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Abstract: In recent years there has been remarkable progress in one computer vision application
area: object detection. One of the most challenging and fundamental problems in object detection is
locating a specific object from the multiple objects present in a scene. Earlier traditional detection
methods were used for detecting the objects with the introduction of convolutional neural networks.
From 2012 onward, deep learning-based techniques were used for feature extraction, and that led to
remarkable breakthroughs in this area. This paper shows a detailed survey on recent advancements
and achievements in object detection using various deep learning techniques. Several topics have
been included, such as Viola–Jones (VJ), histogram of oriented gradient (HOG), one-shot and two-shot
detectors, benchmark datasets, evaluation metrics, speed-up techniques, and current state-of-art object
detectors. Detailed discussions on some important applications in object detection areas, including
pedestrian detection, crowd detection, and real-time object detection on Gpu-based embedded
systems have been presented. At last, we conclude by identifying promising future directions.

Keywords: convolutional neural network (CNN); computer vision (CV); graphics processing units
(GPUs); object detection; deep learning techniques

1. Introduction

Recently, computer vision has been extensively researched in the area of object detection for
industrial automation, consumer electronics, medical imaging, military, and video surveillance. It is
predicted that the computer vision market will be worth $50 billion by the end of 2020.

For object recognition, the raw input data are represented in matrix pixel form, where the first
representation layer abstracts the pixels and encodes edges, the next layer composes and encodes
edge arrangement, the next layer up encodes eyes and noses, and the final layer recognizes a face
present in the image. Normally, a deep learning process optimally classifies the facial features into
their respective levels without supervision.

In object classification application, manual feature extraction is eliminated by a convolutional
neural network (CNN), so there is no need to manually identify features that are useful for image
classification. CNNs extract features directly from images, and these extracted features are not
pre-trained, but they learn while the network is trained on collected images.
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Due to automatic feature extraction, deep learning models became highly accurate in computer
vision. Deep CNN architecture involves complex models. They require large image datasets for higher
accuracy. CNNs require large labeled datasets to perform related tasks in computer vision, such as
object classification, detection, object tracking, and recognition.

With the advancement in technology and the availability of powerful graphics processing unit’s
(GPU), deep learning has been employed on datasets; state-of-the-art results have been demonstrated
by researchers in areas such as object classification, detection, and recognition. To perform both training
and testing, deep learning requires powerful computational resources and larger datasets. In computer
vision, image classification is the most widely researched area and it has attained astonishing results in
worldwide competitions through PASCAL, ILSVRC, VOC, and MS-COCO, which apply deep learning
techniques [1]. Deep learning techniques are deployed for object detection due to promising results
in image classification [2]. Nguyen et al. [3] implemented classification of sonar images with various
added noises on GoogleNet CNN and tested on TDI 2017 and 2018 datasets.

In generic object detection, the main aim is to determine whether or not there are any instances
of objects from the specified varieties (e.g., animals, vehicles, and pedestrians) in an image, and
if present, then return the spatial location and extent of a single object (by bounding box) [4,5].
Object detection became the basis for solving overly complex vision-related tasks; namely, scene
understanding, image captioning, instance segmentation, semantic segmentation, object recognition,
and tracking [6,7]. The applications of object detection cover areas such as Internet of Things (IoT) and
artificial intelligence, which includes intelligent military surveillance systems, security, self-driving
cars, robot vision, human–computer interaction (HCI), and consumer electronics.

Recently, deep learning methods [8,9] have emerged as the most powerful techniques for
automatically learning features from raw data. Specifically, deep learning methods have achieved
great progress in object detection, a problem that has grabbed the attention of many researchers in this
decade. Video surveillance is one of the most challenging and fundamental areas in security systems,
as it depends entirely on a lot on object detection and tracking. It monitors the behavior of people in
public to detect any suspicious behavior [10].

The road-map of object detection milestones is shown in Figure 1.

Figure 1. Milestones of object detection. In 2012 the major turning point was the use of DCNN
implemented for image classification by Krizhevsky et al. [1], VJ Det. [11,12], HOG Det. [13],
DPM [14–16], RCNN [17], etc. (source: [18]).
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The stated goals of object detection are to achieve both high accuracy and high efficiency by
developing robust object detection algorithms.

1. To achieve high detection accuracy, related challenges are:

• Intra-class variations: variations in real-world objects include color, size, shape, material, and
pose variations.

• Image conditions and unconstrained environments: factors such as lighting, weather conditions,
occlusion, object physical location, viewpoint, clutter, shadow, blur, and motion.

• Imaging noise: factors such as low-resolution images, compression noise, filter distortions.
• Thousands of structured and unstructured real-world object categories to be distinguished

by the detector.

2. To achieve high efficiency, related challenges are:

• Low-end mobile devices have limited memory, limited speed, and low computational
capabilities.

• Thousands of open-world object classes should be distinguished.
• Large scale image or video data.
• Inability to handle previously unseen objects.

1.1. Features of the Proposed Review

The proposed survey mainly focuses on providing a thorough and comprehensive review of
existing work carried out in deep learning-based object detectors, particularly showing a pathway for
new researchers who wish to choose this field.

• Moreover, differently from recently published review papers on object detection topics [18–23],
this paper comprehensively reviews modern deep learning-based object detectors starting from
regions with convolutional neural netwoks (RCNN) and ending at CornerNet with its pros and
cons.

• It also covers some specific problems in computer vision (CV) application areas, such as pedestrian
detection, the military, crowd detection, intelligent transportation systems, medical imaging
analysis, face detection, object detection in sports videos, and other domains.

• It provides an outlook on the available deep learning frameworks, application program Interface
(API) services, and specific datasets used for object detection applications.

• It also puts forth the idea of deploying deep learning models into various embedded platforms
for real-time object detection. In the case of a pre-trained model being adopted, replacing the
feature extractor with an efficient backbone network would improve the real-time performance
of the CNN.

• It describes how a GPU-based CNN object detection framework would improve real-time
detection performance on edge devices.

Finally, we intend to give an overview of various deep learning methods deployed on various
embedded platforms in real-time objection and possible research directions.

The rest of this paper is organized as follows. Section 2 covers various deep learning architectures
used in object detection in detail. Frameworks and API Services, and available datasets and
performance metrics for object detection, have been discussed in Sections 3 and 4. Application
domains and deep learning approaches for object detection are explained briefly in Sections 5 and 6
respectively. Section 7 discusses various GPU-based embedded systems for real-time object detection
implemented using deep learning techniques. Research directions, a conclusion and future research
possibilities are presented in Sections 8 and 9.
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2. Object Detection

2.1. Basic Block Diagram of Object Detection

The intent is to figure out real-world object instances like cats, bicycles, telephones, various
flowers, and humans in real-time videos or still images. It paves the way for object recognition,
localization, and detection of single/multiple objects within a video frame or an image with a much
better interpretation of an image as a whole. Difficult challenges such as occlusion and irregular
lighting conditions should be handled carefully while performing object detection. Figure 2 shows the
basic block diagram of object detection. The application of object detection covers wide areas, such as
medical imaging, security, video surveillance, self-driving vehicles, robot vision, and facial recognition.
Figure 3 shows various approaches available in object detection.

Figure 2. Basic block diagram of object detection.

Figure 3. Various approaches in object detection.



Appl. Sci. 2020, 10, 3280 5 of 46

There are multiple ways to detect objects and these are done using the Viola–Jones (VJ) object
detector [11,12], the feature-based object detector [24–26], HOG features using a support vector machine
(SVM) classification object detector [13], and object detection-based deep learning techniques. Figure 3
shows various approaches available in object detection.

2.2. Various Deep Learning Approaches for Object detection

2.2.1. Viola–Jones Detector

P. Viola and M. Jones performed facial detection without any restrictions (skin color
segmentation) [11,12]. The implementation of the VJ detector is simple and straight forward; i.e.,
a sliding window is moved along all possible locations and the image is scaled; then it checks whether
a human face is present in any of the windows. Using the VJ detector, detection speed has improved
drastically by including three techniques—integral image, detection cascades, and feature selection.

2.2.2. HOG Detector

N. Dalal and B. Triggs [13] first implemented the “histogram of oriented gradients” (HOG) feature
descriptor, and it is an improved version of “scale-invariant feature transform” (SIFT) [24,25] and
shape contexts [26]. HOG descriptor computes on dense grid cells. To balance both feature invariance
(which includes translation and illumination) and linearity (on discriminating different objects classes),
overlap local contrast normalization (on blocks) is applied, which improves accuracy. HOG detector is
not only used in pedestrian detection but also to detect multiple object classes. Through HOG, the
detector resizes the input image multiple times for detecting object sizes, but the size of the detection
window is unchanged.

2.2.3. Deformable Part-Based Model (DPM)

The deformable part-based model (DPM) was at its peak for traditional object detection
methods and was the winner of VOC detection challenges in 2008 and 2009. DPM is an improved
version of the HOG detector. Initially, DPM was implemented by P. Felzenszwalb [15], but later R.
Girshick [16,17,27,28] made refinements to the DPM detector. The main theme of DPM is “divide and
conquer,” where the training period is the proper way of learning, and decomposition of objects and
the inference period are considered an ensemble of different parts in object detection. A typical DPM
detector has two different filters, such as a root-filter and a multiple part-filter. In the DPM detector,
all part filter configurations are taught automatically with latent variables using a weakly supervised
learning method, instead of specifying the configurations of part filters manually. This process was
further refined by R. Girshick as “multi-Instance learning” [29]. Further, improvements in detection
accuracy have been obtained by applying techniques, such as “hard negative mining, bounding box
regression, and context priming.” Girshick sped up the detection technique, achieving 10x faster
acceleration than traditional models without the need for sacrificing any accuracy [15,27].

2.3. Classification-Based Object Detectors (Two-Stage Detectors)

Object detection is classified into two groups. They are “one-stage detection” that completes in
one step and “two-stage detection,” which completes with "coarse to fine" stages.

2.3.1. Region-Based Convolutional Neural Network (RCNN)

To overcome the drawbacks proposed by Girshick et al. [17], selecting several regions is eliminated
by the RCNN method which uses a selective search method. This method extracts only 2000 regions
from the images, and they are also referred to as region proposals. Figure 4 shows RCNN architecture,
using a selective search method [30] where a set of object region proposals is extracted. Each
object region proposal is transformed into a fixed image size by rescaling it, and then applied to
the convolutional neural network model which is pre-trained on ImageNet, i.e., AlexNet [1], for feature
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extraction. SVM classifier predicts the object presence within each region proposal and also recognizes
object classes. RCNN improved mean average precision (mAP) to 58.5% on the VOC-2007 dataset
from 33.7% (DPM-v5 [31]).

Despite the great improvement reported by the RCNN method, there are many drawbacks: (1) It
consumes more time to train the network, as we need to classify 2000 object region proposals per
image. (2) It cannot be implemented in real-time, as each test image needs around 47 s, and since
the selective search method is a fixed algorithm, no learning happens at this rate and it leads to the
generation of bad object region proposals. To overcome these drawbacks, SPPNet [32] was formulated
in the same year.

Figure 4. RCNN architecture [17].

2.3.2. Spatial Pyramid Pooling Network (SPPNet)

SPPNet [32] was implemented by K.He et al. Figure 5 shows SPPNet architecture. Earlier CNN
models require a fixed-size input image; e.g., Alex Net [1] requires an input image of size 224x224.
SPPNet introduces one “spatial Pyramid Pooling (SPP) layer,” which allows the CNN model to produce
fixed-length sequence irrespective of the size of region of interest (ROI) or without image resizing.
While performing object detection using SPPNet, feature maps are calculated only once from the entire
image, and for arbitrary regions, fixed-length sequences are generated using trained detectors, which
often avoid computation of the convolutional features. SPPNet performed much faster than RCNN,
without losing any detection accuracy, and mAP increased to 59.2% on VOC-2007. Though adequate
accuracy is achieved with RCNN, it has many drawbacks: training is still multistaged, it fine-tunes
its fully-convolutional (FC) layers, and it ignores earlier layers. To overcome these drawbacks, Fast
RCNN [33] was introduced.

2.3.3. Fast Region Convolutional Neural Network (Fast RCNN)

Fast RCNN detector [33] was implemented by R. Girshick and is an improvement of SPPNet and
RCNN [17,32]. Figure 6 shows Fast RCNN architecture. It allowed us to train simultaneously both
detector and bounding box regressor; mAP accuracy increased from 58.5% (RCNN) to 70.0% (Fast
RCNN) on the VOC-2007 dataset. All the advantages of RCNN and SPPNet are successfully integrated
with Fast RCNN, but still, the detection speed is limited. These drawbacks are eliminated by Faster
R-CNN [2].
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Figure 5. Spatial pyramid pooling network architecture [32].

Figure 6. Fast RCNN architecture [33].

2.3.4. Faster Region Convolutional Neural Network (Faster RCNN)

A Faster RCNN detector [2] was implemented shortly after the introduction of Fast RCNN by
S. Ren et al. [2]. To overcome the drawbacks of Fast RCNN, a network referred to as region proposal
network (RPN) was introduced in Faster RCNN, as shown in Figure 7. Fast RCNN performs both
region proposal generation and detection tasks. Except for RPN, Faster RCNN and Fast RCNN are very
similar. Initially, first ROI pooling is performed, and then the pooled area is fed CNN and two FC layers
for softmax classification and the bounding box regressor. It is the first near-real-time object detector
tested on the MS-COCO dataset; it achieved mAP = 42.7%, VOC-2012, mAP = 70.4%, and 17 fps
with ZFNet [34]. Despite Faster RCNN being much faster than Fast RCNN, there is computational
redundancy at the final stage. Region-based fully-convolutional networks (RFCN) [35] and Light Head
RCNN [36] were further improvements on Faster RCNN.
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Figure 7. Faster RCNN architecture [2].

2.3.5. Feature Pyramid Networks (FPN)

Based on Faster RCNN, T-Y. Lin et al. [37] implemented FPN, as shown in Figure 8. Before
FPN was introduced, most of the object detectors run detection only at the final layer. For category
recognition, the features in CNN deep layers are beneficial but are not conducive for object localization.
FPN alone is not a detector, so FPN is implemented along with Fast RCN, Faster RCNN or single shot
multi-box detector (SSD). FPN follows top-down pathway architecture and lateral connections while
constructing high-level semantics at all scales. It showed great improvement in detecting small objects,
since CNN forms a feature pyramid via its forward propagation. FPN + Faster RCNN implementation
achieved better detection results on the MS-COCO dataset without any attractive features, i.e., COCO
mAP = 59.1%, making it the basic building block for many latest detectors.

Figure 8. Feature pyramid network architecture [37].
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2.3.6. Mask R-CNN

He et al. [38] introduced Mask R-CNN, and it is the extension of Faster RCNN. Figure 9 shows that
Mask R-CNN architecture is a two-stage pipeline. The main aim of Mask RCNN is to solve instance
segmentation problems in CV applications; i.e., to separate different objects in an image or a video.
Additionally, a mask branch on each region of interest (ROI) is included in Mask R-CNN for predicting
an object works in parallel with the class label and bounding box (BB) regression branches. It produces
three outputs: a class label, bounding box coordinates, and an object mask. Mask R-CNN efficiently
detects objects in the input image or video and concurrently generates a high-quality segmentation
mask for each instance detected object. It is conceptually simple to train, flexible, and is a general
framework for instance segmentation of objects. To achieve excellent gains in both speed and accuracy,
Mask R-CNN uses ResNet-FPN [37,39] as a backbone model for extracting features. But the main
drawback is it adds small computational overhead on the network and runs with a speed of nearly
5 Fps.

Figure 9. Mask R-CNN architecture [38].

2.4. Regression-Based Object Detectors (One-Stage Detectors)

2.4.1. You Only Look Once (YOLO)

R. Joseph et al. [40] implemented YOLO architecture, as shown in Figure 10. YOLO is the
strongest, fastest, and simplest object detection algorithm used in real-time object detection. YOLO
runs at 155 fps achieved mAP = 52.7%, and its improved version runs at 45 fps achieved mAP = 63.4%
on the VOC-2007 dataset. YOLO designers completely replaced the previous object detection model’s
proposed detection plus verification.

All previous object detection algorithms use regions to localize objects within the image, but the
YOLO approach is entirely different; the entire image is applied to a single CNN. YOLO network splits
the entire image into regions, and for each region, it predicts bounding boxes and class probabilities.
The main drawbacks of the YOLO object detector are: detection of small objects in an image, and
localization accuracy dropping off when compared to two-stage detectors. YOLOv2, YOLOv3, and
SSD [41] detectors paid much attention to YOLO drawbacks. To the basic YOLO detector, R. Joseph [40]
later made improvements and implemented YOLOv2 and YOLOv3 [42,43] which have achieved better
detection accuracy without scarifying detection speed.
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Figure 10. You only look once architecture [40].

2.4.2. Single Shot Multi-Box Detector (SSD)

W. Liu et al. [41] implemented the single shot multi-box detector (SSD), as shown in Figure 11.
SSD is designed purely for real-time object detection in a deep learning era. Instead of taking two
shots as in the RCNN series, one for generating region proposals and another for detecting the object
of each proposal, it uses only a single shot to detect multiple objects within an image. To improve
the detection accuracy of SSD, particularly in detecting small objects, it introduced "multi-reference
and multi-resolution detection" techniques. To improve Fast RCNN’s real-time speed detection
accuracy, SSD eliminated region proposal network (RPN). SSD300 achieves, on the VOC-2012 dataset,
mAP = 74.3% at 59 FPS, while SSD500 achieves, on the VOC-2007 dataset, mAP = 76.9% at 22 FPS,
which outperforms Faster RCNN (mAP = 73.2% at 7 FPS) and YOLOv1 (mAP = 63.4% at 45 FPS).
The drawbacks of SSD: at the cost of speed, accuracy increases with the number of default boundary
boxes. SSD detector has more classification errors when compared to RCNN but low localization error
while dealing with similar categories.

Figure 11. Single shot multi-box detector architecture [41].

2.4.3. Retina-Net

SSD achieves better accuracy when applied over dense sampling of object locations, aspect ratios,
and scales. Large sets of object locations are generated by SSD that densely cover a few areas of
the image. This creates a class imbalance as the negatives increase and the object classes present
in those locations go undetected. Y. Lin et al. [44] implemented Retina-Net, as shown in Figure 12,
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to overcome the drawbacks—the class imbalance problem in SSD—and to control the decrease in
prediction accuracy of YOLO and SSD. The class imbalance problem in SSD is solved by using focal
loss in Retina-Net so that during training, it puts more focus on misclassified examples. Besides
maintaining very high-speed detection (MS-COCO dataset 59.1% mAP), focal loss enables SSD to
achieve comparable accuracy to that of RCNN series detectors.

class+box
subnets

class+box
subnets

class+box
subnets

W x H x 256

W x H x 256

W x H x 256

W x H x 256

W x H x KA

W x H x 4A

Class subnet

Box subnet

X 4A

X 4A

(A) ResNet (B) Feature pyramid net

(C) Class subnet (top) (D) Box subnet (bottom)

Figure 12. Retina-Net architecture [44].

2.4.4. SqueezeDet

Wu et al. [45] implemented SqueezeDet, a lightweight, single shot, extremely fast, fully-CNN
for detecting objects in an autonomous driving system. To deploy Deep CNN for real-time object
detection, the model should address some important problems, such as speed, accuracy, model size,
and power efficiency. These constraints are well addressed in the SqueezeDet model, as shown in
Figure 13. It is a single forward pass object detector, used to extract a high dimensional, low-resolution
feature maps for the applied input images; it uses stacked convolution filters. Second, it uses ConvDet,
a convolutional layer fed with a feature map as input that produces a large number of bounding boxes
and also predicts the object’s category. Finally, by applying filtering to these bounding boxes, it outputs
final object detections. The backbone model of SqueezeDet is SqueezeNet [46], and the model size is
less than 8 MB which is very small compared to AlexNet [1] without losing any accuracy. This model
consists of approximately two million trainable parameters and achieves a higher level of accuracy
when compared to VGG19 and ResNet-50 with 143,000,000 and 25,000,000 parameters. For the input
image of size 1242x375, this model achieved 57.2 Fps on the Kitti dataset [47] and consumed only 1.4 J
energy per image.
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Figure 13. SqueezeDet architecture [45].

2.4.5. CornerNet

Law et al. [48] implemented CornerNet for object detection, wherein the object is detected by
a pair of key points using a CNN instead of drawing an anchor box around the detected object. So
the need for designing anchor boxes usually used in one stage detectors is eliminated by detecting
objects as paired key points; i.e., top-left and top-right corners respectively. They introduced a new
type of pooling layer referred to as corner pooling, which helps the network to localize corners
better. The CNN outputs the heatmap for all top-left corners and bottom-right corners, along with an
embedded vector map for each detected corner. On the MS-COCO dataset, CornerNet achieved 42.2%
AP which outperforms the existing one-stage detectors. Figure 14 shows the CornerNet architecture.
The main drawback is that it generates incorrect paired key points for the detected object. So to
overcome this drawback, Duan et al. [49] implemented CenterNet by introducing a third key point
at the center to detect each object. CenterNet achieved 47% AP, and inference speed is slower than
CornerNet. Table 1 shows the summary of different object detection algorithms tested on Pascal Titan
X GPU on MS-COCO and Pascal-VOC2007 datasets. Table 2 shows a comparison of various deep
learning-based object detectors’ performances on the MS-COCO test-dev dataset.

Table 1. Summary of different object detection (Pascal Titan X GPU) performances on MS-COCO and
Pascal-voc07.

S.No Architecture mAP
(MS-COCO)

mAP
(Pascal-Voc 2007) FPS

1 RCNN [17] – 66% 0.1
2 SPPNet [32] – 63.10% 1
3 Fast RCNN [33] 35.90% 70.00% 0.5
4 Faster RCNN [2] 36.20% 73.20% 6
5 Mask RCNN [44] - 78.20% 5
6 YOLO [40] – 63.40% 45
7 SSD [41] 31.20% 76.80% 8
8 YOLOv2 [42] 21.60% 78.60% 67
9 YOLOv3 [43] 33.00% – 35

10 SqueezeDet [45] - – 57.2
11 SqueezeDet+ [45] - – 32.1
12 CornerNet [48] 69.2 – 4
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Table 2. Comparison of deep learning based object detection performances on MS-COCO test-dev
dataset. (Note: SqueezeDet* and SqueezeDet+* models are trained on Kitti dataset. AP(E), AP(M), and
AP(H) refer to average precision for easy, medium, and hard cases.)

Architecture Backbone Model AP AP(E) AP(M) AP(H)

Two-stage Detectors

RCNN [17] VGG16 – – –
SppNet [32] VGG16 – – – –

Fast RCNN [33] VGG16 19.7 – – –
Faster RCNN with FPN [37] VGG16 36.2 18.2 39 48.2

Mask RCNN [44] ResNext-101 39.8 22.1 43.2 51.2

One-stage Detectors

YOLOv2 [42] DarkNet53 33 18.3 35.4 41.9
YOLOv3 [43] DarkNet19 21.6 5 22.4 35.5
SSD300 [41] VGG16 25.1 6.6 24.4 36.5
SSD512 [41] VGG16 28.8 10.9 31.8 43.5
SSD513 [50] ResNet-101 31.2 10.2 34.5 49.8

RetinaNet500 [40] ResNet-101 34.4 14.7 38.5 49.1
RetinaNet800 [40] ResNet101-FPN 39.1 21.8 42.7 50.2
SqueezeDet* [45] SqueezeNet 76.7 77.1 68.3 65.8

SqueezeDet+* [45] SqueezeNet 80.4 81.4 71.3 68.5
CornerNet511(single-scale) [46] Hourglass-104 40.6 19.1 42.8 54.3
CornerNet511(multi-scale) [46] Hourglass-104 42.2 20.7 44.8 56.6

Figure 14. CornerNet architecture [48].

3. Available Deep Learning Frameworks and API Services

Table 3 shows various deep learning frameworks. Deep learning frameworks are described in the
form of framework designer; features exhibited; supported platforms; languages; models supported,
such as CNN, RCNN, and DBN/RBM; parallel execution; and license. Table 4 shows the list of
available API services for object detection.
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Table 3. Comparison of various deep learning frameworks.

Name Designer Software
License

Supported
Platforms Features Languages

Supported RNN CNN DBN
RBM

Parallel
Execution

Wolfram
Mathema-

tica
[51]

Wolfarm
Research Proprietary

Windows,
macOS,
Linux,
Cloud

computing

Machine learning, data science, image processing,
neural networks, geometry, visualization

C++,
Wolfram

Language,
CUDA

Yes Yes Yes Yes

Dlib [52]
Davis
King

Boost
software
license

Cross
Platform

Used for creating robust and complex software in C++ to
solve real-world problems. Useful for both industry and
academia

C++ No Yes Yes Yes

Theano [53]
Université

de
Montréal

BSD
Cross

Platform

Use GPUs and perform symbolic differentiation, to define,
optimize and evaluate expressions involving
multi-dimensional arrays efficiently

Python Yes Yes Yes Yes

Caffe [54]

Berkeley
Vision and
Learning

Center

BSD
Linux,

macOS,
Windows

Expressive architecture and speed. By setting a single
flag, switches from CPU to GPU, to train on a GPU
machine and deploy it on handheld devices.

Python,
MATLAB,

C++
Yes Yes No X

Deeplearn-
ing4j [55]

Deeplearn-
ing4j

community;
originally
A. Gibson

Apache 2.0

Windows,
macOS,
Linux,

Android

It combines variational autoencoders, sequence-
to-sequences autoencoders, convolutional nets or recurrent
nets as needed in a distributed deep learning framework

Java,
Scala,

Clojure,
Python
(Keras)

Yes Yes Yes Yes

Chainer
[56]

Preferred
networks BSD

Linux,
macOS

Supports GPU acceleration using CUDA, Supports
higher-order derivatives, easy to use APIs. Python Yes Yes No Yes

Keras [57]
Francois
Chollet

MIT
License

Linux,
macOS,

Windows

Fast experimentation with DNN’s, modular and extensible.
It allows distributed training of DNN models on clusters of
GPUs and Tensor processing units (TPUs).

Python,
R Yes Yes No Yes

MATLAB+
Deep

learning
Toolbox

[58]

Mathworks Proprietary
Linux,

macOS,
Windows

MATLAB supports interoperability with open-source deep
learning frameworks using ONNX import and export
capabilities. Preprocess datasets fast with domain specific
apps for audio, video, and image data.

Matlab Yes Yes No

Required
Parallel
Computing
Toolbox

Apache
Singa [59]

Apache
Incubator Apache 2.0

Linux,
macOS,

Windows

It provides a flexible architecture for scalable
distributed training and is extensible to run over
a wide range of hardware

C++,
Python,

Java
Yes Yes Yes Yes
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Table 3. Cont.

Name Designer Software
License

Supported
Platforms Features Languages

Supported RNN CNN DBN
RBM

Parallel
Execution

Tensorflow
[60]

Google
Brain Apache 2.0

Windows,
macOS,
Linux,

Android

Build and train ML models easily using intuitive high-level
APIs like Keras, automated image captioning software,
flexible architecture, computations are expressed as stateful
dataflow graphs

Python
(Keras),
C/C++,

Java,
R,

Julia,
Swift

Yes Yes Yes Yes

PyTorch
[61]

Adam
Paszke,

Sam
Gross,

Soumith
Chintala,
Gregory
Chanan

BSD
Linux,

macOS,
Windows

Tensor computing with strong acceleration via GPU,
DNN’s built on a tape-based auto diff system,
Useful for applications such as deep learning
and NLP

C++,
Python Yes Yes Yes

BigDL [62] Jason Dai Apache 2.0
Apache
Spark distributed deep learning framework for Apache Spark Scala,

Python Yes Yes No X

Neon [63]
Intel

Nervana Apache 2.0
Apache
Spark

Supports automatic differentiation, Fast performance on
various hardware & DNN’s (GoogLeNet, VGG, AlexNet,
GAN’s), Support for commonly used models including
convnets, RNNs, LSTMs, and autoencoders.

Python Yes Yes Yes Yes

Apache
MXnet

[64]

Apache
Software

Foundation
Apache 2.0

Linux,
macOS,

Windows,
AWS,

Android,
iOS,

JavaScript

A merger of symbolic and imperative programming,
auto-differentiation, portability.

Matlab,
C++, Go,
Python,

JavaScript,
Julia.

Yes Yes Yes Yes
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Table 4. List of available API services for object detection.

Name Services Features Accessibility

Microsoft Cognitive
Service [65] computer vision

Face, vision and speech recognition,
object motion tracking,
facial expression recognition,
speech understanding, image tagging,
language understanding.

REST API

Amazon Rekognition [66] image recognition

Activity, scene and object detection,
facial recognition on images and
video, text in images,
detect unsafe video.

HTTP

IBM Watson Vision
Recognition Service [67]

understanding content
in the images

Train a custom model for visual
inspection, face detection, image class
description and taxonomy,
image matching identification and,
supports multi-languages.

HTTP

Google Cloud Vision [68] image analysis
Content detection, face, landmark
and logo detection, image sentiment
analysis.

Integrated
REST API

Cloud Sight [69] image understanding
Via REST API when an image is
forwarded, then the response is given
as image Description.

REST API

4. Object Detection Datasets and Metrics

Since all CV algorithms are trained and verified using datasets only, datasets play a crucial role in
achieving correct outputs.

• ImageNet [70]: It is based on WordNet Hierarchy. WordNet is also referred to as Synset. To define
each synset, on average 1000 images are provided by ImageNet. ImageNet dataset offers billions
of images in WordNet Hierarchy. It has a total of 14,197,122 images—images with bounding box
annotations of 1,034,908 and an image resolution of 480x410 pixels. In ImageNet, to detect local
features, 1.2 million images exhibit SIFT (scale-invariant feature transform) features.

• WIDERFACE [71]: This dataset contains total of 32,202 images and which includes around
400,000 faces for a wide range of scales. The dataset is split into three parts: training data 40%,
validation data 10%, and testing data 50%.

• FDDB [72]: “Face Detection Dataset and Benchmark” contains 2845 images with a total of
5171 faces. Since it is a small dataset, it is generally used for testing only, and WIDERFACE
dataset is used for training the object detector.

• CityPersons [73]: It is a newly created and challenging pedestrian dataset on the top of the
Cityscapes [74] dataset. This dataset is very useful, especially in more difficult cases, such as with
small-scale data and heavily occluded pedestrians. It contains 5000 images that were captured
from various cities in Germany.

• INRIA [13]: INRIA is a popular person dataset used in pedestrian detection. It contains 614 person
images for training and 288 person images for testing.

• KITTI [47]: This dataset contains high resolution 7481 labeled images and 7518 testing images.
“Person class” in this dataset is divided into two subclasses—pedestrian and cyclist, and it is
tested on three evaluation metrics—easy (E), moderate (M) and hard (H).

• ETH [75]: This dataset contains three videoclips and which have a total of 1804 frames, and it is
commonly used as a testing dataset.

• 80M Tiny image dataset [76]: This dataset contains around 80 million 32x32 colored images.
• Microsoft COCO (MS-COCO) [77]: “Microsoft Common Objects in Context” dataset has

330,000 images comprising 250,000 labeled images; 150 are object instances, 80 are object
categories, 91 are stuff categories, and 5 are captions per image. This dataset exhibits features
such as context recognition, multi-objects per image, and object segmentation.
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• CIFAR-100 dataset [78]: This dataset provides only 100 object classes; each contains 600 images of
which 500 and 100 per class are training and testing images; 100 object classes are clustered into
20 superclasses, and each image comes with a “fine” label (the class to which it belongs) and a
“coarse” label (the superclass to which it belongs).

• CUB-200-2011 [79]: Cub-200 dataset [80] consists of 200 bird species annotated classes, and each
class has 11,788 images. Every annotated image has a single bounding box image (annotations
per image: 15 part locations, 312 binary attributes, and one bounding box).

• Caltech-256 [81]: It contains 256 object classes with a total of 30,607 images for each class 80 images,
and is not suitable for object localization.

• ILSVRC [82]: Since 2010, the “ImageNet Large Scale Visual Recognition Challenge (ILSVRC)” has
been conducted every year for object detection and classification. The ILSVRC dataset contains
10 times more object classes than PASCAL VOC. It contains 200 object classes, whereas the
PASCAL VOC dataset contains only 20 object classes.

• PASCAL VOC [83]: The “Pattern Analysis, Statistical Modelling and Computational Learning
(PASCAL) Visual Object Classes (VOC)” challenge provides standardized image datasets for
object class recognition tasks, and a common set of tools to access available datasets, and
enables evaluations and comparisons of the performances of various object detection methods
from 2008 to 2012. For object detection, all the researchers mostly follow MS-COCO and
PASCAL-VOC datasets.

Table 5 gives brief summary of the main stages of PASCAL VOC developments and image dataset
statistics [4], and includes new challenges every year.

Table 5. Description of VOC dataset challenges.

Year Classes Images Annotated Objects Segmentation New Developments in Addition to Classification
and Detection Challenges

2008 20 4340 10,363 nil occlusion flag added to annotations
2009 20 7054 17,218 3211 improved dataset along with new augmented images
2010 20 10,103 23,374 4203 classification action introduced based on ImageNet
2011 20 11,530 27,450 5034 classification action extended to 10 classes plus others

2012 20 11,530 27,450 6929 size of Segmentation dataset substantially increased,
annotated with a reference point on the body

Table 6 shows image classification dataset challenges. Table 7 shows a comparison of object
detection datasets between PASCAL VOC and ILSRVC. Some datasets like LabelMe [84], SUN
(Scene-understanding) 2012 [85] provide better “image annotation than image labeling.” LabelMe
contains 187k images; by using bounding polygon all objects are annotated. SUN dataset [85] has
900 classes of scenes, and more than 135K images. Compared to ImageNet, Open Images [86] is
much larger and contains more than 9 million real-life images with 6000 classes. For autonomous
driving, a specific dataset KITTI vision [47] is used and the images are taken from the mid-size city.
For agriculture application FieldSAFE [87] dataset is used and it holds around 2 h of raw sensor data
collected on a grass moving scenario.

The following are the standard metrics used for evaluating the performance of detection
algorithms: average precision (AP), mean average precision (mAP), speed (frames per second), true
positive, false positive, IOU threshold, recall, and confidence threshold. Mean average precision (mAP)
is widely used as a performance evaluation metric for object detection.
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Table 6. ILSVRC image classification dataset statistics.

Year Main Challenges

2012 Fine-grained Classification, Classification, Classification, and localization
2013 Detection, Classification, Classification with localization
2014 Detection, Classification, and localization
2015 Object localization, Scene Classification, Object detection from video
2016 Object localization, object detection from video, Scene Classification and parsing
2017 Object localization, Object detection, Object detection from video

Table 7. Comparison of object detection datasets between PASCAL VOC and ILSRVC.

PASCAL VOC 2012 ILSRVC 2013 ILSRVC 2014

Number of Object Classes 20 200 200

Training No. of images 5717 395909 456567
No. of objects 13609 345854 478807

Validation No. of images 5823 20121 20121
No. of objects 13841 55502 55502

Testing No. of images 10991 40152 40152
No. of objects _ _ _

5. Object Detection Application Domains

Object detection is applied in wide areas of CV, including defense (surveillance), iris recognition,
face detection, human-computer interaction (HCI), robot vision, security, medical imaging, smart
transportation, automated vehicle systems, image retrieval system, and machine inspection.
For continuous video surveillance for a few hours, sensors generate petabytes of image data.
The generated data is further reduced to geospatial data and then integrated with the other collected
data to get a clear-cut picture of the current situation. One of the most important tasks involving object
detection is to track vehicles/suspicious people from the collected raw data [88]. Crucial applications of
object detection include detecting faulty electric wires, detecting unattended baggage, detecting driver
drowsiness on highways, detecting vehicles parked in restricted areas, detecting objects present or
coming onto the road (for self-driving vehicles), and also detecting stray animals present in industrial
areas.

All the above requirements for applications may vary according to the circumstance, and detection
is performed either offline or online. Factors such as inter-class and intra-class variations, occlusions,
rotation invariance, and multi-pose are also the main challenges in object detection.

5.1. Pedestrian Detection

An important application area of object detection is pedestrian detection. It is used extensively
in complex applications, including video surveillance, self-driving cars, etc. Earlier pedestrian
detection methods used for object detection, such as the HOG detector [13] and the integral
channel features (ICF) detector [89], rely purely on terms of feature representation [13,89], classifier
design [90], and acceleration detection [91]; others, such as “detection by components” [18,92–94],
gradient-based representation [16,95,96], and the deformable part-based model (DPM) [17,27,79] are
used for pedestrian detection.

In pedestrian detection the main difficulties and challenges faced are (a) small pedestrian
detection; (b) hard negatives; (c) real-time pedestrian detection from HD video; (d) dense and occluded
pedestrians.

The first CV task that applied deep learning was pedestrian detection [97]. The recently improved
Tiny-YOLOv3 [98] implementing pedestrian detection on the Pascal-Voc 07 dataset achieved better
accuracy compared to Tiny-YOLOv3. Table 8 shows possible directions to overcome the major
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challenges and difficulties faced in pedestrian detection. Table 9 shows various papers applied
deep learning-based techniques to handle dense and occluded pedestrian detection.

The widely used datasets for evaluating the pedestrian detection performance are
PASCAL-VOC [83], INRIA [13], KITTI [47], CalTech [81], ETH [75], and CityPersons [73].

Table 8. Remedies to improve challenges arising in pedestrian detection.

Challenges Method

To improve accuracy of
small pedestrian detection

Feature fusion [99]

Integral feature pyramid [37]

Topological line localization [100]

High-resolution handcrafted features [101–103]

Ensemble detection [104]

Feature correlation layer [105]

Cascaded detection [106]

‘Visual attention mechanism called as

Region Context Network (RCN)’ [107]

To improve dense and
occluded detection

‘Ensemble of part detectors’ [108,109]

‘Guided attention mechanism’ [110]

‘Adaptive zoom-in’ techniques [111,112]

Designing new loss function by considering
both the attraction of target and repulsion
of surrounding objects. [113]

To improve hard negative
detection

By integration of ‘Boosted forest [100] and
semantic segmentation’ [114]

‘Bootstrap’ [41,99,115,116]

‘Anchor refinement module
introduced in RefineDet’. [117]

Designing new loss functions [40,118,119].

‘Cross-modal learning’ used to enrich
the features of hard negatives
using both RGB and infrared images [120]
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Table 9. Various techniques to handle occlusion situations while detecting pedestrians.

Articles Methods Datasets Remarks

Tian Y et al. [108] CNN Caltech
Proposed Deep parts CNN detector is trained on weakly labelled
data and can detect pedestrian by observing only a part of a proposal.

Ouyang et al. [109] Deep CNN Caltech

‘Feature extraction, deformation handling, occlusion
handling, and classification are four important components
in pedestrian detection uses deep CNN jointly learned’
in order to maximize their strengths through cooperation.

Zhang S et al. [121] occlusion-aware R-CNN

CityPersons,
ETH, INRIA

and Caltech

‘Used a new part occlusion-aware region of interest ETH, INRIA (PORoI)
pooling unit in place of RoI pooling layer and Caltech in order to
integrate the prior structure information of human body with visibility
prediction into the network to handle occlusion.’

Zhou C et al. [122] CNN
Caltech and
CityPersons ‘Bi-box Regression for Pedestrian Detection and Occlusion Estimation.’

Hsu W Y et al. [123]
multiscale block-based
HOG’s via Gabor filtering Caltech

Method effectively processes images in which a crowd is present or pedestrians are
partially occluded and enables pedestrian detection in images of different scenes.

Ren Y et al. [124] Deformable Faster RCNN
SORSI and
HRRS

‘A deformable Faster R-CNN is constructed by substituting the standard convolution
layer with a deformable convolution layer in the last network stage’ for occluded
object detection.

Li W et al. [125] Enhanced Cascade detector INRIA
Proposed improved adaptive boosting (Adaboost) algorithm and enhanced cascade
detector output to detect partially occluded pedestrians.
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5.2. Face Detection

The oldest CV application is face detection. Earlier, the VJ detector [12] was used for face detection
and is still playing a vital role in today’s object detection. Face detection is used in everyday life,
including in the attendance monitoring of students, smartphone authentication, and facial recognition
for criminal investigations.

In face detection, the main difficulties and challenges faced are: (a) occlusion; (b) multi-scale
detection; (c) intra-class variation; (d) real-time detection. Face detection research history is divided
into two time slots: traditional and deep learning periods. From 2000 to 2015, it was a traditional face
detection period, and thereafter, it was a deep learning face-detection era.

In traditional face detection methods [126–134] were constructed based on:

• "Boosted decision trees" [11,12,135], as they are easy to compute, but for complex scenes they
provide only low detection accuracy.

• CNNs which are used to speed-up detection where the computation of features is shared [136,137].

Deep learning-based face detection methods implement deep learning algorithms such as Faster
RCNN and SSD. Table 10 describes possible directions to overcome the major challenges and difficulties
faced in face detection.

Table 10. Remedies to improve challenges arising in face detection.

Challenges Methods

To improve speed up face detection

Cascaded detection [138,138,139]

‘To predict the scale distribution of the faces in an
image and then run algorithm on some
selected scales’ [42,140,141]

To improve multi-pose face detection

‘Face calibration method’ using
progressive calibration through
multiple detection stages [142]

Estimating calibration parameters [143]

To improve accuracy of occluded faces

‘Detection based on parts’ [144,145]

‘Attention mechanism’ which highlights
underlying face target features [146]

GAN is used for improving occluded objects by
applying adversarial training which generate
occlusion masks. [147]

To improve multi-scale face detection

improved by using similar detection
strategies as that of generic object detection [148–150]

‘Multi-scale feature fusion’ [37,41,50,117,151]

‘Vote-based ensemble’ method

‘Multi-resolution detection’ [152]

(dilated convolution) [18,41,153–155]

The widely used datasets for evaluating face detection performance are WIDERFACE [71],
PASCAL-VOC [5], and Face Detection Dataset and Benchmark (FDDB) [72].
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5.3. Military Applications

One of the major applications of the military field covers the areas of remote sensing and
flying-object detection. Remote sensing detection aims at detecting objects in remote areas. There are
high resolution input images, but for practical use, small objects make the current detection procedure
too slow, and due to complex backgrounds, it can cause serious misdetections.

The data fusion technique was adopted by the researchers to solve these challenges. Captured
images are located far away from a viewpoint, so strong pipeline CNN models are required, such as
RetinaNet, SSD, YOLO, and SqueezeNet—these are difficult to adapt to new domains. So designing
new remote sensing detectors and remote sensing datasets remains still a hot research topic.

Zhang et al. [156] implemented a ”weakly supervised learning framework based on coupled
CNN” for aircraft detection. Han et al. [157] proposed a “weakly supervised and high-level feature
learning” framework for detecting optical remote sensing images. Li et al. [158] implemented a novel
cascaded DNN architecture by combining Hough transform and multi-stage RPN for dense detection
of buildings in remote sensing images. Mou et al. [159] proposed to a multitask learning network that
performs two tasks concurrently: segmenting vehicles and detecting semantic boundaries. A hybrid
DNN proposed in [160] exacts only the same scale features for detecting small targets; i.e., vehicles in
satellite images. A deep learning method starts by segmenting the input image into small homogenous
regions which are used for detecting cars in UAV images [161].

Ma et al. [162] proposed a “multi-model decision feature network which takes both contextual
information and multi-region features” for detecting objects in remote sensing images. A double
multi-scale FPN which consists of a multi-scale RPN and multi-scale object detection network on very
high resolution (VHR) remote sensing imagery, especially for small and dense objects [163]. Semantic
attention DEEP neural networks separate objects of interest and cluttered background while detecting
objects and improve detection accuracy in aerial images [164]. Cheng et al. [165] implemented “rotation
invariant CNN to deal with the problem of object rotation variations” in optical remote sensing images.

Li et al. [166] implemented “R3–Net by combining rotatable RPN and rotatable detection network
for multi-oriented vehicle detection” in aerial images or videos. Tang et al. [116] implemented
“improved Faster RCNN [which] aims at reducing false vehicle detection by negative example mining.”
“R2–CNN real-time tiny object detection” was implemented for large-scale remote sensing images [167].
A “deep CNN model based on improved bounding box regression and multi-level feature fusion” was
implemented for detecting objects in remote sensing images [168].

Typical datasets used for evaluating remote sensing object detection performance are NWPU
VHR [169], DLR 3K Munich [170], VEDAI [171], DOTA [47], and HRRSD [172].

5.4. Medical Image Analysis

In medical image analysis specifically, tumor detection, skin disease detection, tumor
segmentation, brain image analysis, glaucoma detection, healthcare monitoring, etc., are the major
fields to apply deep learning-based techniques to. In the medical field, detection is commonly referred
to as “computer-aided detection (CAD).” CAD systems aim to detect the abnormalities in a patient as
early as possibly; for instance, in cases of breast cancer or lung cancer.

Islam et al. [173] implemented “two-deep CNN networks Inception v4 [174] and ResNet [39] to
detect Alzheimer’s disease using MRI images” of OASIS dataset [175]. The “Deep CNN model [was]
proposed for epilepsy lesion detection in multiparametric MRI images using auto-encoders” [176].
Laukampet et al. [177] proposed a “multi-parametric deep CNN model for meningiomas detection” in
the brain and a “deep CNN technique for the estimation of colorectal cancer in CT tumor images” for
early treatment [178].

Bejnordi et al. [179] proposed “deep CNN techniques for metastases detection in hematoxylin
tissue sections of the lymph nodes” subjected to cancer. A “fully-convolutional network-based heat
regression method [was] implemented for the detection of breast mass” in mammography images
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[180]. A “CAD system based on a deep CNN model to detect breast cancer” in MRI images was
proposed in [181].

Abramoff et al. [182] proposed the “CNN technique to detect diabetic retinopathy in fundus
images” using public datasets. A “3D group-equivariant CNN technique for lung nodule detection”
in CT images was proposed in [183]. Recently, deep learning-based techniques have been used for
diagnosing retinal diseases [184,185]. Li et al. [177] introduced a CNN-based attention mechanism
for glaucoma detection. A deep CNN model [186] was introduced for melanoma detection, and there
was also a “Deep CNN for the detection of chronic obstructive pulmonary disease (COPD) and acute
respiratory disease (ARD) prediction” in CT images of smokers [187].

The widely used datasets for evaluating medical image analysis performance are different for
different diseases. ILD [188] and LIDC-IDRI [189] datasets for the lung; ADNI [190], BRATS [191], and
OASIS-3 [175,192] datasets for the brain; DDSM [193], MIAS [194], CAMELYON 17 [195], and INbreast
[196] datasets for the breast; DRIVE [197], STARE [198], and MESSIDOR-2 [199] datasets for the eye.

The major challenge faced in the medical imaging field is the imbalance of samples in available
datasets, so there is a need to develop large-scale medical imaging datasets. The best solution is to
apply multi-task learning on the deep neural network when the training data are scarce. The other
possible solution is applying data augmentation techniques to the images.

5.5. Intelligent Transportation Systems

The use of intelligent transportation systems (ITS) facilitates people’s lives, and they cover areas
such as road sign recognition, advanced driver assistance systems, license plate recognition, vehicle
detection, vehicle speed estimation, and driver awareness monitoring systems.

Both UAV and self-driving cars require real-time accurate traffic sign recognition for the safety
of both passengers and surroundings. Hu et al. [200] proposed a branch output mechanism into a
deep CNN to speed up traffic sign recognition. Shao et al. [201] proposed a CNN with input fed
from the simplified Gabor feature map to classify the traffic signs on Chinese and German databases.
Shao et al. [202] proposed "improved Faster RCNN for traffic sign detection" in real traffic situations
using a "highly possible regions proposal network (HP-RPN)."

Cao et al. [203] proposed the classical LeNet-5 CNN model to improve traffic sign detection
for intelligent vehicles. Zhang et al. [204] proposed an end-to-end improved YOLOv2 to achieve
real-time Chinese traffic sign detection. Luo et al. [205] multi-task CNN to recognize all traffic signs
classes which include both symbol-based and text-based signs. Li et al. [206] proposed a Faster RCNN
and the MobileNet framework that can detect all categories of traffic signs, wherein color and shape
information is used to refine localization of small traffic signs.

Recently deep learning-based methods were applied for “automatic license plate recognition”
(ALPR), detecting driver’s drowsiness on highways, traffic violations, etc. Masood et al. [207] proposed
license plate recognition using a sequence of deep CNNs, and the system is robust under different
conditions (lighting, occlusions, variations in the pose). Laroca et al. [208] proposed an efficient YOLO
detector for automatic License plate recognition, and it is robust under different conditions. Chen
[209] proposed the ALPR system via sliding window + darknet YOLO tested on the AOLP dataset.
Raza et al. [210] proposed a multi-channel CNN with an aggression module and SVM to achieve a
high recognition rate on multi-national vehicle license plates under various illumination conditions.
Goncalves et al. [211] implemented real-time ALPR via two deep multi-task networks.

An accurate perception of its surroundings is necessary for an autonomous vehicle (AV). To enable
autonomous driving using deep learning techniques, one should convert collected data from sensors
into semantic information. For the autonomous driving system, 3D object detection is preferred over
2D object detection, since the third dimension provides more detailed information on size and exact
object locations.

Pham et al. [212] extended the “3DOP proposal generation considering class-independent
proposals, then re-rank[ed] the proposals” using both monocular images and depth maps. Li et
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al. [213] used “a cylindrical projection mapping and a fully-convolutional network (FCN) to predict
3D bounding boxes around vehicles only” Qi et al. [214] proposed that, “Frustum Point-Net generates
region proposals on the image plane with monocular images and use[s] the point cloud” to perform
classification and bounding box regression.

5.6. Crowd Detection

One of the most challenging tasks in object detection applications is crowd detection. In a crowded
crisis, there are large crowds of confused people, resulting in pushing, mass-panic, crowd crushing, and
loss of control [215]. To prevent these fatalities, automatic detection of critical and unusual situations
in a dense crowd is necessary. As a result, that definitely will help to make emergency controls and
appropriate decisions for security and safety [216]. This system can be used for detection and to
count people, and also produce alarms in the presence of the dense crowd. Some of the applications
of crowd detection are disaster management, safety control, public area management, and visual
surveillance systems.

Jones [217] implemented crowd detection by using spatial-temporal information [218] and
described it as a scanning window pedestrian detector. Leibe [219] implemented pedestrian detection in
crowded scenes by combining local and global features in potential top-down segmentation. Lin [220]
implemented crowd detection through wavelet templates and vision-based technologies. As an
example, to avoid crowd related disasters and ensure public safety automatic, detection of anomalies
in crowded scenes [221] should be performed in real-time. Wang et al. [113] implemented a detector
trained with repulsion loss while detecting crowd occlusion scenarios.

Arandjelovic [222] used SIFT features to detect crowds and used SVM classification, which
requires a proper training set. Xiang and Gong [223] implemented abnormal crowd behavior detection
using label distribution learning. Still there is much research to be done in the crowd detection area.
Table 7 shows a comparison of various deep learning based methods to overcome challenges raised in
object detection domains.

The commonly used datasets for evaluating crowd detection performance are WIDERFACE [71],
PASCAL-VOC [5], MS-COCO [77], and Open Images [86].

5.7. Object Detection in Sports Videos

Deep CNNs have shown great performance in detecting objects in still images. Due to the
ImageNet [70] task introduced, detecting objects from the video (VID) shifted the task of object
detection into the video domain. Object detection in sports videos contains three parts: ball detection,
player detection, and action recognition. The major challenge of object detection in a sports video is
that it is usually desirable to track the identities of various objects between frames.

Zao et al. [224] proposed improved YOLOv3 + K-means clustering methods to achieve better
performance, especially for detecting small objects, such as a sports ball or a tennis racket. Reno et al.
[225] implemented a convolutional neural network-based classifier to perform ball detection in sports
videos, and the system is robust to illumination changes and flickering issues. Kang et al. [226]
implemented a temporal CNN for object detection on video tubelets. Pobar et al. [227] implemented
the YOLOv3 object detector to detect active players in real time, tested on a custom handball video
dataset.

Pobar et al. [228] proposed Mask-RCNN + Spatiotemporal interest points in detecting active
players on handball custom video datasets. The same authors [229] implemented Mask-RCNN for
detecting active players and tested on recorded handball practice videos. Buric et al. [230] have
given an overview of various deep CNNs used for object detection in sports videos. Acuna [231]
implemented a real-time multi-person detection using YOLOv2 CNN and achieved better results on
the NCAA Basketball Dataset.
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5.8. Other Domains

Other fields include smart homes, event detection, rain detection, species detection, and
visually-impaired person assistance systems. Afif et al. [232] proposed indoor object detection
of specific classes for blind and visually-impaired persons using a Deep CNN RetinaNet framework.
Tapu et al. [233] proposed DEEP-SEE to detect, track, and recognize in real time, objects during
navigation in an outdoor environment for visually-impaired persons. Yang et al. [234] implemented
the CNN model to address rain detection. Hu et al. [235] implemented a deep CNN model for shadow
detection. Yang et al. [236] presented an "event detection framework to dispose of multi-domain
data." Hashmi et al. [237] implemented computer vision-based assistive technology for helping
visually-impaired and blind people using Deep CNN. Buzzeli et al. [238] proposed, with Faster RCNN,
a vision-based system for monitoring elderly people at home.

6. Approaches of Deep Learning for Object Detection

Using the DPM model, a pooling layer was introduced to handle the deformation properties of
objects by Ouyang et al. [109]. Girshick et al. [16] introduced region proposal algorithm for deep
learning models. The approach involves dividing an image into smaller regions with feature vectors
extracted using a deep CNN model. Linear SVM performs classification on the collected feature vectors
while bounding box regression is used for object localization. Similarly, generic object detection is
performed by using region-lets.

Szegedy et al. [239] implemented objection detection using deep CNN [240] by replacing
AlexNet [1] last layer with the regression layer. The object mask regression method was used to
perform both detection and localization tasks simultaneously. DeepMultiBox [241,242] expanded the
approach of Szegedy et al. [239] to detect more than one object in an image.

The major issue is how CNN learns the feature. Zeiler et al. [34] explained the conceptualization
of CNN features. For visualization of features, both convolution and deconvolution processes were
applied, and this technique outperforms all other techniques [1]. They established that deep learning
model performance is affected by the network depth. To perform joint classification, detection and
localization of tasks were carried out by applying a multi-scale sliding window approach on the
Ohn-bar model [243].

Huang et al. [244] developed, "task-driven progressive part localization (TPPL) framework for
fine-grained’ localization and object detection. Swarm optimization and Spatial Pyramid pooling layer
are used for the detection of objects in the image region. Salient object detection [245–249] was able to
achieve great performance by using deep learning techniques.

Hao et al. [250] implemented improved Faster RCNN, which significantly achieved higher
accuracy, particularly while detecting small targets and occluded objects on the KITTI dataset.
Leung et al. [251] implemented optimized Faster RCNN in vehicle detection under extremely
dark conditions and low illumination, on the collected dataset, which has 9003 images. They
were also able to detect occluded and small targets during night time with nearly no illumination.
Park et al. [252] implemented a “CNN-based person detection using infrared images for night time”
intrusion warning system.

Kim et al. [253] proposed shallow CNN in PVANET instead of using deep CNN for faster object
detection. This method implements pipeline architecture in a few steps and based on ROI, feature
extraction, regional proposal generation, and classification. Another widely used framework for
real-time object detection is YOLO [40]. This method is simple: while training and testing, it scans the
image only once.

The hierarchical classification method implemented using the YOLO9000 framework was
proposed by Redmon and Farhadi [42]. YOLO9000 is an improved version of YOLO, and it
contains 9000 object classes. YOLO9000 is not inherently used for object detection; it combines
two different datasets and performs joint training on a model that is trained with both MS-COCO and
ImageNet datasets.
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Wang et al. [147] implemented an approach based on an adversary network. They used the
“Spatial Dropout Network and Spatial Transformer Network based on adversarial network” for
generating features of occlusion and deformation [20]. Finding minute differences among inter-class
object classes is needed for fine-grained object detection. Chuang et al. [254] “integrated CNN with the
part-based method” by introducing a co-occurrence layer. Table 11 shows comparisons to overcome
challenges and difficulties arisen while using various deep learning-based object detection methods.

Currently, to speed up object detection, various acceleration techniques are adopted. Acceleration
techniques are mainly classified into three types: speed up detection pipeline, detection engine, and
numerical computation, as shown in Figure 15.

Figure 15. Overview of acceleration techniques (source: [18]).

It is clear from this survey that deep learning-based CNNs are applicable for fine-grained object
localization, detection, and generic object detection. In object detection, CNNs automatically learn the
features and they form the backbone of modern object detection methods.
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Table 11. Comparisons to overcome challenges using various deep learning-based object detection methods.

Method Working Features

LAPGAN model
(Laplacian Pyramid +
Generative Adversarial
Networks) [255]

Used to handle smaller images
but cannot handle larger images

When training data contains smaller images with occlusions and
deformations, it would generate higher resolution images.

Hard example
mining methods [115,256]

Used to train the detectors which
leads to achieve lower training
loss and higher mAP value

It can use for training any object detector in order to improve
detection accuracy.

Multi-task Deep saliency
Methods [245–248]

It effectively extracts multi-scale
low level and high-level features

For capturing the regions of saliency objects the network computes
pixel-wise saliency values, since the pixel residing in the boundary
region has similar fields so it is difficult to detect the boundaries
of salient regions. Finally the network produces inaccurate map and
shape of the object to be detected.

Adversarial Networks [147]
Uses adversarial learning and the
model is invariant to deformations and
occlusions by using large-scale datasets.

Since it selectively generates features and also scalable, therefore it
is used for object detection in real time.

Example-based learning
methods [92]

Used to detect objects in static
images using component based
model and can locate people in
crowded scenes

Used to address the issue of intra-class variations in object classes,
partially occluded scenes, little contrast in the background and pose
variations

Feature-Learning Method [257–259]

Initially, each part is treated as independent
object classes and works on annotated object
parts during the training phase. Fine-grained
categorization is the basic component during
testing time.

Figure out inter-class object variations at the finer level
and works more only on certain object parts.
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7. GPU-Based Embedded Platforms for Real Time Object Detection

The primary requirements to be fulfilled for real-time object detection using deep learning on
any embedded platform are the following: higher accuracy, more speed, small model size, and better
energy efficiency. The various embedded platforms available for real-time object detection using deep
learning are mentioned below.

7.1. Raspberry Pi 4

The latest, cheapest, and most flexible tiny product in the popular Raspberry Pi range of computers
is Raspberry Pi 4 Model B. It offers great progress in processor speed, multimedia performance, memory,
and connectivity compared to existing Raspberry Pi 3 Model B+. The key features of the Raspberry Pi
4 [260] module include a high-performance Broadcom BCM2711, a quad-core Cortex-A72 (ARM v8)
64-bit SoC, a pair of micro-HDMI ports which are used to connect dual displays with 4k resolution,
H.265 and H.264 hardware video decoding (maximally supporting up to 4Kp60 ), 8GB RAM, dual-band
2.4/5.0 GHz IEEE 802.11ac wireless (wireless LAN), OpenGL ES, 3.0 graphics, Bluetooth 5.0, Bluetooth
Low Energy (BLE), standard 40-pin GPIO, Gigabit Ethernet (2×USB 2.0 ports, 3.0 ports), a micro SD
card slot for loading OS and data storage, operating temperature 40–50◦, and power over Ethernet
(PoE) enabled (requires separate PoE HAT).

7.2. ZYNQ BOARD

For CV real-time applications in image and video processing, the Zynq-7000 family was
introduced by Xilinx Company. Zynq-7000 SoC [261] is fabricated using 28nm technology and
integrates both “processing system (PS) and programmable logic (PL) on a single chip.” A variety of
tools are available to develop code for Xilinx FPGAs, and one of the best tools for configuring FPGAs
is Vivado. An FPGA family such as Virtex-7, Kintex, or Artix, uses the Vivado tool, and the same was
adopted for Zynq. An advanced version of the Xilinx integrated synthesis environment (ISE) design is
Vivado, which is generally used for programming FPGAs. Besides, vivado also includes a high-level
synthesis (HLS) tool for C-based IP generations for high-level languages, such as “C, C++, or System
C.” For sequential algorithms [262], Vivado tool is used to develop optimized codes. Table 12 shows a
comparison between various Zynq and Pynq boards.

Table 12. Comparisons between various versions of Pynq boards.

PYNQ-Z1 PYNQ-Z2 ZCU104

Device Zynq Z7020 Zynq Z7020 ZynqUltrascale+ XCZU7EV

Memory 512MB DDR3 512MB DDR3 2GB DDR4, PL DDR4 SODIMM

Storage µSD µSD µSD

Video In & Out HDMI In & Out HDMI In & Out HDMI, Display Port

Audio
PDM integrated mic,
3.5 mm PWM audio jack

ADAU1761 codec
with HP + mic -

Network 10×1, ×10, ×100 Ethernet 10×1, ×10, ×100 Ethernet 10×1, ×10, ×100 Ethernet

Expansion USB host (PS) USB host (PS) USB2.0/3.0 host (PS)

GPIO
1× Arduino Header 1x Arduino LPC FMC
2× Pmod 2× Pmod 3× Pmod (2x PL)
16× GPIO pins 1× RaspberryPi -

Other
6× user LEDs 6× user LEDs 4× user LEDs
4× Pushbuttons 4× Pushbuttons 4× Pushbuttons
2× Dip switches 2× Dip switches 4× Dip switches
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7.3. NVIDIA JETSON TX2 BOARD

Jetson TX2 [263] is one of the fastest and most power efficient CV applications. It provides an
easy way to deploy hardware and software for real-time object detection. It supports NVIDIA Jetpack
on a software development kit (SDK) which includes a board support package (BSP), deep learning
libraries, CV applications, GPU computational power, and image and video processing.

Jetson TX2 features include high performance two Denver 64-bit CPU’s + QUAD core A57, and
integrated 256-core NVIDIA Pascal GPU, 8GB 128 bit DDR4 internal memory, 32 GB external memory
card, 4kp60 H.264/5 encoder, and a decoder; it supports 10 ×1/×10/×100 base-T ethernet and Gigabit
ethernet. It provides USB 3.0, USB 2.0, and micro USB, supports HDMI, M.2 Key E, SD, GPIOs, I2C,
I2S, SPI, and Dual CAN bus, and provides on-chip TTL UART.

Jetson TX2 is useful for deploying in the CV and deep learning application areas, since it runs
with open-source Linux OS and performs calculations over one teraflop. A super-computer that
consumes less than 7.5 Watts on an off mode module brings a true real-time embedded AI computing
device. In terms of performance and efficiency in CV applications, it has surpassed the world’s most
autonomous machines.

7.4. GPU-Based CNN Object Detection

The GPU parallel processing capability decreases the needed processing time, allowing a better
system performance when compared with the obtained CPU times. The GPU allows a programmable
and parallel implementation, but we need to ensure correct synchronization and memory access.
To create high-performance GPU-accelerated applications with parallel programming, a variety
of development platforms, such as compute unified device architecture (CUDA) [264] and open
computing language (OpenCL) [265] are utilized for GPU-accelerated embedded systems.

For a system with a single machine and multi-GPUs working on separate tasks, one can directly
access any available GPU without coding in CUDA. On the other hand, for multi-GPUs working on
shared tasks, such as training several models with different hyperparameters, distributed training is
needed. Nvidia provides distributed training and is now supported by many popular deep learning
frameworks, such as Pytorch, Caffe, TensorFlow, etc. These techniques reduce computational time
linearly with the number of GPUs [266]. Nvidia Jetson is a leading low-power embedded platform
that enables server-grade computing performance on edge devices.

Altera’s Cyclone V FPGA achieves a speed of 24.3 fps, for real-time lane detection using Hough
transform algorithm [267]. Object detection and tracking system using the FPGA Zynq XC7Z020 board
achieves a speed of 30 fps using a modified background subtraction algorithm [268]. Real-time object
detection on Zynq UltraScale + MPSoC zcu102 evaluation board using a fully pipelined binarized deep
convolutional neural network (BCNN) achieved a processing speed of 34.9 fps [261]. YOLOv2 object
detection algorithm running on an NVIDIA Jetson TX2 achieved a processing speed of 9.57 fps [269].

Hossain et al. [270] implemented real-time object detection and tracking from a UAV and tested
it on a Jetson Xavier board using various deep learning techniques and has it compared with Jetson
variants. Stepanenko et al. [271] implemented YOLO with TensorRT 5.0; it reduces network size which
in turn increases speed compared with thw YOLO + Darknet model implementation. Korez et al. [272]
proposed a combination of Faster RCNN + deformable convolution + FPN + weight standardization
techniques for object detection on low capacity GPU systems. Cambay et al. [273] implemented a
Deep CNN YOLO object detector on both the PYNQ FPGA board and USB-GPU called Movidius
GPU-based accelerated system.

Table 13 shows the performance results in terms of speed; i.e., seconds per frame (FPS).
A quantitative comparison between Jetson variants and GPU-based offline work station shows that
the comparison changes with the dimensions of input image. One can choose the best algorithm and
system for a specific application with the help of this table.
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Table 13. Performance comparison between Jetson modules and GTX 1080 for real-time object detection.

S.No Architecture TX1 (Fps) TX2 (Fps) Xavier AGX (Fps) GPU-Based Work
Station Gtx 1080 (Fps)

1 YOLOv2 3 10 25–30 27
2 YOLOv3 — 4 15–18 15.8
3 Tiny YOLOv3 8–10 11 31 31+
4 SSD 8 10–12 34–49 33
5 Faster RCNN — 1 1.2 —
6 Mask RCNN — — — 3–4

8. Research Directions

Despite great progress achieved in the object detection field, still, the technology remains
significantly far away from human vision while addressing real-world challenges, such as: detecting
objects under constrained conditions, working in an open world, and other modalities.

We can see the following directions of future research, based on these challenges:

1. More efficient detection frameworks: The main reason for the success of object detection is
due to the development of superior detection frameworks, both in two-stage and one-stage
detectors (RCNN, Fast/Faster/Mask RCNN, YOLO, and SSD). Two-stage detectors exhibit high
accuracy, whereas single-stage detectors are simple and faster. Object detectors depend a lot on
the underlying backbone models, and most of them are optimized for classification of images,
possibly causing a learning bias; and it could be helpful to develop new object detectors learning
from scratch.

2. Compact and efficient CNN features: CNN layers are increased in depth from several layers
(AlexNet) to hundreds of layers (ResNet, ResNext, CentreNet, DenseNet). All these networks
require a lot of data and high-end GPUs for training, since they have billions of parameters. Thus,
to reduce network redundancy further, researchers should show interest in designing lightweight
and compact networks.

3. Weakly supervised detection: At present all the state-of-the-art detectors use only labeled data
with either object segmentation masks or bounding boxes on the fully supervised models. But in
the absence of labeled training data, fully supervised learning is not scalable, so it is essential to
design a model where only partially labeled data are available.

4. Efficient backbone architecture for object detection: Done by adopting weights of pre-trained
classification models, since they are trained on large-scale datasets for object detection tasks. Thus,
adopting a pre-trained model might not result in an optimal solution due the conflicts between
image classification and object detection tasks. Currently, most object detectors are based on
classification backbones, and only a few use different backbone models (like SqueezeDet based
on SqueezeNet). So there is a need to develop a detection-aware light-weight backbone model for
real-time object detection.

5. Object detection in other modalities: Currently most of the object detectors work only with
2D images, but detection in other modalities—3D, LIDAR, etc.—would be highly relevant in
application areas such as self-driving cars [274], drones, and robots. However, again the 3D object
detection may raise new challenges using video, depth, and cloud points.

6. Network optimization: Selecting an optimal detection network brings a perfect balance between
speed, memory, and accuracy for a specific application and on embedded hardware. Though
the detection accuracy is reduced, it is better to teach compact models with few parameters, and
this situation might be overcome by introducing hint learning, knowledge distillation, and better
pre-training schemes.

7. Scale adaption [19]: It is more obvious in face detection and crowd detection; objects usually
exist on different scales. In order to increase the robustness to learn spatial transformation, it is
necessary to train designed detectors in scale-invariant, multi-scale, or scale-adaptive ways.
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(a) For scale-adaptive detectors, make an attention mechanism, form a cascaded network, and
scale a distribution estimation for detecting objects adaptively.

(b) For multi-scale detectors, both the GAN (generative adversarial network) and FPN (feature
pyramid network) generate a multi-scale feature map.

(c) For scale-invariant detectors, reverse connection, hard negative mining, backbone models
such as AlexNet (rotation invariance) and ResNet are all beneficial.

8. Cross-dataset training [275]: Cross-dataset training for object detection aims to detect the union
of all the classes across different existing datasets with a single model and without additional
labeling, which in turn saves the heavy burden of labeling new classes on all the existing datasets.
Using cross-dataset training, one only needs to label the new classes on the new dataset. It is
widely used in industrial applications that are usually faced with increasing classes.

Object detection is independent of domains and the research in many fields is still far complete.

9. Conclusions and Future Scope

Applications like machine vision and self-driving cars [276] consider object detection as the
fundamental step. This paper comprehensively reviews both traditional object detectors and deep
learning-based object detectors starting from RCNN and going all the way to the latest CornerNet,
with its pros and cons. We have summarized different object detectors’ performances on MS-COCO
and Pascal-VOC datasets. Various deep learning frameworks and available API services for object
detection are briefly summarized. Since all CV algorithms are trained and verified using benchmark
datasets only, we covered widely used datasets for specific applications; datasets play a crucial role in
achieving the correct output.

Image classification dataset challenges’ statistics, and also PASCAL-VOC and ILSRVC
comparisons, which are released by worldwide competitions, are also presented. Deep learning-based
object detection technology is developing rapidly day to day due to upgrading computational
power. In order to deploy deep learning-based object detectors in applications like self-driving
cars, high-precision, real-time systems are urgently needed.

The ultimate goal while deploying deep learning-based object detectors to real-time scenarios
is to achieve both higher accuracy and speed. Researchers are moving in this direction and have
improved processing speed, constructed new architectures and lightweight feature extractors, solved
complex environment scenes like small and occluded objects, improved localization accuracy, improved
confidence scores, enhanced post-processing methods, made anchor-less detectors to overcome the
data imbalance problem during training, done object detection with the latest engines, detected with
better features, i.e., Feature Fusion, designed new loss functions, enhanced object detection by semantic
segmentation, performed scale-adaptive detection, trained from scratch, and achieved better results by
combining both one-stage and two-stage detectors.

With the day to day increase of powerful, deep learning-based object detectors, we covered
their use in fields such as pedestrian detection, face detection, the military, medical image analysis,
intelligent transporation systems, crowd detection, and sports, and still, applications in the object
detection domain are arising. Although there is great success in this domain, there is much scope
for further development. Comparisons to overcome challenges and difficulties raised using various
deep learning-based object detection methods and speed up techniques are also covered. In this
paper, various GPU-based embedded platforms and a quantitative performance comparison between
Jetson variants and GPU-based offline work station for real-time object detection using deep learning
techniques are also assessed.

Real-time object detection using different GPU-based embedded platforms should be robust with
respect to invariant occlusions, scales, illumination, intra-class variations, and deformations. Due
to these factors, there are high chances of not detecting small objects in a video, which reduces the
performance of real-time object detection systems.
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Object detection is a fundamental problem to be solved; existing methods were developed. But
still, there is a huge scope for developing new mechanisms and object detection as basic services in
real-time applications, such as deep-sea bases, driverless cars, robots navigating on planets, industrial
plants, and drone cameras where high precision is expected for certain tasks.

Particularly, for detecting some small objects there remains a large speed gap between human
eyes and machine vision. The future of object detection would be AutoML; i.e., designing a detection
model to reduce human intervention. For more accurate detection, much data is required. To improve
overall accuracy further, training images with more diversity (scale, view-angle) of the object are
needed. Finally, we point out that promising future directions in this research field are not limited to
the aforementioned aspects, and the research in this field is still far from complete.
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Abbreviations

The following abbreviations are used in this manuscript:

2D 2-dimensional
ALPR Automatic License Plate Recognition
AP Average Precision
API Application Program Interface
ARD Acute Respiratory Disease
ARM Advanced RISC Machine
AV Autonomous Vehicle
BB Bounding Box
BCNN Binarized deep Convolutional Neural Network
BLE Bluetooth Low Energy
BSP Board Support Package
CAD Computer Aided Design
CAN Controller Area Network
CNN Convolutional Neural Network
COCO Common Objects in Context
COPD Chronic Obstructive Pulmonary Disease
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
CV Computer Vision
DBN Deep Belief Network
DCNN Deep Convolutional Neural Network
DDR Double Data Rate
DNN Deep Neural Network
DPM Deformable Part-based Model
FC Fully-Convolutional
FCN Fully-Convolutional Network
FDDB Face Detection Dataset and Benchmark
FPGA Field Programmable Gate Array
FPN Feature Pyramid Networks
FPS Frames Per Second
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GAN Generative Adversarial Network
GPIO General Purpose Input/Output
GPU Graphics Processing Unit
HCI Human-Computer Interaction
HDMI High-Definition Multimedia Interface
HLS HTTP Live Streaming
HOG Histogram of Oriented Gradients
HTTP Hypertext Transfer Protocol
I2C Inter-IC
I2S Inter-IC Sound
ICF Integral Channel Features
IEEE Institute of Electrical and Electronics Engineers
ILSVRC ImageNet Large Scale Visual Recognition Challenge
IoT Internet-of-things
IOU Intersection over Union
ISE Integrated Synthesis Environment
ITS Intelligent Transportation Systems
LAN Local Area Network
mAP mean Average Precision
MRI Magnetic Resonance Imaging
MS-COCO Microsoft Common Objects in Context
PASCAL a Procedural Programming Language
PCI Peripheral Component Interconnect
PL Programmable Logic
PoE Power over Ethernet
PS Processing System
PVANET a lightweight feature extraction network architecture for object detection
RAM Random Access Memory
RBM Restricted Boltzmann Machine
RCNN Regions with Convolutional Neural Netwoks
REST Representational State Transfer
RFCN Region-based Fully-Convolutional Networks
RGB Red Green Blue
ROI Region of Interest
RPN Region Proposal Network
SVM Support Vector Machine
SD Secure Digital
SDK Software Development Kit
SIFT Scale-Invariant Feature Transform
SoC System-on-Chip
SPI Serial Peripheral Interface
SPP Spatial Pyramid Pooling
SPPNet Spatial Pyramid Pooling Network
SSD Single Shot Multi-Box Detector
SUN Scene UNderstanding dataset
SVM Support Vector Machine
TPPL Task-driven Progressive Part Localization
TTL Transistor-Transistor Logic
UAV Unmanned Aerial Vehicles
USB Universal Serial Bus
VHR Very High Resolution
VJ Viola–Jones
VOC Visual Object Classes Challenge
YOLO You Only Look Once
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