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Abstract: Hyperspectral sensors are passive instruments that record reflected electromagnetic radi-
ation in tens or hundreds of narrow and consecutive spectral bands. In the last two decades, the 
availability of hyperspectral data has sharply increased, propelling the development of a plethora 
of hyperspectral classification and target detection algorithms. Anomaly detection methods in hy-
perspectral images refer to a class of target detection methods that do not require any a-priori 
knowledge about a hyperspectral scene or target spectrum. They are unsupervised learning tech-
niques that automatically discover rare features on hyperspectral images. This review paper is or-
ganized into two parts: part A provides a bibliographic analysis of hyperspectral image processing 
for anomaly detection in remote sensing applications. Development of the subject field is discussed, 
and key authors and journals are highlighted. In part B an overview of the topic is presented, start-
ing from the mathematical framework for anomaly detection. The anomaly detection methods were 
generally categorized as techniques that implement structured or unstructured background models 
and then organized into appropriate sub-categories. Specific anomaly detection methods are pre-
sented with corresponding detection statistics, and their properties are discussed. This paper rep-
resents the first review regarding hyperspectral image processing for anomaly detection in remote 
sensing applications. 

Keywords: target detection; Reed-Xiaoli algorithm; background models; kernel-based methods; 
representation models 
 

1. Introduction 
Hyperspectral imaging (HSI) is an established and recognized technique in numer-

ous applications, such as agriculture and forestry [1], the food industry [2], humanitarian 
demining [3,4], medicine [5], search and rescue missions [6,7], and water resources [8]. 
Hyperspectral sensors are passive instruments that record reflected electromagnetic radi-
ation in tens or hundreds of narrow and consecutive spectral bands. In remote sensing 
applications, the primary radiation source in visible, near-infrared, and shortwave infra-
red electromagnetic spectrum regions is the Sun. In contrast, in other applications (i.e., 
food science or medicine), artificial radiation sources can be used. HSI relies on the fact 
that every material possesses a unique spectral signature. A spectral signature or spectral 
reflectance refers to unique reflectance (ratio of reflected and incident electromagnetic ra-
diation) variation as a function of wavelength. 

The ability to detect or identify materials based on their spectral signatures resulted 
in the development of two leading processing chains of hyperspectral images: classifica-
tion and target detection (TD). Classification arranges pixels in spectrally disjoint thematic 
classes. TD aims to find predefined objects or materials in the image or solve the binary 
problem of whether the pixel under test (PUT) belongs to some general pattern of the 
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image or deviates from it. In other words, TD needs to determine whether the PUT be-
longs to the background or is a target. Even though TD can be treated as a binary classifi-
cation problem, at least on the theoretical scale, there are compelling reasons why these 
two processing chains should be separated. For something to be considered a target, it 
should cover only a negligible image area. An image would then consist of a background 
class that would contain all or almost all image pixels and a scarcely populated or empty 
target class. An optimization criterion that minimizes classification error would lead to 
classifying all pixels as a background and result in missed detections, simultaneously 
achieving very high classification accuracy. More detailed discussion on this topic can be 
found in [9]. 

When TD algorithms are used to discover predetermined materials or objects, they 
are called spectral matching detection algorithms [10] or spectral signature-based target 
detectors [11]. These algorithms can be regarded as examples of supervised learning or 
supervised TD, as they require a-priori knowledge of target spectral signature. Spectral 
matching detection algorithms assess the similarity between the PUT and the known spec-
tral signature. Required spectral signatures can be obtained from a spectral library, by a 
field measurement with a spectroradiometer, or by identification of the target pixel in the 
hyperspectral image. If spectral signatures are acquired from a spectral library or by a 
spectroradiometer, they are usually expressed in reflectance units. Although TD in hyper-
spectral images relies on spectral signatures that consist of dimensionless reflectance val-
ues, hyperspectral sensors originally measure spectral radiance instead of reflectance. 
Spectral radiance is a radiant flux in a given direction per unit projected area per unit solid 
angle as a function of wavelength [12]. Illumination conditions, sensor characteristics, and 
atmospheric transmission are the leading causes of the differences between reflectance 
and radiance spectrum. Conversion of at-sensor radiance to ground pixel reflectance spec-
trum requires radiometric calibration that consists of sensor calibration and atmospheric, 
solar, and topographic correction [13]. This step is essential, as it dramatically influences 
detection results. Radiometric calibration is unnecessary if a target pixel can be identified 
in the hyperspectral image, but this case is usually unfeasible in real-life applications. 

Anomaly detection methods in hyperspectral images refer to a TD class that does not 
require any a-priori knowledge about a hyperspectral scene or target spectrum and, there-
fore, can be regarded as unsupervised learning techniques. Based on statistical techniques, 
models, or assumptions, unsupervised learning methods aim to find regularities in the 
input data [14]. A structure in the input space is presumed such that some patterns happen 
more than others, while some occur rarely. The goal of unsupervised learning is to dis-
cover and analyze these patterns. Hence, anomaly detection methods can be performed 
in reflectance, radiance, or any other units. Basically, anomaly detection methods try to 
model the image background, and pixels with a spectrum that does not fit the defined 
background model are then proclaimed as anomalies [9–11,15]. Consequently, anomaly 
detectors are generally unable to distinguish detected targets between each other, nor can 
they judge whether the detected anomaly is just a rare pixel or a target of interest. How-
ever specific techniques, such as described in [16], have been developed to discriminate 
anomalies between each other. 

Desired characteristics of anomaly detectors can be identified: high probability of de-
tection and low false alarm rate, repeatability of detection performance in different test 
scenarios and scenes with different levels of complexity, automatic determination of de-
tection (test) statistic threshold, low computational complexity, ability to perform in a real-
time, constant false alarm rate (CFAR) operation under the selected statistical model, and 
robustness of detection performance in regard to a parameter selection (detection perfor-
mance is not significantly influenced by small changes in its parameters).  

A variety of approaches in background modeling have been developed on the basis 
of a general background model, a spatial model (global, local, or quasi-local), the ability 
to detect resolved (full pixel) or unresolved (sub-pixel) anomalies, detection statistic se-
lection, and threshold determination. 
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To the best of our knowledge, to date no review papers have been published on hy-
perspectral image processing for anomaly detection in remote sensing applications. How-
ever, there are papers that are formally classified as research papers but provide a good 
overview of the subject area, including Manolakis [10], Matteoli, Diani, and Corsini [11], 
Matteoli, Diani, and Theiler [17], and Nasrabadi [18]. Nevertheless, the most recent of 
these was written almost 10 years ago, and in the interim, some new approaches in hyper-
spectral anomaly detection have been developed. This paper is the first review dealing 
with hyperspectral image processing for anomaly detection in remote sensing applica-
tions. 

The paper is organized into two parts, A and B. The first part deals with the biblio-
metric analysis, and the second part, with a methodological overview of the field. The 
research in bibliometric analysis was conducted to determine the trends and future re-
search challenges in this field. Part B contains the mathematical framework of anomaly 
detection methods used on hyperspectral images along with a presentation of relevant 
anomaly detection techniques. 

2. Part A: Bibliometric Analysis 
The main goal of the bibliometric analysis performed in this research was to answer 

the following research questions (RQ): 
• RQ 1. What is the trend among scientific publications on hyperspectral image pro-

cessing for anomaly detection in remote sensing applications? 
• RQ 2. What are future research directions in this scientific field? 

Bibliographic databases were analyzed in this research, resulting in the selection of 
the Web of Science (Web of Knowledge, https://apps.webofknowledge.com) and Scopus 
(https://www.scopus.com/) databases [19,20] as the most relevant for this research topic. 
Using the same search strategy and criteria, Web of Science found 725 documents, while 
the Scopus database provided 973 documents. Hence, the results of the Scopus biblio-
graphic database were used for subsequent analysis. According to the Scopus Content 
Coverage Guide [21] data from January 2020, it covers more than 5000 publishers and 
contains over 25,000 active titles with more than 77 million publications. The Scopus rec-
ords date back to 1788, with over 6.6 million records published prior to 1970 [21]. The 
main focus of the SCOPUS database is classified in four subject clusters [21]: health sci-
ences (30.4%), physical sciences (28.0%), social sciences (26.2%) and life sciences (15.4%). 

To select relevant publications on hyperspectral image processing for anomaly de-
tection in remote sensing applications, the PRISMA methodology [22] for systematic re-
views was followed. The search strategy was conceived around three keywords: hyper-
spectral, anomaly, and detection, which were interconnected with the conjunction AND. 
The chosen terms were searched in the publication titles, abstracts, or authors' keywords 
to compile an extensive document list. As the research was conducted in January 2021, it 
encompassed publications published up to the end of 2020. No exclusion criterion (EC) 
was defined for the research time span, as the goal of RQ 1 was to identify the research 
trend over the years. To emphasize, the manuscript selection was initiated with two in-
clusion criteria (IC): 
• IC 1. The search string (TITLE-ABS-KEY (hyperspectral AND anomaly AND detec-

tion)) 
• IC 2. The publications are written in English. 
The exclusion criteria (EC) define what publications should be discarded from the re-
search collection. In this work, two EC were defined: 
• EC 1. Reviews and conference reviews, books and book chapters, letters and notes. 
• EC 2. Publications with less than three citations per year. 

The first EC resulted in the selection of articles and conference papers that could be 
seen as the primary sources of scientific contributions, whereas the excluded document 
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types might not have provided sufficiently novel material on the research subject. The 
second EC served as the relevance criterion, such that only highly-cited publications were 
selected for final bibliometric analysis. The overall procedure is depicted in Figure 1. 

The bibliometric analysis was performed in the programming language R, using the 
bibliometrix [23] package. Bibliometrix is an open-source R-package that enables compre-
hensive science mapping analysis [23]. 

 
Figure 1. PRISMA flow chart of the procedure for selection of relevant publications. 

2.1. Descriptive Bibliometric Analysis 
The overview of the descriptive bibliometric statistics for the dataset (Figure 1) is 

presented in Table 1. The search strategy yielded 133 relevant publications on hyperspec-
tral image processing for anomaly detection in remote sensing applications that were pub-
lished in 41 sources (Table 1). The number of citations per document, on average, was 
72.65, or 8.14 citations per document per year, respectively. In the selected publications, a 
total of 4276 documents were cited. Most publications that fulfilled the search strategy 
were journal articles (118), with a smaller fraction of conference papers (15). There were 
only five documents created by a single author, while the average number of co-authors 
per document was 3.71. In the end, the collaboration index [24] was calculated as the ratio 
of the total number of authors of multi-authored documents and the total number of 
multi-authored documents, and scored the value of 2.3. 

Table 1. Summary bibliometric statistics of the relevant publications on hyperspectral image pro-
cessing for anomaly detection in remote sensing applications acquired by the presented search 
strategy (Figure 1). 

Main Information Result 
Time span 2000–2020 

Sources 41 
Total number of documents 133 

Average years from publication 7.41 
Average citations per documents 72.65 

Average citations per year per doc 8.14 
References 4276 

Document types  
Article 118 

Conference paper 15 
Authors and collaboration  

Authors 299 
Authors of single-authored documents 5 
Authors of multi-authored documents 294 
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Co-Authors per Documents 3.71 
Collaboration Index 2.3 

The core sources of relevant documents, by Bradford’s law [25], were IEEE Transac-
tions On Geoscience And Remote Sensing and IEEE Geoscience And Remote Sensing Letters, 
which accounted for a total of 54 publications (Table 2). 

Table 2. The most relevant sources (first two zones by Bradford’s law [25]), sorted in descending 
order by the number of documents. 

Rank Source Name Documents Zone1 

1 
IEEE Transactions On 
Geoscience And Re-

mote Sensing 
39 1 

2 
IEEE Geoscience And 
Remote Sensing Let-

ters 
15 1 

3 

IEEE Journal Of Se-
lected Topics In Ap-
plied Earth Observa-

tions And Remote 
Sensing 

15 2 

4 Remote Sensing 9 2 

5 

Proceedings Of SPIE - 
The International So-
ciety For Optical En-

gineering 

5 2 

6 
Remote Sensing Of 

Environment 3 2 

7 
Eurasip Journal On 
Advances In Signal 

Processing 
2 2 

8 IEEE Access 2 2 
1 By Bradford’s law [25]. 

The top journal (Table 2) was appreciated among the first publications on this topic, 
and the appearance of the consequent sources followed their popularity (Figure 2a). The 
first document was published in the IEEE Geoscience And Remote Sensing Letters (rank 2) in 
2005, in the IEEE Journal Of Selected Topics In Applied Earth Observations And Remote Sensing 
in 2012, and in the Remote Sensing in 2014. Researchers in this scientific field were most 
productive in 2018 (Figure 2b). However, the articles published in 2002 and 2005 attracted 
the most attention from the scientific community (Figure 2b). 
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(a) 

 
(b) 

Figure 2. (a) Source trends for top 4 journals by number of documents (Table 2). (b) Trends in sci-
entific production depicted by the number of articles and average citations per year. 

2.2. Authors Analysis 
The 20 most relevant authors, sorted by number of total citations and respective bib-

liometric statistics, are listed in Table 3. Chein-I Chang was the most cited author, with 
1259 citations from 10 publications. He was followed by Du Qian with 1044 citations, who 
was the second most productive author with 12 publications. The most productive author, 
with 13 publications, was Zhang Liangpei. 

Scientific production over the time span of the research (Table 1) for the top 10 au-
thors by number of articles and total number of citations per year is presented in Figure 
3. The most cited author has also been the most persistent author in the field, with his first 
publication originating back in 2001 and the last published in 2019. It is interesting to see 
that the second most cited author has also been the second most persistent, publishing 
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articles from 2007 to 2019. It can be noticed that some authors listed in Figure 3 are not 
listed in Table 3, and the reason is that sorting in Figure 3 included the normalization of 
citations per year. Hence, some authors had recently published quality papers with high 
citation rates, but the total number of citations was still not high enough to earn them a 
place in Table 3. 

Table 3. The statistics of the 20 most relevant authors in the topic, sorted by total number of cita-
tions. 

Author SCOPUS  
Author ID H-index Total Cita-

tions 
Number of Publi-

cations 

First  
Publication  

(Year) 
Chang CI 35253647700 10 1259 10 2001 

Du Q 7202060063 11 1044 12 2007 
Zhang L 8359720900 13 962 13 2011 

Du B 55020400300 9 799 9 2011 
Nasrabadi NM 7006312852 3 724 3 2003 

Stocker AD 7006884172 2 698 2 2002 
Kwon H 7401838362 3 611 3 2003 
Diani M 7003735775 6 597 6 2010 

Matteoli S 24076749300 6 597 6 2010 
Beaven SG 57206689538 1 554 1 2002 

Hoff LE 7005107977 1 554 1 2002 
Schaum AP 57207501822 1 554 1 2002 
Stein DWJ 7401616297 1 554 1 2002 
Winter EM 7102040936 1 554 1 2002 
Fowler JE 7402370679 4 513 4 2007 
Chiang SS 7201472110 2 511 2 2001 

Li J 24481713500 5 496 5 2014 
Corsini G 7103074007 5 486 5 2010 

Li W 56215159000 4 442 4 2015 
Plaza A 7006613644 5 420 5 2010 

 
Figure 3. Scientific production of top 10 authors in the field over the time span of the research, 
determined and sorted by number of articles (N. articles) and total number of citations per year 
(TC per year). The figure was created using the bibliometrix R-package [23]. 

Tables 4 and 5 contain the top documents measured by global and local citations, 
respectively. Table 4 relates to the publications that were selected within the search strat-
egy, sorted by global citations. Table 5 refers to documents that were highly cited locally 
but not enclosed by the search strategy results. 
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The work of Stein et al. [15] received the highest number of global citations and the 
second-highest number of local citations. In the analyzed document list (Figure 1), the 
work of Kwon and Nasrabadi [26] was appreciated the most, but it also attracted signifi-
cant attention from the general scientific community, with 470 global citations. The more 
recent work on collaborative representation for hyperspectral anomaly detection by Li 
and Du [27] should be underlined, as it received great attention, both globally or locally. 

Table 4. The top 10 documents with the highest number of global citations. 

Document Reference Global Citations Local  
Citations 

Stein, D.W.J.; Beaven, S.G.; Hoff, L.E.; Winter, E.M.; Schaum, A.P.; Stocker, A.D. Anom-
aly detection from hyperspectral imagery. IEEE Signal Process Mag 2002, 19, 58-69, 

doi:10.1109/79.974730 
[15] 554 54 

Kwon, H.; Nasrabadi, N.M. Kernel RX-algorithm: A non-linear anomaly detector for 
hyperspectral imagery. IEEE Trans Geosci Remote Sens 2005, 43, 388-397, 

doi:10.1109/TGRS.2004.841487 
[26] 470 56 

Chang, C.I.; Chiang, S.S. Anomaly detection and classification for hyperspectral im-
agery. IEEE Trans Geosci Remote Sens 2002, 40, 1314-1325, 

doi:10.1109/TGRS.2002.800280 
[28] 386 51 

Ren, H.; Chang, C., I.. Automatic spectral target recognition in hyperspectral imagery. 
IEEE Trans. Aerosp. Electron. Syst. 2003, 39, 1232-1249, doi:10.1109/TAES.2003.1261124. 

[29] 360 5 

Matteoli, S.; Diani, M.; Corsini, G. A tutorial overview of anomaly detection in hyper-
spectral images. IEEE Aerosp Electron Syst Mag 2010, 25, 5-27, 

doi:10.1109/MAES.2010.5546306. 
[11] 322 33 

Du, Q.; Fowler, J.E. Hyperspectral Image Compression Using JPEG2000 and Principal 
Component Analysis. IEEE Geoscience and Remote Sensing Letters 2007, 4, 201-205, 

doi:10.1109/LGRS.2006.888109. 
[30] 321 2 

Banerjee, A.; Burlina, P.; Diehl, C. A support vector method for anomaly detection in 
hyperspectral imagery. IEEE Trans Geosci Remote Sens 2006, 44, 2282-2291, 

doi:10.1109/tgrs.2006.873019. 
[31] 286 38 

Li, W.; Du, Q. Collaborative representation for hyperspectral anomaly detection. IEEE 
Trans Geosci Remote Sens 2015, 53, 1463-1474, doi:10.1109/tgrs.2014.2343955. 

[27] 251 42 

Penna, B.; Tillo, T.; Magli, E.; Olmo, G. Transform Coding Techniques for Lossy Hyper-
spectral Data Compression. IEEE Trans Geosci Remote Sens 2007, 45, 1408-1421, 

doi:10.1109/TGRS.2007.894565. 
[32] 241 3 

Du, B.; Zhang, L. A Discriminative Metric Learning Based Anomaly Detection Method. 
IEEE Trans Geosci Remote Sens 2014, 52, 6844-6857, doi:10.1109/TGRS.2014.2303895. 

[33] 220 27 

Although the search strategy did not cover it, the paper published in 1990 by Reed 
and Yu [34] received by far the highest number of local citations. In that paper, the foun-
dations of the well-known (Reed-Xiaoli, RX) hyperspectral anomaly detector were estab-
lished. This algorithm is still popular; it is widely regarded as the benchmark hyperspec-
tral anomaly detection technique and is often used in the comparison of newly developed 
anomaly detectors. 

Manolakis and Shaw (Table 5) are among the pioneers of hyperspectral target and 
anomaly detection, and their work is also highly cited. The diligent work of Nasrabadi 
has been recognized, accounting for as many as four out of the 10 top locally cited publi-
cations in Table 5. 

Table 5. The top 10 documents with the highest number of local citations that were not selected 
within the applied search strategy (Figure 1). 

Document Reference Local  
Citations 

Reed, I.S.; Yu, X. Adaptive Multiple-Band CFAR Detection of an Optical Pattern with Unknown Spectral 
Distribution. IEEE Trans. Acoust. Speech Sign. Proces. 1990, 38, 1760-1770, doi:10.1109/29.60107. [34] 90 
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Carlotto, M.J. A cluster-based approach for detecting man-made objects and changes in imagery. IEEE Trans 
Geosci Remote Sens 2005, 43, 374-387, doi:10.1109/TGRS.2004.841481 [35] 32 

Manolakis, D.; Shaw, G. Detection algorithms for hyperspectral imaging applications. IEEE Signal Process 
Mag 2002, 19, 29-43, doi:10.1109/79.974724. [9] 32 

Nasrabadi, N.M. Hyperspectral target detection: An overview of current and future challenges. IEEE Signal 
Process Mag 2014, 31, 34-44, doi:10.1109/MSP.2013.2278992 [18] 21 

Harsanyi, J.C.; Chang, C.I. Hyperspectral Image Classification and Dimensionality Reduction: An Orthogo-
nal Subspace Projection Approach. IEEE Trans Geosci Remote Sens 1994, 32, 779-785, doi:10.1109/36.298007 [36] 19 

Kerekes, J. Receiver operating characteristic curve confidence intervals and regions. IEEE Geoscience and 
Remote Sensing Letters 2008, 5, 251-255, doi:10.1109/lgrs.2008.915928. [37] 17 

Manolakis, D.; Marden, D.; Shaw, G.A. Hyperspectral Image Processing for Automatic Target Detection Ap-
plications. Lincoln laboratory journal 2003, 14, 79-116 [38] 16 

Nasrabadi, N.M. Regularization for spectral matched filter and RX anomaly detector. In Proceedings of Proc 
SPIE Int Soc Opt Eng, 2008 [39] 16 

Chen, Y.; Nasrabadi, N.M.; Tran, T.D. Sparse Representation for Target Detection in Hyperspectral Imagery. 
IEEE J. Sel. Top. Signal Process. 2011, 5, 629-640, doi:10.1109/jstsp.2011.2113170 [40] 16 

Chen, Y.; Nasrabadi, N.M.; Tran, T.D. Hyperspectral Image Classification Using Dictionary-Based Sparse 
Representation. IEEE Trans Geosci Remote Sens 2011, 49, 3973-3985, doi:10.1109/tgrs.2011.2129595. [41] 16 

Figure 4 and Table 6 depict the temporal development of research on hyperspectral 
image processing for anomaly detection in remote sensing applications. Table 6 is based 
on the use of the author’s keywords, and Figure 4, on the document title’s keywords. In 
selecting the author’s keywords presented in Table 6, trivial keywords such as hyperspec-
tral, anomaly, detection, target, background, and similar terms were omitted. Then, the 
most relevant keywords were manually selected from the remaining keywords based on 
keyword frequency and global citation of the respective document. For the creation of 
Figure 4, the most frequent title keywords per year are displayed with the constraint of a 
maximum of three keywords per year. The respective frequency (for the specific year) is 
displayed on a vertical axis in a logarithmic scale, and as can be seen, no trivial keywords 
were omitted, nor was any manual filtering performed. 

Table 6. The topic development expressed by the key author’s keywords over time. The most rele-
vant keywords were filtered and manually selected by authors. 

Year Document 

2001 
Competitive Region Growth, Elliptically Contoured Distributions, Evolutional Algorithm, Kurtosis, Projection Pur-
suit, Spherically Invariant Random Vectors 

2002 Causal RXD, Correlation Matched-Filter-Based Measure, Target Discrimination Measure 
2003 Clustering Algorithms, Dual Window, Eigen Separation Transform, Embedded Computing 

2005 
Kernels, Linear Discriminant Analysis, Orthogonal Subspace Projection/AD, RX Detector, Signal Parameter Estima-
tion 

2006 Bhattacharyya Distance, Signal Subspace Processing, Support Vector Data Description (SVDD) 

2007 
Detection Index, Minimum Description Length, Real-Time (R-T) Processing, Self-Organising Maps, Separability In-
dex, Signal-Subspace Rank, Singular Value Decomposition, Wavelets 

2008 
Karhunen-Love-Transform, Principal Component Analysis (PCA), Kernel PCA, Signal Detection, Spectral Decorre-
lation 

2009 
GPU Processing, Generalized Least Squares, Maximum Autocorrelation Factors, Multivariate Normal Mixture
Model, Principal Autocorrelation Factors 

2010 
Cluster-Based Approach, Feature Selection, Kernel-Based Learning, Quasi-Local Covariance Matrix, Regularization,
Robust Locally Linear Embedding 

2011 
Embedded Systems, Gaussian Kernel, Independent Component Analysis, ROC Space, Sparse Matrix Transform,
Support vector machine (SVM) 

2012 
Clustering, Compressed Sensing, PCA, Segmentation-Based AD, Sparse Kernel-Based Ensemble Learning, Spectral 
Unmixing 

2013 
Bayesian Learning, Dual Window-Based Eigen Separation Transform, Finite Mixture Model, Kernel density estima-
tion (KDE), Multicore Platforms, Multiple-Window AD, Nonlinear PCA 
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2014 
Dimensionality Reduction, High-Order Statistics, Local Sparsity Divergence, Low-Rank (L-R) And Sparse, Matched 
Filter, Robust Regression Analysis, Superpixels, Variable Bandwidth KDE, Weighted-RXD 

2015 
Graph Theory, High Order Statistics, L-R Approximation, Manifold Learning, R-T processing, Residual Analysis, 
Robust Background Estimation 

2016 
Cluster Kernel RX, Dual Clustering, Kernel Collaborative Representation (CR), Local Summation Strategy, Locally
Linear Embedding, ROC, Robust PCA, Sparse Representation (SR), Sparsity Divergence Index, Spectral-Spatial In-
tegration, Tensor Representation 

2017 
3-D ROC, Band Subset Selection, Convolutional Neural Network (NN), Differential Morphology, Edge-Preserving 
Filtering, Joint SR, K-SVD, Multiple Graphs, Autoencoders, Tensor Decomposition 

2018 
A Posteriori AD, Band Selection, Deep Learning, Feature Extraction, Inverse PCA, Iterative AD, L-R Representation, 
Multiple Dictionaries, R-T Applications, Sparse Coding, Structured SR 

2019 
Adaptive Weighting, Constrained SR, Deep Brief Network, Dictionary Learning, Fractional Fourier, Local Summa-
tion, Low Dimensional Manifold Model, Structure Tensor 

2020 Density Peak Clustering, Isolation Forest, Radiative Transfer Modeling 

 
Figure 4. The development of the theme described by the title keywords. The graph represents the 
use of the most frequent title keywords (their frequencies are expressed on a logarithmic scale) 
over time. The figure was created using the bibliometrix R-package [23]. 

The Word cloud presented in Figure 5 enables clear insight into the trends and future 
scientific research in hyperspectral image processing for anomaly detection in remote 
sensing applications. The figure was generated using the document title keywords, simi-
larly as in Figure 4, but here, the total frequency over the analyzed time span was consid-
ered. The total frequencies determined the respective size of words, so the most frequent 
keywords were written with more prominent characters. 

By analyzing Figures 4 and 5 and Table 6, a recent trend in the development of rep-
resentation-based techniques can be identified. Low-rank, spare, collaboration, joint, and 
dictionary are terms that can be related to these techniques. Hence, a special section is 
dedicated to these methods in Part B of this paper. 
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Figure 5. Word cloud generated from the most frequent keywords found in the titles of the analyzed documents. The size 
of the word is proportional to its frequency. The figure was created using the bibliometrix R-package [23]. 

3. Part B: An Overview of Hyperspectral Image Processing for Anomaly Detection in 
Remote Sensing Applications 

This section provides a mathematical framework for anomaly detection, followed by 
the description of specific anomaly detection techniques that are generally divided into 
methods that adopt structured background models or unstructured background models. 

4. Mathematical Framework for Anomaly Detection 
The mathematical framework for anomaly detection arises from the signal detection 

theory [42], and is based on the field of statistical or binary hypothesis testing. A hyper-
spectral image or a hyperspectral cube can be regarded as a rank-3 tensor arranged in two 
spatial dimensions and one spectral dimension. If we consider a hyperspectral cube hav-
ing N pixels and 𝐾 spectral bands (𝑋 ∈ ℝே×௄), then a pixel spectrum could be represented 
as the realization of a random vector (𝑋) that can be denoted as 𝑥 = ሾ𝑥ଵ,  𝑥ଶ, . . . , 𝑥௄  ሿ் . 
Given an observed pixel 𝑥, it needs to be decided between two disjunct premises: 𝐻෡൫𝑥൯ = ൜𝐻଴:  target absent ( 𝑥 is a background pixel )             𝐻ଵ:  target present ( 𝑥 is a target pixel )          . (1) 

In general, a statistical hypothesis test is a rule for division of input 𝐾-dimensional 
feature space in two segments: space (𝐴) consistent with the null hypothesis 𝐻଴  and its 
complement (B) that contains values consistent with the alternative hypothesis 𝐻ଵ. In sig-
nal detection theory terminology, it can be stated that a decision about the proper hypoth-
esis is determined by a test or detection statistic (𝛬, 𝛬 ൫𝑥൯ = 𝜆) whose detection threshold 
or critical value (𝜂 ) splits input feature space into segments A (𝐻଴: 𝛬 ൫𝑥൯ ≤ 𝜂 ) and B 
(𝐻ଵ: 𝛬൫𝑥൯ > 𝜂). The detection statistic usually maps input n-dimensional feature space (𝐾-
dimensional in our specific case) into 1-dimensional space, thus enabling separation of 
spaces 𝐴 and B on a line instead of some high dimensional space.  

Upon hypothesis testing, two types of erroneous inferences could arise: a type I error 
occurs if a null hypothesis 𝐻଴ is rejected while being true, and a type II error occurs if the 𝐻଴ is accepted when the alternative hypothesis 𝐻ଵ is true. The probability of a type I error 
is usually denoted with α, commonly called the significance level. It can be mathemati-
cally formulated as [11]: 
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𝛼 = 𝑃൛𝛬(𝑥) > 𝜂|𝐻଴ൟ = ׬ 𝑓௸|ுబ(𝜆) d𝜆 = ׬ 𝑓௑|ுబ൫𝑥൯ d𝑥௫:௸൫௫൯வఎఒவఎ . (2) 

In hyperspectral anomaly detection, a type I error occurs if an observed pixel is pro-
claimed as a target (anomaly) when it actually belongs to the background. Therefore, a 
type I error is also called a false alarm (𝑃ி஺ = 𝛼). The probability of a type II error is usually 
denoted with β, and it can be expressed as [11]: 𝛽 = 𝑃൛𝛬(𝑥) ≤ 𝜂|𝐻ଵൟ = න 𝑓௸|ுభ(𝜆) d𝜆 = න 𝑓௑|ுభ൫𝑥൯ d𝑥௫:௸൫௫൯ஸఎఒஸఎ . (3) 

A type II error happens if an observed pixel is proclaimed as a background pixel 
when it is a target (anomaly), thus resulting in missed detection. When β is known, the 
probability of anomaly detection (𝑃஽) can be directly determined as in [11]: 𝑃஽ = 1 − 𝛽

𝑃஽ = 𝑃൛𝛬(𝑥) > 𝜂 |𝐻ଵൟ = ׬ 𝑓௸|ுభ(𝜆) d𝜆 = ׬ 𝑓௑|ுభ൫𝑥൯ d𝑥𝒙:௸൫𝒙൯வఎఒவఎ . (4) 

The ideal detection statistic could make the probabilities of both error types arbitrar-
ily small, but no such statistical test exists. In statistical decision theory, it is well-accepted 
that decisions based on the likelihood ratio test (LRT) are optimum over numerous per-
formance criteria [10,42]. Let 𝑓(𝑋|𝐻଴) and 𝑓(𝑋|𝐻ଵ) be conditional probability distribu-
tions of observing 𝑥 under 𝐻଴ and 𝐻ଵ respectively. Then, the LRT between (𝑋|𝐻଴) and 𝑓(𝑋|𝐻ଵ) can be derived as [10]: 

𝛬൫𝑥൯ = 𝑓௑|ுభ൫𝑥൯𝑓௑|ுబ൫𝑥൯ 𝐻ଵ><𝐻଴ 𝜂. (5) 

The classical approach in selecting optimum detection statistics is based on the well-
known Neyman-Pearson (NP) lemma [43]. The NP lemma for a given significance level 𝛼 
obtains the test that has the lowest possible probability of missed detection β for all pa-
rameters defined by the alternative hypothesis 𝐻ଵ. In other words, NP is the optimum 
criterion that maximizes the probability of detection for any desired false alarm rate [42]. 
Solution of (5), in an NP sense, is only possible if both hypothesis 𝐻଴ and 𝐻ଵ are simple 
hypotheses. Simple hypotheses have parameters of their conditional probability functions 𝑓(𝑋|𝐻଴) and 𝑓(𝑋|𝐻ଵ) known, but unfortunately, these requirements are rarely fulfilled 
in practical applications. In those cases, sub-optimum criteria that are based on the gener-
alized likelihood ratio test (GLRT) are implemented. In GLRTs, unknown parameters are 
substituted with their maximum likelihood estimates (MLE) [11,38]: 

𝛬ீ௅ோ்൫𝑥൯ = ௙೉|ಹభ൫௫;ణ෡భ൯ ௙೉|ಹబ൫௫;ణ෡బ൯ = ௠௔௫ഛభ ௙೉|ಹభ൫௫;ణ෡భ൯௠௔௫ഛబ ௙೉|ಹబ൫௫;ణ෡బ൯ 𝐻ଵ><𝐻଴ 𝜂, (6) 

where 𝜗መ଴, 𝜗መଵ represent the vectors of unknown parameters. MLEs of unknown parame-
ters are usually determined from the test and/or reference samples that should be inde-
pendent and identically distributed (IID). 

In anomaly detection, no presumptions about the target model are made. Instead, 
background models are developed. In doing so, a wide variety of creative approaches 
were suggested, including the adoption of multivariate normal models [34], subspace pro-
jections [36], and kernel methods [26]. Although attempts have been made to provide the 
in-depth taxonomy of complex hyperspectral anomaly detection methods [10,11] or back-
ground modeling for detection of anomalies in hyperspectral remotely sensed imagery 
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[17], we suggest a simple distinction of anomaly detection methods in two basic catego-
ries: methods that implement unstructured background models and methods that adopt 
structured background models. 

Besides background models, methods could be further specified by the implemented 
spatial model. The spatial model can be one of the following: global, local, or quasi-local. 
If a global model is used, then all or most available hyperspectral pixels are used to char-
acterize the background. In a local model, only the spatial neighbors of PUT are used for 
the description of the background. Quasi-local methods present a trade-off solution to 
global and local models. 

5. Unstructured Background Models 
Fundamental anomaly detection methods implement unstructured background 

models. They are often specified as data-driven, statistical, or probabilistic. These models 
do not assume any specific structure on the hyperspectral cubes based on a-priori 
knowledge, but integrate additive noise in the model.  

Let 𝜇 = ሾ𝜇ଵ, 𝜇ଶ, ⋯ , 𝜇௄ሿ be the mean vector of a hyperspectral cube with K bands, 
where 𝜇ଵ represents the average of all pixels in the first spectral band and 𝜇௄ the average 
of the last spectral band. The mean vector 𝜇 is often called the background centroid or 
background prototype. In this respect, a squared Euclidean distance between PUT (𝑥) and 
background centroid can be used as a simple detection statistic: 𝑑ாଶ(𝑥, 𝜇) = ቀ𝑥 − 𝜇ቁ் ∙ ቀ𝑥 − 𝜇ቁ. (7) 

In hyperspectral images, due to their fine spectral resolution, spectral adjacent bands 
are usually highly correlated. Therefore in (7), a weighting matrix in the form of the in-
verse covariance matrix (𝛤ିଵ) could be added: 𝑑ெଶ (𝑥, 𝜇) = ቀ𝑥 − 𝜇ቁ் ∙ 𝛤ିଵ ∙ ቀ𝑥 − 𝜇ቁ. (8) 

Expression (8) represents the widely known squared Mahalanobis distance [44] be-
tween PUT and background centroid. It should be noticed that distance in (8) is propor-
tional with negative log-likelihood of Gaussian or normal distribution: 𝑑ெ ቀ𝑥, 𝜇ቁ ∝  − log 𝑝𝒩 (𝑥|𝜇, 𝛤), (9) 

where 𝑝𝒩(𝑥|𝜇, 𝛤) = ଵ(ଶగ)మే ∙ቚ௰ቚభమ 𝑒𝑥𝑝 ቆ− 1
2

ቀ𝑥 − 𝜇ቁ୘ ∙ 𝛤ିଵ ∙ ቀ𝑥 − 𝜇ቁቇ. (10) 

Therefore, if a background can be adequately characterized with the multivariate 
normal distribution, then the squared Mahalanobis distance could be an appropriate de-
tection statistic for anomaly detection. The multivariate normal model for anomaly detec-
tion can be written as: 𝑋ห𝐻଴ = 𝐵             ∈ 𝒩 ቀ𝜇, 𝛤ቁ𝑋ห𝐻ଵ = 𝑠 + 𝐵      ∈ 𝒩 ቀ𝑠, 𝛤ቁ, (11) 

where 𝐵 denotes the spectral vector belonging to the background (which incorporates 
additive noise), 𝑠 is the spectral vector of the target, and 𝛤 is the background covariance 
matrix that is assumed to be the same for the background and target class. The most pop-
ular anomaly detector for hyperspectral remote sensed images is based on the multivari-
ate normal model, and it is named the Reed-Xiaoli (RX) algorithm [34]. 

5.1. Reed-Xiaoli (RX) Algorithm 
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The RX algorithm [34] can be considered as the reference in hyperspectral image pro-
cessing for anomaly detection in remote sensing applications, and it has become the stand-
ard with which new anomaly detectors are compared [45–49]. The algorithm idea 
stemmed from the test developed for the detection of radar targets [50], as well as most of 
the detection theory in remote sensing that arose from the processing of radar data. RX is 
an adaptive constant false alarm rate (CFAR) hyperspectral anomaly detection algorithm 
developed from the GLRT [34]. CFAR algorithms exhibit the property that the probability 
of false alarm does not depend on any unknown parameter, and it is a highly desirable 
property in the design of anomaly detectors. It should be noticed that in (11) the covari-
ance matrices for background and target class are assumed to be the same. This condition 
needs to be fulfilled in order to make the RX detector optimum in a Neyman-Pearson 
sense (5), i.e., to hold the CFAR property [38]. 

To date, many implementations of the RX algorithm have been proposed: global, lo-
cal, and quasi-local. Although RX in its original form is a local algorithm, we will describe 
its global variant first as it is the simplest one. The local and quasi-local RX models will 
follow afterward. 

Hyperspectral pixels are considered as random spectral vectors that are IID. These 
pixels are then used for estimation of unknown parameters of the multivariate normal 
distribution: 𝜇 and 𝛤. Consider a hyperspectral cube with a total of N pixels, namely N 
random spectral vectors with K elements (K being the number of spectral bands). The 
global RX detector can be defined as [34]: 

𝐷ோ௑(𝑥|ℬ) = 𝐷ோ௑(𝑥|𝐵) = ቀ𝑥 − 𝜇̂ቁ் ∙ 𝛤෠ିଵ ∙ ቀ𝑥 − 𝜇̂ቁ 𝐻1><𝐻0 𝜆, (12) 

where ℬ represents the theoretical background model, while MLEs 𝜇̂ and 𝛤෠ are deter-
mined as: 𝜇̂ = ଵே ෌ 𝑥௜ே௜ୀଵ

𝛤෠ = ଵேିଵ ෍ ቀ𝑥௜ − 𝜇̂ቁ ∙ ቀ𝑥௜ − 𝜇̂ቁ்ே௜ୀଵ
. (13) 

Theoretical foundations for the local (and native) RX detector were set by Hunt and 
Cannon [51]. They suggested that an optical digital image can be modeled as a nonsta-
tionary multivariate Gaussian random process with a highly space-varying spatially non-
stationary mean vector and spatially stationary or much less space-varying covariance 
matrix. The local RX detector uses the same mathematical methodology as the global RX, 
though it calculates the MLE of unknown parameters (13) using the selected pixels found 
in the PUT's spatial neighborhood (Figure 6). The local neighborhood is usually defined 
using one or more sliding windows (annulus). There are various strategies in selecting the 
number of windows and their sizes. If only one window is used, it presents an outer win-
dow used to estimate all unknown parameters. The most accepted strategy includes the 
use of three distinct windows: guard window and windows for estimation of 𝜇̂ and 𝛤෠, 
with their respective sizes (expressed in widths) 𝑤௚, 𝑤ఓෝ  and 𝑤௰෡  (Figure 6). The guard 
window is the smallest window, and it defines the area from which samples are not taken, 
as there is a possibility that it contains pixels that could be anomalies or pixels that are 
spectral mixtures with anomalies. Inclusion of these pixels in the calculation of 𝜇̂ and 𝛤෠ 
would lead to lower anomaly detection statistic scores and finally decrease the probability 
of detection. Therefore, its size should be set to accommodate for expected target sizes. 
Windows for 𝜇̂ and 𝛤෠, defined as hollow boxes bounded with guard window from the 
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inside are used for estimation of 𝜇̂ and 𝛤෠. It was shown in [52] and [53] that local Gauss-
ianity on the image can be forced by subtracting the nonstationary mean. In [34], it is sug-
gested that residual background is a zero-mean Gaussian and independent in spatial do-
main: 𝑋ห𝐻଴ = 𝐵             ∈ 𝒩 ቀ0, 𝛤෠ቁ𝑋ห𝐻ଵ = 𝑠 + 𝐵      ∈ 𝒩 ቀ𝑠, 𝛤෠ቁ. (14) 

The difference in window sizes for 𝜇̂ and 𝛤෠ arises from the stationarity of these un-
known parameters [51]; the mean should vary more frequently than the covariance ma-
trix. 

 
Figure 6. Geometrical principle of local RX detector with three specific sliding windows: guard 
window and windows for calculation of 𝜇̂ and 𝛤෠, with their respective widths 𝑤௚, 𝑤ఓෝ  and 𝑤௰෡ . 
Detection statistic is calculated in a convolutional manner using the squared Mahalanobis dis-
tance. 

In selecting the largest window size, a balance between two opposing requirements 
should be found. The window for 𝛤෠ should include enough samples for stable determi-
nation of the inverse of the covariance matrix. Swain and Davis [54] argue that a reliable 
estimate of covariance matrix requires at least 10 times and preferably 100 times more 
samples than the number of spectral bands in a hyperspectral image. The opposing re-
quirement states that the window size should be as small as possible to capture a homog-
enous background and reduce the computational load needed for inverse calculation of 
the covariance matrix. 

Quasi-local implementation of the RX detector includes the use of one global covari-
ance matrix but performs local demeaning. This approach requires the calculation of only 
one covariance matrix using all available samples, which leads to a more stable inverse 
and lower computational complexity than the local implementation of the RX detector. 

Advantages of the global RX detector are simple implementation and fast computa-
tion, as there is only one covariance matrix to be inverted. If the assumptions about the 
local multivariate normal model (14) and 𝛤஻ = 𝛤௦ = 𝛤 are fulfilled, then the squared Ma-
halanobis distance follows a non-central chi-squared distribution 𝜒௄ଶ (𝛽) with K degrees 
of freedom and non-centrality parameter 𝛽 [38]: 
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𝐷ோ௑(𝑥|ℬ)~ ൜ 𝜒௄ଶ (0), under 𝐻଴𝜒௄ଶ (𝑑ெଶ ), under  𝐻ଵ, (15) 

thereby enabling the CFAR property.  
The limitation of the local RX detector is that the covariance matrix is determined 

from a small number of high-dimensional and highly correlated samples. That can result 
in rank deficiency of covariance matrix or often leads to instability of its inverse. Matrix 
inversion needs to be calculated for every pixel, which makes the local RX detector com-
putationally intensive. The local RX detector suffers from an increased number of false 
alarms because some pixels can be anomalies in the local background but not on the entire 
image (e.g., isolated tree). The main limitation of RX detectors is that in hyperspectral im-
aging in remote sensing applications, the assumption of Gaussianity is often violated due 
to the presence of multiple materials in the scene or in the local background, which ad-
versely impacts detection performance. 

Improved Variants of the RX Detector 
Many authors have tried to tackle the outlined shortcomings of the RX detector and 

improve its detection performance. First of all, it should be remarked that there is a con-
founding aspect to the naming of the new anomaly detectors. In our opinion, the RX de-
tector should only refer to the local algorithm defined and explained above, with the ex-
ceptions of the global and quasi-local spatial implementations. The anomaly detection 
methods that use the squared Mahalanobis distance as detection statistics are often named 
RX variants [15,18,26]. 

To mitigate the computational cost of the (local) RX detector, a variety of parallel 
implementations for multicore platforms (CPU and GPU) have been developed [55–58]. 
Molero et al. [57] proposed optimized versions of the RX detectors based on the Cholesky 
decomposition of the correlation matrices with parallel implementations on high-perfor-
mance computing platforms: multicore and GPU.  

Manolakis [10] stated that the normal distribution model accurately fits the body of 
the data but not its tails. That is particularly important in anomaly detection, as the distri-
bution tails have the most influence on the false alarms. Therefore, the family of multivar-
iate elliptically contoured t distribution, which can model heavier distribution tails, is sug-
gested in lieu of the multivariate normal distribution [59–61].  

The quasi-local (QL) RX detector is a compromise between the local and global RX 
detector and should not be confused with the quasi-local implementation of the RX detec-
tor. The original QL idea was applied to achieve the QL covariance matrix [62–64], but in 
later publications, this approach is referred to as the QL RX detector [65,66]. The basic idea 
of the QL RX detector is to decompose the global covariance matrix using the eigenvalue 
decomposition: 𝛤 = 𝐸 ∙ 𝛬 ∙ 𝐸். (16) 

The eigenvectors in the 𝐸 are forwarded to the detector, but the eigenvalues in the 𝛬 are replaced by the larger of the local and the global variance [62]: 𝜆ொ௅௜ = 𝑚𝑎𝑥(𝜆௅ை஼஺௅௜ , 𝜆ீ௅ை஻஺௅௜ ). (17) 

That enables lower detection scores in the image areas with higher variance, and it 
thus may lead to a lower probability of false alarms. The main benefits of the QL approach 
are a more stable estimation of the covariance matrix and a much less expensive way of 
computing its inverse. 

Due to the high correlation of the spectral bands, the high dimensionality of the hy-
perspectral data, and a limited number of samples for estimation of the local covariance 
matrices, they often suffer from ill-conditioning. A widely accepted method for improving 
the estimation of the inverse covariance matrix issue is shrinkage [67–70]. The most 
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straightforward method for the shrinkage of the covariance is the addition of a scaled 
identity matrix, which is often applied in the ridge regression technique [71]. The ridge 
regularized (RR) squared Mahalanobis distance (SMD) detector is then formulated as [39]: 

𝐷ோோ ௌெ஽൫𝑥หℬ൯ = 𝑑ெ ோோଶ (𝑥, 𝜇̂) = ቀ𝑥 − 𝜇̂ቁ் ∙ ቀ𝛤෠ + 𝛿𝐼ቁିଵ ∙ ቀ𝑥 − 𝜇̂ቁ 𝐻1><𝐻0 𝜆, (18) 

where 𝛿 denotes the regularization parameter and 𝐼 is the identity matrix. The same de-
tector (18) is referred to as ridge-regularized RX in [18]. Shrinkage performs small pertur-
bations of the estimated covariance matrix, but that can accomplish significant effects on 
the invertibility if 𝛤෠ is near-singular. Many other methods for shrinkage can be found in 
the literature [39,72,73]. 

Chang and Chiang [28] presented the causal RX detector, which incorporates a sam-
ple correlation matrix instead of a covariance matrix and enables real-time processing of 
the RX detector. In the context of [28], real-time processing refers to processing the pixel 
as it is received, i.e., in an online data processing approach. Davidson and Ben-David [74] 
argued for the use of covariance or the correlation matrix and determined that the use of 
the correlation matrix could offer an improvement over the covariance matrix, but only in 
a relatively small part of the parameter space. They concluded that the potential perfor-
mance gain could be modest, yet the potential performance loss could be devastating. 

Real-time processing with the RX algorithm has preoccupied numerous scientists 
[28,75–77]. To the best of our knowledge, the first operational implementation of real-time 
hyperspectral detection was executed in Dark HORSE 1 (Hyperspectral Overhead Recon-
naissance and Surveillance Experiment 1) [77]. In that research, it was shown that it is 
possible to autonomously detect military ground targets using visible hyperspectral im-
ages in real-time. In [75], the Woodbury matrix identity is introduced, which could be 
used to update the previously computed inverse matrix when new data needs to be con-
sidered. 

To deal with different anomaly sizes, Liu et Chang [78] proposed a multiple-window 
approach. If the anomalies come in various sizes, as can happen in real applications, the 
detection performance of the local RX detector is limited. Although the idea is presented 
in general form, they proposed three specific multiple-window anomaly detectors (MW 
AD), of which one is the MW variant of RX detector MW-RXD. MW-RXD basically corre-
sponds to the result of the local RX detector that is executed with K different window 
sizes. Finally, an overall MW-RXD detection map is obtained by a fusion of K detection 
maps, i.e., a summation of the K local RX detector results [72]: 𝐷ெௐିோ௑஽൫𝑥หℬ൯ = maxଵஸ௜ஸ௄ 𝐷ோ௑(𝑥|ℬ)௜. (19) 

In [79], a superpixel-based dual window RX (SPDW RX) detector is presented to ad-
dress the same issue. The SPDW RX uses superpixel segmentation to adaptively deter-
mine the dual windows, instead of the two fixed-size windows of the local RX detector. 
Firstly, the hyperspectral image is divided into superpixels. Then for every superpixel, a 
minimum bounding rectangle is defined. The background statistics are then determined 
based on these minimum bounding rectangles, which are further used to calculate the 
detection statistic. The authors showed that SPDW RX could provide a small increase in 
detection performance but a large increase in processing speed compared to the local RX 
detector. 

5.2. Nearest Neighbor Detectors 
Besides the family of the RX detectors, the detectors based on the principle of the 

spectrally nearest neighbors (NN) [80,81] can be categorized as the unstructured back-
ground anomaly detectors. For the background characterization, a spectral distance of 
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PUT to the C-nearest neighbor can be used as a detection statistic, an average distance of 
the PUT to the C-nearest neighbors, or a distance of the PUT to the average of the C-nearest 
neighbors [82]. A choice between various distance metrics could be made: Euclidean, Ma-
halanobis, spectral angle [83], Manhattan [84], or Chebyshev [85]. 

The basic NN anomaly detector can be mathematically formulated as follows. Let 𝑤௜ 
be the weight, which depends on the distance from the PUT 𝑥 and background spectral 
vectors ൛𝑥௜ൟ. Consider that background vectors are sorted by some distance metric to 𝑥 
(such that 𝑥ଵ is the closest). Now, a simple weight vector 𝑤 for one PUT can be deter-
mined as [82]: 𝑤௜ = ൜1, if  𝑖 ≤ 𝐶0, if 𝑖 > 𝐶  , (20) 

where C denotes the chosen number of the nearest neighbors. The detection statistic for 
the C-NN detector that uses the distance from the PUT (𝑥) to the average of C-NN can 
now be formulated as [82]: 

𝐷ேே൫𝑥หℬ൯ = ะ𝑥 − 1𝑁 ෍ 𝑤௜ ∙ 𝑥௜ே
௜ୀଵ ะ 𝐻1><𝐻0 𝜆 (21) 

where ℬ = ൛𝑤௜,  𝑥௜ൟ௜ୀଵே  presents the background model determined by a weight vector 𝑤 
and spectral background vectors  𝑥௜, and ‖ ‖ denotes the distance operator. 

The C-NN detector enables simple implementation, but its complexity depends on 
the selection of a distance metric. Additionally, for every PUT, the spectral distance to 
every background pixel needs to be calculated and sorted, which is computationally ex-
pensive. Finally, the criterion for the selection of optimal number C is not intuitively de-
termined. It should be greater than the overall number of expected anomaly pixels, which 
could be difficult to foresee in real applications.  

A Euclidean distance transformation for anomaly detection in spectral imagery has 
been proposed by Schlamm and Messinger [86]. They introduced the nearest neighbor 
transformation (NNT), in which the spectral k-nearest neighbors for every pixel in the HS 
image are determined using the ATRIA [87]. ATRIA is the algorithm, based on the Delau-
nay triangulation, that offers an efficient determination of a selection of the nearest neigh-
bors. The NNT creates a new k-dimensional image where every i-th band contains the 
Euclidean distance of every pixel to its i-th spectrally nearest neighbor. A similar approach 
can also be found in the work of Zhao and Saligrama [88]. The standard RX detector or 
some other detection statistic can then be applied to the data transformed by the NNT. 
The NNT can also be regarded as the preprocessing step for the anomaly detectors that 
use the subspace models, which are explained later in the paper. 

5.3. Kernel-Based Models 
If the background and the anomalies can not be adequately separated in the data 

space, it may be useful to seek the simple decision boundary in the higher dimensional 
feature space. That is the basic idea of the kernel-based anomaly detection methods that 
rely on the so-called “kernel trick” [89]. We want to replace complex anomaly detection 
models in the data space with much simpler models in the higher dimensional feature 
space, which is generated using the non-linear mapping function Φ(∙). The mapping can 
be done to M-dimensional feature space ℱ, where the dimensionality of the ℱ can be in-
definite (but usually 𝑀 ≫ 𝐾, where K denotes the number of spectral bands of the input 
hyperspectral image). The goal is to find the appropriate feature space ℱ where the back-
ground and the anomaly class can be easily and more accurately separated. Simple deci-
sion boundaries in the higher dimensional space project to more complex boundaries in 
the lower dimensional space. That is the main benefit of the kernel-based methods, as they 
are able to reduce a non-linear algorithm in the data space to a linear one in the higher 
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dimensional ℱ. However, it is not computationally feasible to directly implement any al-
gorithm in the ℱ, due to its high dimensionality. Luckily, there is a way to implicitly com-
pute dot products in the feature space ℱ  without actually performing the non-linear 
mapping Φ(∙) of the input spectral vectors ൛𝑥௜ൟ. It is called the kernel trick, and it is an 
effective method to implement the dot product in the feature space using the kernel func-
tions. The dot products in ℱ can be kernelized as [26]: 𝑘(𝑥௜, 𝑥௝) =  Φ(𝑥௜)் ⋅ Φ(𝑥௝). (22) 

From (22), it can be seen that the dot product in ℱ can be replaced by a non-linear 
kernel function k, which can be computed without explicitly defining the mapping func-
tion Φ(∙). One of the most commonly used kernel functions is the Gaussian radial basis 
function (RBF) kernel [18]: 

𝑘(𝑥௜, 𝑥௝) =  exp(−ฮ𝑥௜ − 𝑥௝ฮଶ𝜎ଶ ) (23) 

where 𝜎 denotes the kernel bandwidth parameter.  

5.3.1. Kernel RX detector 
In [26], a non-linear anomaly detector that adopts a normal model in a higher dimen-

sional feature space is presented. The RX algorithm in the feature space can be represented 
as [26]: 

𝐷ிௌିோ௑ൣΦ൫𝑥൯หℬ൧ = ቀΦ൫𝑥൯ − 𝜇̂஍ቁ் ⋅ 𝛤෠஍ିଵ ⋅ ቀΦ൫𝑥൯ − 𝜇̂஍ቁ 𝐻1><𝐻0 𝜆 (24) 

where 𝛤෠஍  and 𝜇̂஍  are the estimated covariance matrix and mean vector of the back-
ground in the feature space that can be estimated with the same spatial models as the RX 
detector. The equation (24) can not be explicitly implemented in the feature space due to 
the non-linear mapping function Φ(∙), which projects data in a higher-dimensional space. 
To avoid doing so, equation (24) can be kernelized using the aforementioned kernel trick 
[18,26]: 

𝐷௄ିோ௑൫𝑥หℬ൯ = ቀ𝑘௫ − 𝑘ఓෝቁ் ⋅ 𝐾෡ିଵ ⋅ ቀ𝑘௫ − 𝑘ఓෝቁ 𝐻1><𝐻0 𝜆 (25) 

where 𝑘௫ = Φ ቀ𝑋ቁ் ⋅ Φ൫𝑥൯ represents the empirical kernel map of the test pixel Φ൫𝑥൯, 𝑘ఓෝ = Φ ቀ𝑋ቁ் ⋅ Φ ቀ𝜇̂ቁ denotes the corresponding empirical kernel map of the background 

mean Φ ቀ𝜇̂ቁ, and 𝐾෡ = Φ ቀ𝑋ቁ் Φ ቀ𝑋ቁ is the centered kernel Gram matrix of the mean-re-

moved background pixels Φ ቀ𝑋ቁ in the feature space. That enables implementation of 
(25) without knowledge of the mapping function Φ(∙); the only requirement that remains 
is selecting the kernel function k, which produces a positive definite Gram matrix. How-
ever, this can not be easily foreseen in real applications. Performance of the kernel RX 
detector is generally limited by the following: 1) it is sensitive to background contamina-
tion with anomalous pixels and noise, and 2) the inverse of 𝐾෡ is usually rank-deficient 
[90]. A Gaussian background purification approach adapted to background data samples 
probability distribution and an inverse-of-matrix-free method based on kernel principal 
component analysis (PCA) [91] were proposed in [90] to address the aforementioned ker-
nel RX limitations. To improve the memory and time efficiency of the kernel RX detector, 
two families of techniques for approximation of the kernel function with either the data-
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independent random Fourier features or the data-dependent basis with the Nyström ap-
proach were proposed in [92]. 

5.3.2. Kernel Density Estimate of the Background Distribution Models 
Kernel density estimation (KDE) is the well-known technique for nonparametric es-

timation of an unknown probability density function (PDF) based solely on the given da-
taset [93,94]. For estimation of the background PDF of hyperspectral images, a multivari-
ate KDE can be used [45,95–99]. The multivariate KDE can be represented as [94]: 

𝑝௕൫𝑥หℬ൯ = 1𝑁 ෍ 1ቛ𝐻(𝑥, 𝑥௡)ቛே
௡ୀଵ 𝜅 ቂ𝐻ିଵ(𝑥, 𝑥௡) ∙ ൫𝑥 − 𝑥௡൯ቃ (26) 

where 𝐻(∙) is the bandwidth matrix (contains the kernel function widths) and 𝜅(∙) is the 

kernel function centered at each of the sample data ൛𝑥௡ൟ௡ୀଵே . A simple strategy in deter-
mining the bandwidth matrix could be to set the same bandwidth to all spectral bands. 
That means that 𝐻 is equal to the scaled identity matrix 𝐻 = ℎ ∙ 𝐼 , which makes the con-
tours of the kernel function spherically symmetric [17]. With this simplification, (26) be-
comes [17]: 𝑝௕൫𝑥หℬ൯ = ଵே ∑ ଵ௛೏(௫,௫೙)ே௡ୀଵ 𝜅 ൤ ௫ି௫೙௛(௫,௫೙)൨. (27) 

The respective detector for (27) is given in [11,17] as the background PDF log-likeli-
hood function:  

𝐷ி௄஽ா൫𝑥หℬ൯ = − log ቈଵே ∑ ଵ௛೏(௫,௫೙)ே௡ୀଵ 𝜅 ൤ ௫ି௫೙௛(௫,௫೙)൨቉ 𝐻1><𝐻0 𝜆. (28) 

Equation (28) represents a fixed form of KDE (FKDE) [94], often called Parzen win-
dowing [11]. It was shown in [100,101] that FKDE could be seen as a Euclidean distance 
detector applied in a higher dimensional kernel-induced feature space. The major impact 
on the performance of the FKDE detector has the selection of the kernel bandwidth h 
value. Numerous techniques have been proposed for its selection [94,96,98], but a unique 
h value that escapes over-smoothing the PDF body and simultaneously under-smoothing 
PDF tails may not exist. This problem motivated the development of the variable-band-
width KDE (VKDE) [94,102]. In [95,97,99], it has been shown that VKDE achieves better 
background estimation in comparison with the FKDE. According to [17], there are two 
distinct types of variable bandwidth selection techniques: the balloon estimator (BE) and 
the sample point estimator (SPE). The BE varies the bandwidth for every test pixel ℎ(𝑥, 𝑥௡) = ℎ(𝑥) and the SPE varies the bandwidth at each sample data ℎ(𝑥, 𝑥௡) = ℎ(𝑥௡). 

5.3.3. Support Vector Data Description (SVDD) 
Most anomaly detectors on hyperspectral images try to model or estimate the PDF of 

the background. However, one could instead try to directly estimate the size and shape of 
the background support region for a given dataset. That is the basic point of the SVDD 
based anomaly detector [31,103], which is basically a single-class support vector machine 
(SVM) classifier [104–106]. It avoids a-priori assumptions about the underlying back-
ground PDF and directly estimates the region of support for the background. SVMs are 
large-margin techniques that achieve good generalization of high-dimensional non-
Gaussian data by directly estimating a maximum separability decision boundary [31]. 
SVMs showed great potential in classifying hyperspectral images [107,108], and in [31], 
are extended for the anomaly detection problem. The SVDD benefits for anomaly detec-
tion are listed in [31]: 1) it is nonparametric (data-driven), 2) requires a few training sam-
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ples for background characterization, 3) avoids overfitting and provides good generaliza-
tion, and 4) can model nontrivial multimodal distributions by applying the kernel trick. 
In a geometrical sense, the SVDD finds a minimum enclosing hypersphere that includes 
the background data in either original data space or in the high-dimensional feature space. 
In the former case, the linear SVDD is applied, while in the latter case, the non-linear ker-
nel-based SVDD is used. 

As the derivation of both SVDD algorithms is essentially the same, and the only 
change is in the non-linear mapping Φ(∙), only the algorithm for the non-linear SVDD is 
presented. The linear SVDD can be derived by omitting the non-linear mapping function. 
The need for mapping in the higher dimensional space arose as the hypersphere in the 
original data space does not provide a tight representation of the complex distributions 
found in the background. A minimum enclosing hypersphere in higher dimensional fea-
ture space corresponds to a much more complex boundary in the input data space. The 
smallest enclosing hypersphere in the feature space 𝑆 = ቄΦ൫𝑥൯: ฮΦ൫𝑥൯ − 𝑐ฮଶ < 𝑅ଶቅ that 
contains the set of mapped training data 𝑇 = ൛Φ൫𝑥௜൯, 𝑖 = 1, . . . , 𝑀ൟ , where  𝑐 = ∑ 𝛼௜ ∙௜Φ൫𝑥௜൯ represents the center of the hypersphere that corresponds to the center of gravity 
of the support vectors given the optimal weights 𝛼௜. The optimal weights are scalars (La-
grange multipliers) that need to satisfy sum-to-one and non-negativity constraints. The 
center 𝑐 and the radius R of the minimum enclosing hypersphere are determined by op-
timizing the Lagrangian, the optimal solution of which must satisfy Karush-Kuhn-Tucker 
(KKT) conditions [109]. The decision statistic for the non-linear SVDD of the test pixel 𝑥 
can be now formulated as [31]: 𝑆𝑉𝐷𝐷஍൫𝑥หℬ൯ = ฮΦ൫𝑥൯ − 𝑐ฮଶ = ะΦ൫𝑥൯ − ෍ 𝛼௜ ∙ Φ ቀ𝑦௜ቁே

௜ ะଶ
 

= Φ൫𝑥൯் ⋅ Φ൫𝑥൯ − 2 ∙ ෍ 𝛼௜ ∙ Φ൫𝑥൯் ∙ Φ ቀ𝑦௜ቁே
௜ୀଵ + ෍ ෍ 𝛼௜ே

௝ୀଵ 𝛼௝ ∙ Φ ቀ𝑦௜ቁ் ∙ Φ ቀ𝑦௝ቁ 𝐻1><𝐻0 𝑅2ே
௜ୀଵ  

(29) 

where 𝑦 denote the training data, N is the number of examples in each training set, R is the hy-
persphere radius, and 𝛼௜ are the Lagrange multipliers. It should be noted that the optimi-
zation of Lagrangian function L with respect to 𝛼 will typically end with a large fraction 
of 𝛼௜ to become zero. The training examples (background pixels) with non-zero 𝛼௜ are 
called support objects or support vectors. Expression (29) can be kernelized as [31]: 

𝑆𝑉𝐷𝐷஍൫𝑥หℬ൯ = 𝐾൫𝑥, 𝑥൯ − 2 ∙ ෍ 𝛼𝑖 ∙ 𝐾൫𝑥, 𝑦𝑖ቁ𝑁
𝑖=1 + ෍ ෍ 𝛼𝑖𝑁

𝑗=1 𝛼𝑗 ∙ 𝐾 ቀ𝑦𝑖 , 𝑦𝑗൰ 𝐻1><𝐻0 𝑅2𝑁
𝑖=1  (30) 

In [31], Gaussian RBF (23) with free parameter 𝜎 was applied as the kernel function. 
For its estimation, the authors proposed a minimax approach that minimizes an approxi-
mate upper bound on the average false alarm rate (FAR) over the entire image [31]: 

𝜎ො = minఙ 1𝑀 ෍ 𝑃ி஺೔
ெ

௜ୀଵ  

≈ minఙ ൝ 1𝑀 ෍ #𝑆𝑉௜𝑁ெ
௜ୀଵ ൡ 

(31) 

where 𝑃ி஺ denotes the probability of false alarm (FAR), M is the number of training sets, 
N is the number of examples in each training set, and #𝑆𝑉௜ is the number of support vec-
tors in the i-th training set. 
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Expressions (29) and (30) will lead to the computation of the optimal hypersphere 
radius for every PUT. That may prevent the distances between PUT and the hypersphere 
centroid from being used to compare multiple pixels to their local backgrounds mutually. 
Therefore, a normalized detection statistic is also proposed in [31]: 

𝑆𝑉𝐷𝐷஍_௡௢௥௠௔௟௜௭௘ௗ൫𝑥หℬ൯ = ௌ௏஽஽ಅ൫௫൯𝑅2
𝐻1><𝐻0 𝜆. (32) 

In the SVDD algorithm, unknown parameters can be estimated globally or locally 
using the double-sliding window. The global implementation offers better computational 
efficiency, but the local implementation could lead to better detection performance. The 
kernel RX algorithm and the SVDD algorithm are related techniques but with two key 
differences. The kernel RX is a generative model that assumes a Gaussian distribution in 
the feature space, while SVDD is based on a discriminative model that avoids making 
such assumptions. The SVDD does not require inversion of the large covariance matrices, 
which is characteristic of every detector using the Mahalanobis distance (such as the ker-
nel RX). Nevertheless, it should not be overseen that in the optimization step, SVDD re-
quires the inversion of Gramm matrices of the training data, the size of which depends on 
the number of support vectors. 

6. Structured Background Models 
Structured background models, on the basis of a-priori knowledge, assume a specific 

structure of the background. In the case of the spectral data, this assumption generally 
arises from the physical principles of the observed data. We can presume that a pixel spec-
trum is a mixture of the pure spectral signatures (endmembers) of the objects or materials 
found on the Earth's surface. If we assume the linearity in the spectra mixing, we could 
also claim that a pixel spectrum actually lies in the subspace spanned by the vectors (spec-
tra) of the unique materials found in the hyperspectral scene. Subspace models, cluster or 
mixture-based models, and representation-based models are the most prominent tech-
niques for anomaly detection in hyperspectral images for remote sensing applications that 
utilize structured background models. Nevertheless, all listed techniques generally em-
ploy a linear mixture model (LMM) that incorporates additive noise [10]: 𝑋 = ∑ 𝛿௜௅௜ୀଵ ⋅ 𝑢௜ + 𝑊𝛿௜ ≥ 0, ∑ 𝛿௜௅௜ୀଵ = 1 . (33) 

where 𝑊 denotes the model fit error (the spectrum fraction that is not modeled as a mix-
ture or noise), 𝑢௜ represents the i-th endmember, background eigen or basis vector, clus-
ter or segment centroid, 𝐿 is their total number, and 𝛿௜, 𝑖 = 1, . . . , 𝐿 are their respective 
abundances. The linear subspace model can be derived from LMM if the abundance con-
straints in (33) are relaxed [42]. 

6.1. Subspace Models 
Subspace projection models determine those vectors that span the subspace of the 

background without explicitly defining their physical meaning. In doing so, it is possible 
to seek an orthogonal subspace or a signal subspace of the background. 

6.1.1. Orthogonal Subspace Models 
An orthogonal subspace of the background can be characterized directly or by the 

singular vectors of the input hyperspectral cube 𝑋  [110], or indirectly by the eigenvectors 

of the correlation matrix 𝑅෠ = ଵேିଵ ∙ 𝑋் ∙ 𝑋 [91]. Linear methods such as singular value de-
composition (SVD) [110] can be used to determine the singular vectors. The SVD method 
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performs factorization of the input hyperspectral image on two unitary matrices and a 
diagonal matrix of singular values. The columns of the unitary matrices are formed by the 
left and respectively right singular vectors of the input hyperspectral image. The singular 
values of the input hyperspectral image, which are found in the diagonal matrix, are 
sorted in descending order. It can be interpreted that the first singular values and singular 
vectors (𝑏୧) comprise the highest amount of “information” included in the hyperspectral 
image. Therefore, if the frequency of anomalies is very low in relation to the background, 
then they should be characterized by farther components of the SVD. Then the back-
ground can be described by the subspace spanned by the first singular vectors [11]: SVD → Ψ = ൣ𝑏ଵ, … , 𝑏ெ൧𝑃 = Ψ ⋅ Ψ் . (34) 

where Ψ refers to the matrix with first M singular vectors determined by the SVD, and 𝑃 
is the projection matrix on the background subspace. The subspace projection vector 𝑥ො is 
often called reconstruction or approximation of the 𝑥 by the Ψ, and it is determined as:  𝑥ො = 𝑃  ∙ 𝑥. (35) 

The residual of the 𝑥 reconstructed with the 𝑥ො is defined as: 𝑟 = 𝑥 − 𝑥ො = 𝑃ୄ ∙ 𝑥 𝑃ୄ ∙ 𝑥 = 𝐼 − 𝑃 ∙  𝑥 
(36) 

For the indirect approach of the background characterization, principal component 
analysis [91] is commonly used. Both SVD and PCA do not necessarily result in singular 
vectors or eigenvectors that correspond to spectra of physical material.  

In [10], the independent component analysis (ICA) [111] method is suggested to be 
applied instead of the PCA as it may provide spectra that are closer to physically observed 
ones. 

Orthogonal subspace projection (OSP) inhibits the influence of the dominant back-
ground structures on the pixel spectra, which should then lead to improved detection 
performance of the anomaly detection techniques [36,112]. After the background impact 
has been suppressed by the OSP, the decision hypotheses can be set [11]: 𝑃ୄ ⋅ 𝑋ห𝐻଴ ≈ 𝑃ୄ ⋅ 𝑊𝑃ୄ ⋅ 𝑋ห𝐻ଵ ≈ 𝑃ୄ ∙ 𝛿௦ ∙ 𝑠+𝑃ୄ ⋅ 𝑊. (37) 

Then, as the detection statistic, various distance measures can be used, e.g., Ma-
halanobis, Euclidean, or other, combined with different spatial implementations (global, 
local, or quasi-local). For example, the local RX algorithm could be used on the back-
ground suppressed hyperspectral cube. Furthermore, one could use the square of the re-
sidual reconstruction vector 𝑟 as the detection statistic, which is sometimes called dis-
tance from the feature space [82]: 

𝐷஽ிிௌ(𝑥|ℬ) = ฮ𝑟ฮଶ = 𝑥் ∙ 𝑄 ∙ 𝑥 = 𝑥் ∙ (𝑃ୄ)் ∙ (𝑃ୄ) ∙ 𝑥 𝐻1><𝐻0 𝜆 (38) 

The performance of the OSP techniques primarily depends on the quality of the back-
ground reconstruction. There should not be leakage from the target space to the back-
ground subspace [10], as it will surely impair the detection performance. Both PCA and 
SVD techniques are susceptible to that issue, so removing target-like pixels from the input 
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data is beneficial before applying the PCA or SVD. That problem motivated the develop-
ment of techniques that are more robust and less sensitive to an outlier presence; these are 
presented in the section on representation-based models. 

6.1.2. Signal Subspace Models 
In [113], the anomaly detection method that works within a subspace of the original 

signal space is presented. The method is called the signal subspace processing anomaly 
detector (SSPAD), and it operates within a subspace spanned by the spectral vectors in 
the immediate vicinity of the PUT. SSPAD is able to detect local anomalies without requir-
ing covariance estimation or calculation of its inverse. SSPAD determines the finite im-
pulse response (FIR) filter coefficients for the neighboring spectral vectors that minimize 
the mean square error of the PUT reconstruction. For selecting the signal subspace, in 
[113], a guard window is implemented, and then four boxes centered at horizontal and 
vertical axes originating from the PUT are proposed. The boxes are placed just outside of 
the guard window to prevent the projection of the target spectra to the signal subspace. 
The pixels contained in a specific box are the inputs for the FIR filter. The SSPAD detection 
statistic in the matrix form is derived in [11]: 𝑆𝑆𝑃𝐴𝐷൫𝑥หℬ൯ = min௞ୀଵ,ଶ,ଷ,ସ൛ฮ𝑒௞ฮൟ = min௞ୀଵ,ଶ,ଷ,ସ ቄቛ𝑃௞ୄ ∙ 𝑥ቛቅ 

= min௞ୀଵ,ଶ,ଷ,ସ ቄቛቀ𝐼 − 𝑉௞ ∙ 𝑉௞#ቁ ∙ 𝑥ቛቅ 𝐻1><𝐻0 𝜆 (39) 

where 𝑃௞ୄ  is the projection matrix onto the subspace orthogonal to the signal subspace 
spanned by the spectral vectors of the k-th box, 𝑉௞ denotes the matrix containing those 
vectors, and 𝑉௞# is the pseudoinverse of the 𝑉௞. 

The anomalies in the SVDD are the pixels that significantly deviate from the local 
background determined by the four FIR filters. In the algorithm implementation, care 
should be exercised regarding the appropriate size of the guard window and the signal 
subspace boxes. In order to improve computational efficiency, the box size should be 
small, and also, it is important not to employ too many constraints on the projection [11]. 
If the anomalies are spatially grouped and co-aligned in the vertical or horizontal direc-
tion, this could lead to bad SSPAD detection performance. In that case, a different strategy 
for a spatial sampling of the signal subspace samples should be applied. 

6.2. Cluster or Mixture-based Models 
Cluster or mixture-based models aim to directly solve the expression (33). They seek 

the background endmembers and their abundances in the pixel spectrum. As they allow 
a pixel to be a mixture of the spectra, they are adapted to detect unresolved or sub-pixel 
targets (anomalies). A plethora of automatic endmember extraction and respective abun-
dance estimation techniques have been developed [114], such as N-FINDR [115] or OASIS 
[116]. Enforcing the constraints in the LMM (33) leads to the convex hull model (CHM) 
[117] that provides physically related endmembers [10]. Cluster or mixture models con-
form to the convex hull model. The detection statistic can be derived as the distance of 
PUT spectral vector 𝑥 from a convex hull of the endmembers [82]:  

𝐷஼ுெ൫𝑥หℬ൯ = ቛ𝑥 − 𝑈 ∙ 𝛿ቛଶ 𝐻1><𝐻0 𝜆 (40) 
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where vector 𝛿 is the least-squares solution of the equation 𝑈 ∙ 𝛿 = 𝑥 with non-negativ-
ity and sum-to-one constraints: 0 ≤ 𝛿௜ ≤ 1 ෍ 𝛿௜ = 1 

(41) 

and matrix 𝑈 is composed of the background endmembers 𝑢௜: 𝑈 = ൣ𝑢ଵ ⋯ 𝑢௅൧. 
Besides the presented approach, anomaly detection in the LMM sense can be carried 

out if the background convex hull (determined by the endmembers) is first subtracted 
from the input hyperspectral image, and some of the RX variants are then run on the re-
sidual image. 

Considering that the global or local Gaussian models (RX detectors) have shown in-
adequate modeling nonhomogeneous backgrounds [11], image clustering or the use of the 
more complex models is suggested [82]. Therefore, models based on Gaussian-mixture 
and cluster or segmentation anomaly detection have been developed. 

6.2.1. Gaussian-Mixture Model 
A more complex Gaussian-mixture model (GMM) can more closely describe the non-

homogeneous backgrounds (i.e., model the presence of different materials in the scene) 
[15,35]. The basic idea of the GMM is as follows: the scene is divided into a set of mixtures, 
each of which follows a Gaussian distribution. Suppose that there are L Gaussian distri-
butions on the scene (L mixtures), then the probability of the occurrence of each pixel can 
be shown as the weighted sum of the probabilities of those distributions: 

𝑝ீெெ൫𝑥หℬ൯ = ෍ 𝑤௜𝑝𝒩௅
௜ୀଵ (𝑥|𝜇௜, 𝛤௜) (42) 

where ℬ = ቄ𝑤௜, 𝜇௜,  𝛤௜ቅ௜ୀଵ௅
. 

In the case of a multivariate Gaussian distribution, the unknown parameters 𝜇௜ and 𝛤௜ are determined directly. In the GMM, the determination of 𝑤௜, 𝜇௜, and 𝛤௜ is done using 
algorithms such as expectation-maximization (EM) or some variants thereof, such as sto-
chastic expectation-maximization (SEM) [118,119] or classification expectation-maximiza-
tion [119]. We consider anomalies to be those hyperspectral pixels that have a low proba-
bility of occurrence. Therefore, the detector statistic can be formulated as [82]: 

𝐷ீெெ൫𝑥หℬ൯ = ෍ 𝑤௜𝑝𝒩௅
௜ୀଵ (𝑥|𝜇௜, 𝛤௜)𝐻1<>𝐻0 𝜆 (43) 

It should be noticed that the inequality signs in the expression (43) are oppositely 
oriented concerning other detectors. The weights 𝑤௜ are usually determined as the a-pri-
ori probabilities of the Gaussian distributions found in the background and can be deter-
mined, for example, by using SEM. Due to the introduction of the weighting coefficient 𝑤௜ The GMM is less sensitive to overestimating the number of distributions found in the 
background than cluster or segmentation-based methods. That is because the mixtures 
with a small number of elements will also have a low weight value 𝑤௜. GGMs are global 
detectors, and as they do not use a sliding window, they can detect targets of any size or 
shape. However, for the GMM to achieve successful results, the frequency of occurrence 
of targets needs to be low relative to the background (so that the targets do not create a 
separate class), and the anomaly spectra need to be significantly different from the back-
ground. 

6.2.2. Cluster or Segmentation Based Models 
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Cluster [35] or segmentation [66,120] based anomaly detection methods generally 
perform unsupervised clustering (classification) or automatic segmentation of the hyper-
spectral image and then analyze the spectral distances from PUT to cluster or segment 
centroids. In the unsupervised clustering step, hard clustering techniques like K-means 
[121] or soft clustering like Fuzzy C-means are used [122–124]. Hard clustering techniques 
assign an integer value that corresponds to the membership of a pixel to a certain cluster, 
while soft clustering methods assign a value 𝑚௞௟  for the membership of the observed 
pixel to each of the clusters 𝑚௞௟ ∈ ሾ0,1ሿ. Of soft clustering methods, fuzzy-based tech-
niques [125,126] may show potential for anomaly detection applications. Once the cluster 
statistics have been determined (usually cluster mean vector and cluster covariance ma-
trix), a distance can be computed, which can be, for example, the Euclidean or Mahalano-
bis distance between the PUT and each cluster centroid. As the detection statistic, the min-
imum distance (distance to the spectrally closest cluster centroid) is used. If the squared 
Mahalanobis distance is chosen, it will lead to the so-called class-conditional GLRT [11]: 

𝐷஼஻஺஽൫𝑥หℬ൯ = − log ቄ𝑝𝒩(𝑥|𝜇̂௜, 𝛤෠௜)ቅ 𝐻1><𝐻0 𝜆 

∼ ቀ𝑥 − 𝜇̂௜ቁ் ∙ 𝛤෠௜ି ଵ ∙ ቀ𝑥 − 𝜇̂௜ቁ 𝐻1><𝐻0 𝜆 

(43) 

where i denotes the index of the cluster to which the PUT 𝑥 has been assigned (the spec-
trally nearest cluster). 

The performance of these detectors strictly depends on the selection of the appropri-
ate number of background clusters [11]. If this number is underestimated, then pixels that 
naturally belong to a larger number of clusters will be "squeezed" into one cluster. That 
will result in a higher variance of the resulting clusters, which will adversely affect the 
probability of anomaly detection. If the number of background clusters is overestimated, 
there is a possibility that anomalies will create a separate class. In that case, it may not 
even be possible to detect anomalies. In order to determine the optimal number of clusters, 
Akaike or Bayes information criteria were proposed [127]. The application of artificial 
neural networks such as self-organizing fields (self-organizing maps) [128] has been in-
vestigated in hyperspectral anomaly detection [129,130], and is less sensitive to the selec-
tion of the appropriate number of clusters. 

6.3. Representation-based Models 
The rising paradigm of compressed sensing [131–133] propelled the popularity of 

representation-based anomaly and target detection [27,40,134–139]. Consider having a set 
of 𝑛 ≪ 𝑁 labeled samples (pixels) 𝐷 = ൛𝑥௜ൟ௜ୀଵ௡ ∈ ℝ௄×௡ where K refers to number of spec-
tral bands. In the following expressions, input HS image (𝑋) is regarded as a 𝐾 × 𝑁 ma-
trix (𝑋 ∈ ℝ௄×ே) which is a transpose of the definition set in section 4 (𝑋 ∈ ℝே×௄). A dataset 
with all available samples 𝐷 is usually called a dictionary, which is constructed of atoms 
(labeled pixels). The labeled datasets are not available in anomaly detection problems, but 
they can be reconstructed from the data [140–142]. 

The idea of decomposing the hyperspectral image into a low-rank background ma-
trix and a sparse anomaly matrix was implemented in the robust principal component 
analysis (RPCA) [138,143,144]. This model did not account for the presence of noise in the 
input dataset, which adversely impacted detection performance. An improvement over 
RPCA was achieved in [145,146], where an additional noise factor was implemented in 
the low-rank and sparse matrix decomposition (LRaSMD) algorithm. The low-rank rep-
resentation (LRR) [138,147,148] allows the background reconstruction using the multiple 
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subspaces (unlike RPCA [149]) and therefore needs a dictionary to separate the anomalies 
from the background. LRR enables global background characterization, as it finds the low-
est rank representation of all the hyperspectral pixels simultaneously. The adequacy of 
the LRR model for hyperspectral data modeling is nicely outlined in [142]: background 
pixels can be adequately represented as linear combinations of endmembers (described in 
a subspace), and anomalies are spatially sparse [146]. The LLR model for anomaly detec-
tion can be formulated as [142]: minௌ,ா ቛ𝑆ቛ∗ + 𝜆 ቛ𝐸ቛଶ,ଵ such that 𝑋 = 𝐷 ∙ 𝑆 + 𝐸, (44) 

where the HS image 𝑋 is decomposed into a background 𝐷 ∙ 𝑆 and an anomaly compo-
nent 𝐸 = ൣ𝑒ଵ, 𝑒ଶ, . . . , 𝑒ே ൧. 𝐷 represents the dictionary, and 𝑆 contains the representation 
coefficients. ‖ ‖∗ is a nuclear norm, which is a good substitute for the rank function used 
in the original LRR model [138] because of the convex optimization problem it causes. A 
tradeoff parameter 𝜆 > 0 is used to balance the effects of the background and anomaly 
part. ‖ ‖ଶ,ଵ is the ℓଶ,ଵ norm defined as the sum of ℓଶ norm of the columns of the ma-
trix: 

ቛ𝐸ቛଶ,ଵ = ෍ ට𝑒௜் 𝑒௜ே
௜ୀଵ  (45) 

where 𝑒௜ refers to a column of the matrix 𝐸. The role of the ℓଶ,ଵ norm is to encourage the 
columns of 𝐸 to be zero, indicating that anomalies are column-wise sparse or “sample-
specific”. Niu and Wang [150] show the hyperspectral AD based on the LRR and learned 
dictionary: LLRaLD AD. They propose using the basic detectors (such as global RX) on 
the sparse matrix for the detection statistic. An approach that implements the spatial sim-
ilarity between pixels in local regions is displayed in the work of Tan et al. [147]. They 
suggest incorporating spatial constraints in the detection model to improve the detection 
performance of the LRR model. Blind source component separation by unmixing was pre-
sented by Wang et al. [151] to identify anomalous components.  

The sparse representation model assumes that a hyperspectral signal (pixel) can be 
adequately represented by a sparse linear combination of dictionary atoms, i.e., a pixel 
can be reconstructed by only a few atoms [135]. The PUT is sparsely represented using the ℓ଴ or ℓଵ norm regularization. The main goal of the sparse representation is to determine 
the sparse (weight) vector 𝛼ௌோ such that ቛ𝑥 − 𝐷 ∙ 𝛼ௌோቛଶ is minimized while ฮ𝛼ௌோฮ௟ ≤ 𝐿଴ 

[134]. Namely, vector 𝛼ௌோ can be determined by solving the optimization problem: 𝛼ௌோ = arg minఈೄೃ ቛ𝑥 − 𝐷 ∙ 𝛼ௌோቛଶ such that ฮ𝛼ௌோฮ௟ ≤ 𝐿଴, 𝑙 ∈ ሼ0,1ሽ (46) 

where 𝐿଴ is the constant (regularization) parameter that balances the 𝑥 reconstruction er-
ror and the sparsity of 𝛼ௌோ, and l represents the choice of ℓ଴ or ℓଵ norm. The listed opti-
mization problem (46) is NP-hard if the ℓ଴-norm is applied; it can be solved by greedy-
pursuit based algorithms such as the orthogonal matching pursuit [152] or a subspace 
pursuit [153]. If ℓଵ-norm is used, the 𝛼ௌோ can be determined by convex relaxation algo-
rithms such as in [154–156], or by pursuit methods such as basis pursuit [157] or basis 
pursuit denoising [158]. Li et al. [134] proposed the AD based on the joint sparse repre-
sentation (JSR) framework. It uses a dual sliding window approach to estimate an active 
dictionary, and the detection statistic is determined by the length of the matched projec-
tion on the orthogonal complementary background subspace (estimated by the JSR). An 
adaptive weighted sparse representation and background estimation-based AD is pre-
sented in [145]. It uses the endmember extraction method to characterize their spectra and 
respective abundances. The sparse representation was adaptively weighted on both 
global and local domains, and the detection statistic was determined as the residual of 
PUT reconstructed by the background dictionary. Discriminative feature learning with 
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multiple-dictionary was introduced in the work of [159]. The detection statistic is designed 
with a global multiple-view AD strategy that incorporates multiple use of global RX de-
tectors that are mutually fused to produce the final result. An innovative sparsity score 
estimation was presented in [160] that implements atom usage probability, which helps 
in improving the discriminative power of the background dictionary. Xu et al. [138] pro-
posed the combined use of LRR and sparse representation based on the separation of the 
background and the anomalies in the observed data. LRR is used to model the back-
ground, and the sparsity-inducing regularization term is introduced to the representation 
coefficients, which enables the description of global and local structures of the hyperspec-
tral dataset. The final detection statistic is determined by the response of the residual ma-
trix. 

Collaborative representation techniques take the opposite approach of sparse repre-
sentation methods. “Collaborative representation means that all atoms 'collaborate' in the 
representation of a single pixel, and each atom has an equal chance to participate in the 

representation.” [135]. The goal is to find the weight vector 𝛼஼ோ such that ቛ𝑥 − 𝐷 ∙ 𝛼஼ோቛଶଶ 

is minimized under the constraint that ฮ𝛼஼ோฮଶଶ is minimized, too. This can be formalized 
as: 𝛼ො஼ோ = arg minఈ಴ೃ ቛ𝑥 − 𝐷 ∙ 𝛼஼ோቛଶଶ + λ ∙ ฮ𝛼஼ோฮଶଶ, (47) 

where λ is the regularization parameter that controls the penalty of the weight vector 𝛼஼ோ ℓଶ -norm. Additionally, some authors [78,161] suggested using a distance-weighted 
Tikhonov regularization besides the parameter λ. The general detection statistic in collab-
orative representation ADs is the reconstruction error of the PUT. 

Equation (47) can also be expressed as [27]: 𝛼ො஼ோ = arg minఈ಴ೃ ቂ𝛼஼ோ் ∙ ቀ𝐷் ∙ 𝐷 + λ ∙ 𝐼ቁ ∙ 𝛼஼ோ − 2 ∙ 𝛼஼ோ் ∙ 𝐷் ∙ 𝑥ቃ . (48) 

Taking the derivative of (48) with respect to 𝛼஼ோ and setting it to zero returns [27]: 𝛼ො஼ோ = ቀ𝐷் ∙ 𝐷 + λ ∙ 𝐼ቁିଵ ∙ 𝐷் ∙ 𝑥. (49) 

By comparing (49) with the sparse representation model, it can be seen that collabo-
ration-representation has a much lower computational cost as it offers the solution in a 
closed form. If the dictionary 𝐷 is determined locally, then expressions (46–49) should be 
replaced by the adaptive form 𝐷௜. Li et al. [27] proposed the algorithm based on the con-
cept that the background can be adequately represented by its spatial neighbors, but not 
by anomalies. They implemented a collaborative representation model, but for a detection 
statistic used a projection to a higher dimensional space and the use of the kernel trick. 
Low rank and collaborative representation AD (LRCRD) was presented in [162]. It divides 
the image into two parts: the background represented with the respective dictionary 
whose coefficients are constrained by low-rank and ℓଶ -norm minimization, and the 
sparse anomaly part defined as the residual matrix constrained by ℓଶ,ଵ-norm minimiza-
tion. 

7. Conclusions 
In this review paper, the development of hyperspectral image processing for anom-

aly detection in remote sensing applications was presented. In the first part of the paper, 
scientific research trends were presented through a bibliometric analysis. The most rele-
vant journals, authors, and their contributions were identified, and the expansion of the 
field was analyzed by title and author keywords. Although the documents used in this 
research were mostly published in the last 20 years, as the hyperspectral imaging technol-
ogy is quite recent, the oldest references date back to the 1930s. 
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This analysis provided the foundations for the second part of the paper, in which the 
overview of the mathematical framework for anomaly detection on hyperspectral images 
was presented. Developed anomaly detection techniques were generally classified as the 
methods that presume an unstructured background model or, conversely, a structured 
background model. The latter assumes a specific background structure, while the former 
method does not state any a-priori assumptions about it. A plethora of innovative con-
cepts and ideas were applied to the anomaly detection problem on hyperspectral images: 
generative approaches, nonlinear mapping and kernel trick, orthogonal and signal sub-
space projections, and representation approaches such as sparse, collaborative, or joint 
ones. 

No doubt, every one of these approaches has positive and negative sides that could 
make one detector excel in some specific scenarios, but unfortunately, might not maintain 
the same detection performance if the application circumstances change. There is debate 
as to whether the best hyperspectral anomaly detector in remote sensing applications ex-
ists, but no such statement can be made. Regardless of the underlying concept, the main 
problem in anomaly detection performance assessment arises from the fact that the detec-
tors are judged on the basis of a small number of experimental scenarios. The scarcity of 
reference hyperspectral datasets for detection performance evaluation is still an issue. A 
rich collection of hyperspectral images of various natural scenes would contribute more 
statistical significance to the comparative results of anomaly detector performance. 

The specific problems in evaluating detector performance come from the sole nature 
of the hyperspectral images of natural scenes: they reside in highly dimensional spectral 
space that exhibits high spatial non-stationarity. Due to its high dimensionality, hyper-
spectral data processing delivers a heavy computational burden. Hence, many authors 
have tackled the problem of reducing or optimizing the computational complexity and 
real-time processing of hyperspectral images for detection purposes. Real-time processing 
may refer to processing the data in an online fashion or the ability to deliver detection 
results in real-time. These issues are still open and have attracted the scientific communi-
ty's attention, as shown in recent publications focused on representation-based techniques 
and the implementation of neural network based approaches [163,164]. Future research in 
the field may continue to develop these approaches and techniques, as they offer a balance 
between detection performance and computational complexity. Nevertheless, hyperspec-
tral image processing for anomaly detection in remote sensing applications is still an ex-
ceptionally worthy field of research, as the hyperspectral data carry an abundance of val-
uable information that may be useful in a wide variety of applications. 

Author Contributions: Conceptualization, I.R. and A.K.; methodology, I.R. and A.K.; formal anal-
ysis, I.R.; writing—original draft preparation, I.R.; writing—review and editing, A.K.; visualization, 
I.R.; supervision, A.K.; funding acquisition, A.K. All authors have read and agreed to the published 
version of the manuscript. 

Funding: This work was supported by the European Community’s Seventh Framework Programme 
(FP7-SECURITY - Specific Programme “Cooperation„: Security), under grant agreement No. 
[284747] (“TIRAMISU project"). Additionally, this work was partially supported through project 
KK.01.1.1.02.0027, a project co-financed by the Croatian Government and the European Union 
through the European Regional Development Fund - the Competitiveness and Cohesion Opera-
tional Programme. 

Acknowledgments: The authors are deeply grateful to Professor Milan Bajić for conveying the value 
of hyperspectral anomaly detection, especially in demining applications, as well as providing sup-
port in this research. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Not applicable. 

Conflicts of Interest: The authors declare no conflict of interest. 



Appl. Sci. 2021, 11, 4878 30 of 35 
 

References 
1. Adao, T.; Hruska, J.; Padua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J.J. Hyperspectral Imaging: A Review on UAV-Based 

Sensors, Data Processing and Applications for Agriculture and Forestry. Remote Sens. 2017, 9, 1110, doi:10.3390/rs9111110. 
2. Gowen, A.A.; O'Donnell, C.P.; Cullen, P.J.; Downey, G.; Frias, J.M. Hyperspectral imaging—An emerging process analytical 

tool for food quality and safety control. Trends Food Sci. Technol. 2007, 18, 590–598, doi:10.1016/j.tifs.2007.06.001. 
3. Bajić, M. Modeling and Simulation of Very High Spatial Resolution UXOs and Landmines in a Hyperspectral Scene for UAV 

Survey. Remote Sens. 2021, 13, 837. 
4. Krtalić, A.; Bajić, M. Development of the TIRAMISU Advanced Intelligence Decision Support System. Eur. J. Remote Sens. 2019, 

52, 40–55, doi:10.1080/22797254.2018.1550351. 
5. Lu, G.L.; Fei, B.W. Medical hyperspectral imaging: A review. J. Biomed. Opt. 2014, 19, doi:10.1117/1.Jbo.19.1.010901. 
6. Eismann, M.T.; Stocker, A.D.; Nasrabadi, N.M. Automated Hyperspectral Cueing for Civilian Search and Rescue. Proc. IEEE 

2009, 97, 1031–1055, doi:10.1109/jproc.2009.2013561. 
7. Krtalić, A.; Bajić, M.; Ivelja, T.; Racetin, I. The AIDSS Module for Data Acquisition in Crisis Situations and Environmental 

Protection. Sensors 2020, 20, 1267. 
8. Govender, M.; Chetty, K.; Bulcock, H. A review of hyperspectral remote sensing and its application in vegetation and water 

resource studies. Water SA 2007, 33, 145–151. 
9. Manolakis, D.; Shaw, G. Detection algorithms for hyperspectral imaging applications. IEEE Signal Process. Mag. 2002, 19, 29–43, 

doi:10.1109/79.974724. 
10. Manolakis, D. Taxonomy of detection algorithms for hyperspectral imaging applications. Opt. Eng. 2005, 44, 1–11, 

doi:10.1117/1.1930927. 
11. Matteoli, S.; Diani, M.; Corsini, G. A tutorial overview of anomaly detection in hyperspectral images. IEEE Aerosp. Electron. Syst. 

Mag. 2010, 25, 5–27, doi:10.1109/MAES.2010.5546306. 
12. Elachi, C.; Van Zyl, J.J. Introduction to the Physics and Techniques of Remote Sensing; John Wiley & Sons: Hoboken, NJ, USA, 2006; 

Volume 28. 
13. Schowengerdt, R.A. Remote Sensing: Models and Methods for Image Processing; Academic Press: San Diego, CA, USA, 2006. 
14. Alpaydin, E. Introduction to Machine Learning; The MIT Press: Cambridge, MA, USA, 2010. 
15. Stein, D.W.J.; Beaven, S.G.; Hoff, L.E.; Winter, E.M.; Schaum, A.P.; Stocker, A.D. Anomaly detection from hyperspectral imagery. 

IEEE Signal Process. Mag. 2002, 19, 58–69, doi:10.1109/79.974730. 
16. Huck, A.; Guillaume, M. A CFAR algorithm for anomaly detection and discrimination in hyperspectral images. In Proceedings 

of the 2008 15th IEEE International Conference on Image Processing, San Diego, CA, USA, 12–15 October 2008; pp. 1868–1871. 
17. Matteoli, S.; Diani, M.; Theiler, J. An overview of background modeling for detection of targets and anomalies in hyperspectral 

remotely sensed imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2317–2336, doi:10.1109/jstars.2014.2315772. 
18. Nasrabadi, N.M. Hyperspectral target detection : An overview of current and future challenges. IEEE Signal Process. Mag. 2014, 

31, 34–44, doi:10.1109/MSP.2013.2278992. 
19. Falagas, M.E.; Pitsouni, E.I.; Malietzis, G.A.; Pappas, G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: 

Strengths and weaknesses. FASEB J. 2008, 22, 338–342, doi:10.1096/fj.07-9492LSF. 
20. Mongeon, P.; Paul-Hus, A. The journal coverage of Web of Science and Scopus: A comparative analysis. Scientometrics 2016, 106, 

213–228, doi:10.1007/s11192-015-1765-5. 
21. Elsevier. Scopus Content Coverage Guide. Available online: 

https://www.elsevier.com/__data/assets/pdf_file/0007/69451/Scopus_ContentCoverage_Guide_WEB.pdf (accessed on 24 April 
2021). 

22. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Altman, D.; Antes, G.; Atkins, D.; Barbour, V.; Barrowman, N.; Berlin, J.A.; et 
al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 
264–269, doi:10.7326/0003-4819-151-4-200908180-00135. 

23. Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975, 
doi:10.1016/j.joi.2017.08.007. 

24. Elango, B.; Rajendran, P. Authorship trends and collaboration pattern in the marine sciences literature: A scientometric study. 
Int. J. Inf. Dissem. Technol. 2012, 2, 166–169. 

25. Bradford, S.C. Sources of information on specific subjects. Engineering 1934, 137, 85–86. 
26. Kwon, H.; Nasrabadi, N.M. Kernel RX-algorithm: A nonlinear anomaly detector for hyperspectral imagery. IEEE Trans. Geosci. 

Remote Sens. 2005, 43, 388–397, doi:10.1109/TGRS.2004.841487. 
27. Li, W.; Du, Q. Collaborative representation for hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1463–

1474, doi:10.1109/tgrs.2014.2343955. 
28. Chang, C.I.; Chiang, S.S. Anomaly detection and classification for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2002, 

40, 1314–1325, doi:10.1109/TGRS.2002.800280. 
29. Ren, H.; Chang, C.I. Automatic spectral target recognition in hyperspectral imagery. IEEE Trans. Aerosp. Electron. Syst. 2003, 39, 

1232–1249, doi:10.1109/taes.2003.1261124. 
30. Du, Q.; Fowler, J.E. Hyperspectral image compression using JPEG2000 and principal component analysis. IEEE Geosci. Remote 

Sens. Lett. 2007, 4, 201–205, doi:10.1109/lgrs.2006.888109. 



Appl. Sci. 2021, 11, 4878 31 of 35 
 

31. Banerjee, A.; Burlina, P.; Diehl, C. A support vector method for anomaly detection in hyperspectral imagery. IEEE Trans. Geosci. 
Remote Sens. 2006, 44, 2282–2291, doi:10.1109/TGRS.2006.873019. 

32. Penna, B.; Tillo, T.; Magli, E.; Olmo, G. Transform coding techniques for lossy hyperspectral data compression. IEEE Trans. 
Geosci. Remote Sens. 2007, 45, 1408–1421, doi:10.1109/tgrs.2007.894565. 

33. Du, B.; Zhang, L. A discriminative metric learning based anomaly detection method. IEEE Trans. Geosci. Remote Sens. 2014, 52, 
6844–6857, doi:10.1109/tgrs.2014.2303895. 

34. Reed, I.S.; Yu, X. Adaptive Multiple-Band CFAR Detection of an Optical Pattern with Unknown Spectral Distribution. IEEE 
Trans. Acoust. Speech Sign. Proces. 1990, 38, 1760–1770, doi:10.1109/29.60107. 

35. Carlotto, M.J. A cluster-based approach for detecting man-made objects and changes in imagery. IEEE Trans. Geosci. Remote 
Sens. 2005, 43, 374–387, doi:10.1109/TGRS.2004.841481. 

36. Harsanyi, J.C.; Chang, C.I. Hyperspectral Image Classification and Dimensionality Reduction: An Orthogonal Subspace 
Projection Approach. IEEE Trans. Geosci. Remote Sens. 1994, 32, 779–785, doi:10.1109/36.298007. 

37. Kerekes, J. Receiver operating characteristic curve confidence intervals and regions. IEEE Geosci. Remote Sens. Lett. 2008, 5, 251–
255, doi:10.1109/lgrs.2008.915928. 

38. Manolakis, D.; Marden, D.; Shaw, G.A. Hyperspectral Image Processing for Automatic Target Detection Applications. Linc. Lab. 
J. 2003, 14, 79–116. 

39. Nasrabadi, N.M. Regularization for spectral matched filter and RX anomaly detector. SPIE Int. Soc. Opt. Eng. 2008, 
doi:10.1117/12.773444. 

40. Chen, Y.; Nasrabadi, N.M.; Tran, T.D. Sparse representation for target detection in hyperspectral imagery. IEEE J. Sel. Top. Signal 
Process. 2011, 5, 629–640, doi:10.1109/jstsp.2011.2113170. 

41. Chen, Y.; Nasrabadi, N.M.; Tran, T.D. Hyperspectral image classification using dictionary-based sparse representation. IEEE 
Trans. Geosci. Remote Sens. 2011, 49, 3973–3985, doi:10.1109/TGRS.2011.2129595. 

42. Kay, S.M. Fundamentals of Statistical Signal Processing: Detection Theory; Prentice Hall: Hoboken, NJ, USA, 1998; p. 998. 
43. Neyman, J.; Pearson, E.S.; Pearson, K. IX. On the problem of the most efficient tests of statistical hypotheses. Philos. Trans. R. 

Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 1933, 231, 289–337, doi:10.1098/rsta.1933.0009. 
44. Mahalanobis, P.C. On the Generalised Distance in Statistics; National Institute of Sciences: Calcutta, India, 1936; pp. 49–55. 
45. Veracini, T.; Matteoli, S.; Diani, M.; Corsini, G. An anomaly detection architecture based on a data-adaptive density estimation. 

In Proceedings of the 2011 3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing 
(WHISPERS), Lisbon, Portugal, 6–9 June 2011, doi:10.1109/whispers.2011.6080919. 

46. Ma, N.; Peng, Y.; Wang, S.; Leong, P.H.W. An unsupervised deep hyperspectral anomaly detector. Sensors 2018, 18, 693, 
doi:10.3390/s18030693. 

47. Su, H.; Wu, Z.; Du, Q.; Du, P. Hyperspectral Anomaly Detection Using Collaborative Representation with Outlier Removal. 
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 5029–5038, doi:10.1109/jstars.2018.2880749. 

48. Li, F.; Zhang, X.; Zhang, L.; Jiang, D.; Zhang, Y. Exploiting Structured Sparsity for Hyperspectral Anomaly Detection. IEEE 
Trans. Geosci. Remote Sens. 2018, 56, 4050–4064, doi:10.1109/tgrs.2018.2821168. 

49. Taghipour, A.; Ghassemian, H. Hyperspectral anomaly detection using spectral–spatial features based on the human visual 
system. Int. J. Remote Sens. 2019, 40, 8683–8704, doi:10.1080/01431161.2019.1620374. 

50. Kelly, E.J. An Adaptive Detection Algorithm. IEEE Trans. Aerosp. Electron. Syst. 1986, AES-22, 115–127, 
doi:10.1109/taes.1986.310745. 

51. Hunt, B.R.; Cannon, T.M. Nonstationary assumptions for gaussian models of images. IEEE Trans. Syst. Man. Cybern. 1976, SCM-
6, 876–882. 

52. Margalit, A.; Reed, I.S.; Gagliardi, R.M. Adaptive Optical Target Detection Using Correlated Images. IEEE Trans. Aerosp. Electron. 
Syst. 1985, AES-21, 394–405, doi:10.1109/taes.1985.310570. 

53. Chen, J.Y.; Reed, I.S. A Detection Algorithm for Optical Targets in Clutter. IEEE Trans. Aerosp. Electron. Syst. 1987, AES-23, 46–
59, doi:10.1109/taes.1987.313335. 

54. Swain, P.H.; Davis, S.M. Remote sensing: The quantitative approach. IEEE Trans. Pattern Anal. Mach. Intell. 1981, 713-714. 
55. Molero, J.M.; Garzon, E.M.; Garcia, I.; Plaza, A. Analysis and optimizations of global and local versions of the RX algorithm for 

anomaly detection in hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 801–814, 
doi:10.1109/JSTARS.2013.2238609. 

56. Molero, J.M.; Garzón, E.M.; García, I.; Plaza, A. Anomaly detection based on a parallel kernel RX algorithm for multicore 
platforms. J. Appl. Remote Sens. 2012, 6, doi:10.1117/1.JRS.6.061503. 

57. Molero, J.M.; Garzon, E.M.; Garcia, I.; Quintana-Orti, E.S.; Plaza, A. Efficient implementation of hyperspectral anomaly 
detection techniques on GPUs and multicore processors. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2256–2266, 
doi:10.1109/jstars.2014.2328614. 

58. Molero, J.M.; Paz, A.; Garzón, E.M.; Martínez, J.A.; Plaza, A.; García, I. Fast anomaly detection in hyperspectral images with RX 
method on heterogeneous clusters. J. Supercomput. 2011, 58, 411–419, doi:10.1007/s11227-011-0598-0. 

59. Manolakis, D.; Marden, D. Non Gaussian models for hyperspectral algorithm design and assessment. In Proceedings of the 
IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; pp. 1664–1666. 

60. Marden, D.B.; Manolakis, D. Modeling Hyperspectral Imaging Data. In Proceedings of the Algorithms and Technologies for 
Multispectral, Hyperspectral, and Ultraspectral Imagery IX, Orlando, FL, USA, 23 September 2003; pp. 253–262. 



Appl. Sci. 2021, 11, 4878 32 of 35 
 

61. Niu, S.; Ingle, V.K.; Manolakis, D.; Cooley, T. On the modeling of hyperspectral imaging data with elliptically contoured 
distributions. In Proceedings of the 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote 
Sensing, Reykjavik, Iceland, 14–16 June 2010; pp. 1–4. 

62. Caefer, C.E.; Silverman, J.; Orthal, O.; Antonelli, D.; Sharoni, Y.; Rotman, S.R. Improved covariance matrices for point target 
detection in hyperspectral data. Opt. Eng. 2008, 47, doi:10.1117/1.2965814. 

63. Matteoli, S.; Diani, M.; Corsini, G. Improved covariance matrix estimation: Interpretation and experimental analysis of different 
approaches for anomaly detection applications. In Proceedings of the Image and Signal Processing for Remote Sensing XV, 
Berlin, Germany, 28 September 2009, doi:10.1117/12.830445. 

64. Gorelik, N.; Blumberg, D.; Rotman, S.R.; Borghys, D. Nonsingular approximations for a singular covariance matrix. In 
Proceedings of the Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVIII, Baltimore, 
MD, USA, 24 May 2012, doi:10.1117/12.915310. 

65. Huber-Lerner, M.; Hadar, O.; Rotman, S.R.; Huber-Shalem, R. Compression of hyperspectral images containing a subpixel 
target. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2246–2255, doi:10.1109/jstars.2014.2320754. 

66. Borghys, D.; Kasen, I.; Achard, V.; Perneel, C. Comparative evaluation of hyperspectral anomaly detectors in different types of 
background. In Proceedings of the Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery 
XVIII, Baltimore, MD, USA, 24 May 2012, doi:10.1117/12.920387. 

67. Friedman, J.H. Regularized discriminant analysis. J. Am. Stat. Assoc. 1989, 84, 165–175, doi:10.1080/01621459.1989.10478752. 
68. Hoffbeck, J.P.; Landgrebe, D.A. Covariance matrix estimation and classification with limited training data. IEEE Trans. Pattern 

Anal. Mach. Intell. 1996, 18, 763–767, doi:10.1109/34.506799. 
69. Kuo, B.C.; Landgrebe, D.A. A covariance estimator for small sample size classification problems and its application to feature 

extraction. IEEE Trans. Geosci. Remote Sens. 2002, 40, 814–819, doi:10.1109/TGRS.2002.1006358. 
70. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: New 

York, NY, USA, 2001. 
71. Manolakis, D.; Marden, D.; Kerekes, J.; Shaw, G. On the statistics of hyperspectral imaging data. In Proceedings of the 

Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VII, Orlando, FL, USA, 20 August 2001; pp. 308–316, 
doi:10.1117/12.437021. 

72. Hansen, P.C. Rank-Deficient and Discrete Ill-Posed Problems; Society for Industrial and Applied Mathematics: Philadelphia, PA, 
USA, 1999. 

73. Theiler, J. The incredible shrinking covariance estimator. In Proceedings of the Automatic Target Recognition XXII, Baltimore, 
MD, USA, 2 May 2012, doi:10.1117/12.918718. 

74. Davidson, C.E.; Ben-David, A. On the use of covariance and correlation matrices in hyperspectral detection. In Proceedings of 
the 2011 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), Washington, DC, USA, 11–13 October 2011, 
doi:10.1109/aipr.2011.6176374. 

75. Rossi, A.; Acito, N.; Diani, M.; Corsini, G. RX architectures for real-time anomaly detection in hyperspectral images. J. Real-Time 
Image Process. 2014, 9, 503–517, doi:10.1007/s11554-012-0292-3. 

76. Zhao, C.; Wang, Y.; Qi, B.; Wang, J. Global and local real-time anomaly detectors for hyperspectral remote sensing imagery. 
Remote Sens. 2015, 7, 3966–3985, doi:10.3390/rs70403966. 

77. Stellman, C.M.; Hazel, G.G.; Bucholtz, F.; Michalowicz, J.V.; Stocker, A.; Schaaf, W. Real-time hyperspectral detection and cuing. 
Opt. Eng. 2000, 39, 1928–1935, doi:10.1117/1.602577. 

78. Liu, W.M.; Chang, C.I. Multiple-window anomaly detection for hyperspectral imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote 
Sens. 2013, 6, 644–658, doi:10.1109/JSTARS.2013.2239959. 

79. Ren, L.; Zhao, L.; Wang, Y. A Superpixel-Based Dual Window RX for Hyperspectral Anomaly Detection. IEEE Geosci. Remote 
Sens. Lett. 2020, 17, 1233–1237, doi:10.1109/lgrs.2019.2942949. 

80. Hu, X.; Hu, S.; Zhang, X.; Zhang, H.; Luo, L. Anomaly Detection Based on Local Nearest Neighbor Distance Descriptor in 
Crowded Scenes. Sci. World J. 2014, 2014, 632575, doi:10.1155/2014/632575. 

81. Ming, Z.; Jingchao, C.; Yang, L. A Review of Anomaly Detection Techniques Based on Nearest Neighbor. In Proceedings of the 
2018 International Conference on Computer Modeling, Simulation and Algorithm (CMSA 2018), Beijing, China, 22–23 April 
2018; pp. 290–292, doi:10.2991/cmsa-18.2018.65. 

82. Ahlberg, J.; Renhorn, I. Multi- and Hyperspectral Target and Anomaly Detection; Swedish Defence Research Agency, Division of 
Sensor Technology: Linköping, Sweden, 2004. 

83. Kruse, F.A.; Lefkoff, A.B.; Boardman, J.W.; Heidebrecht, K.B.; Shapiro, A.T.; Barloon, P.J.; Goetz, A.F.H. The spectral image 
processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 1993, 44, 
145–163, doi:10.1016/0034-4257(93)90013-N. 

84. Krause, E.F. Taxicab Geometry: An Adventure in Non-Euclidean Geometry; Dover: New York, NY, USA, 1986. 
85. Cantrell, C.D. Modern Mathematical Methods for Physicists and Engineers; Cambridge University Press: Cambridge, UK, 2000. 
86. Schlamm, A.; Messinger, D. A euclidean distance transformation for improved anomaly detection in spectral imagery. In 

Proceedings of the 2010 Western New York Image Processing Workshop, Rochester, NY, USA, 5 November 2010; pp. 26–29. 
87. Merkwirth, C.; Parlitz, U.; Lauterborn, W. Fast nearest-neighbor searching for nonlinear signal processing. Phys. Rev. E 2000, 62, 

2089–2097, doi:10.1103/PhysRevE.62.2089. 



Appl. Sci. 2021, 11, 4878 33 of 35 
 

88. Zhao, M.; Saligrama, V. Anomaly detection with score functions based on nearest neighbor graphs. In Proceedings of the 
Advances in Neural Information Processing Systems 22, Vancouver, British Columbia, Canada, 7–10 December 2009; pp. 2250–
2258. 

89. Schölkopf, B.; Smola, A.J. Learning with kernels. Learn. Kernels 2002. 
90. Zhao, C.; Yao, X.; Yan, Y. Modified Kernel RX Algorithm Based on Background Purification and Inverse-of-Matrix-Free 

Calculation. IEEE Geosci. Remote Sens. Lett. 2017, 14, 544–548, doi:10.1109/lgrs.2017.2656251. 
91. Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 1933, 24, 417–441, 

doi:10.1037/h0071325. 
92. Hidalgo, J.A.P.; Pérez-Suay, A.; Nar, F.; Camps-Valls, G. Efficient Nonlinear RX Anomaly Detectors. IEEE Geosci. Remote Sens. 

Lett. 2021, 18, 231–235, doi:10.1109/lgrs.2020.2970582. 
93. Scott, D. Multivariate Density Estimation; Wiley: New York, NY, USA, 1992. 
94. Silverman, B.W. Density Estimation for Statistics and Data Analysis; CRC Press: London, UK, 1986. 
95. Matteoli, S.; Veracini, T.; Diani, M.; Corsini, G. Background density nonparametric estimation with data-adaptive bandwidths 

for the detection of anomalies in multi-hyperspectral imagery. IEEE Geosci. Remote Sens. Lett. 2014, 11, 163–167, 
doi:10.1109/lgrs.2013.2250907. 

96. Matteoli, S.; Veracini, T.; Diani, M.; Corsini, G. Models and methods for automated background density estimation in 
hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2837–2852, doi:10.1109/tgrs.2012.2214392. 

97. Matteoli, S.; Veracini, T.; Diani, M.; Corsini, G. A Locally Adaptive Background Density Estimator: An evolution for rx-based 
anomaly detectors. IEEE Geosci. Remote Sens. Lett. 2014, 11, 323–327, doi:10.1109/lgrs.2013.2257670. 

98. Veracini, T.; Matteoli, S.; Diani, M.; Corsini, G. Nonparametric framework for detecting spectral anomalies in hyperspectral 
images. IEEE Geosci. Remote Sens. Lett. 2011, 8, 666–670, doi:10.1109/lgrs.2010.2099103. 

99. Veracini, T.; Matteoli, S.; Diani, M.; Corsini, G.; De Ceglie, S.U. A non-parametric approach to anomaly detection in 
hyperspectral images. In Proceedings of SPIE 7830, Image and Signal Processing for Remote Sensing XVI, Toulouse, France, 22 
October 2010; doi:10.1117/12.865073 

100. Ruiz, A.; López-de-Teruel, P.E. Nonlinear kernel-based statistical pattern analysis. IEEE Trans. Neural Netw. 2001, 12, 16–32, 
doi:10.1109/72.896793. 

101. Cremers, D.; Kohlberger, T.; Schnörr, C. Shape statistics in kernel space for variational image segmentation. Pattern Recognit. 
2003, 36, 1929–1943, doi:10.1016/s0031-3203(03)00056-6. 

102. Terrell, G.R.; Scott, D.W. Variable kernel density estimation. Ann. Stat. 1992, 20, 1236–1265. 
103. Banerjee, A.; Burlina, P.; Meth, R. Fast hyperspectral anomaly detection via SVDD. In Proceedings of the International 

Conference on Image Processing, San Antonio, TX, USA, 16 September–19 October 2007; pp. IV101–IV104, 
doi:10.1109/ICIP.2007.4379964. 

104. Schölkopf, B.; Platt, J.; Shawe-Taylor, J.; Smola, A.J.; Williamson, R.C. Estimating the support of a high-dimensional distribution. 
Tech. Rep. 1999. 

105. Tax, D.; Duin, R. Data domain description by support vectors. ESANN 1999, 99, 251–256. 
106. Tax, D.M.J.; Ypma, A.; Duin, R.P.W. Support vector data description applied to machine vibration analysis. Proc. 5th Annu. Conf. 

Adv. Sch. Comput. Imaging 1999, 398-405. 
107. Gualtieri, J.A.; Chettri, S.R.; Cromp, R.F.; Johnson, L.F. Support vector machine classifiers as applied to AVIRIS data. Summ. 

Eighth Jpl Airbrone Earth Sci. Workshop 1999, 217–227, doi:10.1.1.30.2656. 
108. Gualtieri, J.A.; Cromp, R.F. Support vector machines for hyperspectral remote sensing classification. Proc. Spie Int. Soc. Opt. Eng. 

1999, 3584, 221–232. 
109. Boltyanski, V.; Martini, H.; Soltan, V. Geometric Methods and Optimization Problems; Springer Science & Business Media: 

Berlin/Heidelberg, Germany, 2013; Volume 4. 
110. Golub, G.H.; Reinsch, C. Singular value decomposition and least squares solutions. In Linear Algebra; Springer: 

Berlin/Heidelberg, Germany, 1971; pp. 134–151. 
111. Comon, P. Independent component analysis, a new concept? Signal Process. 1994, 36, 287–314. 
112. Chang, C.I. Orthogonal Subspace Projection (OSP) revisited: A comprehensive study and analysis. IEEE Trans. Geosci. Remote 

Sens. 2005, 43, 502–518, doi:10.1109/tgrs.2004.839543. 
113. Ranney, K.I.; Soumekh, M. Hyperspectral anomaly detection within the signal subspace. IEEE Geosci. Remote Sens. Lett. 2006, 3, 

312–316, doi:10.1109/lgrs.2006.870833. 
114. Winter, E.M.; Winter, M.E. Autonomous hyperspectral end-member determination methods. In Proceedings of the Sensors, 

Systems, and Next-Generation Satellites III, Florence, Italy, 28 December 1999; pp. 150–158. 
115. Winter, M.E. N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data. In 

Proceedings of the SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, Denver, CO, USA, 
27 October 1999; pp. 266–275. 

116. Bowles, J.; Gillis, D.; Palmadesso, P. New improvements in the ORASIS algorithm. In Proceedings of the 2000 IEEE Aerospace 
Conference, Big Sky, MT, USA, 25–25 March 2000; pp. 293–298. 

117. Boardman, J.W. Automating spectral unmixing of AVIRIS data using convex geometry concepts. In Proceedings of the 
Summaries 4th Annu. JPL Airborne Geosci. Workshop, Pasadena, California, USA, 25 October 1993; pp. 11–14. 



Appl. Sci. 2021, 11, 4878 34 of 35 
 

118. Belouchrani, A.; Cardoso, J.-F. Maximum likelihood source separation by the expectation-maximization technique: 
Deterministic and stochastic implementation. In Proceedings of the International Symposium on Nonlinear Theory and 
Applications NOLTA’95, Las Vegas, NV, USA, 10–14 December 1995; pp. 49–53. 

119. Celeux, G.; Govaert, G. A classification EM algorithm for clustering and two stochastic versions. Comput. Stat. Data Anal. 1992, 
14, 315–332, doi:10.1016/0167-9473(92)90042-E. 

120. Borghys, D.; Kåsen, I.; Achard, V.; Perneel, C. Hyperspectral anomaly detection: Comparative evaluation in scenes with diverse 
complexity. J. Electr. Comput. Eng. 2012, doi:10.1155/2012/162106. 

121. Lloyd, S.P. Least Squares Quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–137, doi:10.1109/TIT.1982.1056489. 
122. Dunn, J.C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybern. 1973, 3, 

32–57, doi:10.1080/01969727308546046. 
123. Windham, M.P. Cluster Validity for the Fuzzy c-Means Clustering Algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 1982, PAMI-

4, 357-363, doi:10.1109/TPAMI.1982.4767266. 
124. Alruwaili, M.; Siddiqi, M.H.; Javed, M.A. A robust clustering algorithm using spatial fuzzy C-means for brain MR images. Egypt. 

Inform. J. 2020, 21, 51–66, doi:10.1016/j.eij.2019.10.005. 
125. Togacar, M.; Ergen, B.; Comert, Z. COVID-19 detection using deep learning models to exploit Social Mimic Optimization and 

structured chest X-ray images using fuzzy color and stacking approaches. Comput. Biol. Med. 2020, 121, 
doi:10.1016/j.compbiomed.2020.103805. 

126. Versaci, M.; Morabito, F.C. Image Edge Detection: A New Approach Based on Fuzzy Entropy and Fuzzy Divergence. Int. J. 
Fuzzy Syst. 2021, doi:10.1007/s40815-020-01030-5. 

127. Stoica, P.; Selén, Y. A review of information criterion rules. IEEE Signal Process. Mag. 2004, 21, 36–47, 
doi:10.1109/MSP.2004.1311138. 

128. Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 1982, 43, 59–69, 
doi:10.1007/BF00337288. 

129. Duran, O.; Petrou, M. A time-efficient method for anomaly detection in hyperspectral images. IEEE Trans. Geosci. Remote Sens. 
2007, 45, 3894–3904, doi:10.1109/tgrs.2007.909205. 

130. Penn, B.S. Using self-organizing maps for anomaly detection in hyperspectral imagery. In Proceedings of the IEEE Aerospace 
Conference Proceedings, Big Sky, Montana, USA, 9–16 March 2002; pp. 1531–1535. 

131. Baraniuk, R.G. Compressive sensing. IEEE Signal Process. Mag. 2007, 24, 118–120+124, doi:10.1109/msp.2007.4286571. 
132. Candes, E.J.; Wakin, M.B. An introduction to compressive sampling: A sensing/sampling paradigm that goes against the 

common knowledge in data acquisition. IEEE Signal Process. Mag. 2008, 25, 21–30, doi:10.1109/msp.2007.914731. 
133. Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306, doi:10.1109/tit.2006.871582. 
134. Li, J.; Zhang, H.; Zhang, L.; Ma, L. Hyperspectral anomaly detection by the use of background joint sparse representation. IEEE 

J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2523–2533, doi:10.1109/jstars.2015.2437073. 
135. Li, W.; Du, Q. A survey on representation-based classification and detection in hyperspectral remote sensing imagery. Pattern 

Recognit. Lett. 2016, 83, 115–123, doi:10.1016/j.patrec.2015.09.010. 
136. Li, W.; Du, Q.; Zhang, B. Combined sparse and collaborative representation for hyperspectral target detection. Pattern Recognit. 

2015, 48, 3904–3916, doi:10.1016/j.patcog.2015.05.024. 
137. Ling, Q.; Guo, Y.; Lin, Z.; An, W. A Constrained Sparse Representation Model for Hyperspectral Anomaly Detection. IEEE Trans. 

Geosci. Remote Sens. 2019, 57, 2358–2371, doi:10.1109/TGRS.2018.2872900. 
138. Xu, Y.; Wu, Z.; Li, J.; Plaza, A.; Wei, Z. Anomaly detection in hyperspectral images based on low-rank and sparse representation. 

IEEE Trans. Geosci. Remote Sens. 2016, 54, 1990–2000, doi:10.1109/tgrs.2015.2493201. 
139. Zhang, Y.; Du, B.; Zhang, L. A sparse representation-based binary hypothesis model for target detection in hyperspectral images. 

IEEE Trans. Geosci. Remote Sens. 2015, 53, 1346–1354, doi:10.1109/tgrs.2014.2337883. 
140. Li, S.; Yin, H.; Fang, L. Remote sensing image fusion via sparse representations over learned dictionaries. IEEE Trans. Geosci. 

Remote Sens. 2013, 51, 4779–4789, doi:10.1109/tgrs.2012.2230332. 
141. Sun, X.; Nasrabadi, N.M.; Tran, T.D. Task-driven dictionary learning for hyperspectral image classification with structured 

sparsity constraints. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4457–4471, doi:10.1109/tgrs.2015.2399978. 
142. Yang, Y.; Zhang, J.; Song, S.; Liu, D. Hyperspectral Anomaly Detection via Dictionary Construction-Based Low-Rank 

Representation and Adaptive Weighting. Remote Sens. 2019, 11, 192, doi:10.3390/rs11020192. 
143. Candès, E.J.; Li, X.; Ma, Y.; Wright, J. Robust principal component analysis? J. ACM 2011, 58, Article 11, 

doi:10.1145/1970392.1970395. 
144. Xu, Y.; Wu, Z.; Chanussot, J.; Wei, Z. Joint Reconstruction and Anomaly Detection from Compressive Hyperspectral Images 

Using Mahalanobis Distance-Regularized Tensor RPCA. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2919–2930, 
doi:10.1109/tgrs.2017.2786718. 

145. Zhu, L.; Wen, G. Hyperspectral anomaly detection via background estimation and adaptive weighted sparse representation. 
Remote Sens. 2018, 10, 272, doi:10.3390/rs10020272. 

146. Zhang, Y.; Du, B.; Zhang, L.; Wang, S. A low-rank and sparse matrix decomposition-based mahalanobis distance method for 
hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1376–1389, doi:10.1109/tgrs.2015.2479299. 

147. Tan, K.; Hou, Z.; Ma, D.; Chen, Y.; Du, Q. Anomaly detection in hyperspectral imagery based on low-rank representation 
incorporating a spatial constraint. Remote Sens. 2019, 11, 1578, doi:10.3390/rs11131578. 



Appl. Sci. 2021, 11, 4878 35 of 35 
 

148. Zhang, X.; Ma, X.; Huyan, N.; Gu, J.; Tang, X.; Jiao, L. Spectral-Difference Low-Rank Representation Learning for Hyperspectral 
Anomaly Detection. IEEE Trans. Geosci. Remote Sens. 2021, doi:10.1109/TGRS.2020.3046727. 

149. Liu, G.; Lin, Z.; Yu, Y. Robust subspace segmentation by low-rank representation. In Proceedings of the ICML 2010—27th 
International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010; pp. 663–670. 

150. Niu, Y.; Wang, B. Hyperspectral anomaly detection based on low-rank representation and learned dictionary. Remote Sens. 2016, 
8, 289, doi:10.3390/rs8040289. 

151. Wang, W.; Li, S.; Qi, H.; Ayhan, B.; Kwan, C.; Vance, S. Identify anomaly component by sparsity and low rank. In Proceedings 
of the Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing, Tokyo, Japan, 2–5 June 2015, 
doi10.1109/WHISPERS.2015.8075391:. 

152. Tropp, J.A.; Gilbert, A.C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 
2007, 53, 4655–4666, doi:10.1109/TIT.2007.909108. 

153. Dai, W.; Milenkovic, O. Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans. Inf. Theory 2009, 55, 2230–
2249, doi:10.1109/TIT.2009.2016006. 

154. Donoho, D.L.; Tsaig, Y. Fast Solution of l1 -Norm Minimization Problems When the Solution May Be Sparse. IEEE Trans. Inf. 
Theory 2008, 54, 4789–4812, doi:10.1109/tit.2008.929958. 

155. Kim, S.J.; Koh, K.; Lustig, M.; Boyd, S.; Gorinevsky, D. An interior-point method for large-scale ℓ1-regularized least squares. 
IEEE J. Sel. Top. Signal Process. 2007, 1, 606–617, doi:10.1109/jstsp.2007.910971. 

156. Tibshirani, R. Regression shrinkage and selection via the lasso: A retrospective. J. R. Stat. Soc. Ser. B Stat. Methodol. 2011, 73, 273–
282, doi:10.1111/j.1467-9868.2011.00771.x. 

157. Chen, S.S.; Donoho, D.L.; Saunders, M.A. Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 1998, 20, 33–61, 
doi:10.1137/S1064827596304010. 

158. Gill, P.R.; Wang, A.; Molnar, A. The in-crowd algorithm for fast basis pursuit denoising. IEEE Trans. Signal Process. 2011, 59, 
4595–4605, doi:10.1109/TSP.2011.2161292. 

159. Ma, D.; Yuan, Y.; Wang, Q. Hyperspectral anomaly detection via discriminative feature learning with multiple-dictionary sparse 
representation. Remote Sens. 2018, 10, 745, doi:10.3390/rs10050745. 

160. Zhao, R.; Du, B.; Zhang, L. Hyperspectral Anomaly Detection via a Sparsity Score Estimation Framework. IEEE Trans. Geosci. 
Remote Sens. 2017, 55, 3208–3222, doi:10.1109/tgrs.2017.2664658. 

161. Li, W.; Tramel, E.W.; Prasad, S.; Fowler, J.E. Nearest regularized subspace for hyperspectral classification. IEEE Trans. Geosci. 
Remote Sens. 2014, 52, 477–489, doi:10.1109/TGRS.2013.2241773. 

162. Wu, Z.; Su, H.; Du, Q. Low-Rank and Collaborative Representation for Hyperspectral Anomaly Detection. In Proceedings of 
the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, 28 July–2 August 2019; pp. 1394–1397. 

163. Jiang, K.; Xie, W.; Li, Y.; Lei, J.; He, G.; Du, Q. Semisupervised spectral learning with generative adversarial network for 
hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5224–5236, doi:10.1109/TGRS.2020.2975295. 

164. Wang, S.; Wang, X.; Zhang, L.; Zhong, Y. Auto-AD: Autonomous Hyperspectral Anomaly Detection Network Based on Fully 
Convolutional Autoencoder. IEEE Trans. Geosci. Remote Sens. 2021, doi:10.1109/TGRS.2021.3057721. 


