
applied  
sciences

Article

Hierarchical Population Game Models of Coevolution in
Multi-Criteria Optimization Problems under Uncertainty

Vladimir A. Serov

����������
�������

Citation: Serov, V.A. Hierarchical

Population Game Models of

Coevolution in Multi-Criteria

Optimization Problems under

Uncertainty. Appl. Sci. 2021, 11, 6563.

https://doi.org/10.3390/app11146563

Academic Editors: Evgeny Nikulchev

and Askhat Diveev

Received: 7 May 2021

Accepted: 14 July 2021

Published: 16 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Applied Information Technologies Department, MIREA—Russian Technological University,
119454 Moscow, Russia; ser_off@inbox.ru; Tel.: +7-916-107-0704

Abstract: The article develops hierarchical population game models of co-evolutionary algorithms
for solving the problem of multi-criteria optimization under uncertainty. The principles of vector
minimax and vector minimax risk are used as the basic principles of optimality for the problem of
multi-criteria optimization under uncertainty. The concept of equilibrium of a hierarchical population
game with the right of the first move is defined. The necessary conditions are formulated under
which the equilibrium solution of a hierarchical population game is a discrete approximation of the
set of optimal solutions to the multi-criteria optimization problem under uncertainty.

Keywords: multi-criteria optimization; uncertainty; vector minimax; vector minimax risk; coevolu-
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1. Introduction

One of the main problems that arise in the development of modern control systems
is the problem of ensuring the required quality of their functioning in a wide range of
changes in operating conditions. The effectiveness of control systems design methods is
determined by the possibilities of taking into account uncertain factors, such as the multi-
criteria nature of control goals and the uncertainty of environmental conditions. Thus,
formally, the problem of control systems design is a problem of multi-criteria optimization
under uncertainty (MOU).

The analysis of numerous bibliographies shows that currently the approaches that
generalize the guaranteed result principle of Germeyer [1] for the class of MOU problems
are actively developing and are the most promising. In [2,3], the principles of vector mini-
max and vector minimax risk which are multi-criteria generalizations of the well-known
Wald and Savage principles, respectively, are developed. Generalizations of the principles
of vector minimax and vector minimax risk for models of binary preference relations in
the form of convex dominance cones are also considered. Mathematic methods for solving
dynamical MOU problems based on vector minimax principle and its generalizations are
being developed in [4]. In [5–7] a more general concept of operator minimax is introduced.
The necessary and sufficient conditions for its existence in functional spaces are investi-
gated. In [3,8,9], the interpretation of the vector minimax principle from the standpoint of
game theory is given, and the relationship between the concepts of vector minimax and
the saddle point is investigated.

However, the application of these approaches to solving applied multi-criteria prob-
lems of control optimization under uncertainty faces a number of problems. The frequently
occurring need to implement control algorithms in real time requires the representation of
control actions in the general case in the form of parameterized program-corrected control
laws. Such cases are characterized by a high dimension of the criterion space and the space
of control parameters, non-linearity, non-convexity, and the presence of discontinuous
points in the components of vector performance indicators. These features of the prob-
lem statements, combined with the problem of global optimization, make it difficult or
impossible to use known methods and algorithms for solving MOU problems.
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Thus, there is a need to develop a new, more efficient computing technology that
combines the advantages of global and local multi-criteria search and allows the implemen-
tation of control algorithms in real time. The developed computing technology should be
compatible with promising architectures of distributed computing systems [10,11], models
and methods of distributed computing [12–14].

Currently, a qualitatively new approach to solving optimization problems with high
computational and structural complexity is being intensively developed, based on the
development of co-evolutionary algorithms. In [13], models, forms of coevolution, types
of interaction of populations, and models of the distribution of computing resources
between subpopulations are discussed. Depending on the nature of the interaction of
coevolving populations, two forms of coevolution are studied: cooperative coevolution
and competitive coevolution.

Cooperative coevolution involves the decomposition of a set of parameters and/or
an objective function of the optimization problem being solved. The most widespread
are the following types of cooperative coevolution. Soft Grouping Cooperative Coevo-
lution (SGCC) implements a “soft” distribution of variables across several groups with
control of the degree of belonging of variables to groups using the probability distribution
function [15]. Differential Grouping Cooperative Coevolution (DGCC) implements a de-
composition strategy that minimizes the interdependence between groups of variables [16].
Multi-Level Cooperative Coevolution (MLCC) [17] uses the size of a group of parameters
as an optimized parameter. Hierarchical Coevolution Model, a model of coevolution of
symbiotic species [18], takes into account homogeneous and heterogeneous aspects of co-
evolution to maintain diversity, accelerates convergence, preserves diversity and prevents
premature convergence of the process of finding optimal solutions.

Competitive coevolution uses the following types of interactions of subpopulations:
interaction according to the “host-parasite” scheme; interaction of subpopulations with
different search areas; and interaction of subpopulations that differ in search strategies
(algorithms or algorithm settings). The latter type of coevolution is used to adapt the
parameter settings of search algorithms that ensure the dominance of algorithms with
the best settings. In particular, [19] considers a co-evolutionary “cultural” particle swarm
algorithm that implements the concept of improving population algorithms based on
taking into account the experience gained during solving the problem. Examples of using
co-evolutionary particle swarm algorithms for solving optimal design problems with
constraints and minimax problems are considered in [20,21]. In addition, competitive
evolution can be used as a tool for effective dynamic distribution of computing resources
between subpopulations [22,23] in the process of solving the problem.

In [24–26], co-evolutionary technologies for solving multi-criteria problems are de-
veloped using cooperative, competitive and combined coevolution schemes. It is shown
that the combined coevolution schemes look more preferable, since they allow solving
quite complex problems of multi-criteria optimization, providing a representative approx-
imation of the Pareto set and adaptive configuration of the algorithm for a specific task.
A co-evolutionary algorithm for solving the multi-criteria optimization problem under
uncertainty is considered in [27]. However, the assumption of the probabilistic nature of
the uncertainty limits the possibilities of using this algorithm.

Thus, co-evolutionary optimization technologies make it possible, in general, to
solve the problem of finding a set of globally optimal solutions under multimodality and
multicriteriality quite effectively.

At the same time, the complexity of the MOU problem is that when solving it, it is
fundamentally necessary to take into account the presence and conflicting nature of the
interaction of two types of uncertain factors: the uncertainty of the goal (interpreted as
multi-criteria) and the uncertainty of the environment. It is assumed that the uncertainty
is known only that it belongs to a certain area, and there are no statistical characteristics.
Therefore, the spread of co-evolutionary technology to the MOU tasks requires the develop-
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ment of new models of coevolution that take into account the conflict nature of the problem
being solved and, as a result, the conflict nature of the interaction of subpopulations.

The purpose of this article is to develop hierarchical game models of coevolution that
take into account the conflict nature of the MOU problem, as well as the structure of the
optimality principles used to find a set of optimal solutions.

2. A Problem Statement

Consider the problem of multi-criteria optimization under uncertainty (MOU) in the
form

Γ = 〈U, Z, J(u, z), Ω〉 (1)

In the problem (1) U ⊂ Er—the set of valid solutions, u ∈ U; Z ⊂ Ek—the set of
possible values of an undefined factor, z ∈ Z; J(u, z) ∈ Em—vector efficiency indicator
defined on the Descartes product, U×Z; Ω ⊂ Em—a convex dominance cone of that defines
a binary strict preference relation on the set of achievable vector estimates, J(U, Z) =
∪

u ∈ U
z ∈ Z

J(u, z), Er, Ek, Em—Euclidean spaces of dimensions r, k, m respectively.

It is necessary to determine the set of optimal solutions to the problem (1) under
uncertainty Z. It should be noted that the guaranteeing properties of optimal solutions
depend on the optimality principle used to solve problem (1).

The most well-known optimality principles used to solve problem (1) are the principles
of vector minimax, vector minimax risk, and their generalizations for models of binary
relations in the form of convex dominance cones [2,3].

2.1. The Ω-Minimax Principle

Definition 1. Ref. [2] Vector estimation VΩ(G) ∈ Em is called the point of extreme pessimism
with respect to the dominance cone Ω (extreme Ω-pessimism), on a set G, if it has the following
properties:

G ⊂ VΩ(G) + Ω (2)

for any
~
V 6= VΩ(G) such that, G ⊂

~
V + Ω,

holds
VΩ(G)−

~
V ∈ Ω (3)

Definition 2. Ref. [2] A valid solution u∗ ∈ U is called an Ω-minimax solution of problem (1) if
there is no such thing u ∈ U as

VΩ(J(u, Z))−VΩ(J(u∗, Z)) ∈ Ω (4)

2.2. The Ω-Minimax Risk Principle

Definition 3. Ref. [2]. The vector estimate PΩ(G) ∈ Em is called the “ideal” point (the “utopia”
point») with respect to the dominance cone Ω (Ω-ideal point) on the set G, if it has the following
properties:

G ⊂ PΩ(G)−Ω (5)

for any
~
P 6= PΩ(G) such that G ⊂

~
P−Ω, there is an inclusion of

PΩ(G)−
~
P ∈ −Ω (6)



Appl. Sci. 2021, 11, 6563 4 of 10

Definition 4. Ref. [3]. A vector function

R(u, z) = J(u, z)− PΩ(J(U, z)) (7)

defined on U× Z, is called the vector risk function, and the value R(u, z) under given {u, z} is
called the vector risk when choosing an alternative x ∈ X and implementing uncertainty z ∈ Z.

We formulate an auxiliary MOU problem:

Γ′ = 〈U, Z, R(u, z), Ω〉 (8)

where U, Z have the same meaning as in problem (1), R(u, z)—a vector risk function of the
form (7), Ω ⊂ Em—a convex dominance cone that sets a binary relation of strict preference
on the set of achievable vector estimates R(U, Z) = ∪

u ∈ U
z ∈ Z

R(u, z).

Definition 5. Ref. [3]. The Ω -minimax solution u∗ ∈ U of the MOU problem (8) is called the
solution that guarantees the Ω-minimax risk (RΩ -minimax) in the MOU problem of the form (1).

2.3. Hierarchical Population Game Model for Finding a Set of Optimal Solutions to the MOU
Problem

Based on the statement of the problem (1), we will form a hierarchical population
game with the right of the first move

Γ =
〈

C0, C, U, Z, F0

( ~
U,

~
Z
)

, F
( ~

U,
~
Z
)

, Ω
〉

(9)

It is assumed that two players take part in the game (9): the coordinating center C0
and the lower-level player C; the designations U, Z, Ω have the same meaning as in the

problem (1). The coordinating center manages the selection of a population strategy
~
U ⊂ U,

which is a finite set of points-individuals
~
U =

{
~
u

i
, i = 1, N

}
, N =

∣∣∣ ~
U
∣∣∣. The player C of

the lower level, manages the choice of a multi-population strategy
~
Z =

{
~
Z

i
, i = 1,

∣∣∣ ~
U
∣∣∣},

which is a set of populations
~
Z

i
=

{
~
z

j
, j = 1, Ni

}
, Ni =

∣∣∣∣~
Z

i
∣∣∣∣. The effectiveness of the

coordinating center functioning is characterized by a criterion F0

( ~
U,

~
Z
)

, the effectiveness

of the player of the lower-level functioning is characterized by a vector criterion F
( ~

U,
~
Z
)
={

F
(

~
u

i
,

~
Z

i)
, i = 1,

∣∣∣ ~
U
∣∣∣}.

In relation to the hierarchical population game (9), the well-known multi-stage mecha-
nism for forming an equilibrium solution can be implemented on the basis of hierarchical
coevolution algorithms. In this case, the equilibrium solution can be interpreted as Ω-
minimax or RΩ-minimax of the MOU problem (1), depending on the type of functions

F0

( ~
U,

~
Z
)

and F
( ~

U,
~
Z
)

.

3. Hierarchical Coevolution Algorithms for Multi-Criteria Optimization under
Uncertainty
3.1. Algorithm of Hierarchical Coevolution Search for Set of -Minimax Solutions to the MOU
Problem

The proposed algorithm includes the following main steps.
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Step 1. In the hierarchical game (9), the first move is made by the coordinating

center—it tells the lower-level players its population strategy
~
U ⊂ U.

Step 2. With a fixed population strategy
~
U ⊂ U the lower-level player solves the

problem

Γ′ =
{

Γi, i = 1,
∣∣∣ ~
U
∣∣∣} (10)

where

Γi =

〈
~
u

i
, Z, J(u, z), F

(
~
u

i
,

~
Z

i)
, Λ

〉
(11)

In problem (11)
~
u

i
∈

~
U—fixed, the dominance cone Λ = −Ω formalizes the binary

preference relation of the lower-level player on the set of achievable vector estimates J(u, Z),

defined in problem (1);
~
Z

i
⊂ Z- a valid solution representing a population of individual

points that is part of a valid multi-population strategy
~
Z of the player C; F

(
~
u

i
,

~
Z

i)
—vector

criterion of the player C of the form

F
(

~
u

i
,

~
Z

i)
= PΛ

(
J
(

~
u

i
,

~
Z

i))
(12)

having the meaning of an Λ-ideal point constructed on the set J
(

~
u

i
,

~
Z

i)
. It is necessary

to define a population strategy
~
Z

i

Λ ⊂ Z, that maximizes the components of the vector
criterion (12).

Definition 6. A population strategy
~
Z

i

Λ ⊂ Z is called an optimal solution to the problem (11), (12),

if there is no population strategy
~
Z

i
⊂ Z,

~
Z

i
6=

~
Z

i

Λ, for which the inclusion would be performed:

F
(

~
u

i
,

~
Z

i)
− F

(
~
u

i
,

~
Z

i

Λ

)
∈ Λ (13)

Step 3. The coordinating center evaluates the effectiveness of the population strategy
~
U ⊂ U by calculating the value of the function F0

( ~
U
)

. To do this, a function is calculated

for each one
~
u

i
∈

~
U:

Φ
(

~
u

i
)
=

1(
1 + bi∣∣∣ ~

U
∣∣∣−1

)ψ (14)

where ψ is a free parameter that determines the selection rules in the evolutionary algorithm;

bi—the number of points
~
u

j
∈

~
U, j 6= i, for which the condition

F
(

~
u

j
,

~
Z

j

Λ

)
− F

(
~
u

i
,

~
Z

i

Λ

)
∈ Ω (15)

is met.
After that, the function F0

( ~
U
)

is calculated in the form

F0

( ~
U
)
=

 1∣∣∣ ~
U
∣∣∣
|

~
U|

∑
i=1

Φ
(

~
u

i
) 1∥∥∥∥∥PΩ

(
∪

~
u

i
∈

~
U

F
(

~
u

i
,

~
Z

i

Λ

))∥∥∥∥∥
(16)
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Step 4. The coordinating center solves the problem

F0

( ~
U
)
→ max

~
U⊂U

(17)

The optimal solution
~
Umax to problem (17) is called the Ω-guaranteeing population

strategy of the coordinating center. The guaranteeing meaning of a population strategy
~
Umax

is that for any valid population strategy
~

W 6=
~
Umax the inequality F0

(
~

W
)
> F0

( ~
Umax

)
does

not hold, where the function F0

( ~
U
)

is calculated according to the rules (14)–(16).

Definition 7. Let the population strategy
~
Umax be the optimal solution to the problem (17), where

the function F0

( ~
U
)

is calculated according to the rules (14)–(16), and the population strategies
~
Z

i

Λ is the optimal solutions to the problem (11) at i = 1,
∣∣∣ ~
U
∣∣∣. Then the set of population strategies{

~
Umax,

{
~
Z

i

Λ, i = 1,
∣∣∣ ~
U
∣∣∣}} is called the Ω-equilibrium solution of the hierarchical population

game (9).

Theorem 1. Let:

(1)
{

~
Umax,

{
~
Z

i

Λ, i = 1,
∣∣∣ ~
U
∣∣∣}}—a set of population strategies, which is an Ω-equilibrium

solution of a hierarchical population game with the right of the first move of the form (9);

(2)
~
Z

i

Λ—optimal solutions to the problem (11) when i = 1,
∣∣∣ ~
U
∣∣∣;

(3)
~
Umax is the optimal solution of the problem (17), where the objective function F0

( ~
U
)

is
calculated in accordance with the rules (14)–(16).

Then the population strategy
~
Umax ⊂ UΩ, where UΩ is the set of Ω-minimax solutions of

the MOU problem of the form (1).

3.2. Algorithm of Hierarchical Coevolutionary Search for the Set of RΩ-Optimal Solutions to the
MOU Problem

Step 1. Formulate an auxiliary MOU problem of the form (8).
Step 2. Form a hierarchical population game (10). The first move is made by the

coordinating center C0—it tells the lower-level player its population strategy
~
U ⊂ U.

Step 3. With a fixed population strategy
~
U ⊂ U, the lower-level player solves problem

(10), where

Γi =

〈
~
u

i
, Z, R(u, z), F

(
~
u

i
,

~
Z

i)
, Λ

〉
(18)

In (18), the player’s C vector criterion is given as

F
(

~
u

i
,

~
Z

i)
= PΛ

(
R
(

~
u

i
,

~
Z

i))
(19)

The optimal solution to problem (18) is a population strategy
~
Z

i

Λ ⊂ Z, that maximizes
the components of the vector criterion (19).

Step 4. The coordinating center evaluates the effectiveness of the population strategy
~
U ⊂ U by calculating the value of the function F0

( ~
U
)

in accordance with rules (14)–(16).
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Step 5. The coordinating center solves the problem (17). An optimal solution to the

problem (17)
~
Umax is called the RΩ-guaranteeing population strategy of the coordinating

center.

Definition 8. Let the population strategy
~
Umax be the optimal solution to the problem (17), where

the function F0

( ~
U
)

is calculated according to the rules (14)–(16), and the population strategies
~
Z

i

Λ be the optimal solutions to the problem (18) at i = 1,
∣∣∣ ~
U
∣∣∣. Then the set of population strategies{

~
Umax,

(
~
Z

i

Λ, i = 1,
∣∣∣ ~
U
∣∣∣)} is called the RΩ-equilibrium solution of the hierarchical population

game (9).

Theorem 2. Let:

(1)
{

~
Umax,

(
~
Z

i

Λ, i = 1,
∣∣∣ ~
U
∣∣∣)}—a set of population strategies, which is the RΩ equilibrium

solution of a hierarchical population game with the right of the first move of the form
(9);

(2)
~
Z

i

Λ—optimal solutions to the problem (18) when i = 1,
∣∣∣ ~
U
∣∣∣;

(3)
~
Umax is the optimal solution to the problem (17), where the objective function F0

( ~
U
)

is calculated in accordance with the rules (14)–(16).

Then the population strategy
~
Umax ⊂ URΩ

, whereURΩ
is the set of RΩ-minimax solutions to

the MOU problem of the form (1).

The peculiarity of algorithm 2 is that the vector risk function R(u, z) is used to solve
problem (18). In this case, the calculation of the function R(u, z) is a separate problem, for
the solution of which the following coevolution algorithm is proposed.

3.3. Coevolution Algorithm for Calculating the Vector Risk Function

Calculations are performed at the player C level with a fixed population strategy
~
U ⊂ U. For fixed

~
u

i
∈

~
U solve the problem of calculating the vector risk function R

(
~
u

i
, z
)

.

The algorithm includes the following basic steps.

Step 1. Fix
~
u

i
∈

~
U.

Step 2. Generating a population strategy
~
Z

i
=

{
~
z

j
∈ Z, j = 1, N~

z

}
.

Step 3. For each one
~
z

j
∈

~
Z

i
, the problem of constructing an ideal point is solved

Γ′ i =

〈
~
z

j
, U, J(u, z), Hj

(
~
z

j
,

^
U

j
)

, Ω

〉
(20)

The optimal solution to problem (21) is a population strategy
^
U

i

Λ and the value of the

vector indicator Hj

(
~
z

j
,

^
U

j

Ω

)
= P

Ω
^
U

j

Ω

(
~
z

j
)

—Ω-the “ideal” point on the set of achievable

vector estimates J

(
~
z

j
,

^
U

j

Ω

)
.

Solving problem (21) for all points
~
z

j
∈

~
Z

i
, we form a set of “ideal” points PΩ

(
~
Z

i)
.
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Step 4. Calculation of the values of the vector risk function on the set
~
z

j
∈

~
Z

i
at a

fixed
~
u

i
∈

~
U:

R
(

~
u

i
,

~
Z

i)
=

{
J
(

~
u

i
,

~
z

j
)
− PΩ

(
~
z

j
)∣∣∣∣~zj

∈
~
Z

i
, j = 1, Nz

}
(21)

4. Discussion

The formalization of a control system design problem in the form of a MOU problem
is relevant because it reflects the conflicting nature of the design task, which manifests itself
in the need to take into account several types of uncertain factors: the uncertainty of the
goal and the uncertainty of the environment. The application of the principles of vector
Ω-minimax and vector Ω-minimax risk allows us to find solutions to the MOU problem
that have guaranteeing properties.

The developed hierarchical population game models of co-evolutionary algorithms
represent a new type of mathematical models of co-evolutionary algorithms that take into
account the conflicting nature of populations interaction, as well as the structure of the
principles of optimality in the MOU problem.

Hierarchical population game models of co-evolutionary algorithms have a universal
character and allow implementing practically all the principles of optimality used to solve
the MOU problems on a single methodological basis. The formed hierarchical algorith-
mic structures are an effective tool for building parallel architectures of co-evolutionary
algorithms for solving high-dimensional MOU problems. The main functional blocks
of the developed co-evolutionary algorithms are implemented on the basis of libraries
of evolutionary algorithms for multi-criteria optimization in conditions of conflict and
uncertainty [28,29].

In the near future, an article will be published in which the applied problem of multi-
criteria synthesis parameters of an unmanned aerial vehicle neuro-stabilization system
under extreme environmental changes is considered. In this case, the problem of training
an artificial neural network is formalized in the form of an MOU problem, for which a
parallel version of the hierarchical co-evolutionary algorithm for finding the equilibrium of
a hierarchical population game with the right of the first move is used.

In the near future, an article will be published in which the applied problem of multi-
criteria synthesis parameters of an unmanned aerial vehicle neurostabilization system
under extreme environmental changes is considered. In this case, the problem of training
an artificial neural network is formalized in the form of an MOU problem, for which a
parallel version of the hierarchical co-evolutionary algorithm for finding the equilibrium of
a hierarchical population game with the right of the first move is used.

5. Conclusions

The MOU problem statement was formalized in the form of a hierarchical population
game with the right of the first move. The concept of a population strategy was defined,
and methods for evaluating the effectiveness of population strategies using functions of
the form (12) and (16) were proposed. The definitions of Ω-equilibrium and R-equilibrium
of a hierarchical population game were formulated.

A hierarchical co-evolutionary algorithm for solving a hierarchical population game
with the right of the first move on the basis of Ω-equilibrium was developed.

The necessary conditions were formulated under which the Ω-equilibrium of a hierar-
chical population game with the right of the first move is a discrete approximation of the
set of Ω-minimax solutions of the original MOU problem.

A hierarchical co-evolutionary algorithm for solving a hierarchical population game
with the right of the first move based on R-equilibrium and a co-evolutionary algorithm
for calculating the vector risk function was developed.
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The necessary conditions were formulated under which the R-equilibrium of a hierar-
chical population game with the right of the first move is a discrete approximation of the
set of RΩ-minimax solutions of the original MOU problem.
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