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Abstract: As reported in the recent image velocimetry literature, tracking the motion of sparse feature
points floating on the river surface as done by the Optical Tracking Velocimetry (OTV) algorithm
is a promising strategy to address surface flow monitoring. Moreover, the lightweight nature of
OTV coupled with computational optimizations makes it suited even for its deployment in situ to
perform measurements at the edge with cheap embedded devices without the need to perform offload
processing. Despite these notable achievements, the actual practical deployment of OTV in remote
environments would require cheap and self-powered systems enabling continuous measurements
without the need for cumbersome and expensive infrastructures rarely found in situ. Purposely, in
this paper, we propose an additional simplification to the OTV algorithm to reduce even further its
computational requirements, and we analyze self-powered off-the-shelf setups for in situ deployment.
We assess the performance of such set-ups from different perspectives to determine the optimal
solution to design a cost-effective self-powered measurement node.

Keywords: optical tracking velocimetry; OTV; surface flow monitoring; computer vision; river
surface velocity; particle tracking; energy consumption

1. Introduction

Surface flow monitoring from images is a promising yet well-known technique to face
the problem of estimating river flow velocity. River velocity measurements typically require
relevant human and financial efforts for organizing sporadic campaigns that, in addition,
cannot be carried out, for safety reasons, during flood events, when such information is
more vital. Therefore, automatic measuring systems are pivotal to avoid cumbersomely
demanding and expensive procedures carried out by specialized human operators. Radar
systems are still costly and cannot monitor the entire width of medium-large rivers. Con-
versely, automatic image-based methods would seamlessly enable continuous monitoring
with clear advantages, among many, for costs and for the frequency and spatial density of
measurements in case multiple devices are deployed along the river.

In open channels, streamflow monitoring is typically conducted through the velocity-
area method, which is based on discrete integration of discharge from flow velocity and
depth measurements sampled throughout the channel cross section. This mandates the
use of permanent installations of instrumentation powered through the grid. For instance,
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acoustic Doppler current profilers (ADCPs), pulsed doppler radars, and ultrasonic water
level meters are among the most popular systems for streamflow measurements. In
recent years, several research groups have been investigating on innovative monitoring
approaches with image analysis, and some companies have been providing off-the-shelf
image-based systems for river flow monitoring (www.tenevia.com, accessed on July 28
2021, www.photrack.ch, accessed on July 28 2021). However, a thorough assessment of
the power consumption characteristics of such systems is not available. Furthermore,
commercially-available systems exploit proprietary software, and involve centralized
supervisors at the companies to store and manage data.

For the reasons outlined, this topic has been deeply investigated in the literature, and
the Optical Tracking Velocimetry (Source code available at: https://github.com/fabiotosi9
2/Optical-Tracking-Velocimetry,accessed on July 28 2021) technique [1] seems particularly
promising. This technique allows for achieving state-of-the-art results in a fraction of the
time required by other methods without the need for wideband communication infras-
tructures for off-load processing. Moreover, its lightweight computational structure also
enables deployment on standard and cheap embedded devices such as those belonging to
the Raspberry Pi family [2], as reported in [3]. Therefore, it appears at hand the opportunity
to design cheap and self-powered monitoring systems capable of continuous monitoring
in situ without any constraint regarding the available infrastructures as sketched in Figure
1. It is worth highlighting that, with such a configuration, a simple low bandwidth text
messaging system would suffice to communicate to a centralized server the outcome of the
velocity estimation procedure, with a simple SMS, instead of transmitting the entire, heavy
images to be then processed elsewhere, with significant implications concerning cost and
scalability if a distributed network of gauge-cameras is deployed.

Figure 1. Sketch of the envisioned solar-powered measurement node made up of standard off-the-shelf devices placed in a
remote monitoring site. The outcome computed in situ by the node is optionally sent to a centralized gathering system
through standard text messaging such as a simple SMS requiring a shallow bandwidth communication channel.

www.tenevia.com
www.photrack.ch
https://github.com/fabiotosi92/Optical-Tracking-Velocimetry
https://github.com/fabiotosi92/Optical-Tracking-Velocimetry
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With this goal in mind, in this paper, at first, we propose an additional simplification
to the OTV algorithm to reduce further its computational requirements without sacrificing
its accuracy. Then, we define some self-powered setups based on cheap and standard solar
panels and computing devices available on the market, and evaluate their performance
to obtain the best trade-off between cost and measurement rate. Specifically, we analyze
the raw performance of the OTV algorithm on each platform, with different architectures
and optimization strategies, and assess overall energy consumption to evaluate the mea-
surement rate with rechargeable batteries coupled with small solar panels. A particularly
appealing setup would consist of cheap off-the-shelf components such as a standard RGB or
monochrome camera, and a Raspberry Pi powered by a PJuice Hat consisting of a lithium
battery rechargeable by a small solar panel. The overall cost of a similar setup would be
only a few hundred dollars, thus affording its capillary deployment even in developing
countries. Optionally, when continuous reporting is needed, such a setup could include a
SIM-based text messaging system connected to the Raspberry Pi and powered by the same
rechargeable battery previously mentioned.

Indeed, the thorough analysis carried out in this paper highlights that practical contin-
uous surface flow monitoring in situ, even in remote places far from urban areas, is feasible
with cheap off-the-shelf components. This paves the way for such an automatic capillary
measurement methodology to be applied in countless monitoring sites.

2. Related Work

In the past few years, automatic image velocimetry methodologies for river monitoring
have blossomed [4]. Most of such approaches stem from traditional large scale particle
image velocimetry (LSPIV) [5], particle tracking velocimetry (PTV) [6], optical flow [7],
and exhibit diverse sensitivity to flow regime and seeding density. The OTV approach
combines automated feature detection, tracking through the Lucas–Kanade algorithm, and
trajectory-based filtering that retain the most realistic trajectories which pertain to objects
transiting in the field of view [1]. Features such as corners and junctions are detected
through the Fast from Accelerated Segment Test (FAST) algorithm. Such features are then
tracked with the pyramidal Lucas–Kanade sparse first-order differential technique. Images
are sub-sampled up to four levels, and out of all trajectories, only those which exhibit a
minimum length and inclination with respect to the stream cross-section are retained for
further processing. OTV does not rely on the deployment of tracers in the field of view,
and the length and angle of the trajectory need to be defined by the user, as well as the
maximum number of trajectories. The method works well in conditions where surface
features are sparse, and where flows are unsteady [1]. Recently, OTV has been optimized
by leveraging its parallel processing capability to facilitate in situ deployment [3].

Similar methodologies include the KLT-IV v1.0 that offers a user-friendly graphical
interface for the determination of river flow velocity and river discharge using videos
acquired from a variety of fixed and mobile platforms [8]. Likewise, the Surface Structure
Image Velocimetry (SSIV) uses a cross-correlation algorithm similar to LSPIV and further
introduces a filter which mitigates the effects of shadows and glare as well as the need
for a densely seeded flow surface [9]. While the SSIV commercial software is available as
a smartphone app and for permanent monitoring implementations, self-powered setups
featuring automatic surface flow velocity measurement at the edge in remote environments
are still untapped. In this vein, the OpenRiverCam initiative is an open-source and low
cost web-software stack with API to establish and maintain river rating curves in small to
medium sized streams based on LSPIV [10]. Further initiatives aimed at creating a network
of monitoring stations for streamflow monitoring include [11], where simple camera setups
enable water level estimations in the upland area of a headwater river basin.

3. Fast Optical Tracking Velocimetry

Due to its relevant practical applications, surface flow monitoring has been deeply
investigated in the past few years, and a recent trend proposes to tackle this task lever-
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aging image feature correspondences. In this field, the OTV algorithm [1] relied on the
pyramidal Lucas–Kanade algorithm [7] to track efficiently lightweight image features, such
as FAST [12], extracted from consecutive frames of a video stream, as depicted in Figure 2.
Specifically, given two consecutive image frames of a video sequence at time t and t + 1, it
extracts relevant features (e.g., FAST [12] from them and searches for corresponding ones
through the Lucas–Kanade optical-flow algorithm [7]. The outcome of this process is then
processed to detect inconsistent trajectories according to priors about the expected rough
river flow direction [1].

Figure 2. Description of the OTV algorithm [1].

Despite its simplicity, OTV turned out quite effective compared to other methods
known in the literature and much less computationally demanding. This latter feature,
coupled with additional algorithmic considerations and taking advantage of accelerated
computing capabilities available nowadays in almost every microprocessor systems, en-
abled its deployment even on low power embedded devices [3]. Figure 3 shows the
outcome of the OTV algorithm processing video sequences acquired on the Tevere and
Secchia rivers in Italy. The latter is particularly challenging since it frames the Secchia river
during varying lighting conditions, probably originated by clouds, strongly affecting the
image acquisition process. Moreover, there is also an additional perturbation generated by
small waves opposite to the streamflow. Despite these multiple perturbations, OTV can
reliably track a sufficient amount of features to infer streamflow behavior, as depicted in
the rightmost image at the bottom of Figure 3. Nonetheless, deeper perturbations as rain
and more unsatisfactory lighting conditions might degrade the capacity of OTV (as well as
those of all the image velocimetry methods) to infer meaningful streamflow parameters.
Although this limitation may be relevant in some cases, its analysis is out of the scope of
this work. The OTV achievements potentially pave the way for surface flow monitoring at
the edge. However, enabling such a task in situ, especially remote ones, requires crossing
an additional hurdle concerning self-powering the overall measurement system. Purposely,
in the following sections, we deeply investigate this issue using cheap solutions readily
available on the market.

Moreover, we propose an additional optional simplification to speed up the measure-
ment process further and potentially save energy. It simply consists of replacing color
video streams with monochrome ones to reduce the most computationally intensive phase
of the whole measurement process, the OTV task. As reported in the experimental results
section, such a simple modification, processing images at Full and Half resolution, achieves
performance substantially on-par with the original OTV approach but at a significantly
faster rate, consequently draining less energy.
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Figure 3. (Top) a video sequence acquired on the Tevere river, (Bottom) a sequence acquired on the Secchia river; (Left)
Input frame of the video sequence, (Middle) FAST features extracted from the input frame, and (Right) trajectories inferred
by the OTV algorithm.

4. Computing Devices

With the proliferation of wearable devices, there are plenty of computing platforms
suited for our purposes. Examples of such devices are the Odroid XU4 https://www.
hardkernel.com/shop/odroid-xu4-special-price/ (accessed on July 28 2021), equipped
with a Samsung Exynos5422 Cortex A15 2Ghz and Cortex A7 Octa-core CPUs, and devices
belonging to the Raspberry Pi family https://www.raspberrypi.org/ (accessed on July
28 2021). These two classes of devices, such as many others available on the market, rely
on ARM architectures, and, in this very case, have a very similar price, around 50$. We
decided to focus on the Raspberry Pi ecosystem since it provides a wide range of cheap and
power-efficient devices that would perfectly fit our aims and has a very large and active
community . Specifically, we considered in our evaluation the Raspberry Pi models 3B,
3B+, and 4 (model B), all available at a very competitive price. Moreover, they have a vast
community of developers worldwide and many add-ons are readily available off-the-shelf
for fast prototyping. Although potentially suited for our purposes, we did not consider
less powerful devices belonging to the same ecosystem, such as the Raspberry Pi Zero.
Their shallow energy consumption did not seem balanced by an adequate computing
performance required in the envisioned application in our preliminary analysis. All the
devices considered in our experiments are equipped with the Linux operating system
(Raspbian Buster).

The Raspberry Pi 3B contains Quad Core 1.2 GHz Broadcom BCM2837 64bit CPU with
1 GB DDR2 RAM memory. It also features Ethernet, wireless, Bluetooth Low Energy (BLE),
four USB 2.0 ports and has, as other devices introduced next, a 40-pin GPIO connector. As
for other Raspberry devices discussed next, specific functionality can be disabled through
software commands to save energy.

Concerning our purposes, the Raspberry Pi model 3B+ shares very similar specifica-
tions compared to model 3B except for a higher CPU frequency (1.4 vs. 1.2 GHz).

The Raspberry 4 model B represents a significant modification compared to the 3B/3B+
design to achieve a higher level of performance. Specifically, its design is built around
the Broadcom BCM2711B0 quad-core A72 (ARMv8-A) 64-bit clocked at 1.5 GHz and the
DDR4 RAM memory available may be 1, 2, or 4 GB according to the user choice. Among
the similar yet improved networking specifications, model 4 features two USB 3.0 and two
USB 2.0 ports.

It is worth observing that all the Raspberry Pi included in our experiments come
equipped with an integrated graphic unit (GPU), in different flavors, potentially suited for
speeding up image processing operations. Nonetheless, we did not notice any improvement
regarding execution time with 3B and 3B+ models. Finally, for the 4 series, the GPU is not
supported at all yet by OpenCV.

https://www.hardkernel.com/shop/odroid-xu4-special-price/
https://www.hardkernel.com/shop/odroid-xu4-special-price/
https://www.raspberrypi.org/
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5. Energy Harvesting

As previously outlined, harvesting energy from the sensed environments for power-
ing computing devices is mandatory when monitoring surface flow in remote locations.
Furthermore, even when an energy source is available nearby, it would be undoubtedly
desirable to rely on renewable energy for sustainability reasons to accomplish the measure-
ment task with a self-powered system.

Regarding energy harvesting, several solutions are feasible, such as solar, eolic, and
hydro. We decided to investigate the deployment of sunlight energy generation since
solar panels are cheap, effective, and readily available on the market. Among the several
solutions currently available, the Raspberry Pi ecosystem provides excellent solutions
for managing self-powered systems through solar energy harvesting. Specifically, they
enable to couple a small rechargeable battery, referred to as PiJuice Hat, perfectly fitting
the multiple Raspberry Pi designs with small solar panels named PiJuice Solar. Figure 4
shows a Raspberry Pi self-powered by these two devices. Despite our choice, it is
worth noticing that there are even cheaper alternatives for solar panels and rechargeable
batteries. For instance, a general-purpose 6W solar panel costs around 60$ (https://www.
sparkfun.com/products/13783) while the equivalent Raspberry Pi device is priced around
120$ (https://uk.pi-supply.com/products/pijuice-solar). However, devices within the
Raspberry Pi ecosystem can be seamlessly deployed without any hardware modification,
simplifying the overall setup even when faced by not-specialized operators. For this
reason, we stick to these devices, although, with minor efforts, the overall cost of the setup
proposed could be significantly reduced.

Figure 4. (Left) Raspberry Pi with a PiJuice Hat battery on top of it, (Right) PiJuice Solar panel (6 Watt
model). More details available at https://uk.pi-supply.com/products/pijuice-standard (accessed on
July 28 2021).

The PiJuice Hat is a small rechargeable battery fitting on the top of every Raspberry
Pi device, including models 3B/3B+ and 4 considered in this paper. It is available with
a different battery capacity of 1820 mAh, 2300 mAh, 5000 mAh, and 12,000 mAh, and
includes a real-time clock. More details are available at this link: https://uk.pi-supply.
com/products/pijuice-standard (accessed on July 28 2021).

The PiJuice Solar is a cheap, lightweight, and water-resistant solar panel compatible
with the PiJuice Hat. It is available in multiple variants providing 6, 12, 22, and 20 Watt
when exposed to direct sunlight. More details are available at this link: https://uk.pi-
supply.com/products/pijuice-standard (accessed on July 28 2021).

6. Experimental Results

To assess the effectiveness of the setup, in this section, we illustrate experimental
results on the application of the architectures on continuous surface flow monitoring that
keep efficiency as a priority.

https://www.sparkfun.com/products/13783
https://www.sparkfun.com/products/13783
https://uk.pi-supply.com/products/pijuice-solar
https://uk.pi-supply.com/products/pijuice-standard
https://uk.pi-supply.com/products/pijuice-standard
https://uk.pi-supply.com/products/pijuice-standard
https://uk.pi-supply.com/products/pijuice-standard
https://uk.pi-supply.com/products/pijuice-standard
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6.1. Evaluation Protocol

To identify the most efficient and effective solution among the platforms previously
described, the following evaluation protocol has been put together: a USB camera is used
to capture images at 1430 × 1080 resolution with each Raspberry Pi. The camera is an
Aukey FHD 1080p Webcam PC-LM1E. The computing platform is remotely controlled
via the WiFi network and a Bluetooth multimeter is used to log voltage and amperage
consumption three times per second. The complete setup is described in Figure 5. To
further minimize energy consumption, unused modules (HDMI and Bluetooth) have been
turned off; the Ethernet port and USB hub are handled by the same device, thus they are
both turned on only when the camera is framing the scene. The WiFi module can not be
disabled during testing to monitor and control the device; however, it will be turned off
at in situ deployment. Finally, it is worth noticing that, alternatively to a USB camera, a
camera connected directly to the Raspberry Pi dedicated connector could also be used.

Figure 5. Overview of the measurement setup. The Bluetooth digital multimeter allows three
measurements per second.

As proposed in [3], to speed up computation and reduce energy requirements, we
consider efficient computing paradigms and resources available for the Raspberry Pi-
integrated ARM processors. Specifically, we run optimized versions of OTV that take
advantage of ARM Single Instruction Multiple Data (SIMD) and the four-core CPUs
(Multicore) capabilities available in all the Raspberry devices considered. Furthermore, we
run the original algorithm on a single core of the CPU to serve as baseline. Concerning
SIMD instructions, we exploit the NEON instruction set [13], while, for Multicore, we rely
on the TBB framework [14]. The OpenCV library [15] (version 4.5 in our experiments)
seamlessly allows for exploiting both computing facilities. As already mentioned, we
do not use the computing resources available in the ARM GPU since, according to our
experiments with Raspberry model 3B/3B+, they did not provide any evident advantage
and are not even currently supported in model 4.

Regarding the parameters of the OTV algorithm, we use the same proposed in [3],
and evaluate its performance at three resolutions: Full (1430 × 1080), Half (715 × 540),
and Quarter (357 × 270). Specifically, we skip one out of two frames, tracking at most
15,000 FAST features. Moreover, concerning the Lukas–Kanade algorithm, we set a search
area of radius 4, deploying three pyramidal levels. To evaluate the feasibility of running
OTV on the embedded setups, we apply the algorithm on on a 20-sec sequence acquired
on the Brenta river at 25 Hz and previously studied in [1,3]. Furthermore, considerations
on power consumption are drawn by using the USB camera to capture a 20-s video indoor.

6.2. OTV Algorithm: Outcome with Color and Monochrome Images

We test OTV accuracy in case of both monochrome and color images. Indeed, feeding
OTV with monochrome images in place of color ones, as proposed initially in [1,3], proved
to reduce processing time and power consumption. Figure 6 reports the outcome of OTV
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(Min velocity, Max velocity, Mean velocity, and its standard deviation) at Full (F), Half (H),
and Quarter (Q) resolution. It can be noticed that, at the F and H resolutions, the outcome of
OTV with monochrome images is always on par with the one obtained using color images.
On the other hand, there is a significant gap at Q resolution regarding the Max velocity
metric. A deeper investigation revealed that this problem might occur even with color
images shrinking images excessively. In particular, tiny images fed to the pyramidal Lucas–
Kanade algorithm may become so small that they lose the most meaningful information
content to perform optical-flow estimation reliably. On the one hand, in general, the deeper
the pyramid, the faster the execution time. On the other hand, too many pyramid levels
may shrink images excessively at the deepest one. Therefore, a strategy to deal with this
problem might consist of reducing the pyramid depth. For instance, setting a pyramidal
level of 2 in the Tevere sequence fixes the problem highlighted. Nevertheless, at the Q
resolution, this strategy might fail with other sequences such as that concerning the Secchia
river. On the other hand, although a pyramidal level of 3 might be a good choice overall,
tuning the pyramid depth at H resolution to be on par with results at F resolution might
be helpful in some circumstances. According to this preliminary analysis, images are
processed only at the F and H resolutions, setting a pyramidal level 3 in the Lucas–Kanade
algorithm as proposed in [1,3] to evaluate energy requirements in the reminder.

Figure 6. Outcome of the OTV algorithm for color and monochrome video streams at full (F), half (H), and quarter (Q)
resolutions.

6.3. OTV Algorithm: Power Consumption on Embedded Devices

Here, we evaluate the performance of the setup configurations previously outlined in
terms of power consumption and execution time.

Figure 7 shows the execution time of the standalone OTV algorithm with the three
computing platforms, for the two resolutions F and H, and with color and monochrome
images. Not surprisingly, the Raspberry 4 is always significantly faster than the other two
devices; on the other hand, the Raspberry Pi 3B is always the slowest one, although not far
from model 3B+. We can also notice the same behavior when processing monochrome im-
ages but with a much shorter execution time, halved in most cases. Taking advantage of the
four cores of the integrated CPU and the SIMD instruction set allows always for achieving
the best performance enabling a notable speed-up compared to the baseline. In the optimal
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SIMD/Multicore configuration, processing a 20-s video stream takes a maximum of about
150 s (model 3B, full resolution colored images), or a minimum of time comparable to the
processed video length (model 4, half resolution monochrome images). Interestingly, pro-
cessing colored images with model 4 with the most efficient SIMD/Multicore configuration
at both resolutions takes the same time needed for processing monochrome images with
model 3B.

Figure 7. OTV algorithm: execution time at (Top) full resolution and (Bottom) half resolution.

In Figure 8, it is shown that power consumption is not related to image resolution or
SIMD; on the other hand, it conspicuously increases using all four CPU cores. Finally, from
the power consumption point of view, using gray-scale images does not really matter even
if it can be mildly beneficial using multicore. In the SIMD/Multicore configurations, the
power required by model 3B is less than three watts, while, for model 4, it is higher than
four watts in most cases.
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Figure 8. OTV algorithm: power consumption at (Top) full resolution and (Bottom) half resolution.

By combining execution time and power consumption, we can obtain the most relevant
figure of merit: the energy required to carry out a single measurement with the OTV
algorithm. Before doing so, we recall that energy E consumed by a device powered with
voltage V(t) and draining current I(t) in the interval [T1, T2] is the integral of power
consumption P(t) over time:

E =
∫ T2

T1

P(t)dt =
∫ T2

T1

V(t)I(t)dt

Observing Figure 9, it can be seen that processing gray-scale images at lower reso-
lution is always beneficial in terms of energy consumption to perform a single measure.
Specifically, monochrome images always allow for at least halving the energy drained by
all devices. Image resolution also plays a beneficial yet less evident effect. An interesting
outcome of the evaluation reported in Figure 9 concerns the fact that the Raspberry 3B+
turns out to be the most energy-consuming model, thus the worst choice when facing
self-powered systems. Concerning the other two devices, although there is not an overall
winner for each configuration, the device requiring less energy is always the Raspberry 4
configured to take advantage of SIMD and multicore capabilities.
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Figure 9. OTV algorithm: energy drained during a single run at (Top) full resolution and (Bottom) half resolution.

6.4. Case Study: Periodic Surface Flow Monitoring

Once assessed the performance of the OTV algorithm, we address a case study moti-
vated by practical considerations. Specifically, it is standard practice to perform surface
flow measurement periodically, for instance, every 15 min. Consequently, in this case, it is
possible to divide the whole 15-min cycle activity into the four phases outlined in Figure 10.
Although the actual velocity estimation task takes place in the OTV phase, to obtain the
energy drained in a 15-min cycle, three other phases (video acquisition, image extraction,
and a low power idle state for the remaining time) must be taken into account. In our
experiments, the video acquisition stage lasts 20 s and uses a USB camera, the next stage
consists of extracting images from the video stored in RAM using the FFMPEG library.
Besides OTV processing, the final phase (Idle) consists of a low-power state waiting for the
following 15-min measurements. This latter phase (referred to as halt state according to the
Raspberry terminology [16]), which lasts more than any other phase in our experiments,
turns out to be critical since it impacts energy consumption significantly. Unfortunately,
Raspberry PI 3B and 3B+ struggle compared to model 4 to save energy in the Idle phase;
therefore, as detailed below, their efficacy is further decreased besides the considerations
drawn in the previous section.
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Figure 10. The four phases composing a measurement cycle.

6.4.1. Overall Energy Consumption

Table 1 reports the energy drained by the three devices, at full and half resolution
and with color and monochrome images, for each of the four phases outlined in Figure 10
during a 15-min measurement cycle. The table includes the overall energy, in bold, and in
the rightmost column, the length of the idle time.

From the table, we can immediately notice that the figures of merit that emerged with
the analysis focused on the single OTV phase also apply to a 15-min cycle measurement.
The Raspberry Pi 3B+ is the least energy-efficient device, followed by model 3B, while the
clear winner in all configurations is model 4, with a significant advantage compared to
other devices. Specifically, compared to 3B and 3B+ in the same configuration, it always
allows saving, respectively, more than 200 J and 350 J for each measurement cycle. For all
devices, we can also notice that the energy consumed for monochrome image extraction
from the 20-s video is halved compared to the color case, and once again, model 4 is the
most efficient platform, even if by a small margin in this case. By looking at the idle time
reported in the rightmost column of the table, we can notice, not surprisingly, that model 4
has the longest time in this phase. Its power management system is much more efficient
than other devices, draining less than 1/3 currently. This fact, coupled with the energy
figures that emerged in the OTV phase and the energy required for video extraction, always
enables maximum energy efficiency deploying an out-of-the-box Raspberry Pi 4 system
despite a slightly higher consumption for image acquisition. It is worth noting that a better
energy handling of the idle phase would be possible with additional external circuitry for
models 3B. However, it would add additional complexity/cost and hardly compensate for
the default efficiency of model 4.

We recall that, when targeting the maximum energy efficiency with Raspberry Pi
devices, it is crucial to disable via software commands USB ports when not strictly necessary
since they drain a significant amount of energy. In our setup, the only phase requiring
active USB ports is the acquisition phase, carried out with a color USB camera in our
experiments, lasting for construction of the first 20 s of each measurement cycle.

Table 1. Energy consumed by the three devices, configured to take advantage of SIMD and Multicore processing capabilities,
during each phase of a 15-min measurement cycle. Additionally, the rightmost column reports the seconds of idle time.

Res/Type/Model Acquisition [J] Extraction [J] OTV [J] Idle [J] Overall Energy [J] Idle Time [s]

F/Color/3B 81 103 392 265 841 680
F/Mono/3B 81 103 180 293 657 753
H/Color/3B 81 50 307 293 730 750
H/Mono/3B 81 50 136 314 580 805

F/Color/3B+ 92 110 439 360 1000 710
F/Mono/3B+ 92 110 200 392 793 773
H/Color/3B+ 92 57 342 389 879 766
H/Mono/3B+ 92 57 148 413 710 814

F/Color/4 101 84 343 87 615 775
F/Mono/4 101 84 163 91 440 816
H/Color/4 101 42 230 92 465 818
H/Mono/4 101 42 105 94 343 844

Figure 11, shows the instantaneous power consumption measured with a Raspberry 4
in the four examined configurations for the first 200 out of 900 s of a single measurement
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cycle. We can perceive how deploying monochrome images at half resolution is the optimal
choice regarding energy efficiency.

Figure 11. Power consumption for the first 200 s of a 15-min measurement cycle with a Raspberry Pi 4 at Full and Half
resolution with color and monochrome images. The area under each curve represents the energy consumed during each
measurement cycle.

6.4.2. Analysis of Self-Powering Capability

Starting from the outcome of the previous section, we analyze now how the most
energy-efficient device behaves when self-powered according to the setup outlined in
the previous sections. Specifically, we consider the Raspberry Pi 4 in its optimal SIMD
and Multicore configuration, processing color and monochrome images at full and half
resolution. From Table 1, we can easily infer that our target device has the following
average current drained, assuming a constant 5.1 input voltage, in the four following
configurations:

• Raspberry Pi 4, Color images, Full resolution: 133.9 mA/h;
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• Raspberry Pi 4, Monochrome images, Full resolution: 95.8 mA/h;
• Raspberry Pi 4, Color images, Half resolution: 101.2 mA/h;
• Raspberry Pi 4, Color Monochrome images, Half resolution: 74.7 mA/h.

To estimate battery life, we consider a subset of options available for the PiJuice Hat
device. Specifically, we select batteries with a capacity of 5000 and 12,000 mA/h. By
assuming fully charged batteries in ideal conditions, the following table reports the number
of measurement cycles allowed.

For the successive considerations, we consider as a reference the city of Bologna in
Italy. Its most extended daylight occurs on 21 June, and its length is 15 h, 33 min, and 1 s.
Consequently, in such a scenario, it would be necessary to perform 63 measurement cycles
per day. Looking at Table 2, assuming fully charged batteries, we can notice that such
target is always fulfilled with the 12,000 mA/h battery, in any configuration. In contrast,
with the smallest 5000 mA/h battery, the target number of cycles would be obtained only
when processing monochrome images at half resolution. Interestingly, a fully charged
12,000 mA/h battery would allow for about two days of measurements. Nonetheless,
even in this circumstance, battery charging is crucial, and we assume to carry it out with
a PiJuice Solar panel, available in the 6, 12, 22, and 40 Watt options. According to the
specifications available, the former can nominally provide up to 1000 mA/h when hit by
appropriate sunlight, while the latter doubles this value. Therefore, the 6 Watt solar panel
would allow for recharging the 5000 mA/h battery in 5 h and the 12,000 mA/h in 12 h. On
the other hand, using a 12-Watt solar panel would allow for halving both recharging times.
Although these are rough estimations, a setup made of a 12,000 mA/h battery coupled with
a 12-Watt solar panel would probably be enough to handle even the worst-case scenario.
For the city of Bologna, it could occur around 21 December, during the shortest daylight.
In these circumstances, with a daylight length of 8 h 49 min e 43 s, a large battery and solar
panel could suffice to enable the 36 measurements per day required even against extended
sunlight shortages. Additionally, an oversized power supply system would also account
for unavoidable inefficiency concerning the energy harvesting process that we have not
considered in our estimation discussed so far, and in degradation of the battery and the
solar panel.

Finally, it is worth highlighting that, although our analysis focused on solar energy at
hand and widely deployed when facing stream monitoring, other self-powering strategies
could be seamlessly deployed or integrated with it.

Table 2. Feasible measurement cycles with batteries of 5000 mA/h and 12,000 mA/h.

Res/Type/Model Battery [mA/h] Average Current [mA/h] Cycles

F/Color/4 5000 133.9 37.3
F/Mono/4 5000 95.8 52.2
H/Color/4 5000 101.2 49.4
H/Mono/4 5000 74.7 67.0

F/Color/4 12,000 133.9 89.6
F/Mono/4 12,000 95.8 125.3
H/Color/4 12,000 101.2 118.6
H/Mono/4 12,000 74.7 160.7

7. Conclusions and Future Work

Automatic image-based surface flow monitoring is a well-known and influential
methodology to tackle many real-world problems, as witnessed by recent research activi-
ties in this field. This paper starts from a state-of-the-art approach based on explicit feature
matching to improve its performance and assess its energy requirements when targeting a
self-powered monitoring system in situ. Specifically, we have considered the OTV algo-
rithm, analyzing the relationship between energy and execution time on multiple low-cost
computing platforms. Due to its significant diffusion, we considered representative target
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devices Raspberry Pi 3B, 3B+, and 4 to evaluate the possibility of designing affordable
self-powered systems coupled with standard rechargeable batteries and solar panels. Ac-
cording to our analysis, with a fully-charged battery, the proposed algorithm coupled with
standard off-the-shelf components allows in its most advantageous configuration up to
67 and 160 15-min measurements cycles, respectively, with 5000 and 12,000 mA/h battery
capacity. Moreover, such devices can be easily recharged with solar panels of small size,
making our proposal ready for deployment in countless target measurement sites, even in
highly remote regions. These facts, coupled with the low budget required for the hardware
components, enable a capillary diffusion of surface flow monitoring and deployment in
developing countries.
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