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Abstract: The performance of tempered vacuum glazing (TVG) strongly depends on the structural
parameters and degree of damage of the products. In this paper, attention was paid to six performance
indicators which had a major influence on the damage of TVG, and new evaluation parameters were
derived from them using principal component analysis (PCA). In particular, hierarchical clustering
analysis (HCA) based on Euclidean distance measurement enabled TVG products to be classified into
three kinds. Considering the results of PCA, product quality classification was established according
to the degree of damage. The evaluation method proposed in this work was found to be simple and
reliable to provide references for damage detection of TVG.

Keywords: tempered vacuum glazing; glass damage; principal component analysis; hierarchical
clustering analysis; evaluation model

1. Introduction

Vacuum glazing is a high-quality product that possesses transparency, heat preser-
vation, and sound insulation. Compared to insulating glass, vacuum glazing lasts longer
and ensures the better heat transfer at a more compact design [1–3]. The manufacturing
process of vacuum glazing is complex and needs two pieces of washed glass. First, support
pillars are arranged in a specific manner on one piece of glass coated with an edge sealing
solder. Another piece of glass is heat sealed and the space between both sheets of glass
is afterwards evacuated with a vacuum pump [4–6]. However, low bend strength and
impact toughness, as well as angular fragmentation after breaking, make vacuum glazing
uncomfortable for safe use because of the risk of personal injury.

The mechanical strength and impact toughness can be enhanced by exposing one layer
of tempered glass to the compressive surface stress and another layer to the interior tensile
stress. Unlike the common glass, the bend strength of tempered glass can be increased
by 3–5 times and the impact strength is enhanced by 5–10 times [7]. Meanwhile, the
long-term medium-high temperature may cause the stress attenuation effect, and the glass
performance will be degraded during the manufacturing process, which may affect the safe
use of the product [8,9]. The common damage-inducing factors of TVG are surface stress,
vacant pillars, sealing quality, and micro cracks. However, their industry-scale assessment
with respect to product quality and eligibility is still a challenge [10–13].

In view of the complex quality parameters of TVG, one can mention a study of
Hu D. et al. [14] who performed the grey relational analysis to study the module vacuum
glass without, however, reporting the specific quality evaluation and the classification
model. In that regard, this paper aims to evaluate the TVG performance by applying
the multivariate statistical methods such as principal component analysis (PCA) and
hierarchical component analysis (HCA). Both of these approaches are widely applied in the
quality assessment related to food, medicine, wine, and other fields [15–17]. Attention is
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paid to the development of the reliable evaluation model that would provide the references
to product quality.

2. Materials and Methods
2.1. Samples

The TVG samples were produced at the laboratory of Yangzhou University from
December 2019 to April 2020. The samples were sealed at low temperature and subquality
products with surface cracks and internal leakage were removed in advance. For the
sake of product structure and priority, six characteristic parameters closely related to TVG
performance were selected with respect to the details provided in Table 1.

Table 1. Characteristic parameters and symbolic meanings of TVG.

Symbol Meaning

Z1 surface stress
Z2 vacant pillars
Z3 bubble size
Z4 bubble quantity
Z5 surface microcrack depth
Z6 surface microcrack quantity

2.2. Testing Methods
2.2.1. Surface Stress Evaluation Basis

A Glass Stress SCALP 05 portable intelligent stress measuring system was used for
the surface stress and toughness testing of TVG, with 1–5 mm measurement thickness,
more than 1.0 MPa measurement range and 0.1 MPa measurement accuracy. Because
of the surface stress redistribution and stress concentration at the sealed edge, the stress
measuring position was selected at the diagonal intersection point in the center of four
pillars, as shown in Figure 1. The surface stress evaluation basis obtained in accordance
with the stress characteristics of TVG is shown in Table 2.
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Figure 1. Schematic of a stress measuring position.

Table 2. Surface stress evaluation basis.

Evaluating Level Evaluating Parameter Surface Compressive Stress (MPa)

Excellent 8–10 ≥90
Well 6–8 80–90
Poor 4–6 70–80

Worst 0–4 <70

2.2.2. Vacant Pillar Evaluation Basis

The incomplete support structure formed for vacant pillars which were caused by the
pillar layout method or static electricity in the manufacturing process. Since the distance
between the pillars would be larger than the design value, this improved the bend strength,
and the supporting stress around the deficiency position increased accordingly, affecting
the product safety. In this respect, the vacant pillars could be detected using the industrial
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camera. The maximum supporting stress σmax and maximum deflection ωmax of TVG
would be influenced by continuous vacant support pillars (CVSP). The evaluation data
could be classified into different levels according to the degree of σmax and ωmax change
based on the license definition conditions of TVG with CVSP [18], as shown in Table 3.

Table 3. Vacant Pillar Evaluation basis [18].

Evaluating
Level

Evaluating
Parameter

Different Positions of Vacant Pillars
Values of σmax and ωmax

In the Center At the Edge At the Corner

Excellent 8~10 No more than
1 CVSP

No more than 2 CVSP
parallel arrangement

No more than
1 CVSP

σmax ≤ 80 MPa,
ωmax ≤ 40 mm

Well 6~8 2 CVSP
3 or 4 CVSP parallel

arrangement; 2 CVSP
vertical arrangement

No more than
4 CVSP linear
arrangement

80 MPa < σmax ≤ 90 MPa
40 mm < ωmax ≤ 50 mm

Poor 4~6 3 or 4 CVSP linear
arrangement

3 or 4 CVSP vertical
arrangement

3 CVSP L-shaped
arrangement

90 MPa < σmax ≤ 110 MPa
50 mm < ωmax ≤ 70 mm

Worst 0~4 Others Others Others σmax > 110 MPa,
ωmax > 70 mm

2.2.3. Sealing Quality Evaluation Basis

Associativity and air tightness were the main basis parameters for sealing edge quality
evaluation of TVG. The sizes and number of bubbles could be assessed directly from a
sealing edge, as shown in Figure 2. Bubbles would occur in a sealing solder because of the
improper sealing technology, inappropriate mixture of the flux and solvent, and incorrect
sealing temperature. Too many bubbles would influence the bond strength and even cause
leakage at the sealing edge [19]. Meanwhile, the air tightness would be affected if external
air entered into the vacuum layer between the bubbles. In this work, two evaluation
parameters—bubble size (the largest bubble area) (see Table 4) and bubble quantity within
10 cm around the sealing edge (Table 5) were chosen for evaluation.
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Figure 2. Bubbles in the sealing edge.

Table 4. Evaluation basis for bubble size at the sealing edge.

Evaluating Level Evaluating Parameter The Biggest Bubble Area (mm2)

Excellent 8–10 <5
Well 6–8 5–25
Poor 4–6 25–45

Worst 0–4 ≥45

2.2.4. Evaluation Basis for Surface Microcracks

Micro-nickel sulfide stones existing in glass can cause a potential safety hazard [9,20].
In the sealing process of TVG, the heating temperature of 260 ◦C would promote the
volume expansion of nickel sulfide particles with diameters of 0.04–0.65 mm, resulting
in microcracks in the glass, which is a potential risk of self-explosion. Their surface was
examined using an optical microscope and a three-dimensional profilometer. The main
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parameters were the maximum crack depth and microcrack quantity within 1 mm2, as
shown in Tables 6 and 7.

Table 5. Evaluation basis for bubble quantity at the sealing edge.

Evaluating Level Evaluating Parameter Bubble Quantity within 10 cm (Pieces)

Excellent 8–10 <150
Well 6–8 150–300
Poor 4–6 300–450

Worst 0–4 ≥450

Table 6. Evaluation basis for surface microcrack depth.

Evaluating Level Evaluating Parameter Maximum Depth of Microcrack (µm)

Excellent 8–10 <0.1
Well 6–8 0.1–1
Poor 4–6 1–10

Worst 0–4 ≥10

Table 7. Evaluation basis for surface microcrack quantity.

Evaluating Level Evaluating Parameter Microcrack Quantity within
1 mm2 (Pieces)

Excellent 8–10 <200
Well 6–8 200–400
Poor 4–6 400–600

Worst 0–4 ≥600

2.3. Evaluation Model
2.3.1. Principal Component Analysis (PCA)

PCA is the method for finding the potential reigning factors in different related vari-
ables [21]. As a systematic product, characteristic parameters of TVG, such as surface
microcracks and vacant pillars, have a close relationship between each other, exerting a
direct influence on the surface stress. High multi-collinearity exists in different param-
eters, leading to incorrect regression equation parameters and even making the model
unusable. PCA recombines original parameters to several aggregative indicators which
not only provide more information but also have a poor linear relation due to the less
information loss.

The standardized values of six characteristic parameters of TVG (Z1, Z2, . . . , Z6) are
potential factors z1, z2, . . . , z6. Assuming that six new coordinate axes pi (i = 1, 2, . . . , 6)
have to be found in the original six-dimensional parameter space, the relationship between
the original and new parameters can be expressed as follow:

p1 = b11z1 + b12z2 + · · ·+ b16z6
p2 = b21z1 + b22z2 + · · ·+ b26z6
· · ·
pi = bi1z1 + bi2z2 + · · ·+ bi6z6

(1)

Since these six parameters are related to each other, PCA allows one to find a lesser
number of new variables to gather as much information as possible about the variance
from the original variables. Therefore, these new variables are called principal components,
and each of them is a linear combination of the original variables.

The maximum variance that can be found in the six orthogonal directions is presented
by a feature vector and an eigenvalue. Both can be determined from the characteristic
equation AZ = λZ, where A is the covariance matrix of samples and λ represents the reas-
signment result for the total variance of the original variables in the principal components.
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The distributive variance Spi of the i’th principal component depends on the i’th feature
vector in the numerical data as follows:

Spi =

6
∑

i=1
(pi − pi)

2

n − 1
= λi (2)

Given the contribution rate of each component, the total information can be expressed
as follows:

m =
6

∑
i=1

λi (3)

The feature vector is used to measure the information from the variables. In this
respect, the contribution rate of each component can be found as:

λi
6
∑

i=1
λi

=
Spi

6
∑

i=1
Spi

=
λi
m

(4)

Therefore, the contribution rate of the k’th component is:

k

∑
i=1

λi
6
∑

i=1
λi

=
k

∑
i=1

λi
m

(5)

The pieces of principal components can be selected according to the contribution rate.
In this study, we select the principal components whose λ is greater than one.

2.3.2. Hierarchical Clustering Analysis (HCA)

HCA is the multiple statistic method for solving classification problems in statis-
tics [22]. In this approach, variable data in the unknown situation can be classified ac-
cording to the intimacy degree characteristics. A basic idea of HCA is classifying things
by distance or similarity. First, all things to be classified are considered as one kind, and
their combination is then gradually made by distance or similarity. A large kind can be
combined at last. Two-component data selected from the principal components of TVG
create the two dimensional random vectors and bring them to the standardized form. A
vector of n pieces of TVG is defined as:

Ui = (xi1, xi2), i = 1, 2, · · ·, n (6)

The Euclidean distance D(a, b) is used to express the distance between the different
samples i and j as follows:

D
(
Ui, Uj

)
=

√√√√ 2

∑
k=1

(
xik − xjk

)2
(7)

3. Results
3.1. Evaluation Data

Thirteen pieces of TVG were randomly chosen to test the above described six parame-
ters. The evaluation parameters were given according to Tables 2–7. The testing results are
shown in Table 8.
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Table 8. Testing results of characteristic parameters of TVG.

Sample Z1 Z2 Z3 Z4 Z5 Z6

1 9 9 8 9 7 8
2 7 8 7 9 8 9
3 7 8 6 7 8 8
4 8 9 8 7 8 7
5 8 8 7 5 7 7
6 7 7 6 5 6 7
7 8 9 9 7 7 8
8 7 6 8 7 7 7
9 7 7 8 5 8 8

10 7 8 7 7 6 7
11 8 8 8 7 8 9
12 8 9 8 9 8 7
13 9 8 8 9 7 8

3.2. PCA Process and Results

To standardize data in Table 8, average values and standard deviations were calculated
at first (see Table 9). After that the data were standardized using the normalization method.
The results can be seen in Table 10.

Table 9. Average values and standard deviations of sample parameters.

Parameter Average Value Standard Deviation

Z1 7.69 0.751
Z2 8 0.913
Z3 7.54 0.877
Z4 7.15 1.519
Z5 7.31 0.751
Z6 7.69 0.751

Table 10. Standardized results of sample parameters.

Sample z1 z2 z3 z4 z5 z6

1 1.74111 1.09545 0.52623 1.21529 −0.40967 0.40967
2 −0.92176 0 −0.61394 1.21529 0.92176 1.74111
3 −0.92176 0 −1.75412 −0.10127 0.92176 0.40967
4 0.40967 1.09545 0.52623 −0.10127 0.92176 −0.92176
5 0.40967 0 −0.61394 −1.41784 −0.40967 −0.92176
6 −0.92176 −1.09545 −1.75412 −1.41784 −1.74111 −0.92176
7 0.40967 1.09545 1.66641 −0.10127 −0.40967 0.40967
8 −0.92176 −2.19089 0.52623 −0.10127 −0.40967 −0.92176
9 −0.92176 −1.09545 0.52623 −1.41784 0.92176 0.40967

10 −0.92176 0 −0.61394 −0.10127 −1.74111 −0.92176
11 0.40967 0 0.52623 −0.10127 0.92176 1.74111
12 0.40967 1.09545 0.52623 1.21529 0.92176 −0.92176
13 1.74111 0 0.52623 1.21529 −0.40967 0.40967

PCA was performed afterwards on the data from Table 10 using Statistical Product and
Service Solutions (SPSS) software, and the results are shown in Table 11. Six components
were selected from the initial solution. The total variance of the original variables was calcu-
lated, giving the cumulative contribution rate of 100%. Two components with λ exceeding
one (2.607 and 1.314) were selected as the most informative, whose contribution rates were
found to be 43.455% and 21.906%, respectively, resulting in the cumulative contribution
rate of 65.361%. In this case, PCA is satisfactory because most of the information about the
parameters of the samples could be successfully extracted.
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Table 11. Variance expression of major parameters from PCA.

Element λ Contribution Rate (%) Cumulative Contribution Rate (%)

1 2.607 43.455 43.455
2 1.314 21.906 65.361
3 0.751 12.51 77.871
4 0.613 10.214 88.085
5 0.451 7.509 95.594
6 0.264 4.406 100

The coefficients of elements 1 and 2 were afterwards calculated using the regression
method in SPSS software. The results are available in Table 12, where z1 and z2 components
account for a major proportion. This means that surface stress and vacant pillars exert a
significant influence on the TVG damage, which agrees with a practical situation.

Table 12. Element coefficients.

Parameter Element 1 Element 2

z1 0.424 −0.184
z2 0.347 −0.046
z3 0.288 −0.012
z4 0.255 0.138
z5 −0.076 0.556
z6 −0.085 0.565

According to the data in Table 12 and Formula (1), the new variables were determined
as follows:{

p1 = 0.424z1 + 0.347z2 + 0.288z3 + 0.255z4 − 0.076z5 − 0.085z6
p2 = −0.184z1 − 0.046z2 − 0.012z3 + 0.138z4 + 0.556z5 + 0.565z6

(8)

In turn, the scores of two principal components were generated by calculating the
standardized values from Table 10 using Formula (8). The results can be found in Table 13.

Table 13. PCA scores.

Sample Element 1 Element 2

1 1.57675 −0.20624
2 −0.47615 1.83955
3 −1.02674 0.92008
4 0.68759 −0.15389
5 −0.25445 −1.01149
6 −1.42654 −1.44314
7 1.00464 −0.15629
8 −0.91717 −0.49734
9 −1.086 0.76275

10 −0.38296 −1.32612
11 0.082 1.40016
12 1.02268 0.02739
13 1.19635 −0.15542

3.3. HCA Process and Results

HCA was applied to the damage-inducing parameters of thirteen TVG pieces by
using SPSS software. Table 14 shows the Euclidean distances between the samples. The
first minimum Euclidean distance (0.168) was found for samples 3 and 9, meaning that.
According to HCA, these can be classified into one kind. The next Euclidian distance (0.185)
linked samples 7 and 12.
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Table 14. Matrix of Euclidean distances between each sample.

Sample
Euclidean Distance

1 2 3 4 5 6 7 8 9 10 11 12 13

1 0 2.898 2.837 0.891 2 3.248 0.574 2.511 2.834 2.257 2.194 0.601 0.384
2 2.898 0 1.072 2.308 2.86 3.417 2.485 2.378 1.237 3.167 0.71 2.352 2.603
3 2.837 1.072 0 2.023 2.08 2.397 2.299 1.422 0.168 2.337 1.208 2.235 2.47
4 0.891 2.308 2.023 0 1.274 2.476 0.317 1.641 1.996 1.588 1.668 0.381 0.509
5 2 2.86 2.08 1.274 0 1.249 1.522 0.839 1.959 0.34 2.435 1.646 1.685
6 3.248 3.417 2.397 2.476 1.249 0 2.751 1.074 2.232 1.05 3.219 2.857 2.922
7 0.574 2.485 2.299 0.317 1.522 2.751 0 1.952 2.284 1.815 1.809 0.185 0.192
8 2.511 2.378 1.422 1.641 0.839 1.074 1.952 0 1.271 0.986 2.144 2.01 2.141
9 2.834 1.237 0.168 1.996 1.959 2.232 2.284 1.271 0 2.204 1.331 2.233 2.46
10 2.257 3.167 2.337 1.588 0.34 1.05 1.815 0.986 2.204 0 2.766 1.951 1.966
11 2.194 0.71 1.208 1.668 2.435 3.219 1.809 2.144 1.331 2.766 0 1.664 1.914
12 0.601 2.352 2.235 0.381 1.646 2.857 0.185 2.01 2.233 1.951 1.664 0 0.252
13 0.384 2.603 2.47 0.509 1.685 2.922 0.192 2.141 2.46 1.966 1.914 0.252 0

Table 15 depicts the condensation states of all TVG samples, and the connection
statistics between Clusters 1 and 2 were used for clustering. Based on the results from
Table 14, samples 3 and 9 were clustered into one kind with a coefficient of 0.168. Another
clustering occurred between samples 7 and 12 with a coefficient of 0.185. The next possible
clustering was between samples 7 and 13 as sample 13 joined with sample 7 and sample 12,
with the coefficients of 0.192, and so on.

Table 15. Condensation states of TVG samples.

Stage
Clustering Combination

Coefficient
First Appeared Order Cluster

Next Stage
Cluster 1 Cluster 2 Cluster 1 Cluster 2

1 3 9 0.168 0 0 10
2 7 12 0.185 0 0 3
3 7 13 0.192 2 0 5
4 5 10 0.34 0 0 8
5 4 7 0.317 0 3 6
6 1 4 0.891 0 5 11
7 2 11 0.71 0 0 10
8 5 8 0.839 4 0 9
9 5 6 1.249 8 0 11
10 2 3 1.072 7 1 12
11 1 5 2 6 9 12
12 1 2 2.898 11 10 0

Figure 3 shows a tree diagram as a result of HCA of the selected data. The distances
between different kinds were mapped in accordance with numbers 0 to 25. As expected,
the samples could be classified into the three groups, if drawing a line at a point 15 on
the abscissa. The first kind composed samples 3, 9, 2, and 11. The second was formed by
sample 7, 12, 13, 4, and 1, and the third one corresponded to sample 5, 8, 10, and 6.

It is noteworthy that the groups presented above were obtained according to the
distances between the corresponding clusters only. In this respect, it is difficult to say
which of the kinds is the best. To perform the quality analysis of the data, PCA was
involved in the discussion. As seen in Table 11, the contribution rate of element 1 was
obviously the largest, followed by that of element 2. The analysis of scores from Table 13
for each sample at elements 1 and 2 revealed that element 1 including samples 7, 12, 13, 4,
and 1 got the highest score of 0.68759 and even more, which indicated the highest quality
as a whole. In turn, the lower scores of the group including samples 3, 9, 2, and 11 and the
kind formed by samples 5, 10, 8, and 6 meant the lower quality. However, distinguishing
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the better group among the latter two kinds is a challenge that requires a further analysis
of element 2. While the scores of the group including samples 3, 9, 2, and 11 are above zero,
those of the kind with samples 5, 10, 8, and 6 are below zero. Therefore, the quality of the
former kind of samples is better. The relevant grade classification of TVG can be found in
Table 16.
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Table 16. Grade classification of TVG.

Grade Grade Meaning Corresponding Sample Number

Grade I Minor damage 1, 4, 7, 12, 13
Grade II Mediate damage 2, 3, 9, 11
Grade III Serious damage 5, 6, 8, 10

Besides, the average values on elements 1 and 2 of the corresponding samples were
calculated with respect to the three grades of damage, and the results are shown in Table 17.

Table 17. Average values for two principal components of each grade.

Grade Sample Number Average Value of Element 1 Average Value of Element 2

Grade I 5 1.09760 −0.12889
Grade II 4 −0.62672 1.23063
Grade III 4 −0.74528 −1.06952

In this respect, evaluating the performance of new TVGs can be implemented through
the calculation of Euclidean distances of sample’s two principal components and their
average values. Each minimum Euclidean distance between the samples allows them to be
automatically classified into a certain kind.

3.4. Evaluation Model Verification

The damage evaluation model of TVG can be summarized according to the evaluation
process described above. First, six characteristic parameters were tested for the new
samples. Each parameter was then standardized and two principal components were
found. After that, Euclidean distances of the average values were calculated for main
components, allowing one to extract various grades of the samples. Finally, the sample
grade could be classified into the kinds with the minimum distance. The whole process of
evaluation and verification is shown in Figure 4.
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Taking a new sample of TVG and testing six characteristic parameters result in: Z1 = 8,
Z2 = 9, Z3 = 7, Z4 = 7, Z5 = 8, and Z6 = 8. Standardizing them using data in Table 9 provides
the values: z1 = 0.41278, z2 = 1.09529, z3 = −0.61574, z4 = −0.09875, z5 = 0.91877, and
z6 = 0.41279. Putting them into Formula (8) gives two principal components as p1 = 0.24766,
p2 = −0.61149. Applying Formula (7) ensures Euclidean distances between the new samples’
principal components and the corresponding average values from Table 17, and the results
can be found in Table 18. According to these data, the new sample is close to Grade I and
can thereby be classified with respect to this grade.

Table 18. Euclidean distances between new samples’ principal components and the average values
for each grade.

Grade Euclidean Distance

Grade I 1.12719
Grade II 1.17630
Grade III 1.95236

4. Conclusions

The damage evaluation method of TVG was proposed based on the PCA and HCA
multivariate statistical techniques. Six major characteristic parameters associated with the
TVG damage were adopted and the evaluation parameters as the performance indicators
were specified as well. In particular, PCA of six characteristic parameters enabled one to
establish that surface stress and vacant pillars had a significant influence on the damage
of TVG. Two new evaluation parameters, being in the linear correlation with original
variable parameters, were created as well. The calculation of Euclidean distances through
HCA of data allowed TVG to be classified into the three kinds with respect to the degree
of damage. The evaluation method developed in this work was shown to be simple
and reliable, providing references for damage detection of TVG and product quality
improvement strategy.
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