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Abstract: Multi-robots have shown good application prospects in agricultural production. Studying
the synergistic technologies of agricultural multi-robots can not only improve the efficiency of
the overall robot system and meet the needs of precision farming but also solve the problems
of decreasing effective labor supply and increasing labor costs in agriculture. Therefore, starting
from the point of view of an agricultural multiple robot system architectures, this paper reviews
the representative research results of five synergistic technologies of agricultural multi-robots in
recent years, namely, environment perception, task allocation, path planning, formation control,
and communication, and summarizes the technological progress and development characteristics
of these five technologies. Finally, because of these development characteristics, it is shown that
the trends and research focus for agricultural multi-robots are to optimize the existing technologies
and apply them to a variety of agricultural multi-robots, such as building a hybrid architecture of
multi-robot systems, SLAM (simultaneous localization and mapping), cooperation learning of robots,
hybrid path planning and formation reconstruction. While synergistic technologies of agricultural
multi-robots are extremely challenging in production, in combination with previous research results
for real agricultural multi-robots and social development demand, we conclude that it is realistic to
expect automated multi-robot systems in the future.

Keywords: agriculture; cooperative robots; key technology; control

1. Introduction

With the constant progression of urbanization and industrialization, the mobility
of rural young and middle-aged laborers has intensified [1]. The sustainable transfer of
non-agricultural labor has led to a decline in agricultural labor, and the problem of aging
of the agricultural labor force has become more serious [2]. For example, the proportion of
agricultural production and management personnel aged 55 and over is as high as 33.6%
according to the main data of the Third Agricultural Census Bulletin of China in 2017.
Furthermore, as aging continues, the physical health of the elderly labor force continues
to decline, which results in a significant reduction in the supply of effective rural labor
and an adverse effect on agricultural output [3,4]. Most agricultural production tasks are
labor-intensive and seasonally oriented projects that exacerbate the constraint of seasonal
labor shortages [3–5] and increase the cost of agricultural labor. For example, according
to a survey conducted by Zhen et al. [6], during the rural busy season, the labor cost of
agricultural planting increased from 80 CNY per person per day in 2015 to 90 CNY in 2016
to 100 CNY per person per day in 2017, and the labor cost of technical agricultural labor
is even higher [7]. Some statistics show that the agricultural unit labor cost in developed
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countries such as Germany, Japan, and the United States decreased by 30.17%, 44.22%, and
23.44%, respectively, while agricultural labor productivity increased by 64.78%, 81.22%,
and 34.83%, respectively, from 2005 to 2014. On the contrary, China’s agricultural unit labor
cost increased by 45.17%, and agricultural labor productivity, which is much smaller than
that of developed countries, increased by 50.28% [8]. Therefore, the increasing cost of labor
will lead to an increase in the cost of agriculture, which will result in a relative decrease
in agricultural productivity and international competitiveness [9]. It is urgent to enhance
the innovation of agricultural science and technology and replace extensive and expensive
repetitive manual operations with intelligent agricultural machines or robots [10].

Due to the growing maturity of computer technology, sensor technology, and control
theory, different types of agricultural robots have been developed based on characteristics
of agronomy, such as fruit- or vegetable-picking robots, spraying robots, and harvesting
robots. The agricultural robot can replace traditional human efforts to engage in all kinds of
labor-intensive and complicated agricultural production activities and reduce the decline
of output caused by improper human operation, negligence, inaccurate operation, and
other reasons, as well as major physical injuries and even casualties of operators [11].
However, the operation efficiency of a single agricultural robot is too low and cannot
meet the operation demand in busy seasons without coordination and cooperation by
artificial auxiliary resources or other robots [12]. As early as 2009 and 2012, Johnson
et al. [13], Moorehead et al. [14] and others in the United States replaced a single robot
with a group of agricultural mobile robots to complete mud moss harvesting and orchard
spraying successively with appropriate cooperative operation mechanism, which can
reduce production costs and improve operational efficiency [15]. Therefore, to adapt to
the increasing scale of production, meet the needs of social development, and narrow
the gap with other international world powers with advanced scientific capabilities, it
is necessary to research the relevant technology of agricultural multiple robot systems.
This work focuses on the research progress of the cooperative operation, one of the key
technologies of agricultural multiple robot systems.

There are many types of agricultural multi-robots, and this article mainly focuses on
unmanned aerial vehicles (UAVs), unmanned ground vehicles (UGVs), and unmanned
underwater vehicles (UUVs). This paper summarizes the research progress on syner-
gistic technologies of cooperative operation of the abovementioned multiple robots and
characterizes the expected research of related technologies.

2. Problems with Multi-Robot Applied to Agricultural Environments

Crops are fixed in cultivation season and time, which determines the labor demand
pattern of agricultural production in a year, and agricultural operators need to make
flexible responses and treatments according to the growth pattern of crops, such as plowing,
planting, management, and harvesting [16]. At the same time, to adapt to the development
of agricultural intensification, scale, and industrialization, and to reduce the economic
losses caused by untimely processing, a collaboration of multiple farm machinery operated
by people has widely appeared in agricultural production (as shown in Figure 1).

In Figure 1a multiple rotary tillers are being used to plow rice fields on sloping land
to safeguard food production and mitigate the impact of the phenomena of lack of labor
resources, which is brought about by the New Crown epidemic [17]. In Figure 1b, multiple
corn planters are employed to sow seeds in a large field, which saves labor and ensures
the quality of seeding, and directly improves the yield and quality of corn planting [18].
In Figure 1c, multiple drones are used to spray pesticides in cotton fields, which could
be targeted according to the types of pests and diseases, and also prevented their rapid
spread in the early stages of infestation [19]. In Figure 1d, it has become a trend to manually
operate multiple combines simultaneously during the wheat harvesting season to avoid
the effects of rainfall on wheat quality and yield [20].
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Figure 1. Man-operated farm machinery worked in a large field. (a) Multiple rotary tillers plowing rice fields in spring.
(b) Multiple seeders sowing corn in spring. (c). Multiple drones spraying cotton fields in the summer. (d) Multiple
harvesters harvesting wheat fields in summer.

By manually operating the machines, the quality of operation of the implements relies
heavily on human experience, while the use of robots instead of manual operation can
free up manpower and ensure the quality of operation. However, the topography, soil,
light, and climate conditions of the crop growing environment are different from those of
indoor and urban transportation environments, and these conditions pose a challenge to
the application of multiple robots in agriculture.

Take the example of multiple harvesters harvesting grain in farmland. First, farmland
is an unstructured environment, which means that the road conditions are undulating,
there are various types of obstacles, and there are missing or blurred lane lines on the
ground, and agricultural machines both share the same resource and interact with each
other to become dynamic obstacles to each other. Secondly, agricultural operation tasks
have strong requirements for operation time, such as harvesting grains in a fixed short time
frame. Furthermore, the amount of grain output varies from plot to plot, and the number
of agricultural machines needed and the number of operational tasks assigned to them
is dynamically changing (such as harvesters with large loading capacity should match
the plots with large grain output). Finally, even if the same type of farm machines work
together, the characteristics of the machines are not the same (for example, the harvester
with the same loading capacity, the fuel consumption is different, the harvester with high
fuel consumption should be assigned the operation task more than its work cost, and its
operation path should be as short as possible but the harvesting volume should be as
large as possible). To ensure that multiple machines can cooperate, a multi-robot system is
required to be able to organize multiple robots flexibly, quickly, and efficiently according
to the changes in the environment and tasks, and to fully utilize the capabilities of each
robot to finally complete the given task with high quality [21]. At the technical level, in
addition to being accurately informed of the positioning information of the swarm and the
environmental information of the operation, and solving collision and obstacle avoidance,
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it is also necessary to assign operational tasks to multiple machines, plan operational paths
(such as in areas where multiple robots work together), coordinate the formation control of
multiple robots, and maintain the information interaction between multiple robots.

3. Research Progress on Synergistic Technologies of Agricultural Multi-Robots

To solve the above problems, it is necessary to study technologies of collaborative
operation, such as environment perception, task allocation, path planning, formation
control, and communication-based on multi-robot architecture. Since each technology
does not solve the same agricultural problems, this section first classifies the types of
development of these technologies, then describes and reviews each of these cooperative
technologies in terms of research methods or problem solving, and finally summarizes
their research development status and characteristics.

3.1. Architecture of Agricultural Multiple Robot Systems

A reasonable architecture can guarantee information flow and control flow in the
agricultural multi-robot system and make effective cooperation among multiple robots
possible [22]. At present, the architecture of agricultural multi-robots can be divided into
centralized architecture and distributed architecture. It is found that the earliest recorded
structure of agricultural multiple robot systems comes from hay harvesting and transporta-
tion robots in farmland [23,24], for which these multi-robot systems were operated under
the principle of centralized architecture. As shown in Figure 2a, in leader-follower mode, a
relatively powerful robot is selected as the “leader” of the swarm robots, performing spe-
cific motion planning for the remaining robots after analyzing and processing the sensory
information, but these remaining robots are just executors, without the ability to choose
their actions or coordinate with each other. Alternatively, as shown in Figure 2b, in the
central controller mode, each robot can perform tasks independently and is commanded by
a central controller [25]. The advantage of this centralized architecture is that the theoretical
background is clear, and the implementation is intuitive, but the flexibility, fault tolerance,
and adaptability are poor [26].

Figure 2. The centralized architecture of an agricultural mobile multi-robot system. (a) One of the guided following modes,
where the slave robot follows the travel path taken by the active robot [27]. (b) Another of the guided following modes,
where the slave robot is ordered by the master robot to go the other way [27]. (c) The centralized control mode is usually a
back-end computer that monitors, plans, and controls the robot’s tasks and operating paths.

Compared with the operating environment of UGVs, the operating area of UAVs
has the advantage of no obstacles, so these systems generally adopt the distributed struc-
ture [28]. As shown in Figure 3, the three UAVs in the multi-robot system carry out
agricultural situation monitoring in the individual workspaces independently; each robot
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of this system had a high degree of autonomous operation ability and can complete a
given task according to its aims; robots can communicate with each other, exchange infor-
mation, and coordinate their behaviors equally and independently to complete a given
task [28]. This structure has strong scalability and certain advantages in real-time operation,
fault tolerance, and reliability, etc. [29] and is suitable for handling tasks related to spatial
states [30]. However, “it costs a lot in terms of the coordination mechanism, such as task
allocation and motion planning” [29].

Figure 3. The distributed architecture of an agricultural mobile multi-robot system (a) Agricultural multi-robot agricultural
condition monitoring in different areas of the vineyard [28]. And the robots exchange their information for autonomous
work. (b) Distributed structure diagram of a multi-robot. Each robot can exchange information with other robots through
communication and make decisions autonomously [26].

The centralized architecture that can be divided into a leader and follower robots is suit-
able for highly coordinated tasks and is advantageous in a fully known environment. The
distributed architecture, in which there is no affiliation among robots, is suitable for weakly
coordinated tasks and is advantageous in large-scale, complex, and varying environments.

3.2. Environment Perception

Environmental perception is the premise of the cooperative operation of multiple
robots in agriculture. That is, the mobile carrier can use the sensors carried by itself
(these sensors include internal sensors and external sensors [31], where the internal sen-
sors include odometers, magnetic compasses, inertial navigation, and global positioning
systems to determine the speed, position, and direction of the robot in the environment;
external sensors include ultrasound, infrared, laser and vision, used to sense surrounding
information [26]) to obtain the information of the surrounding environment, extract the
effective feature information within the environment for processing and analysis, and fi-
nally establish the environment model [32]. This technology mainly involves collaborative
positioning, data fusion, and environmental construction.

3.2.1. Co-Location Technology

The concept of co-location was originally proposed in 1994 by Kurazume and Nagata
in Japan [33] The concept refers to a robot “sharing” its positioning results with other mobile
robots and to other robots using this shared information to integrate their calculation
results to improve the accuracy of positioning themselves and, in turn, sharing their
positioning results with other mobile robots, repeatedly achieving the precise positioning
of mobile robots [34]. According to the collaborative positioning method, this approach
can be divided into active positioning, passive positioning, and interactive positioning [35].
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However, no research on interactive localization has been reported in the literature of
agricultural multi-robots.

• Active positioning

In the absence of information exchange, the robot relies on its sensors to obtain relative
distances and angles by observing the neighboring robots for self-positioning [35,36]. As
shown in Figure 4, the leading robot guides the follower robot to steer along the leading
robot reference route [37].

Figure 4. Active positioning model.

For example, the black-and-white checkerboard feature board was fixed to the leader
robot as the following feature, and the 3D information of each corner point on the black-
and-white checkerboard feature board was obtained by the binocular vision camera fixed
to the following robot, and the information was analyzed to finally obtain the longitudinal
spacing, lateral offset and heading declination of the following robot relative to the leader
robot. Using this navigation information to realize the automatic following of the following
vehicle, the following system of master-slave orchard operation vehicle is established [38].

• Passive positioning

In an environment where information exchange exists, the robot indirectly obtains
the relative distance and angle through the “observed” data provided by the friendly
neighboring robot to perform its positioning [35]. As shown in Figure 5, the follower robot
dynamically creates a reference heading for itself from the position point of the leading
robot [39].

Figure 5. Passive positioning model [39].

Passive positioning mode is usually used in combination with kinematic control
models and is one of the most used in master-slave robots. For example, GPS positioning
was used for multiple robots, and the travel trajectory of the pilot robot was the main one.
Under the premise of communicable, the pilot robot estimated the motion trajectory of
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other robots using the kinematic model, and the difference between the sensor positioning
and the estimated positioning value was calculated by the other robots or the pilot robot,
and the lateral and longitudinal displacement of each robot was adjusted according to the
difference [40].

However, the above positioning methods are highly dependent on the positioning
accuracy of the leader robot, which requires good stability and robustness. When the leader
robot fails, it is easy to cause the localization accuracy of the whole team to drop, or even
the localization fails. In contrast, the interactive localization approach has an environment
of information exchange, where robots achieve joint localization through these steps of
mutual observation, data exchange, and information fusion [41]. In this case, the robots are
in the same position in the team and there is no master-slave distinction, namely, they do
not depend on the positioning accuracy of a fixed robot, and this type of phenomenon is
reduced. The above co-location methods are summarized as shown in Table 1.

Table 1. Comparison of co-location methods.

Co-Location Methods Active Positioning Passive Positioning Interactive Positioning [41]

Data measurement object Robot itself Neighbors The robot itself; Neighbors

Observation reference object Neighbors Robot itself The robot itself; Neighbors

Measuring object Single Single Mutual observation

Measurement data The distance and angle of the robot itself relative to the reference object

Data exchange None Exists Exists

Data Fusion None None Exists

Advantages Little computation Information interaction Algorithm of high precision
and robustness

Disadvantages

Affected by the environment Affected by the environment A huge amount of information
Lower algorithm accuracy

and robustness Lower algorithm accuracy
and robustness

Large complexity of
the algorithm

No information interaction

Applications Drove in orchards [38]

Drove on farmland [42]

None

Drove on sloping land (11◦) [43]
Plowing [44]

Lawn [45]
Drove in fields [46]

Plowed [47]
Harvested farmland [48]

It can be seen from Table 1 that the cooperative localization technology for agricul-
tural multi-robots mainly adopts active localization and passive localization, which are
computationally small and easy to implement. The real concept of “co-location” should be
interactive positioning; through communication among robots, information sharing can be
realized, and then the robot’s positioning error can be corrected to achieve accurate posi-
tioning. However, this method incurs a large amount of calculation and a large complexity
of the algorithm, making it difficult to implement. No examples have been found in the
literature for agricultural multi-robots.

More practical applications indicate that the cooperative positioning of multiple
robots in agriculture is replaced by a central controller or task manager coordination
mechanism [49,50]. That is, the working area and travel path of each robot are planned by
a task manager or central controller based on the established environment map. The work
areas and work paths of these multiple robots usually do not intersect and each robot only
needs to localize and navigate based on its sensors. For example [27], the vineyard area
was divided into three UAV-monitored vineyard areas using the task manager according to
set rules, and path planning was performed for the sub-areas of individual UAV operations,
with each UAV flying at a different altitude to avoid collisions between the UAVs.
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3.2.2. Data Fusion Technology

A single sensor has certain limitations. For positioning accuracy and reliability, it is
necessary to utilize the advantageous features of each sensor, that is, data fusion of multiple
sensors. Data fusion technology, also known as multi-sensor information fusion technology
(MSIF), essentially involves the comprehensive processing of target information originating
from different sensors at different times or multi-target information simultaneously, to
obtain more accurate positioning, identification information of the measured environment
or object, and comprehensive and timely assessment of the current situation [51,52], thus
facilitating the subsequent planning and decision making of the robot. The strength of
the data fusion capability directly affects whether the robot can effectively achieve mutual
coordination and collaborative work.

The internal sensors in the agricultural robot mainly include a global positioning
system (GPS), inertial measurement unit (IMU), steering angle potentiometer, and encoder,
which are used to provide the robot with the position, heading, and steering angle infor-
mation; the external sensors mainly include various LIDAR and cameras, which are used
to avoid obstacles and collect environmental information, as shown in Figure 10. Among
them, GPS can provide a unified coordinate system and accurate position information for
field robots and is used most frequently [53]. With the promotion of satellite positioning
technology, agricultural robots equipped with GPS positioning and navigation systems
will become increasingly popular. Take the automatic navigation system System150 re-
searched by TOPCON company of Tokyo in Japan as an example [54], the system adopts
GPS-based advanced inertial guidance and terrain compensation technology, which can
realize navigation in complex terrain environments with ±2.5 cm accuracy for straight line
and turn. However, data fusion techniques are still very important for robot localization
when GPS cannot obtain accurate position information in greenhouses or forests [55], or
when the robot is too small to install high-precision sensors.

For example, to obtain information on the ambient temperature, humidity, light,
and CO2 concentration in a greenhouse [56], a human remotely operated UAV was first
operated to obtain a map of the greenhouse environment, and then the ground robot fused
IMU, GPS and odometer information to output the actual location information of the robot
through the extended Kalman filter (EKF) algorithm. In practical applications, because of
the poor GPS signal in the greenhouse, the EKF was used to fuse the odometer and IMU.
EKF is used to linearize the nonlinear system at the reference point using Taylor expansions,
and then Kalman filtering theory is used to achieve the prediction and correction of the
system. But the EKF still cannot solve the global localization problem [57].

Another example is an agricultural spraying multi-robot [58] that used particle filtering
to fuse information from multiple low-cost sensors of the odometer, IMU, wheel encoder
sensors, and GPS, which incorporates the open-source library RTKLIB and correction
signals. The particle filter could also determine robot attitude based on a series of particles
in noisy environments and when the GPS was offline. Particle filtering [59] is a basic
method based on Bayesian filtering theory (the robot can determine the poses with a certain
degree of confidence based on all available information [60]) and differs from Kalman in
using particle sets to describe the probability distribution. However, a large number of
particles need to be maintained for higher localization accuracy, which will consume a
large number of computational resources, especially as the walking distance gets farther,
which will put greater pressure on the computing platform with limited memory resources.

According to the sensor information fusion processing hierarchy, the technique is
divided into three levels, namely the data layer, the feature layer, and the decision layer [61].
Their specific scopes, characteristics, and fusion algorithms are shown in Table 2.

From Table 2, it can be seen that information fusion in agricultural multi-robots
is focused on multi-sensor information fusion of single robots, and there is almost no
research on sensor information fusion between homogeneous or heterogeneous agricultural
multi-robots. To obtain more information, the information collected by different types of
sensors on a single robot is mostly different (e.g., GPS collects position information, IMU
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collects robot heading, odometer, etc.), but some information has a mutual transformation
relationship (e.g., the integration of velocity from odometer can give distance), which can
be regarded as the same kind of sensors at this time. The fusion algorithms are mainly
based on classical EKF and particle filtering.

Table 2. Comparison of multi-sensor information fusion processing levels [62,63].

Fusion Level Data Level Feature Level Decision Level

Processing level Bottom layer Middle layer High level

Sensor types Homogeneous Heterogeneous Homogeneous/Heterogeneous

Degree of dependence on
the sensor Maximum Medium Minimum

Advantages

Less information loss; Takes into account the
advantages of data and

decision;

Less calculation;
Good fault tolerance;

Good anti-interference;

High precision;
Low algorithm difficulty;

Fusion is more convenient; A small amount of
communication data;

Wide range of applications; Good real-time performance;

Disadvantages

A large amount of calculation;
Global decision; A large amount of information

loss;
Poor fault tolerance;

Poor anti-interference;
The algorithm is complex; Strict requirements for sensor

pretreatment;

Low precision;
A large amount of

communication data;
Need to balance constraints
(speed, reliability, cost, etc.);

Poor real-time performance;

Fusion algorithm

Wavelet transform;
Kalman filter; Bayesian theory (Particle filter);Artificial neural networks;

Weighted average;
Production rules, etc. Extended Kalman filter, etc; The statistical decision, etc.;

Applications None Drove in a greenhouse [56] Seeded fields [58]

3.2.3. Mapping

Once the multi-robot has determined its position, it also needs to determine infor-
mation about the multiple robots’ surrounding environment, for instance, the presence of
obstacles. Mapping is the task of accurately describing the spatial position of the robot
working environment and various objects (such as obstacles and road signs) in the envi-
ronment, that is, to establish a spatial model (two-dimensional or three-dimensional) or
map [26]. The purpose of creating this map is to provide path planning for the robot, so
the map must be easy for the robot to understand and computationally manipulate and
accommodate revision when new environmental information is detected [64].

At present, many methods have been developed for constructing environmental
models for multiple robots, which are mainly summarized in the three types of grid-based
model, geometric mode, and topological mode [22]. Probably due to the low environmental
information of the topological model, no literature was found on the use of multiple
robots in agriculture. On the contrary, the grid model and the geometric model provide
abundant information about the agricultural environment, the purpose of multi-robot
operations is clear, and more literature is applied to agricultural operations. And the
detailed environment model facilitates the task allocation to multiple robots, real-time
observation of multiple robots’ motion, effective coordination mechanisms, and detection
of robot motion faults.
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• Grid model

The uniformly distributed grid represents the working environment of the robot, and
each grid corresponds to the position of whether an obstacle exists or not [22]. For example,
if a grid has an obstacle, it is marked as 1; otherwise, it is 0.

As shown in Figure 6, Bouzouita et al. [28] obtained georeferenced pictures through
UAVs and then created a full map of a vineyard. The processing entails first dividing
the UAV workspace into multiple regular grids and defined borders (line segments of
workspace in the grid-based environment) using Bressenham’s linear algorithm (BLA).
Then, the procedure to distinguish the subareas in the grid-based environment is a recursive
flood-fill algorithm that picks an empty cell (not marked as occupied) and floods in four
directions while there are empty cells, and each flooded cell is marked as occupied. This
mapping procedure is repeated until all nodes of the grid are occupied by georeferenced
pictures. However, the drawback of this mapping is a tradeoff between acquiring an
equally sized set of images in cells and inefficient aerial sampling with UAVs.

• Geometric model

Figure 6. Grid model with rasterized areas [28].

Geometric features such as line segments or curves are extracted from the environ-
mental perception information and used by robots to construct an environmental map [22].
As shown in Figure 7, Ball et al. [65] defined the boundary of a 55-hectare sorghum stubble
field by manually selecting appropriate latitude and longitude coordinates but omitted the
headland where the UGVs turned around at the end of each row. Besides, the positions of
multiple robots and obstacle information (human, pole, vehicle, etc.) were periodically sent
to the central controller through sensors of a real robot and 12 simulated robots. Finally,
the central controller constructed a 2D map of the environment surrounding the robot.

Figure 7. Geometric models were constructed with points and lines [65].

A more scientific approach than manually labeling is the Voronoi diagram [66]. For
example, a fruit tree on the robot’s driving path was taken as a point in the orchard map,
and the two-dimensional coordinates of this point were found in the image acquired by
the UAV. At the same time, the data of planting interval and density of fruit trees were
learned from this image, and the two-dimensional coordinates of other fruit trees were
obtained, and then the K-means clustering algorithm was used to find the center of clusters
of multiple fruit trees, and the orchard was divided into multiple sub-regions for robot
operation according to the principle that the fruit tree point is most adjacent to this center.
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But the experimental results after mapping are to be further validated on a real agricultural
spraying multi-robot.

• Topological model

The topological relationship among objects in the environment is represented by the
environment model [21]. The topological model consists of multiple unrelated points and
lines with a simple model. Some researchers proposed to use this model in agricultural
multi-robot path planning, but it is only an idea and has not been applied [67].

The specific application scope and characteristics of the multi-robot environmental
model are shown in Table 3.

Table 3. Comparison of mapping methods [68–70].

Mapping Model Grid Model Geometric Feature Model Topological Model

Algorithm Bressenham’s linear algorithm,
Bayesian; D-S theory, etc.

Voronoi Diagram;
Baum-Welch, etc.Extended Kalman filter;

Particle filter, etc;

Scope of
application

Suitable for processing systems such as
laser radar and sonar priority ranging;

Local area modeling; Large-scale, simple environment;
Specific environment;

Advantages

Simple and intuitive, easy to create
and maintain; More compactness; Model is simple and easy to change,

and motion planning is fast;

Good spatial consistency;
Modeling in local areas

can achieve
higher accuracy;

Better robustness against
position errors;

Better robustness;

Conducive to the
estimation of the position

of the robot and the
identification of the target;

A high degree of abstraction, easy
to store;

Disadvantages
A large amount of calculation;

Difficult to address and
extract irregular

geometric features;
Less information;

Takes up substantial storage space; Image data are processed
cumulatively;

The topology network establishment
process is complicated;Long storage time;

Application

Harvested muddy moss in
farmland [13] Plowed [47]

None

Monitored vineyards [28] Drove in a greenhouse [56]
Environmental monitored [49,50] Harvested farmland [48]

Collected farmland information [71]
Precision irrigation in the

vineyards [72]
Sprayed in the
Orchard [66]

Compared with 2D maps [14,73–75], 3D maps can provide more information. By
fusing the original measurement or small local maps generated from multiple robots
to construct global maps at the same time, or matching the 3D maps constructed by
heterogeneous robots, more and more abundant data are obtained, which is a new research
direction of mapping.

For example [71], the point clouds of the two images acquired by the UAVs and UGVs
respectively were first represented by a grid model, and each cell stored excess vegetation
index information and ground height information. After that, the relative displacement and
rotation parameters between the two grid maps were extracted using the data provided by
GPS and Attitude and Heading Reference Systems (AHRS), and the maps were matched by
these parameters. Then the correspondence of point clouds between the matched maps was
calculated using the Large Displacement Dense Optical Flow (LDOF) system and a voting
scheme was used to select a coherent correspondence dataset with high data similarity
to infer the initial conversion relationship between the maps, and a non-rigid alignment
algorithm was used to eliminate orientation errors. Finally, the input point clouds were
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brought in for a point-to-point alignment, and non-vegetation points were removed to
obtain the 3D maps. The experimental results showed that the constructed maps matched
well, but the time taken to construct each such image was quite long.

As the farming environment is often dynamic, learning specific farming information
while shortening the time to build maps will help improve the efficiency of multi-robot
operations, which should be a direction for further research. For example, simultaneous
localization and composition (SLAM) allows the robot to get information about the image
while localizing it, and this technique is currently used more often for indoor multi-robots,
especially for catastrophic search and rescue where high responsiveness and mobility are
required [76]. In the literature [56] it was mentioned that this technique was used on
a ground robot for heterogeneous multi-robot in a greenhouse and that the robot was
motion controlled using an Augmented Monte Carlo Localization (AMCL) methods. The
experimental results showed that the UGV using SLAM takes less time to construct the map
than the remotely operated UAV. And based on the map, the ground robot can complete
collision-free autonomous movement between the initial and target points. It is obvious
that SLAM technology has great potential for multi-robot mapping [77], and the application
of multi-SLAM on agricultural multi-robots will be one of the future research directions.

3.3. Multi-Robot Task Allocation

Multi-robot task allocation (MRTA) provides evaluation indicators of a multi-robot
system, a task set, and system performance and finds a suitable robot for each subtask to
perform, bringing the benefit of a robot system to perform mostly task collection. Thus, the
quality of the MRTA results directly affects the efficiency of the entire system and whether
each robot of the system can maximize its capabilities [78].

Solve the MRTA problem [79] involves many aspects, such as the capability attributes
of the system members, the structural attributes of the tasks, the robot coordination mech-
anism, and the strategy of task allocation [80]. This approach divides the assignment of
agricultural multi-robots into centralized components based on the decision of the central
controller in this part.

• Centralized Allocation

The centralized allocation means that the leading robot or control center of the system
decomposes the global task and then sends the decomposed subtask to each robot according
to the corresponding allocation method.

In 2012, reference [14] reported the work area division and task assignment of two
UGVs by a person through remote monitoring based on a citrus orchard map. However,
as the number of robots increased, manual task assignment stops when a robot hits a tree
or fails to make a reliable turn. Some scholars [66] solved the manual assignment of tasks
to multiple robots from the perspective of dividing maps, namely, as many sub-regions
as there are robots needed. The edges of these sub-regions are generated from discrete
fruit tree points and K-mean clustering points on the map boundary using an integer
programming approach. However, this view is too ideal and does not consider the case
where the number of robots is less or more than the total number of tasks.

A similar study on the number of robots over the number of tasks is multiple robots
and a small number of refueling stations [81]. In this reference, an approximate arbitrary
time algorithm based on the branch delimitation method was used to obtain the task
sequence of multi-robot collaborative refueling. The limit value of the path length distance
was first calculated and used as the upper and lower bounds of the algorithm nodes based
on the rules for robots walking infield and the total time cost function of refueling and
waiting in the queue. Then the optimal solution was obtained by deleting the sub-nodes
whose lower limits were greater than or equal to the optimal upper limits during iteration.
Simulation experiments showed that the optimal approximate solution on resource utiliza-
tion can be found by this method, but it is difficult to apply the method to other aspects of
agriculture, such as spraying.
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A reinforcement learning-based method (Dyna-Q +) was used to find the optimal
search path from the current point to the endpoint, that is, multiple robots randomly
selected actions (front, back, left, right) and each action was recorded, and the optimal path
was obtained by rewarding and punishing the actions selected by the robots according to
the presence or absence of obstacles [62]. Then a weighted graph was used to represent the
Gird model, including parameters such as the current position of the robot, the set of grids,
and whether there is a path between the grids. The minimum cost time for the UAVs to fly
at different speeds under the optimal path was calculated using Dijkstra’s algorithm, and
finally, the search space was obtained based on the optimal path and time and allocated to
multiple robots in proportion to the size of the space. A reinforcement learning [82] is a
Markovian decision process where the basic idea is all about modeling or fitting a strategy
using a function for more complex decision problems. However, the method requires a
large number of samples and a long time when used.

Also, multiple robots working in an agricultural environment are often subject to
resource-sharing conflicts. For predictable conflicts, relying only on a central task allocation
approach to avoid conflicts, the adaptability of multiple robots is very limited, while
adding a decision support system (DDS) to provide options for multi-robot collaboration,
i.e., identifying problems and building or modifying decision models to avoid resource
conflicts based on explicit goals. For example, as shown in Figure 8, in reference [58], the
authors adopted a central entity (OptiVisor) to build a multi-robot seeding map based
on inputs such as the location of static obstacles in a large field, the seeding method, the
seed density, the location of the central controller, and the number of robots. Based on
this map, the location and density of each seed are precisely located and the sowing task
is assigned to multiple robots. When the robot finished the job, the path from the robot
location to the Central Logistic Unit (CLU) was recorded and the robot was allowed to
return to the CLU. Especially when one or more robots failed, the task of the failed robot
was reassigned to the other robots of the failed robot, and the sowing path was updated for
these replacement robots. OptiVisor could also stop a robot’s motion when a multi-robot
collision is imminent, and define restricted motion areas for the faulty robot. However, this
task assignment method was implemented in a simulation environment and needs to be
further tested in real applications.

• Distributed allocation

Figure 8. A centralized entity was used to plan the seeding task, seeding patterns, and seed densities
for different robots in the simulation environment. At the same time, the centralized entities were
used to monitor the whole seeding process to avoid collisions between robots [58]. The small blue
dots are the locations of the seeds planned to be sown, the yellow dots are the seeds that have been
successfully planted, and the larger red dots are the border seed sowing locations.
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In general, the distributed task allocation method has the feature that each robot does
not have global knowledge of the task but calculates and plans individually according
to the local information obtained by the sensor. The performance of the whole system
not only is closely related to the individual but also depends on the combined effects of
individuals [83].

It was reported in the literature [84] that when the number of tasks is more than the
number of farm machines, the ant colony algorithm can be used to find a suitable task
sequence for multiple robots. First, the distance between plots was calculated based on
the specified coordinate information of each plot, and the relevant parameters of the ant
colony algorithm were set. Then randomly generated the starting points of multiple parcels,
according to the state transfer probability formula for path selection, and put the generated
path parcels into the forbidden table. Finally, the path distance of the plots was calculated,
and the pheromones on the path were continuously updated according to the set rules,
and iterations were repeated until the optimal task planning for multiple robots was found.
The method is mainly used in simulated farmland environments and has not yet seen the
practical application.

In reference [85], researchers adopted Semantic MozartSpaces to describe a task al-
location data model based on a resource description framework (RDF) and SPARQL (a
query language and data acquisition protocol developed by the RDF) in task storage where
the RDF was used to construct nested blank nodes and SPARQL was used for querying,
updating and interactions of the entry. As shown in Figure 9a, a task was mapped to a
nested blank node to generate a semantic tuple (entry) in the task-allocation model. The
entry was stored in the task storage with an internal ID that concluded the URL (uniform
resource locator). Then, the entry could be selected with a URL according to the relation-
ship between the robot’s function and the task requirement. The results of the simulation
experiment suggested that the execution time increases correspondingly with an increasing
number of tasks, followed by a gradual decrease in production efficiency. It would be
necessary to add new robots temporarily to ensure productivity, but the production cost
would also increase, so the tasks need to be set in advance.

Figure 9. Distributed task allocations: (a) An entry was stored in task storage with ID numbers. And robots could select ID
to work according to the relationship between the robot’s function and the task requirement [85]; (b) A task was split into
several subtasks. And each robot proposed the largest possible task allocation initially, then gradually decreased its offers
based on negotiation mechanism until a deal was done [28].



Appl. Sci. 2021, 11, 1448 15 of 34

As shown in Figure 9b, researchers developed market and auction-based approaches
for task subdivision and allocation based on the Rubinstein negotiation protocol [28]. The
advantage of such a protocol was that the auctioneer robot had to split the task into subtasks
during the negotiation. In each round of negotiation, each robot initially started proposing
the largest possible task allocation for itself and decreased its offers based on a negotiation
of cost functions (discount factors) at each round until the other party indicated acceptance.
With distributed task assignment under this protocol, each robot comes with a DDS, and
each robot can dynamically adjust to the actual situation to get a suitable task. However,
the task allocation result was generally an approximate optimal solution because of the
discount factors, such as the area of the mission area, the distance of the robot from the
goal, the area beyond the target, and the overlapping work area.

Combined with the above task allocation technology, the research progress of agri-
cultural multi-robots in task allocation technology in the past 10 years is summarized in
Table 4.

Table 4. Task allocation classification comparison of agricultural multi-robots [86,87].

Classification Centralized Distribution Distributed Distribution

Advantages
Algorithm design is simpler;

Communication is more dispersed, which can avoid
the situation that affects the efficiency of the
algorithm due to communication congestion;

It has the potential to generate globally
optimal solution; Good real-time performance;

Disadvantages

The communication is concentrated and
susceptible to congestion, affecting the

algorithm efficiency;

The solution result can easily fall into a
local optimum;

Poor real-time performance; Consultation increases the communication burden of
the system;

Scope of the application

The task is known and determined in a
static environment;

The task is unknown and uncertainly determined in
the dynamic environment;

The environment model is fully known; The environmental model is partially known
or unknown;

The scale of this system is relatively small; The scale of this system is medium or large

Allocation method

Mixed integer programming
(branch-and-bound); A method based on behavioral motivation;

Heuristic search algorithm
(reinforcement learning);

A market-based approach;
Group intelligence algorithm (greedy algorithm, ant

colony algorithm [84]);

Application

Sprayed and weeding in an orchard
(manned) [14]; Weeded farmland [85];

Seeded in a field [58]; Agricultural monitored in vineyards [28];
Sprayed in the Orchard [66]

Harvested fields (simulation) [88];Refill scheduling [78]

It can be seen from Table 5 that the current task allocation methods for agricultural
multi-robots are mainly centralized, and most of them are implemented in the simula-
tion experiment.

The centralized task allocation mainly adopts the integer programming method, which
describes the nature of the task allocation problem by establishing the objective function and
constraints. Integral programming (IP) and mixed-integer programming (MIP) problems
are an important branch in the field of operations research, which includes branch and
bound method [89], cutting plane algorithm [90], graph theory method, etc [91]. The idea
is to determine the transfer method and transfer relationship from one search point to
another, and the result is a unique optimal solution, which is suitable for small scale; when
the scale is extended, the computation is considerable and the computation time will be
greatly increased [92]. Thus, the computation of the algorithm grows exponentially with
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increases in the number of tasks and robots. In general, it is often difficult to meet real-time
requirements in task allocation issues.

Distributed task allocation mainly uses a method based on behavioral motivation
and a market-based approach. The former applies to multi-robot systems with strong
autonomy, but the method has low system allocation efficiency; the latter has a wide range
of applications based on the resource optimization configuration idea of economics, but
the difficulty of this research method is how to design the negotiation mechanism and
reasonably determine the cost-income models of the task [44].
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3.4. Path Planning

Path planning is the fundamental guarantee for multiple robots to accomplish tasks
together. This technology refers to using the known static environment information, or
the dynamic environment information obtained by the sensor, to autonomously plan a
collision-free optimal path for each robot from a known starting point to a target point,
which requires not only a single robot to avoid obstacle but also a plan to satisfy collision
avoidance among multiple robots [93]. The path planning methods for single robots to
avoid obstacles mainly include traditional methods, intelligent methods, and other meth-
ods. The traditional methods include the construction space method, V-Graphic (visibility
graph), Voronoi diagram, grid method, A* algorithm, and artificial potential field [94].
Intelligent methods include the ant colony algorithm, particle swarm algorithm (PSO),
reinforcement learning algorithm, immune algorithm, genetic algorithm (GA), neural net-
work, and fuzzy logic algorithm [95]. Other methods include dynamic programming (DP)
and optimal control algorithms. Collision avoidance strategies among multiple robots
include the priority method, rate adjustment method, traffic management rule, and consul-
tation method.

The path planning method can be divided into centralized path planning and dis-
tributed path planning according to the ability classification of path planning [96].

• Centralized path planning

The centralized path planning method uses a centralized control unit to plan the opti-
mal path for swarm robots. This method can improve the ability of “close coordination and
optimal coordination” among mobile robots [97]. However, it encounters other problems
such as “dimensions”, “computational complexity”, and “non-deterministic polynomial
problem (NP) difficulties” with the increase in the number of robots, task difficulty, and
space complexity. In particular, the “NP difficulties” problem [98,99], in theory, has not yet
received a simple or fast solution.
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Connecting known path points into a line, which is simulated to a topological model,
and letting multiple robots walk along their respective paths is one of the simplest and
easiest path planning methods to implement. But, this method requires obtaining accurate
known point information in advance, which is a large preliminary job and is not suitable
for situations with a large number of robots or a large operating area. A method similar to
the point-to-point method is the visible map method, which aims to reduce collisions. That
is, the information of the edge projection points of each obstacle is obtained in advance,
and the robot free walking path, path points that can be combined or disconnected are
represented by edges and nodes, respectively. Then the starting node is connected to the
target node, or the starting node is connected to the raised point of each obstacle edge until
it reaches the target node, forming a multi-robot walking path. Finally, depending on the
size of the robot, the path width is increased or decreased appropriately. Similarly, the
workload of measuring points is larger and does not apply when there are more obstacles.

Planning multi-robot paths on mapping is another method of global path planning.
For example, in the grid method, the map was divided into multiple grid cells, and the
paths were extended in eight directions with each grid cell as the center, and the path
segments were formed by connecting the center of the grid vertically and diagonally with
the centers of other grid cells. To get the globally optimal path in the grid, the A* algorithm
was used to search for the path segment with the lowest travel cost, in which the cost of the
free space cell was set to 0, the cost of the cell with obstacles was set to the maximum, and
the travel cost was the sum of all grid cells on the travel path segment, and the globally
optimal path was set when the sum was the smallest.

Since information about the farmland changes dynamically, multiple robots operating
with precision need to re-plan to create multiple paths each time based on different infor-
mation. This multi-robot path planning problem with time windows has also been solved
as a multi-objective optimization problem. As shown in Figure 11, where a multi-robot
system including two aerial robots and three ground robots was jointly developed in
Spain and other countries [49]. This system adopted a centralized control unit to provide
global path planning for the multiple robots on a grid map with weed information, which
divides the sequence of operations for the multiple robots in advance. The No dominated
Sorting Genetic Algorithm II (NSGA-II) algorithm [100,101] was then used to coordinate
the relationship between the distance of the robot travel path, the number of turns, the
number of robots, the amount of weed killer used, and the capacity function to obtain an
approximate optimal solution between the time and money spent by the multiple robots
and the cost of weed treatment. It is a type of genetic algorithm, which mainly focuses
on the simulation of crossover, variation, and hereditary phenomena occurring during
natural selection and genetic inheritance, incorporating the natural law of superiority and
inferiority, and deriving the candidate solutions for each generation based on the results,
and finally deriving the optimal solution from the derived candidate solutions. However,
this method is more computationally intensive and the experimental results are not suitable
for fields that are unstructured or d fields without a fixed column or row lengths.

• Distributed path planning

The distributed path planning method requires little calculation and is robust but
exhibits low efficiency and can provide only a suboptimal solution [102,103]. In a fully
known environment, it is necessary to consider each robot obstacle avoidance method
and collision avoidance strategy among robots [104], that is, selecting a robot for path
planning first, then broadcasting its path to other robots, and finally planning paths of
other robots by themselves. However, this method is difficult to achieve [97] for large
numbers of robots. In an unknown environment, the preferred method is to plan a path
for each robot to avoid static obstacles based on neglecting the movement of other mobile
robots in the environment and then using the multi-robot collision avoidance strategy to
solve the conflict problem among mobile robots.
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Figure 11. The central controller plans the driving path for the unmanned aerial vehicles (UAVs) and unmanned ground
vehicles (UGVs) [49]: (a) The path planning of two UAVs; (b) The path planning of three UGVs.

Table 5. Research progress of path planning method for agricultural multi-robots.

Planning
Method

Environmental
Circumstances

Head-Turning
Mode

Coordination
Strategy Obstacle Application

Point-to-point
planner Fully known Right-angle turn; None None

Drove in farmland [42]
Plowed [105,106]

Seeded in farmland
(simulation) [107]

Visibility graph
(V-Graphic)

Fully known
Zigzag; Priority;

Vehicle
Harvested muddy moss in the

farmland [13];U-shape; Rate adjustment;
Right-angle turn Bee pollination (simulation) [108];

Grid method
Partially known Zigzag; Others Pole Seeded in a field [58]

Fully known U-shape; Rate adjustment Human Harvested muddy moss in the
farmland [13];Vehicle

A * algorithm 1 Partially known None Others None Monitored in a vineyard [28]

Ballistic method Unknown None Others None Weeded in a rice field [109]

Breadth-first
search algorithm

(BFS)
Partially known None Others None Monitored in a vineyard [28]

Genetic
algorithm (GA) Partially known U-shape Rate adjustment None Weeded in farmland [101]The light bulb shape

Others Fully known Right-angle turn; Rate adjustment None Drove in a greenhouse [56]
1 The A * algorithm is a direct search method for solving the shortest path in a road network.

At present, there is little research on the distributed path planning of agricultural
multi-robots. As shown in Figure 12, Bouzouita et al. [28] developed UAVs to monitor
agricultural information in the vineyard. The path planning of the UAVs is based on the
grid map and A*. On the map, the UAV path planning function is constructed according
to constraint conditions, such as the number of UAV turns, the number of covered grid
visits, and the time to complete the single partition. And using a heuristic algorithm like
A*, the next best node to be expanded is obtained by partying the generation value of each
node. Then, the breadth-first search (BFS) algorithm is used to find the local maximum
of the function by the distance between the cells. The result is the path from any starting
point in the environment to the target unit. The practice shows that the method can find
the approximate optimal solution, reduce the possibility of repeated access to the same cell,
and facilitate the avoidance of known obstacles. However, it needs to consider the local
environmental conditions to find wide applicability.
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Figure 12. Distributed path planning [28], 1, 2, and 3 are the number of the UAVs, the red line is the
planned path of the robot in the delimited area, and the blue line is the actual flight path of the robot.

Combining the above path planning techniques, we summarize the research progress
of agricultural multi-robots in path planning methods over the past 10 years, as shown in
Table 5.

It can be seen from Table 5 that agricultural mobile robots mainly use ground robots
in farmland, and the number of robots is no more than four. The path planning method
of multi-robots is mainly conducted in fully known conditions, and the grid method and
V-Graphic under centralized planning are the methods most commonly used.

The collision avoidance strategy between agriculture robots usually does not incor-
porate changes in the path [110], and the obstacle avoidance strategy of a single robot
comprises mainly speed adjustment and the priority principle. The path planning of multi-
robot generally does not consider the presence of obstacles in agricultural production.

When the UGVs turn around at the headland, they need to consider the relationship
between the minimum turning radius and the headspace. The general head-turning
method has a bulb shape (as shown in Figure 11b), zigzag or U-shape, etc. The U-shape
predominates in practice. As shown in Figure 13, the zigzag (forward-reverse-forward) is
used in smaller spaces; in contrast, the U-shape turn (turn-straight- turn) is used in larger
spaces. However, the difficulty of robot control is increased with the zigzag turning shape,
and the task allocation and path planning of the multi-robot are prepared for U-shape
turning in advance.

Figure 13. Agricultural ground multiple robot head-turning mode: (a) Multi-robot turned on the ground with a zigzag way,
that is, first forward, then backward, then forward again [47]. (b) Multi-robot turned on the ground with a U-shape (GMU
is the abbreviation for Ground Mobile Unit) [25].
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3.5. Formation Control

Multi-robot formation control technology means that multiple robots maintain a
certain formation to the target while still adapting to environmental constraints such
as obstacle blocking or spatial physical limitations [111]. This technology can improve
the robustness of the multi-robot system, and the robots can complete the task with
higher efficiency and shorter time [112]. At present, the formation control technology of
agricultural multi-robots is divided into forming formation and formation control.

• Formation forming

As shown in Figure 14, the formation of agricultural multi-robots generally has
five types: column, I-shape, linear, V-shape, and W-shape, and the circular nodes in the
formation structure represent robots. Each robot is represented by RID, such as R1 and R2,
and the black arrow indicates the direction of robot movement.

Figure 14. Multi-robot team arrangement, the arrow points to the direction of robot movement, and the circle represents the
robot: (a) The robots of R1 to R5 formed a longitudinal linear queue. (b) The robots of R1 to R5 formed an I-shape queue.
(c) The robots of R1 to R5 formed a transverse linear queue. (d) The robots of R1 to R5 formed a W-shape queue (e) The
robots of R1 to R5 formed a V-shape queue.

It is necessary to achieve the desired formation by determining the formation position
reference point after determining the root formation. There are usually three reference
points: center, neighbors, and leading robot; as shown in Figure 15, the position of each
root node is represented by PID, such as P1 and P2, and the arrows indicate the relationship
between robot dependence and information transfer.

• Formation control

From the perspective of a multi-robot system control framework, formation control
is divided into two types: centralized control and distributed control. The former uses
a centralized control unit to make decisions, optimize robot coordination, accommodate
individual robot failures, and supervise the entire group of robots. The latter does not
have a unified control unit, and a single robot makes decisions based on its local informa-
tion [112,113].

At present, the method of centralized formation control of agricultural multi-robots
includes the virtual structure, graph-theoretic approach [114], and model predictive con-
trol [115,116]. The method of distributing the formation control of agricultural multi-robots
includes leader-follower [34,41,75,117] and the artificial potential field [113].
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Figure 15. Selection of formation reference points: (a) Take the green dot, in the center of P1 P2 P3, as a reference. (b) P1 and
P3 take neighbor P2 as a reference, P2 takes the nearest neighbor P1 as a reference. (c) Take the leading robot P1 of P2 and
P3 as a reference.

Guillet et al. in France [44] adopted the bidirectional control strategy based on the
virtual structure method. As shown in Figure 16a, each robot of the whole queue is a
fixed point on the virtual structure. In this structure, the queue also increases two virtual
leaders’ interaction with the extreme robots and carries the desired global velocity for the
whole fleet. The advantage of this method is simpler communication protocols and lower
communication costs; however, the reaction of the robots is slower because of different
acceleration performances.

Figure 16. Formations of agricultural multi-robots: (a) the head and tail robots in the formation are used to guide UGVs in I-
shape operation. And the robot in the middle of the formation plows with farming tools in the field [44]. (b) Leader-follower
method to control the formation in V-shape operation [105]

Berman et al. in the USA adopted the graph theory approach in bee pollination [108].
When a beehive was opened, the swarm robot flew radially from a moving beacon at a
constant speed. And once it encountered the edge of the graph, it flew eastward at a fixed
speed. As the robot flies over the plant, it acquires at least one flower within its range
through sensors and hovers over the flower with unit time probability to pollinate it and
record the location of the pollinated flower, returning to the hive after pollination and
starting the next flight until complete coverage of the whole field is achieved. However, this
method takes a long time and the model used in the simulation is too idealized. Whether
they can be used for practical production needs to be further explored.

Smith et al. in Korea adopted model predictive control (MPC) and nonlinear feedback
control respectively in fish tracking (simulation) [117]. MPC is a finite-domain rolling
optimal control strategy with three parts: model, prediction, and decision, sacrificing
optimality to some extent [118]. The fish population location was first divided into discrete
points, and the discrete points were clustered to get the vertices of fish population density,
and the transition model was constructed by transforming the movement of the fish
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population into the movement between the vertices. The transition model and nonlinear
feedback were used to obtain the transition matrix, and the underwater robot was guided
to the vertices with high fish population density according to the transition matrix. The
simulation results showed that the model-based control of the underwater robot could
approach the nearest point, while the feedback control made the underwater robot approach
the target point. However, in practice, the underwater robot movement speed is smaller
than the fish population movement speed, and the method needs further improvement
when applied in practice. The leader-follower method [48,105,117,119,120] is also another
classic model and widely used in the formation control of agricultural multi-robots. Japan’s
Zhang et al. [106] used the leader-follower method to control UGV formation. As shown
in Figure 16b, the relative positional relationship between the leader and the follower is
determined according to the lateral and longitudinal safety distances (l−l) between the
robots first, and then the distances are dynamically adjusted with feedback linearization
technology to assemble different formations. Based on the leader-follower model, Bai et al.
in China also combined slide mode control with the harvester swarm [48]. The kinematic
model of the farmland leader-follower harvester swarm was established first, and based
on this model; the asymptotically stable path-following control law and the formation-
keeping control law were designed by combining feedback linearization and sliding-mode
control theory. The advantage of this leader-follower model is that the behavior of the
fleets can be controlled through the determined trajectory of the leading robot. The method
decouples the cooperative navigation control problem into lateral distance keeping control
and longitudinal distance keeping control. The formation control is mainly accomplished
by establishing the location and gesture of the following robot relative to the leading
robot, such as (l−ϕ), (l−l) first, then obtaining the formation information through feedback
linearization, and finally adjusting the formation according to the threshold value. The
leader-follower test results show that the real paths of robots can achieve centimeter-level
average error with the planned path based on the safe distance of the vehicle. But this
method is only applicable for environments involving a single-tasking of agricultural
production and a fixed site. The adaptability to the headland turns is not strong. The
question of how to maintain robot formation in encountering static or dynamic obstacles
is not considered. If the leading robot malfunctions, the formation of the fleets cannot
be maintained. Once the leading robot fails, the multi-robot system is susceptible to
deadlock, and the formation cannot be maintained. The “leader” replacement method
was proposed [121] to overcome this shortcoming, but the method has not been applied to
agricultural multi-robots.

Ju and Son in Korea adopted Ramadge-Wonham theory in supervisory control to solve
the above deadlock problem [122]. Supervisory control is a feedback control theory for
discrete-event systems, where the control goal is achieved by observing the occurrence of
events or states and using allowable or prohibited controllable events. Finally, a time-driven
system is combined with a low-level controller and an event-driven system with a high-
level controller with the criterion of satisfying the behavior specification and maximizing
the allowable events. Time-driven is used when there is no fault, and once the queue
encounters a fault, the control outcome is selected based on event-driven. Simulation
results demonstrate that the method can be used to control complex dynamic systems, but
it has not been tested in practical applications.

The characteristics and formation process of the formation control methods are shown
in Table 6.

From Table 6, it can be found that more complex or hybrid control methods are mostly
used in simple or simulation environments, and the application in actual agricultural
production is still dominated by the leader-follower method, and the research is also
mainly focused on multiple machines traveling in a straight line in a fixed column. Further
research should be conducted on how to continue driving, maintain the formation, or
adjust the formation after multiple robots encounter obstacles.
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Table 6. Comparison of formation control methods [34,41,75,86,104,106,109–111,113,114,117,123,124].

Formation Control
Method Advantages Disadvantages Steps Application

Bidirectional
Weighted

Constraints
Approach

Simplified description and
assignment of tasks;

Difficult to handle
fault tolerance;

Defining the dynamic model of the
virtual structure;

Plowed [44];
High formation control

accuracy; Poor reliability;
Transforming the overall movement

of the structure into the motion of
the robot;

No complicated
communication protocols,
low communication costs;

Low mobility limits
range of motion;

Obtain the tracking control law of
each robot;

Graph theory
approach

Suitable for large-scale
robot formation; The implementation is

more complicated,
mainly limited to

simulation research;

Define the formation right map
G = (set of points V, edge E,

weight W);
Bee pollination

(simulation) [108];
Easy addition and

deletion of robot nodes; Specify the ideal distance of each
edge in the formation;Easy to change between

different formations;
Seeded in a field (12

simulation robots) [107]

Artificial potential
field

Little calculation;
The design of the

potential field
function is difficult;

Design artificial potential field
(environment and constraints

between robots in the formation);
Precision irrigation in the

vineyards [72]
Easy to implement
real-time control; Problem with local

extreme points;
Establishing a potential field

function;Easy to handle collision
avoidance problems in

obstacle spaces;

Model predictive
control (MPC)

Has a strong theoretical
foundation;

A large amount of
calculation, mostly
used for simulation;

Real-time planning formation retains
the reference center and target
control amount of each robot;

Tracked fish (simulation)
[117]

Adds multiple constraints
in the control process, and

optimizes the control
sequence by online

scrolling optimization
combined with feedback

correction of real-time
information;

Building a linear programming
model with multiple constraints; Harvested farmland [48];

Leader-follower Simplified system control;

The ability to adapt to
a dynamic

environment is not
strong. If the leader

fails, the entire system
crashes;

Identify leading robot and
formations;

Collaborative air-ground
surveillance [122]

A follower follows the leader Drove in a field [46];
Control the spacing between the
leading robot and the following

robot–angle (l −ϕ) or lateral
spacing-longitudinal spacing (l − l);

Lawn [119];

Plowed [106];

3.6. Communication

Communication is the basis of information interaction and collaboration among
multiple robots. In agricultural production, many factors affect the fine operation of
agricultural robots, and to maintain coordination and cooperation among multiple robots
and to gain a more comprehensive understanding of the environment in which multiple
robots perform tasks, robots need to interact with each other through information to
better perform a given task [29]. Balch and Arkin concluded that even a small amount
of communication can improve the performance of multi-robot systems tremendously
through experiments [125].

At present, the communication technology of agricultural multi-robots mainly in-
volves three parts: multi-robot communication mode, communication network, and com-
munication protocol.

• Communication mode

The multi-robot communication mode is divided into three categories from a macro
perspective: explicit communication, implicit communication, and explicit and implicit
communication, as shown in Figure 17. Explicit communication is an interactive mode
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through communication as a medium, requiring a clear communication protocol between
interacting parties. This method is often used for concordant communication among robots,
but it incurs fairly large costs. Implicit communication is the acquisition of the required
information through the external environment and internal sensors without an explicit
exchange of data, so some advanced coordination strategies cannot be used, which affects
the capacity to perform certain complex tasks.

Figure 17. Communication modes of multiple robots.

Since explicit communication and implicit communication have their advantages [120],
explicit communication is used for the integrated control of robots in the upper layer,
and implicit communication is used for integrated control of robots in the bottom level.
Explicit communication means that the robot communicates directly or indirectly with
other robots via wireless networks. For example, robot 1 sends a message to all robots
in the communication range in broadcast communication, that is, without specifying a
particular robot, robot 2, which does not need the message, receives the message. In implicit
communication, the intermediary for inter-robot communication is often the surrounding
environment. For example, the UAV can be informed about the farmland in advance and
build a model of the farmland environment, and the ground robots operate on the ground
based on this farmland model [122]. The combination of both communication modes can be
used to develop their advantages, improve the flexibility to confront the various dynamic
and unknown environments, and complete many complex tasks in agricultural production.

For the implicit communication of multiple robots, you can refer to Section 3.2 envi-
ronment perceptions, here we focus on robot explicit communication techniques.

In literature [25], two aerial drones were equipped with GPS, visible and near-infrared
spectral cameras, which took pictures of the farmland at a set series of ordered waypoints
and uploaded them to the backend, which sends the processed information of weeds
in the farmland to the ground robot. The ground robots were equipped with RTK-GPS,
RGB camera, and LIDAR. RTK-GPS provided accurate heading for the ground robot,
RGB camera detects weeds and crop rows, and LIDAR detects obstacles on the vehicle
trajectory. While the ground robots were safely walking along their respective set paths,
weeding operations start if the weeds detected by the cameras were the same as the weed
information in the farmland. In this multi-robot system, the aerial drones and ground
robots did not communicate directly but completed the cooperative operation through the
interaction of environmental information.



Appl. Sci. 2021, 11, 1448 25 of 34

• Wireless communication net of multiple robots

As shown in Figure 18, the agricultural multi-robots need to adjust their pose in
real-time. Therefore, the data exchange of communication among multiple robots is
mainly based on wireless communication technology in agricultural production. This
technology mainly involves a wireless local area network (WLAN) and a wireless per-
sonal area network (WPAN), such as WI-FI, Bluetooth, ZigBee, and IRDA (infrared data
association). Among them, WI-FI technology has been developed most rapidly in agricul-
tural multi-robots.

• The wireless communication protocol of multiple robots

Figure 18. The computer as the center controller was used to send initial paths for UGVs and UAVs control units through
communication. And perception data were exchanged between multi-robots and computers.UGV.

The wireless communication protocols are primarily used based on wireless commu-
nication standards and the unlicensed band. Taking the WLAN as an example, the IEEE
802.11 series standards and the 2.4 GHz or 5 GHz bands are used in this communication.
The IEEE 802.15 series of transmission technology protocols are selected in WPAN.

Combined with the above communication technology, the research progress of agri-
cultural multi-robots in communication in the past 10 years is summarized, as shown in
Table 7.

Table 7. Comparison of wireless communication technologies of agricultural multi-robots in the past 10 years.

Communication Technology WI-FI Bluetooth ZigBee

Transmission distance [m] 10~300 10~100 10~75

Theoretical transmission
speed [bps] 54~300 M 100 k 10 k

Wireless communication
network

Wireless local area network
(WLAN)

Wireless personal area
network (WPAN) WPAN

Working frequency [Hz] 2.4~5.4 G 2.4 G 2.4 G (global); 868 M (Europe);
915 M (United States);
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Table 7. Cont.

Communication Technology WI-FI Bluetooth ZigBee

Communication protocol

IEEE 802.11 a; 1

IEEE 802.15 IEEE 802.15.4
IEEE 802.11 b 2;
IEEE 802.11 g 3;
IEEE 802.11 p 4;

Advantage

Fast transfer speed; High transmission rate; Low power consumption;
Low cost;

Strong anti-interference
ability; Large transmission range;

Long effective distance; Flexible networking; Good scalability

Reliable connection Low power consumption; Strong anti-interference
ability;

Wide coverage; Small volume; Good security;

Disadvantages

High power consumption; Slow; Low transmission rate;

Expensive; Short distance; Short distance;
Weak networking ability

The mobile phone cannot
communicate directly;Protocol coding complexity; Poor security and

confidentiality;

Application

Plowed in wheat fields or
orchards [126,127];

Plowed [47,105,106];

Monitored vineyards [28];

Plowed [44,48];
Monitored and weeded

farmland [49];
Plowed [46];

1 IEEE802.11a standard, operating in the 5 GHz band, has a data transmission rate of 54 Mb/s. 2 IEEE802.11b standard, operating in the
2.4 GHz band, has a data transmission rate of 11 Mb/s, and is not compatible with IEEE 802.11 a. 3 IEEE802.11g is a standard that increases
the transmission speed of 802.11b from 11 Mb/s to 54 Mb/s. 4 IEEE 802.11p standard is a communication protocol expanded by IEEE
802.11 standard, which is mainly used in wireless communication of automotive electronics.

In addition to the above wireless communication technologies, Albani et al. adopted
a mobile ad hoc (peer-to-peer) network [128,129], which regarded the UAV as a commu-
nication node in the network and used three communication strategies (simple, flooding,
geo-aware) to solve the communication problem of UAVs flying in the field. The sim-
plest communication strategy is a single broadcast mode, that is, the source node sends
information to the nearest node. Flooding constitutes a multi broadcast mode, that is, the
source node sends information to multiple agents. Geo-aware employs a source node with
the highest utilization rate, and this node sends the messages. All three communication
strategies ignore communication errors and focus on the impact of the communication
range and protocol on work efficiency. The simulation results show that the effective
information of weed monitoring can be transmitted with a minimum number of UAVs
under the geo-aware approach. However, the communication strategy discards new in-
formation obtained by UAVs of the distributed architecture, and messages cannot be
effectively transmitted with a wide range of communication (such as over wide areas
of farmland). Agricultural multi-robots working in the farmland often encounter signal
occlusion, atypical weather, etc.

Large agricultural multi-robots working in agricultural fields rarely encounter prob-
lems such as signal occlusion and atypical weather. However, in other agricultural products,
such as greenhouse and orchard, when the size of the multi-robot is smaller than the height
of the crop, its communication signal strength is extremely attenuated by factors such as
crop planting, growth characteristics, planting scale, and weather (natural wind and rain).
Previous references [126,127,130] showed that the test results of the WI-FI communication
system of agricultural multi-robots suffered from WI-FI signal intensity attenuation largely
because of the reflection and scattering effects of crops, and the effective communication
distance was less than 50 m (far less than the theoretical communication distance of 300 m)
in mature wheat fields, cornfields, and peach gardens. Therefore, it is a future research
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direction to select suitable multi-robot communication technology according to the charac-
teristics of crops and to carry out research on multi-robot communication patterns based
on crop shape characteristics.

4. Discussion

In general, in the past 10 years, the synergistic technologies of agricultural multi-robots
have achieved some research results, and multi-robot collaborative operations have been
realized in specific agricultural scenarios. But with the increasing demand for agricultural
operations, the following challenges in the application of multi-robots in agriculture still
exist to be solved:

• Flexible agricultural multi-robot system architecture

Multi-robot architecture is the basis for collaborative operations of multi-robot systems.
In the last decade, agricultural multi-robot systems have mainly focused on centralized
or distributed architectures to accomplish collaborative operations under pre-defined
conditions. Both architectures have their advantages and disadvantages, but as the number
of robots increases (such as multiple aerial robots cooperating with multiple ground
robots) and new agricultural operational needs increase (such as sampling in marine
environments [131], cargo handling in hilly mountainous areas, pest control in orchards,
etc.), it is clear that the scalability and flexibility of multi-robot systems relying on only
one architecture are limited. The advantages of centralized and distributed architectures
are combined to form a hybrid architecture, or the application architecture is dynamically
selected according to the task attributes, which can overcome the low performance caused
by the self-centeredness in the distributed architecture and reduce the lack of control
flexibility in the centralized architecture.

• Fast and precise environmental perception

In environmental awareness, positioning and sensor fusion answer the question of
“where am I” and building a map answers the question of “what’s around me”, and the
answers to these two questions are the prerequisites for robots to start their operations. The
positioning and sensor fusion technologies of agricultural multi-robot are mostly used in
large fields with unobstructed outdoor signals, where the communication between robots
is normal and the robots can get accurate positioning, heading, speed, obstacles, and other
information based on their sensors. However, considering the severe compaction of soil by
large agricultural machines, the compression of application costs, and the promotion of this
concept of refined agriculture, light, and small agricultural robots will be the trend of future
development, which will make multi-robot positioning unable to continue to rely on the
high-precision positioning of a particular robot or a particular sensor (e.g., GPS). Especially
in case of robot failure or communication failure, how to ensure the accurate positioning
of the remaining individuals and make the multi-robot system with good robustness is a
problem that needs to be solved urgently.

Mapping not only can accurately learn the information of detailed agricultural in-
formation, static obstacles, and the location of other robots but also can assign tasks and
plan paths for multiple robots. The more accurate the agricultural information, the more
accurate the operation objects will be, but this contradicts agricultural tasks that urgently
need a fast response, which means that the time spent on the subsequent processing of
information data reduces the real-time and flexibility of multi-robot operations. How to
obtain dynamic agricultural information quickly and accurately and match it with the
precise location of the operation object is another urgent problem in environment sensing.

• Reasonable task assignment in real-time

The task assignment is related to the multi-robot coordination and collaboration
mechanism, and the simple zoning assignment of robots cannot adapt to the dynamically
changing operational tasks. Also, the number of robots, operating time, and cost of robot
operations need to be dynamically adjusted to the operating task. Even for the same type
of robots, items such as fuel or electricity, fertilizers, herbicides, and pharmaceuticals can
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change differently depending on the target of the operation. It is impossible to obtain fast
and reasonable response results based on the changes of these uncertainties even depending
on a priori knowledge. How to enable multi-robots to timely self-adjust to dynamic task
changes and obtain reasonable operational tasks or operational task sequences through
real-time interaction with dynamic environments is an urgent problem for multi-robot task
assignments in agriculture.

• Dynamic and reliable path planning

The path of agricultural multi-robot operations is designed to accomplish dynamic
operational tasks, and the robot’s travel rules are usually fixed. The global path of multi-
robot offline planning only considers fixed travel rules, such as the point-to-point method
and image method, which can avoid static obstacles smoothly, but cannot be extended to be
applied to similar agricultural scenarios. In particular, if the dynamics of the agricultural
environment change rapidly (e.g., weeds are growing in the field after the rainy season) and
the agricultural information is not fully known (e.g., the constructed mapping usually does
not contain dynamic obstacles), fixed path planning cannot meet the needs of complex tasks
(e.g., weeds are not on the planned path). Therefore, how to perform reliable path planning
for multiple robots based on operational tasks with distinct temporal characteristics is a
problem that needs to be solved for multi-robot path planning in agriculture.

• Flexible and robust formation control

Multi-robot formation control currently focuses mostly on robot swarms walking
steadily along a straight line in a fixed formation. However, when a multi-robot system
encounters unexpected events, such as robot failure, communication failure, or stopping
travel due to dynamic obstacles, how to mitigate the impact on other robots, respond
quickly, and adjust the robot formation shape to continue the task is a concern for agricul-
tural multi-robot formations. Although some studies have shown that multiple robots can
be selectively controlled based on time or event drivers, or by replacing the “leader” in the
queue, none have been applied in real production.

• Communication system based on plant characteristics

Communication is the basis of multi-robot collaboration in agriculture, whether it is
multi-robot positioning, collaborative control, or remote supervision, communication is
indispensable. The agricultural environment lacks communication infrastructure construc-
tion, and most of them directly used industrial communication systems do not consider
the relationship between outdoor plant growth and communication signals, and their
communication range and signals will be attenuated to different degrees in the agricul-
tural environment. Therefore, the construction of a communication system adapted to the
agricultural multi-robot operating environment is a problem that needs to be solved for
multi-robot communication.

5. Conclusions

Given the current challenges in agricultural multi-robot research, this paper points
out future research directions in six areas to enhance the application of agricultural multi-
robots in practice. Firstly, to build a flexible and changeable agricultural multi-robot
system architecture based on hybrid architecture so that the multi-robot system has good
environmental adaptability and robustness. Secondly, to develop sensor information fusion
technology among agricultural multi-robots based on mutual positioning methods to
improve the positioning accuracy of multi-robots in agricultural environments without
GPS. Meanwhile, SLAM technology for agricultural multi-robots is studied to rapidly
build environment models to adapt to the dynamically changing agricultural information.
Third, to introduce deep learning mechanisms in agricultural multi-robot task assignment
enables multi-robots to self-identify, evaluate, compare, remember and adjust during their
interaction with the environment, and adjust the way they interact with other individuals
according to specific tasks so that the group as a whole is equipped with the ability to
complete multiple types of tasks. Fourth, dynamic planning of multi-robot paths based
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on a combination of centralized and distributed path planning methods enables multi-
robot systems to adapt to real-time changing operational tasks and avoid obstacles and
other robots promptly. Fifth, to modify the reference points of multi-robot formations
flexibly according to changing events, adjust the distance and direction between formation
members, reduce the impact on other mobile robots, and complete operational tasks. Sixth,
to study the relationship between plant growth characteristics and communication system,
establish a communication signal attenuation model, and design an agricultural multi-robot
communication protocol based on this model to build a communication system.

In summary, the multiple robot system represents the future of robot development.
The synergistic technologies for the research of agricultural multi-robots have a great value
and bright prospects but are also extremely challenging. Therefore, it requires participation
by researchers to combine the former research results, recognize the developing trends,
and use practicality as the ultimate goal to drive forward the coordination technology of
agricultural multi-robots.
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