitively high. Some approximate models, e.g.,
the Gaussian noise (GN) model [7], can be calculated in a short time, but the accuracy needs to be
improved especially for heterogeneous and dynamic links. Moreover, because of the diversity of EON,
it is difficult to obtain one specific model for all scenarios. In this case, the estimation results of models
may appear a large deviation for some scenarios.

Artificial intelligence (AI) [8] technologies provide new opportunities to solve these problems.
In many scenarios, machine learning (ML) methods can obtain a higher accuracy and/or a lower
complexity compared to analytical models. For instance, in [5], an artificial neural network (ANN)
is adopted to estimate fiber nonlinear noise more accurately and efficiently compared to the original
analytical model. The accuracy of this ANN-based nonlinear estimator is higher than the incoherent
GN (IGN) model and the complexity is much lower than the SSFM. Moreover, for situations where there
is no suitable traditional model, ML methods can make estimations utilizing the data extracted from
simulations or real scenes. For example, the filtering effect brought by reconfigurable optical add-drop
multiplexers (ROADM) can be modeled with an ANN [9]. Finally, many data-driven methods with
ML can be adopted to adjust analytical models to be scalable for more scenarios where they show large
deviations. For instance, in [10], ML algorithms are used to improve the performance of the analytical
model with data collected from an established lightpath.
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The transmission performance of an established light path is not always reliable due to the various
changes of link conditions. Therefore, optical performance monitoring (OPM) is a key building block,
which enables network controllers to adjust link configurations according to the real-time status
of a system. Moreover, monitoring results can be used to detect, identify and localize failures in
EON’s. However, the heterogeneity of EON’s has also raised many new challenging requirements
for the monitoring techniques, and ML shows a potential in building more intelligent and efficient
monitoring schemes. Firstly, faster response time is desired for monitoring [2]. Since a monitoring
agent should provide information for optimizing lightpath configurations and diagnosing the anomaly,
the monitoring scheme needs to be capable of tracking the change of the network performance.
According to [2], the monitoring time of some network applications is required to be at the order of
milliseconds. Therefore, some traditional methods with complex data processing and a long-time
window may not be compatible with dynamic real-time applications. To solve this problem, advanced
ML methods with forward propagation mechanisms [11], such as ANN, convolutional neural networks
(CNN) and so on, can be employed to accomplish the feature extraction and estimate real-time status
in a short time period [5,12,13]. These monitoring tools can be trained offline before deployment.
When estimating the signal performance, the pre-trained monitors can respond in a very short time.
Secondly, monitoring techniques should be cost-effective [2]. In particular, they should not necessitate
expensive external devices, and one OPM block is preferable to monitor multiple impairments. It may
be difficult for analytical models to achieve these two goals simultaneously but ML-aided methods
can help to fulfill these requirements. For instance, samples of received signals can be input to ML
algorithms for monitoring the chromatic dispersion (CD), polarization-mode dispersion (PMD) and
optical signal-to-noise ratio (OSNR) at the same time [14]. Moreover, when obtaining information from
the receiver digital signal processing (DSP) modules, ML methods may be able to monitor the QoT or
impairments without any external devices such as the optical spectrum analyzer (OSA) [15].

Therefore, for the next generation EON, applications of ML techniques for modeling and monitoring
can provide strong support to build a reliable and intelligent optical network with lower design margins.
This paper is intended to review recent progress in AI-enabled modeling and monitoring techniques for
EON. Since optical networks are full of data with heterogeneous sources and various characteristics, it is
possible to improve the accuracy and/or sensitivity of optical performance estimation functionalities
with these data. However, the large number of data also makes it more challenging to discover
useful information from them. In this case, data-driven ML methods are essential tools for network
planning and management, but these methods should be improved to be cost-effective and reliable
for deployment. Several previous review works have provided comprehensive summaries of the
applications of ML techniques in optical networks [2,16–19]. They discuss the ML-based techniques
adopted in various domains and point out many possible directions for the future deployment strategies.
In this paper, we focus on the AI-based techniques specifically for link modeling and monitoring in
optical networks. In addition, we discuss and summarize the advantages and challenges for adopting
the AI-based modeling and monitoring methods in the future EON. This paper is organized as follows.

• In Section 2, we firstly introduce the background and challenges for modeling the QoT and
impairments in EON’s. The potentials of applying ML to estimate network performance are also
discussed. Then, we review many previous works on ML-based modeling techniques.

• In Section 3, we firstly review various previous works on ML-based monitoring techniques.
Afterwards, the monitoring techniques specifically for failure management are elaborated.

• In Section 4, the use cases for AI-based modeling and monitoring techniques are discussed.
• In Section 5, we provide a lookout for the future of utilizing ML methods in EON by discussing

both the challenges and opportunities.
• In Section 6, a conclusion for this paper is provided.
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2. AI-Based QoT and Impairment Modeling

2.1. Background and Challenges

QoT modeling for an unestablished lightpath can help planning tools in the control plane to develop
proper strategies of routing, wavelength assignment and signal configurations [20–25]. In EON, during
the phase of network planning, the accuracy of QoT and impairment models is influenced by various
configurable parameters like modulation format, symbol rate and physical path in optical networks.
If these parameters are not accurate, the estimations of QoT may have deviations compared with the
real value [5,26,27]. In this case, due to the inaccuracy of planning tools, a large design margin [3]
is needed and networks are overutilized to avoid network degradation until the EoL. As a result,
QoT models with a higher accuracy are desired and impairment models can provide an insight into
the contributions of each individual impairment to help QoT estimators reach a better performance.

For the QoT modeling, some traditional methods [28] can estimate the performance of an optical
link in terms of signal-to-noise ratio (SNR), pre-forward error correction (FEC) bit error rate (BER),
OSNR and so forth. For the impairment modeling, traditional methods can estimate some important
physical layer effects, such as fiber nonlinearity, optical filtering effect and amplified spontaneous
emission (ASE) noise. The requirements for QoT and impairment modeling techniques of the
next-generation EON are illustrated as follows.

• Self-adaptiveness: Analytical models are essential for estimating the QoT of unestablished
lightpaths. However, they may not be scalable for all scenarios since the assumptions for these
models may be inappropriate when the configuration of traffic optical paths evolves continuously.
For instance, the optical amplifier gain spectrum is wavelength-dependent but some models
assume the gain to be identical for all channels. This kind of improper assumption may lead to
an inaccurate estimation of the ASE noise. Therefore, network planning tools with self-adaptive
QoT and impairment models are highly desired to guarantee a high-quality transmission from the
BoL to the EoL.

• Efficiency: For many QoT and impairment models, traditional models with high precision may
incur burdensome computational requirements. For example, to model the nonlinear impairment,
the SSFM [6,29–31] can reach a high accuracy if the step size is sufficiently small, which leads to
a high complexity. The GN model [7] can provide results in a very short time but the precision
is lower than that of the SSFM in most scenarios. Therefore, models that can efficiently make
estimations with a high accuracy are desired.

• High tolerance to parameter uncertainty: In a practical system, link parameters can be uncertain
due to inaccurate measurements and other reasons. If the uncertainty of the model input exists,
there might be a significant deviation between the real value and the model estimation [5].
Therefore, models that are less sensitive to parameter uncertainty are also desired.

To fulfill these requirements, data-driven ML methods open new opportunities. Firstly,
ML methods are mostly data-driven [32], which means they enable the model to learn the characteristics
of the dataset, in principle even without any theoretical information [4,33–36]. This specific ability of
learning adaptively with data allows ML models to be easily extended to any scenarios if the simulation,
experiment or field-trial data for this situation can be obtained [13,23,37]. Secondly, for most optical
networks, the number of tunable parameters for link configurations is limited. Therefore, the number of
input parameters for QoT or impairment models are relatively small [5,33,38], which enables ML models
to reach a good performance with simple structures such as the ANN with a small number of nodes
and hidden layers [23]. In this case, these low-complexity ML models can calculate faster compared
with some traditional models. Many previous works using a simple ANN or linear regression have
already achieved good performances [5]. Finally, advanced ML algorithms like ensemble learning [39]
and Theil-Sen regression [40] can address the drawbacks of the least squared algorithms and make
models less sensitive to the outliers and fluctuations of data. Besides, training techniques like data
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augmentation [41,42] can improve the model robustness to parameter uncertainty and avoid overfitting
by adding interference manually. In this section, we reviewed various previous works for AI-based
QoT and impairment modeling techniques.

2.2. AI-Based QoT Modeling

For the QoT modeling, there are many types of metrics, such as BER, Q-factor, SNR, OSNR and
margin. The aim of the QoT modeling is to precisely estimate the link performance and then build low
margin networks. The requirement of the QoT estimations differs in different scenarios. Some need to
judge whether one light path can be established or not [4,21,38], and some need the specific value of the
QoT metrics. For the former, ML classification methods [43] can be used such as K-nearest neighbors
(KNN), random forests (RF), support vector machine (SVM), logistic regression (LR), ANN and so
forth. For the latter, ML regression methods [43,44] can be employed such as network Kriging (NK),
Gaussian process (GP), CNN [45], ANN and so forth. We provided a review of some recent ML-based
QoT modeling techniques in the literature for different metrics in this section. They are listed in Table 1
and elaborated as follows.

Table 1. Summary of the machine learning (ML)-based quality of transmission (QoT) modeling
techniques discussed in Section 2.2.

Modeling
Targets Algorithms Input Features

BER

K-Nearest Neighbors, Random
Forest [4]

Traffic volume, modulation format, total length of
links, length of the longest link, number of
lightpath links

Stochastic Gradient Descent
Polynomial Regression [21]

Generalized OSNR, baud rate, modulation format,
FEC, slot-size

Deep Graph Convolutional Neural
Networks [46]

Total length of the path, span length, central
frequency, number of slots in each path,
modulation format, number of Erbium-doped fiber
amplifier (EDFA), number of links, BER

Q-factor
Case-based Reasoning [47,48]

Route, selected wavelength, total length of the path,
sum of the co-propagating lightpaths per link,
standard deviation of the number of total
co-propagating lightpaths

Transfer Learning [33] Channel loading, per-channel output power

OSNR

Network Kriging, l2-norm
Regularization [49]

Average PMD of each link, accumulation value of
CD, the self-phase modulation (SPM) quantified
through the nonlinear phase of the signal

Gaussian Process Regression [50] Wavelength, OSNR of the established wavelength

SNR
Combination of Machine Learning
and Physical Layer Model [10]

Lightpath length, link load, number of
crossed EDFAs

Gradient Decent [51] Power, noise figure

Margin

K-Nearest Neighbors, Linear
Regression, Support Vector
Machine, Artificial Neural
Networks [38]

Number of hops, number of spans, total link length,
average link length, maximum link length, average
span attenuation, average CD

For the BER estimation, in [4], an ML-based classifier is used to decide whether the BER of
an unestablished lightpath can achieve the network requirement. Features of the model are the traffic
volume, modulation format, lightpath total length, length of the longest link and number of lightpath
links. The training dataset is obtained from the deployed lightpaths. The employed ML classifier
algorithms are KNN and RF with various kernel settings. Moreover, this work comprehensively
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compare the performance of different ML algorithms. The influences of different combinations of input
features and different sizes of dataset are also analyzed. The result shows that RF outperformes KNN
in accuracy and efficiency in most cases. The result also shows that a bigger dataset can help to reach
a higher accuracy. In [21], the generalized optical signal-to-noise ratio (gOSNR), baud rate, modulation
format, FEC, slot-size and so on are used to estimate the BER and the training data is obtained from
a practical system. Therefore, this model can enable controllers to find the optimum configuration of
a light path for each specific network. In [46], a deep graph convolutional neural network (DGCNN)
is applied to estimate the feasibility of the network state. This work considers the crosstalk between
unestablished and established light paths according to historical data.

For the Q-factor estimation, in [47,48], a cognitive QoT estimator classifies lightpaths to high-
or low-quality categories. The classification method is case-based reasoning (CBR), which is based
on the prior experiences or cases to make estimations. Features for this model include the route,
selected wavelength, total length of a path, sum of the co-propagating lightpaths per link and standard
deviation of the number of total co-propagating lightpaths. To extend a pre-trained model to more
scenarios, transfer learning is proposed in [52] to make use of collected data from new scenes for
retraining. This method can effectively reduce the training time when configurations of the optical
networks change. Methods mentioned above all use historical data from real scenes and they all
achieve a good performance for estimating the QoT. Therefore, we can infer that data-driven ML
methods can improve the training efficiency and the scalability of models to more systems.

For the OSNR estimation, in [49], regression methods like network Kriging (NK) and least-squares
minimization with l2-norm regularization are utilized. The parameters used for estimations are the
average PMD of each link, accumulation value of CD, and SPM quantified through the nonlinear phase
of the signal. The algorithm is based on established light paths to evaluate an unestablished path for
transparent optical networks. This method successfully helps to design a reliable light path efficiently.
According to [50], in some practical systems, the noise figure and gain of amplifiers and fiber loss are
wavelength-dependent. In this case, the Gaussian process regression (GPR) is used to estimate the
OSNR with a confidence output.

For the SNR estimation, in [10], the combination of the ML model (ML-M) and physical layer model
(PLM) is applied to build a framework called ML-PLM to estimate the QoT performance. This model is
based on the data from the existing connections of a network. Features used for estimation are the light
path length, link load and number of crossed Erbium-doped fiber amplifiers (EDFAs). The simulation
shows that, this method can reduce the influence of the uncertainty of parameters such as the fiber
attenuation, dispersion, nonlinear coefficients or amplifier noise. Moreover, the more light paths
the model can get from the network topology, the higher accuracy the model can achieve. In this
way, ML-PLM can reach better performances and makes the model suitable for a dynamic network.
In [51], gradient decent is used to correct the deviations of the input parameters for the QoT estimators.
This method takes advantage of back-propagation algorithms embedded in many neural networks,
which successfully reduces the uncertainty of models.

For the margin estimation, in [38], ML models such as KNN, LR, SVM and ANN are proposed to
judge whether the residual margin is positive. The input features are the number of hops, number
of spans, total link length, average link length, maximum link length, average span attenuation and
average dispersion. To build a better classifier, those models for classification are investigated with
different kinds of kernels. Then, to obtain the specific value of the residual margin an ANN is employed.
In [38], the performances of the adopted ML algorithms are compared with each other and they all
reach a decent performance.

2.3. AI-Based Impairment Modeling

Accurate modeling of impairments can provide more information to improve the accuracy of QoT
models. Moreover, the estimation of specific impairments can help controllers design an optimum
configuration of a light path. In this section, since impairments like CD and PMD can be compensated
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in the receiver, we focus on the impairments that may cause performance degradation. A few recent
works using AI-based modeling methods for estimating fiber nonlinearity, filtering effect and ASE
noise are investigated in this section. They are listed in Table 2 and introduced as follows.

Table 2. Summary of the ML-based impairment modeling techniques discussed in Section 2.3.

Modeling Targets Algorithms Input Features

Nonlinear Noise Artificial Neural
Networks [5]

Nonlinear SNR from the GN model, span number, maximum
span length, average span length, optical launch power, link
length, net CD, average gamma of fiber spans, average
attenuation of fiber spans, number of wavelength-division
multiplexing (WDM) channels

Optical Filtering Effect Artificial Neural
Networks [9]

Number of ROADMs, OSNR, loaded noise distribution,
bandwidth distribution

Gain Spectrum of EDFA Deep Neural
Networks [34] Power levels of all WDM channels

EDFA Gain Excursion Multilayer
Perceptron [35] Gain setting, total input power, input power of each channel

2.3.1. Nonlinear Noise

For the nonlinear effect modeling, sophisticated analytical models such as the SSFM [6] can provide
accurate estimations. However, these methods also result in a long computation time. Although
approximate models can calculate much more quickly [53], they cannot guarantee the accuracy in all
scenarios, thus leading to a high design margin and an inefficient utilization of network resources [3].
In [5], a combination of analytical models and ML methods is proposed to reach a higher accuracy for
nonlinear noise estimation.

2.3.2. Filtering Effect

In future EON, ROADM can enable optical networks to support the flexible multiplexing and
demultiplexing, which is important for build an intelligent network with more capacity and dynamicity.
However, in this case, the filtering effect caused by cascaded ROADMs can also influence the QoT
much more significantly because of the reduced guard band between channels. In [9], an ANN-aided
approach is introduced to estimate the filtering effect. The input features of the neural network are
the ROADM number, OSNR, loaded noise distribution and bandwidth distribution. A one-hidden
layer ANN can estimate the SNR of the light path induced by the filtering effect with error mostly less
than 1 dB. In practical systems, the filtering effect can be more significant when multiple impairments
co-exist such as nonlinearity. Besides, the filtering effect is not a kind of additive noise and SNR
may not be the best metric for evaluation. Therefore, problems like how to model the filtering effect
together with other impairments and how to quantify the filtering effect using a proper metric should
be further investigated.

2.3.3. ASE Noise

In a practical system, to accurately model the ASE noise generated by EDFAs, the noise figure (NF)
of each EDFA at each wavelength should be precisely known. According to [36], the NF of an EDFA is
related to the gain at each wavelength. Therefore, the ASE noise can be more accurately estimated with
the aid of an accurate EDFA gain model. However, the spectral hole burning [54] (SHB) effect makes
the spectral gain profile of an EDFA change dynamically under channel reconfigurations, thus leading
to a power excursion. Since it is hard for the traditional model to efficiently model the gain spectrum
of an EDFA with different power loadings in each channel, data-driven ML methods can be adopted.
In [34], deep learning is adopted to estimate the gain of each channel individually. To simplify the
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structure of ML algorithms, a multilayer perceptron neural network is introduced to estimate the gain
of all channels at the same time [35].

3. AI-Based Optical Performance Monitoring

OPM is key to ensure the reliability of optical networks [16]. According to [2], monitoring
techniques can enable several essential and advanced network functionalities. Firstly, a precise
monitoring of QoT and impairments [55,56] can make the control plane accurately assess the signal
quality. Therefore, the monitoring information can guide the network self-reconfiguration and also
enables receivers to adapt some impairment compensation algorithms. Secondly, the real-time
monitoring can continuously obtain the condition of the physical layer. If the QoT deteriorates,
monitoring agents can detect failures. Then, the controller can reconfigure the network to avoid further
degradations. Finally, monitoring data from real scenes can be used to retrain the planning model.
This retraining scheme can improve the accuracy of planning tools and make the design margin lower.
At the same time, there are also some challenging requirements for deploying an OPM in an EON,
such as how to track the real-time change of the optical networks accurately in a short response time
and how to monitor multiple impairments simultaneously. These challenges have been elaborated in
Section 1. ML shows its potential to fulfill these challenges. In this section, we review various works
using ML for OPM. According to their different functions, these approaches are divided into two
categories. We firstly introduce some use cases of monitoring the QoT and impairments of a lightpath.
Then, we review the monitoring techniques for detecting, identifying and localizing soft failures in
a network. These two aspects are discussed as follows.

3.1. AI-Based QoT and Impairment Monitoring

For the QoT monitoring, the evaluation of BER, SNR, Q-factor, QSNR and so forth can enable
controllers to assess the transmission performance of each established light path and provide
a quantitative measure to check whether the designed QoT can be ensured. At the same time,
impairment monitoring is also needed to provide an insight into each specific effect in the physical
layer. In this section, various applications of ML for monitoring QoT and impairment are discussed.
A brief summary of methods discussed in this section is shown in Table 3 and the details are elaborated
as follows.

In [14], an ANN is used to monitor the OSNR, CD and PMD simultaneously with empirical
asynchronously sampled signal amplitudes. In [57], to make an easier monitoring procedure without
labor-intensive feature engineering, deep neural networks (DNN) are used to monitor the OSNR with
asynchronously sampled raw data. For this work, neural networks with an advanced structure perform
the feature extraction and monitoring calculation at the same time. Moreover, the results show that
a larger training dataset and a deeper neural network can help to increase the estimation performance.
As more advanced neural network structures emerge, CNN is also introduced to monitor the OSNR
and modulation format simultaneously [13,58,59]. In [37], ANN is adopted to monitor the OSNR
based on the historical data collected from real systems. In [60], principle component analysis (PCA)
and ANN are used to monitor the OSNR, bit rate, modulation format, CD and DGD by asynchronous
delay-tap plots. In this case, PCA can reduce the number of input parameters, thus reducing the
complexity of the ANN. A similar approach is investigated in [61] to monitor the OSNR and identify the
modulation format by asynchronous single channel sampling, which makes the algorithms simple and
low-cost. In some other situations, ML-methods are also employed to monitor specific impairments.
In [62], DNN is proposed to monitor the OSNR and modulation format with signals’ amplitude
histograms. This method only requires few DSP blocks, which makes it cost-effective for deployment.
In [63], kernel-based ridge regression is used to monitor the CD and differential group delay (DGD)
simultaneously. This method is validated by simulations and experiments. In [64], the long short-term
memory (LSTM) neural network is applied to monitor the OSNR with the four-tributary digital
outputs. The mean absolute error can be significantly reduced from 0.4 to 0.04 dB compared with other
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ML algorithms. In [65], OSNR and nonlinear noise power are monitored simultaneously based on
frequency domain signals. In [66], to identify the impairment causing the transmission degradation,
SVM can accurately make classifications between CD, PMD and noncoherent crosstalk.

Table 3. Summary of the ML-based monitoring techniques discussed in Section 3.1.

Algorithms Features Monitoring Targets

Artificial Neural Networks [14] Empirical asynchronously sampled signal
amplitudes OSNR, CD, PMD

Deep Neural Networks [57] Asynchronously sampled raw data OSNR

Convolutional Neural Network [58] Constellation-diagram OSNR, Modulation Format

Convolutional Neural
Networks [13,59]

Horizontal and vertical polarization,
in-phase and quadrature-phase components
of optical signals

OSNR, Modulation Format

Artificial Neural Networks [37]
Launched power, EDFAs’ input powers,
EDFAs’ output powers, EDFAs’ gains,
EDFAs’ NFs, etc.

OSNR

Principal Component Analysis,
Artificial Neural Networks [60] Asynchronous delay-tap plots

OSNR, CD, Differential Group
Delay (DGD), Joint Bit-rate and
Modulation Format Identification
(BR-MFI)

Principle Component Analysis,
Artificial Neural Networks [61] Asynchronous single channel sampling data OSNR, Modulation Format

Deep Neural Networks [62] Signals’ amplitude histograms OSNR, Modulation Format

Kernel-based Ridge Regression [63] Asynchronous delay-tap sampling data CD, DGD

Long Short-Term Memory Neural
Networks [64] Four-tributary digital output OSNR

Long Short-Term Memory Neural
Networks [65] Frequency domain signal OSNR, Nonlinear Noise Power

Support Vector Machine [66] Eye diagrams CD, PMD, Noncoherent Crosstalk

Artificial Neural Networks [67]
Amplitude noise and phase noise
correlation (ANC, PNC), number of WDM
channel, total CD

Nonlinear SNR

Artificial Neural Networks [68]
Accumulative logarithmic ANC (ALANC),
number of WDM channel, total CD, noise
tangential and normal component

Nonlinear SNR

Support Vector Regression [69] Amplitude noise correlation, logarithmic
accumulated CD Nonlinear SNR

Artificial Neural Networks [5]

Nonlinear SNR from GN model, span
number, maximum span length, average
span length, the launch power, link length,
net CD, average gamma of fiber spans,
average attenuation of fiber spans, number
of WDM channels, ANC, PNC

Nonlinear SNR

In many scenes, obtaining specific features strongly related to an impairment can improve
monitoring accuracy. In [68], the amplitude noise correlation (ANC) and phase noise correlation (PNC)
are proved to be related to nonlinear impairments and an ANN is applied to monitor the nonlinear
SNR based on them. In [69], multiple logarithmic ANCs are directly input to an estimator using
support vector regression for monitoring the nonlinear SNR, which can estimate nonlinear noise
without features like the number of WDM channels. Moreover, in [5], the ANC and PNC are combined
with an analytical model such as the GN model to estimate nonlinear noise. Simulation results in [5]
prove that this combination can improve the monitoring accuracy.
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3.2. AI-Based Failure Management

Link failures can be classified into hard failures and soft failures. Hard failures in the link cause
immediate disruptions but can be easily detected and restored. Soft failures just gradually deteriorate
the performance of the link and they are hard to be detected. In addition, the causes behind them are
challenging to be identified. Therefore, detecting and identifying soft failures are of great importance
and highly desired. In this section, we review some recent works for failure management based on AI
techniques and they are listed in Table 4.

Table 4. Summary of the AI-based failure management techniques discussed in Section 3.2.

Targets Algorithms Input Features

Detection, Identification Finite State Machine [70] BER, received power in receiver

Detection, Identification Random Forests, Support Vector Machine [71] The trend of BER

Identification Convolutional Neural Networks [12] Optical spectrum

Detection Support Vector Machine, Decision Trees [15] Optical spectrum

Detection One-class Support Vector Machine [72] Tap value of the adaptive filter

For the soft failure detection, current detection methods in a deployed network usually rely on
a pre-defined threshold. However, because of the high complexity of modern optical networks, it is
hard to set an accurate threshold. If it is set too loose, some soft failures may be ignored, and if too
tight, false detection may occur. For soft failure identification, it is generally difficult to accomplish
accurate identifications using analytic methods. To address the challenges faced by the traditional
methods, many works are proposed to utilize the ML techniques to perform failure detection and
identification. In [70], finite state machine (FSM) is used to detect and identify the soft failures caused
by laser and wavelength selective switch (WSS). In [71], the trend of the BER is monitored and analyzed.
The statistical characteristics of BER are input to the RF and SVM to detect the soft failure, and an ANN
with a hidden layer is applied to identify the cause of the soft failure between EDFA and WSS. In [15],
the optical spectrum is monitored using an optical spectrum analyzer (OSA). The features of it are
extracted and analyzed to detect the soft failure caused by WSS. Then, controllers identify the anomaly
between filter shift (FS) and filter tightening (FT). In [72], the tap value of the adaptive filter is analyzed
using one-class SVM to detect the soft failure caused by laser, WSS and fiber nonlinearity. To summarize,
ML techniques pave a promising way to address the problems of failure detection and identification.
With the powerful learning capability of ML, the hidden patterns of the monitored data can be learned
to enable various failure management functionalities. As optical networks becoming more dynamic
and heterogeneous, traditional techniques for soft failure detection and identification may not be able
to adapt to the complex scenarios well. Therefore, more applications of ML techniques are expected to
be investigated in this field.

4. Use Cases

4.1. Use Case 1: AI-Based Nonlinear Noise Modeling

A use case for modeling the nonlinear SNR with ML is discussed as below. This use case is based
on the methods proposed in [5]. The structure of the ML-based estimator is shown in Figure 2a. For this
model, an analytical model provides a relatively low-accuracy result in a short time. Afterwards,
the pre-calculated result is input to a ML engine together with the processed system features related
to nonlinear interference. The system features are shown in Table 5. These features can be easily
obtained by a central controller and the processing time is short. For this modeling scheme, the GN
model can provide an approximate value with lower precision compared with the SSFM, and the
ANN only needs to learn the residuals between the real value and the approximate one. In this way,
only with a simple-structure ANN, the estimation result can be accurate. The simulation setup is
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shown in Figure 2c and the detailed description can be found in [5]. In Figure 2b, results show that
when combining the ANN with the coherent GN model (CGN) or the IGN model, the estimation
accuracy can be significantly improved.
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Table 5. Summary of the modeling input features used in [5].

Features of modeling

1. SNRNL from the GN model

2. Span number

3. Maximum span length

4. Average span length

5. Launch power

6. Link length

7. Net CD

8. Average gamma of fiber spans

9. Average alpha of fiber spans

10. Number of WDM channels

4.2. Use Case 2: AI-Based Nonlinear Noise Monitoring

As elaborated in Section 3.1, many ML-based methods are proposed to monitor the nonlinear
SNR in [66,67,72]. To improve the monitoring accuracy, in [5], the AI-based monitoring method
combines the analytical models and the monitoring features such as ANC and PNC. As shown in
Figure 3a–c, when combining monitoring features with analytical models, the maximum error reduces
from 1.2 to 1 dB and 0.8 dB using the IGN and CGN, respectively. Moreover, the comparison of
the CDF in Figure 3d also shows that the CGN model outperforms the IGN model to improve the
ANN performance by 0.35 dB. In this work, the analytical model provides an approximate estimation.
Afterwards, monitoring features are applied to improve the estimation accuracy based on the prior



Appl. Sci. 2020, 10, 363 12 of 18

approximate estimations made by analytical models. Therefore, we can infer that ML can reach a higher
accuracy if the input features are selected and processed properly.
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of monitoring performance with the coherent GN model (CGN). (d) The CDF of three monitoring
strategies proposed in [5]. SNRANN−EST

NL and SNREST
NL means the nonlinear signal-to-noise ratio (SNR)

estimated by methods proposed in [5]. SNRSSFM
NL means the nonlinear SNR estimated by the SSFM.

∆SNR means the estimation difference between the proposed method and the SSFM.

4.3. Use Case 3: AI-Based Soft Failure Identification

A use case for failure identification is elaborated in [12]. In addition to the filtering effect of WSS
and ASE noise, fiber nonlinearity is also considered. Compared with the previous works, a deep
learning algorithm is used and the power spectrum density (PSD) is extracted from a coherent receiver.
The overall architecture is shown in Figure 4.

The SDN agent monitors the physical layer continuously and uploads the PSD to the control layer.
Once the anomaly is detected, the CNN embedded in the anomaly identification module analyzes the
PSD stored in the database. Finally, the identification results are output to the failure management
module and proper actions are taken to restore the optical link.

The identification results are shown in Figure 5a. The results demonstrate a high accuracy of
the proposed method when there exists only one type of anomaly. In the scene when multiple types
of anomalies exit, the probability output by the SoftMax layer is utilized to gain insight into their
respective influences on the system. The result is shown in Figure 5b. The influences of ASE and
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nonlinear interference (NLI) on the system are similar at first since the output probabilities of the two
causes are both about 50 percent. Then, with the OSNR increasing, the NLI gradually becomes the
dominant cause.Appl. Sci. 2019, 9, x FOR PEER REVIEW 13 of 18 
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5. Future Work

To build a reliable optical network with a lower margin, ML methods provide a promising way.
By reviewing the previous works using ML techniques for the modeling and monitoring, we observed
that ML outperformed many traditional approaches for its scalability, efficiency and robustness.
In future, more research with ML will be carried out for building an efficient, reliable and autonomous
optical network. At the same time, there are also some challenges for ML-based techniques for
practical deployments.

1. Efficient adaptation scheme. For most of the works mentioned above, the ML-based methods
are trained offline with data from simulations or lab experiments before deployment. Since the
weights and parameters of the ML-based methods are fixed after training, the calculation time
will be short when using these methods in a practical system. This firstly-trained-then-deployed
scheme is efficient for adopting ML-based methods for situations that require a fast response
time. However, the data from real scenes may be different from the simulation data. Therefore,
a reasonable adaptation scheme is also needed after deployment. In EON, online learning
approaches such as retraining are preferable to cope with time-evolving network scenarios [73].



Appl. Sci. 2020, 10, 363 14 of 18

Even though collecting data from the practical system for retraining has been proposed in many
works, the rationality for the retraining scheme needs to be reconsidered. Since the change of
the EON may be unpredictable, data collected from the real scenes may not follow the same
distribution with the original training data. In this case, the collected data cannot be mixed with
the pre-training data to adapt the ML-based modeling/monitoring agents. Besides, if retraining
agents only use the data collected from the practical system, there are other problems. On the one
hand, if retraining is performed frequently for a better adaptation, dataset collected in a short
period is relatively small and overfitting may occur. On the other hand, if the retraining is not
frequent, estimators may have large deviations when the network state changes at a fast pace.
Therefore, how to deploy an efficient adaptation scheme should be carefully considered.

2. Reasonable design of ML structure. To reach a higher accuracy, ML algorithms with more complex
structures are introduced, such as DGCNN, reinforcement learning and generative adversarial
network (GAN). However, these ML methods with complex structures may be hard to deploy
in an optical system since they require large memories. Therefore, cost-effective ML methods
are desired for EON and the structures of ML methods need to be adjusted to be tailored for the
optical system.

3. Interpretability of ML-based approaches. Many works discussed in this paper are based
on a neural network, which is a flexible structure for classification and regression. However,
those ML algorithms often cannot provide concrete explanations for their decisions to a satisfactory
extent [74]. Therefore, it is difficult to guarantee the algorithmic fairness of ML methods, which is
an obstacle for deploying ML techniques to real systems. More works are desired to make ML
methods interpretable to scientifically make sure that these methods can perform as expected.

4. Deployment of the ML engine. Many approaches for modeling and monitoring with ML have
been proposed recently. Where to deploy these ML engines is another problem. Some ML engines
can be embedded in receivers to build a low latency system while some need to be deployed in the
control plane to obtain information from the whole optical networks [75]. Therefore, the strategies
for the deployment of the ML engine can be carefully designed to reach an optimum performance
of the ML-based method.

6. Conclusions

To improve the capacity of optical networks, planning tools with higher accuracy are required.
To improve the reliability of optical networks, accurate optical performance monitoring is also desired.
In this paper, we review many previous works on machine learning (ML) aided modeling and
monitoring techniques in elastic optical networks. We firstly analyzed the requirements of QoT and
impairment modeling. Then, by reviewing many ML-based modeling techniques, we analyze the
advantages of applying ML methods for this task. Afterwards, we review and discuss various works
for ML-based monitoring techniques for QoT/impairment estimation and failure management. Finally,
we summarized the opportunities and challenges for the application of ML methods. Looking forward
to the future, we can foresee a vital role played by ML-based mechanisms to build an intelligent optical
network with high efficiency.
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