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Simple Summary: Due to their central role in many biological processes, studies on protein kinases
are an area of active research. In the last few decades, several inhibitors that target kinases have
been approved by U.S. Food and Drug Administration (FDA). However, a large proportion of
kinases remain uncharacterized, with very little information on their functionality. Variations in
genome-wide DNA methylation and gene expression pattern have been extensively studied in many
cancers. However, an extensive kinome-centered pan-cancer methylation and expression analysis
are still lacking. This study aims to identify prognostic and diagnostic biomarkers, focusing on
uncharacterized (dark) kinases to further encourage their research as therapeutic targets.

Abstract: Kinases are a group of intracellular signaling molecules that play critical roles in various
biological processes. Even though kinases comprise one of the most well-known therapeutic targets,
many have been understudied and therefore warrant further investigation. DNA methylation
is one of the key epigenetic regulators that modulate gene expression. In this study, the human
kinome’s DNA methylation and gene expression patterns were analyzed using the level-3 TCGA
data for 32 cancers. Unsupervised clustering based on kinome data revealed the grouping of cancers
based on their organ level and tissue type. We further observed significant differences in overall
kinase methylation levels (hyper- and hypomethylation) between the tumor and adjacent normal
samples from the same tissue. Methylation expression quantitative trait loci (meQTL) analysis using
kinase gene expression with the corresponding methylated probes revealed a highly significant
and mostly negative association (~92%) within 1.5 kb from the transcription start site (TSS). Several
understudied (dark) kinases (PKMYT1, PNCK, BRSK2, ERN2, STK31, STK32A, and MAPK4) were
also identified with a significant role in patient survival. This study leverages results from multi-
omics data to identify potential kinase markers of prognostic and diagnostic importance and further
our understanding of kinases in cancer.

Keywords: pan-cancer; kinome; dark kinase; understudied kinase; CpG methylation; correlation
analysis; survival analysis; promoter; TCGA

1. Introduction

Cancer is a heterogeneous disease that has contributed to approximately 606,520
projected deaths in the United States alone in 2020 [1]. Unfortunately, it is also a disease
that is extremely challenging to treat due to the heterogeneous nature of the tumors and
the lack of a variety of drugs that are effective against different tumor subtypes. Oncogene
activation and the inactivation of tumor suppressors, in which protein kinases play a
large role, are the major drivers contributing to cancer development [2]. The activity
profile of kinases has been identified to be very distinct in tissue groups, namely, healthy,
immunological and hematological, solid cancers, and mixed tissues [3]. Similarly, high
tissue specificity of kinase gene expression has been shown in normal tissue datasets from
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GTEx [4]. Therefore, it is imperative to dissect cancer-associated kinase genes in tumor
subtype and identify effective therapeutic targets.

The human protein kinases (known collectively as the kinome) represent an essential
and diverse family of enzymes often dysregulated in cancer. There are around 518 known
kinase genes in the human genome, and 478 of these belong to the classical protein kinase
family, and 40 are atypical protein kinases [5]. Approximately 10% of them belong to the
pseudokinase family, which lack catalytic activity and are distributed across all kinase
families [6]. Although the human kinome is encoded by only 2% of the total coding genes,
these proteins phosphorylate about 30% of the cellular proteins critical for regulation
of various biological processes such as proliferation, cell cycle progression, apoptosis,
motility, growth, and differentiation. Kinases are essential mediators of intracellular signal-
transduction pathways and mediate many critical events such as cell fate determination
and cell cycle control, making the study of kinome profiles very relevant in understanding
cancer initiation and progression. Besides, dysregulation of kinase activity by events such
as altered expression, copy number amplification, aberrant phosphorylation, somatic mu-
tation, chromosomal translocation, and epigenetic regulation are also frequently oncogenic
or tumor-suppressive and can be critical for disease progression and metastasis. Due to
an accessible binding pocket and identified dysregulation in many diseases, including
cancer, kinases are one of the most explored classes of therapeutic cancer targets. However,
among the FDA-approved kinase inhibitors, many drugs inhibit off-target kinases with
varying potency. These unselective interactions and inhibition of other non-kinase targets
emphasize the importance of better target identification [7]. In recent years, there has been
a significant improvement in understanding the role of epigenetic factors in cancer. This
knowledge can be used to combine epigenetic therapies and other agents in combination
therapies [8]. Recent systematic studies of the kinome drug-target interaction profiles
have shown drug discovery research mainly focused on tyrosine (Tyr) kinase family [9].
In contrast, a large fraction of the kinome target space remains unexplored. This also
includes the pseudokinase families, which are usually overlooked despite their links to
many cancers, which can be attributed to the lack of small molecule inhibitors and assays
to evaluate their mechanisms of action [6,10]. As of 2019, only 8% of FDA-approved small
molecule inhibitors target kinases, most (70%) of which belong to the Tyr kinase family [11].
While significant kinase research has been focused on Tyr and Ser/Thr kinases, those
belonging to other families have often been understudied, with very little information
available on their role in cellular processes and their use as druggable targets. Based on an
initial study by the National Institutes of Health (NIH), 134 protein kinases are classified
as ‘under-studied’ or ‘dark kinases’ based on Jenson PubMed and RO1/PubTator score.
Most of these dark kinases belong to the ‘other’, CMGC, Ca2+/calmodulin-dependent
protein kinase (CaMK) groups [11,12]. Data resources such as the dark kinase knowledgebase
(DKK), supported through NIH’s Illuminating the Druggable Genome (IDG) program, col-
lates both experimental and bioinformatic data to encourage the study of understudied
kinases [13,14]. Among the 162 dark kinases listed in DKK, the focus proteins include Pro-
tein Kinase, Membrane Associated Tyrosine/Threonine 1 (PKMYT1), Tousled-like kinase 2
(TLK2), BR serine/threonine kinase 2 (BRSK2), cyclin-dependent kinase 12 (CDK12), and
cyclin-dependent kinase 13 (CDK13) kinases. Recent structural studies have also focused
on Tyr pseudokinases such as ROR1 to understand their mechanism and target them
pharmacologically [15]. Other high-throughput screening methods to identify functional
analogs to pseudokinase, Kinase suppressor of Ras 1 (KSR1) (involved in EGFR-Ras-MAP
kinase pathway) have been recently published [16].

Methylation of CpG sites is an epigenetic process which play a crucial role in gene
expression regulation. Often methylated CpG sites are observed at high frequency in
specific genomic regions called CpG islands. Several genome-wide methylome analyses
and correlation analyses in cancer have revealed aberrant methylation profiles [17]. Ear-
lier methylation studies in kinases have focused on a few selected kinase genes or gene
families in specific cancer types. For instance, Kuang et al. conducted a comprehensive
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genome-wide analysis of the Eph/ephrin receptor tyrosine kinase family and identified 15
hypermethylated genes in acute lymphoblastic leukemia [18]. Similarly, other experimental
studies have focused on the expression and promoter methylation of SRC, LYN and CKB
kinases in gastric and CHK2 kinase in non-small cell lung cancers, respectively [19,20].
Although a large scale bioinformatic study has been performed on the comparison of
expression levels of 459 kinase genes in 5681 normal and tumor tissues [3], there are no
comprehensive pan-cancer correlative studies between gene expression and methylation
data of kinome using TCGA data, to-date.

This study analyzed the global human kinome expression and corresponding pro-
moter DNA methylation profiles across 32 TCGA cancer types to study the altered kinome
expression profiles and correlate with corresponding promoter methylation status. Us-
ing this information, we identified potential kinase biomarkers with clinical relevance.
Based on Cox-regression analysis and log-rank test, we further highlight the role of com-
monly upregulated dark kinases, PKMYT1, Pregnancy Up-Regulated Nonubiquitous CaM
Kinase (PNCK), BRSK2, Endoplasmic Reticulum To Nucleus Signaling 2 (ERN2), and
Serine/Threonine Kinase 31 (STK31) in survival, which are potential therapeutic targets
and hence worth exploring [21]. We also demonstrate the ability of kinome expression
and methylation profiles to distinguish between 30 cancer types based on unsupervised
clustering analysis, further emphasizing the similarity of kinome activity within the organ
systems and the tissue and histological levels.

2. Materials and Methods
2.1. Data Retrieval

The initial list of 504 human kinase genes was downloaded from UniprotKB [22].
From there, we used a set of 496 kinase genes whose data are available in the harmonized
TCGA data from the GDC (Genomic Data Commons). The omitted genes include GRK2,
GRK3, MAP3K20, MAP3K21, PAK5, PRAG1, COQ8A, COQ8B, whose data are not present
across all the datatypes. TCGAbiolinks [23], a Bioconductor tool, was used to download the
level-3 DNA methylation (Illumina HumanMethylation450 BeadArray), FPKM-UQ gene
expression (Illumina HiSeq RNASeq V2) of 496 kinases, and clinical data of corresponding
tumor samples. DNA methylation data of 7245 probes in the promoter region (+/− 1.5 Kb
from the TSS) of the kinome gene set were retained. The curated annotation of the kinase
family was downloaded from UniProtKB. Duplicated samples were removed from further
analyses. The kinome gene set also consisted of a subset of 148 dark kinases out of the 162
understudied kinases listed in DKK. The list of kinase genes included in this study are
given in Supplementary Table S1. The complete list of TCGA cancer types abbreviations can
be found at https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-
abbreviations accessed on 2 February 2021.

2.2. Gene Expression Data

We downloaded fragments per kilobase of transcript per million mapped reads up-
per quartile (FPKM-UQ) data of 496 kinases. We then removed all genes with missing
expression values (for at least 25% of the samples) and genes that had CPM (count per
million) numbers less than one (for at least 25% of the samples). Differential gene expres-
sion (DGE) analysis was performed using the Bioconductor tool, limma following log2
normalisation [24]. Benjamini-Hochberg (BH) adjusted p-value cut-off of 0.005, and an
absolute log2 fold change of 1 was used to obtain the list of differentially expressed genes.

2.3. Methylation Data

The intensities of the methylated and unmethylated alleles at the analyzed CpG
sites were measured using the Beta-value (β), which ranges between 0 and 1. CpGs with
missing β values in >25% tumor and normal samples for each cancer were excluded
from further analysis. K-nearest neighbor-based Imputation method was used to fill the
missing β values using the imputeKNN module of the R tool, impute [25]. Correction
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of type bias was done using the beta mixed-integer quantile normalization (BMIQ) [26]
using the R package, ChAMP [27]. CpG probes mapped against X, Y, and mitochondrial
chromosomes were excluded from analyses to eliminate gender bias. We also removed
the CpG probes that overlapped with repeat masker and SNPs from dbSNP v151 with
minor allele frequency (MAF) >1% [28] to help remove the sequence polymorphisms that
can affect DNA methylation readouts in the Infinium arrays. We retained β values of
7245 kinase-specific unique CpG probes within ±1500 bp from the TSS site for differential
methylation analysis in the final annotation file. We obtained differentially methylated
CpG probes with FDR 0.05 and mean β value difference of at least 0.2 (∆β ≥ 0.2).

2.4. t-SNE Plots

Dimensionality reduction using the t-SNE method was carried out for the expression
data of 496 kinases and corresponding 7245 BMIQ normalized β values of CpG probes
at the promoter region, both individually and combined. The combined final dataset
consisted of 7783 samples from 30 cancer types with kinase expression and methylation
data after removing the missing data. Lymphoid Neoplasm Diffuse Large B-cell Lymphoma
(DLBC) was omitted in the analysis due to lack of methylation data. Testicular Germ Cell
Tumors (TGCT) was omitted as it failed in BMIQ normalization as several samples doesn’t
follow beta distribution. Tumor histological subtype information was downloaded from
the GDC data portal. The expression data were normalized between 0 and 1 to remove bias
in the analysis. t-SNE was performed using the R package, Rtsne, to get the data points’
coordinates, which were colored as per the cancer types. 2D and 3D t-SNE plots were
generated using R packages, ggplot2 and plotly, respectively, and were colored as per the
TCGA tumor and tissue subtypes.

2.5. Correlation Analysis

Correlation analysis between DNA methylation and corresponding gene expression
was performed using meQTL based on non-zero Pearson correlation for samples with
both methylation and expression data using R tool, eMap. The association was considered
significant at Bonferroni corrected p-value < 0.05. No association was found to be significant
for ovarian cancer at this cut-off, and a raw p-value < 0.01 was used. R package ggplot2 was
used to generate bubble plots for genes, which were significant in > 30% of the cancers
analyzed for each of the kinase family.

2.6. Survival Analysis

Survival analysis was carried out using R tools, survival, and survMiner in the back-
ground, for promoter CpGs (±1500 bp from TSS) and the gene expression data. Patients
were segregated into high and low expression groups based on the expression median
value for each cancer. The β-value cut-off of ≥ 0.6 (high) and ≤ 0.4 (low) was used for
the analysis. Cox-regression analysis was performed, and a p-value ≤ 0.05 was used as
the cut-off to select significant genes and CpG probes. The results were integrated with
DE and DM analyses and meQTL analysis to generate the final table. Kaplan-Meier (KM)
survival plots were generated by using in-house R code [29]. Logistic regression analysis
was performed using R linear model (lm) function to categorize tumor and normal samples
using the gene expression and methylation data. The classifier performance was measured
by calculating the area under the curve (AUC). The receiver operating characteristic (ROC)
plots were generated using the ROCR R package [30].

3. Results

Our analyses were carried out using a set of 496 human kinases that contained DNA
methylation, gene expression, and clinical data for all tumor samples analyzed. This
kinome set was subjected to unsupervised clustering, differential gene expression and
methylation analyses, correlative analysis of gene expression and methylation, and survival
analysis, as described below.
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3.1. Unsupervised Clustering of TCGA and GTEx Samples Based on Kinome Profiles Distinguish
Cancer Types

We performed t-distributed stochastic neighbor embedding (t-SNE) method to in-
vestigate the pan-cancer gene expression and promoter DNA methylation patterns in
kinase genes across 30 TCGA cancers. The t-SNE algorithm is a nonlinear dimensionality
reduction technique that is well-suited for embedding high-dimensional data for visual-
ization in a low-dimensional space. The t-SNE clusters represent spatially nearby objects
and, therefore, in this case, represent sample similarity. The t-SNE pattern obtained from
gene expression and promoter methylation β values of tumor samples (Supplementary
Figure S1a,b), individually, and when combined (Figure 1a–c) showed grouping of cancers
without prior knowledge of the sample origin and co-clustering of tumors within an organ
system indicating similarity in expression and methylation pattern of kinase genes. This,
however, was not true when using a random set of ~500 protein-coding genes (Supple-
mentary Figure S1c), indicating that kinases, despite representing only 2% of the total
human genes, are sufficient to distinguish different cancer types. Organ-based solid can-
cers were observed to be in close proximity; i.e., core gastrointestinal cancers—esophageal
carcinoma (ESCA), stomach adenocarcinoma (STAD), colon adenocarcinoma (COAD),
rectum adenocarcinoma (READ); cancers of the central nervous system—glioblastoma
multiforme (GBM) and brain lower-grade glioma (LGG); thoracic—lung adenocarcinoma
(LUAD) and lung squamous cell carcinoma (LUSC); kidney cancers—kidney renal clear
cell carcinoma (KIRC), kidney chromophobe (KICH), kidney renal papillary cell carcinoma
(KIRP); and this clustering pattern was preserved even after the integration of expression
and methylation data types (Figure 1a–c).
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Figure 1. Distribution of the TCGA cancer samples in 2D t-SNE plot. (a) x vs. y (b) x vs. z (c) y vs. z coordinates for 6270
(combined kinase gene expression and promoter CpGs β values) features and 7783 TCGA tumor samples belonging to 30
cancer types. The mapped data points are colored as per the cancer types. (d–f) 2D t-SNE plot showing separation of TCGA
Esophageal, Lung Carcinoma and Cervical Cancer into Adeno and Squamous histological tissue types based on combined
kinase gene expression and methylation data of 930 samples which includes 71 esophageal adenocarcinoma, 80 esophageal
squamous cell carcinoma, 414 lung adenocarcinomas, 365 lung squamous cell carcinoma, 246 cervical squamous cell
carcinoma and 30 endocervical adenocarcinoma.
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A closer, in-depth investigation of the global sample distribution revealed separation of
lung, cervical, and esophageal carcinomas into adenoma and squamous type (Figure 1d–f).
It is necessary to note that the kinome expression and methylation pattern in esophageal
and lung cancers are very similar, as reflected by their co-clustering in the global t-SNE
plot.

We wanted to explore further if this was true even for normal sample datasets. We,
therefore, analyzed the kinome expression data of 6199 tissue samples from healthy individ-
uals obtained from the Genotype-Tissue Expression (GTEx) project [31], which also revealed
easily distinguishable clusters based on the sample origin (Supplementary Figure S1d).
Two sub-clusters of the esophagus were observed. One belonging to the esophagus—
mucosa, and the other consisted of a mix of esophagus gastroesophageal junction and
esophagus muscularis. Two sub-clusters of skin were also observed—one consisting of
a mix of sun-exposed (lower leg) and not sun-exposed (suprapubic) and the other from
skin cells—transformed fibroblasts. Closer inspection of TCGA datasets also revealed sub-
clustering of tumor and adjacent normal samples indicating perturbation of kinase genes
in tumor samples with respect to normal tissue. For example, as shown in Supplementary
Figure S2a–d, the normal and tumor tissue form easily distinct subclusters in different
cancers showing alteration in the expression and methylation profile during transition
from normal to tumor samples.

3.2. Differential Gene Expression Analysis

Differential gene expression (DGE) analysis was performed using the R package,
limma [24]. The analysis was performed for 17 TCGA cancers (BLCA, BRCA, CHOL, COAD,
ESCA, HNSC, KIRC, KIRP, KICH, LIHC, LUAD, LUSC, PRAD, READ, STAD, THCA, and
UCEC) that have ≥10 adjacent normal samples. Trimmed mean of M-values (TMM)
normalization was performed to consider the library size variations among samples [32].
The kinase genes were considered differentially expressed at a false discovery rate (FDR)
<0.005 and abs (log2FC ≥1) as a cut-off.

The differentially expressed (DE) kinase genes in each cancer are shown in Figure 2.
Many kinases, including several dark kinases, were observed to be both commonly upreg-
ulated and downregulated across multiple cancers (Figure 2a). Based on the distribution
plot of the number of DEG’s obtained, KICH and LUSC had the most downregulated
kinases, whereas CHOL had the most upregulated kinases (Figure 2b). The top DE kinase
genes found in ≥ 10 (out of 17) cancers are listed in Figure 2c. The most upregulated
kinases included Protein Kinase, Membrane Associated Tyrosine/Threonine 1 (PKMYT1)
(in 17 cancers), and Maternal Embryonic Leucine Zipper Kinase (MELK) (in 16 cancers). On
the other hand, the commonly downregulated included Pyruvate Dehydrogenase Kinase 4
(PDK4) in 15 cancers and KIT proto-oncogene receptor tyrosine kinase (KIT) in 13 cancers,
among the cancers analyzed. MELK and PKMYT1 (a dark kinase gene) have been identified
as promising therapeutic targets in multiple cancers, such as the brain, colorectal, breast,
ovarian, and esophageal cancers, respectively [33–35].

Among the 148 dark kinases included in our analysis, PKMYT1 (in 17 cancers),
Mitogen-Activated Protein Kinase 15 (MAPK15) in nine cancers, CaM Kinase Like Vesicle
Associated (CAMKV) in 8 cancers), PNCK and STK31 (in seven cancers) were commonly
upregulated. Similarly, Mitogen-Activated Protein Kinase 4 (MAPK4) in 12 cancers, Ser-
ine/Threonine Kinase 32A (STK32A) and P21 (RAC1) Activated Kinase 3 (PAK3) in 10 can-
cers were found to be commonly downregulated. The complete list of DE genes obtained
is provided in Supplementary Table S2.
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3.3. Differential Methylation Analysis

CpG Probes with mean β value difference of at least 0.2 (∆β ≥ 0.2) at BH adjusted
p-value < 0.05 between tumor and adjacent normal samples were considered differentially
methylated in this study. Differential methylation (DM) analysis was performed for 15 can-
cers (BLCA, BRCA, CHOL, COAD, ESCA, HNSC, KIRC, KIRP, LIHC, LUAD, LUSC, PAAD,
PRAD, THCA, UCEC), which had ≥10 adjacent normal samples with methylation data
available.

The distribution of the hyper and hypomethylated probes obtained within 1.5 Kb from
the transcription start site (TSS) and the corresponding average gene expression profiles
were plotted using the box plot for the analyzed cancers (Figure 3a). A significant difference
in the methylation level between the hyper and hypomethylated probes was observed in
certain cancers, including BLCA, CHOL, COAD, ESCA, HNSC, KIRC, KIRP, LIHC, LUAD,
PRAD, THCA, and UCEC. Lower average expression of the hypermethylated probes in
multiple cancers, including significant difference in CHOL, COAD, LUAD, PAAD and
UCEC as compared to the average expression levels of the hypomethylated probes, was
observed. However, consistent inverse correlation was not reflected in some cancers. An
overview of the distribution of differentially methylated (DM) probes is shown in Figure 3b.
Overall, more hypermethylated CpG probes were found in PRAD (89%), KIRP (77%), and
BRCA (75%), and more hypomethylated probes were observed in LIHC (74.5%), BLCA
(72.8%), and THCA (70.2%) cohorts.
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Figure 3. Distribution of DM CpGs across cancers. (a) Box plots showing distribution of hyper (Red) and hypomethylated
(blue) probes and the corresponding average gene expression (light red and light blue) in different cancers. The gene
expression values were normalized between 0 and 1. T-test was used to show the significance level between the methylation
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*: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001, ****: p ≤ 0.0001). CpG probes with mean β value difference of at least 0.2 (∆β ≥ 0.2)
at BH adjusted p-value < 0.05 were considered differentially methylated. (b) Distribution of hypermethylated (red) and
hypomethylated (blue) probes obtained for each cancer. (c) List of commonly observed probes DM in ≥ 10 cancers, their
direction of methylation (hypermethylation—red and hypomethylation—blue) and the number of cancers observed. Dark
kinase genes are marked with * symbol.

Hypermethylation of CpG probes, cg00489401, cg17403609, and cg07682600 mapped to
Fms-related tyrosine kinase 4 (FLT4) gene was found in 13, 12, and 11 cancers, respectively.
These findings are consistent with studies that identified FLT4 hypermethylation as one of
the markers for early/late-stage oral squamous cell carcinoma [36] and cg00489401 (FLT4)
as one of the differentiating markers between localized and advanced-stage type 2 Papillary
Renal Cell Carcinoma [37].

The CpG probe, cg20994118 (mapped to dark kinase gene, CAMK1G), was commonly
hypomethylated in 12 cancers. Previous functional studies of CAMK1G have revealed
its role in cell division, mitotic nuclear division, sister chromatid cohesion, cell cycle, and
DNA replication. Methylation of the probe, cg20994118, has been reported as negatively
correlated with the gene expression on other pan-cancer analysis [38]. The other common
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DM probes observed in≥ 10 cancers are listed in Figure 3c. The complete list of DM probes
obtained is given in Supplementary Table S3.

3.4. Correlative Analysis of DNA Methylation and Gene Expression

We used methylation expression Quantitative Trait Loci (meQTL), a correlative analy-
sis, to measure DNA methylation’s influence on gene expression. Pan-cancer analysis of
methylation levels of CpG sites within 100 kb of corresponding gene’s TSS was calculated
by linear regression model using eMap1 function in R tool eMAP V-1.2. The association was
considered significant at Bonferroni corrected p-value < 0.05. In the case of ovarian cancer,
no association was found to be significant at this cut-off. However, 180 probe-gene pairs
were found to be significant at a raw p-value < 0.01.

Kinase gene expression can be positively and negatively associated with its corre-
sponding CpG probes since one gene can contain multiple CpGs in the promoter region.
As expected, the inverse relationship was predominantly enriched (~92%) within 1.5 kb
from the TSS, which can be visualized as a peak in the plot. However, positive correlation
was observed to be evenly distributed both up and downstream of TSS (Figure 4a).
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An overview of the top 50 dark kinase genes showing a significant correlation among
gene expression and DNA methylation across cancers is plotted in Figure 4b. The ex-
pression of dark kinase genes was also found to be most negatively correlated with the
methylation in the promoter region. Among the most significant correlations ranked
by Bonferroni corrected p-value, the CpG probes, cg16124934 (RPS6KL1), cg03345668
(MKNK1), cg02133234 (NRBP2), cg04755561 (PKMYT1), cg06532379 (ALPK3), cg27153759
(STK32B), cg13487666 (NEK6) were most frequently occurring. The cancers BRCA, STAD,
BLCA, HNSC, and UCEC, showed highly significant negative correlations for most of the
dark kinases, as shown in the bubble plot (Figure 4b). The list of significant association
within +/−1500 from TSS region from the meQTL analysis is given in Supplementary
Table S4.
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3.5. Survival Analysis

Survival analysis was performed using Cox-regression analysis and log-rank test by
dividing the patients into high and low expression groups based on the median in each
cancer. Several of the commonly upregulated dark kinases (Figure 2) were also significant
in survival with a p-value < 0.05. Among these, the genes PKMYT1, PNCK, BRSK2, ERN2,
and STK31 were significant in survival in five or more cancers (Figure 5b).

Higher expression of PKMYT1 resulted in lower overall survival in ACC, BLCA,
KICH, KIRC, KIRP, LGG, and LUAD, and the reverse trend was observed in STAD co-
horts. In KIRC patients, survival analysis of corresponding promoter methylation also
identified hypermethylation of CpG probe, cg02510853 significant in lower overall survival
(p-value < 0.001) in KIRC patients (Figures 5a and 6). Association studies using meQTL
analysis showed a positive correlation between PKMYT1 gene expression and methylation
level of cg02510853 probe (b1 value: 1.374, Adjusted p-value: 0.007), which is also reflected
in the KM plots. AUC of 0.97 and 0.91 of the PKMYT1 expression and methylation of
cg02510853, respectively, suggests its use as a potential diagnostic marker in KIRC patients.

Another commonly upregulated dark kinase gene, whose expression levels were also
significant in overall survival is the PNCK gene. Higher expression of PNCK gene resulted
in lower overall survival in ACC, GBM, KIRC, KIRP, LIHC, THYM, UCEC, UCS cancer
types (Figure 5b). However, no corresponding probes for the same gene were found to be
significant for the cut-offs used in our analysis.
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several cancers.

We also investigated the role of several commonly downregulated dark kinases in
patient survival. One of them included the STK32A gene which was found to be down-
regulated in 10 cancers. In STAD, the overexpression of STK32A gene (p = 0.001) and the
hypomethylation of the corresponding CpG probes cg09088988 (p = 0.013) was found to
be significant in lower overall survival, suggesting its use as a prognostic and diagnostic
marker in STAD patients. However, the ROC plots do not indicate its robust use as a
diagnostic methylation marker (Supplementary Figure S3). The expression of STK32A was
significantly associated with survival in ACC, CESC, LUAD, and PCPG cohorts.
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Similarly, overexpression of MAPK4 and hypermethylation of cg19448837 was found
to be significant (p < 0.005) in lower overall survival in STAD patients (Supplementary
Figure S4). We also found high and low expression groups of MAPK4 have a significant dif-
ference in the overall survival with a p-value < 0.05 in LUAD, LUSC, PAAD, THCA, UCEC,
and UVM patients. Multiple MAPK4 CpG probes, namely cg05492442 and cg20068620,
were significant in LGG patients (Figure 5a).

Cancers 2021, 13, 1189 11 of 17 
 

 

UCEC, and UVM patients. Multiple MAPK4 CpG probes, namely cg05492442 and 
cg20068620, were significant in LGG patients (Figure 5a). 

 
Figure 6. Role of PKMYT1 in prognosis and diagnosis (a,b) Survival plots of PKMYT1 high vs. low 
gene expression and promoter DNA methylation sites (cg02510853) which are associated with 
KIRC patient survival with p-value for KM plot (log-rank test) and Cox proportional hazard 
model. (c,d) Corresponding ROC plot of gene expression and promoter methylation for the gener-
alized linear model. 

Both expression and methylation, high vs. low groups, were significant for several 
dark kinases, notably Obscurin, Cytoskeletal Calmodulin And Titin-Interacting RhoGEF 
(OBSCN), Serine/Threonine Kinase 3 (STK3) and MAPK4 kinases, which are displayed in 
Figure 5a. We found five CpG probes mapped to OBSCN gene significant in survival in 
KIRP, UCEC and UVM cancers. OBSCN gene has been reported to interact with many 
cancer-associated genes involved in breast tumorigenesis [39]. The survival analysis re-
sults based on expression and methylation are given in Supplementary Tables S5 and S6 
respectively. 

4. Discussion 
Classification of tumors based on high throughput data has been achieved using da-

tasets such as gene expression, CpG island methylator phenotype (CIMP) status alone, or 
by integrating it with other high-throughput data types using various approaches [40–42]. 
A similar grouping of cancers has also been achieved using transcription factors’ gene 
expression data [43]. Few computational studies have reported tissue-specific expression 
of kinases that are not significantly enriched in any central or peripheral tissue types [4]. 

Figure 6. Role of PKMYT1 in prognosis and diagnosis (a,b) Survival plots of PKMYT1 high vs. low gene expression
and promoter DNA methylation sites (cg02510853) which are associated with KIRC patient survival with p-value for KM
plot (log-rank test) and Cox proportional hazard model. (c,d) Corresponding ROC plot of gene expression and promoter
methylation for the generalized linear model.

Both expression and methylation, high vs. low groups, were significant for several
dark kinases, notably Obscurin, Cytoskeletal Calmodulin And Titin-Interacting RhoGEF
(OBSCN), Serine/Threonine Kinase 3 (STK3) and MAPK4 kinases, which are displayed
in Figure 5a. We found five CpG probes mapped to OBSCN gene significant in survival
in KIRP, UCEC and UVM cancers. OBSCN gene has been reported to interact with many
cancer-associated genes involved in breast tumorigenesis [39]. The survival analysis
results based on expression and methylation are given in Supplementary Tables S5 and S6
respectively.

4. Discussion

Classification of tumors based on high throughput data has been achieved using
datasets such as gene expression, CpG island methylator phenotype (CIMP) status alone, or
by integrating it with other high-throughput data types using various approaches [40–42].
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A similar grouping of cancers has also been achieved using transcription factors’ gene
expression data [43]. Few computational studies have reported tissue-specific expression
of kinases that are not significantly enriched in any central or peripheral tissue types [4].
Therefore, we asked if a similar grouping of cancer types can be achieved by an unsuper-
vised method using only the differences in the transcriptional and methylation activity of
the kinome gene set. However, unlike most of these studies that use only one type of omics
data or use the genome-wide gene set, in this study, we demonstrated that organ-system,
tumor, and subtype level classification could be achieved and preserved after the integra-
tion of expression and corresponding promoter methylation data for nearly 8000 tumor
samples across 32 cancer types (Figure 1a–c). The same clustering pattern was observed
in normal tissues (GTEx), which suggests that the kinome expression and methylation
profiles are unique to the tissue type irrespective of the disease condition. As a control
dataset, we wanted to evaluate if the observed grouping of samples based on organ system,
cancer types, or histological subtypes is not an intrinsic property of tumors. Replicating
the unsupervised clustering analysis using 500 randomly selected protein-coding genes
did not yield similar results, indicating that the observed grouping can only be attributed
to the expression and methylation pattern of kinase genes (Supplementary Figure S1c).

A closer look at the t-SNE plots also showed distinct histological tumor subtypes
such as adenocarcinoma and squamous cell neoplasms of lung, esophagus, and cervical
cancer (Figure 1d,e). This is consistent with the results obtained using genome-wide data
by Lin et al. [44], indicating histology-driven differences in expression, methylation, and
pathways and upstream regulators may be consistent across anatomical boundaries and
are also true for the kinome gene set.

To further identify the commonality and differences in kinase genes’ expression and
methylation pattern in various cancers, we performed DGE and DM analysis of kinase
genes and corresponding probes in the promoter region. We further highlighted the
results of relatively poorly understood or dark kinase genes to provide potential starting
points that can be explored as a potential target. To identify the clinical relevance, we also
performed meQTL and survival analyses followed by classification using linear regression
models to identify prognostic and diagnostic relevance.

The DGE analysis showed the genes PKMYT1, and MELK upregulated in 17 and
16 cancers, respectively (Figure 2). MELK is a member of AMPK/Snf1 family of ser-
ine/threonine kinases, and the MELK protein expression is highly specific to proliferating
cancer stem cells [45]. Studies have shown that high expression of this serine/threonine
kinase is associated with poor patient prognosis. MELK disruption is found to inhibit
tumor growth and trigger cell cycle arrest in breast cancer cells [46]. Given the preferential
upregulation of MELK in various cancer types, small molecule inhibitors of MELK have
been developed and are currently in Phase I clinical trials for metastatic breast cancer [47].
From our expression-based survival analysis results, MELK was found to have a significant
role in survival in 10 different cancers, including ACC, KICH, KIRC, KIRP, LGG, LIHC,
MESO, PAAD, THYM, and UVM. MELK inhibitor, OTS167, is reported to suppress tumor
growth in breast, lung, prostate, and pancreatic cancer cell lines [48]. However, due to its
extremely unselective nature, studies have contradicted its use for the clinical validation
of MELK, suggesting that its biological activity may not be attributed to MELK inhibition
alone [9].

PKMYT1, a dark kinase, is a member of Wee family of tyrosine/threonine kinases
and shares high functional similarity with WEE1 [49]. PKMTY1 is a key regulator of
the cell cycle complex and plays an important role in tumor progression [50,51]. The
CpG probe, cg04755561 (mapped to PKMYT1), was found to be significantly negatively
correlated with the gene expression from the meQTL analysis in 13 cancers. However, we
did not find its role in survival in our study. Survival analysis also showed overexpression
of PKMYT1 leads to lower overall survival in ACC, BLCA, KICH, KIRC, KIRP, LGG,
and LUAD cancer types (Figure 5b). Other computational studies have also identified
PKMYT1 as a prognostic marker in kidney cancer cohorts [11]. Besides, we identified
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that hypermethylation of the CpG probe, cg02510853 leads to lower overall survival in
KIRC patients (Figures 5a and 6). Interestingly, PKYMT1 is a potentially druggable kinase
that has been implicated in the survival of GBM-like stem cells, indicating that it could be
explored as an actionable target [51,52] in other cancers.

Other less understudied commonly upregulated kinases that were frequently found
to be significant in survival (≥5 cancers) included the BRSK2, ERN2, PNCK, and STK31
kinases (Figure 5b). BRSK2, a member of the AMPK-related family of kinases, has been
shown to negatively regulate nuclear factor erythroid 2-related factor (NRF2) based on
the gain of function kinome screen [53]. It has also been shown to positively correlate
with PDAC metastasis, promoting neoplastic cells’ invasiveness in nutrient-deprived con-
ditions [54]. BRSK2 overexpression can be linked to poor survival in LIHC, KIRC, KIRP,
LGG, THCA and UCEC cancer types (Figure 5b) from our survival analysis. Therefore,
BRSK2 is a promising prognostic marker that can be further explored. PNCK knock-
down has been reported to regulate PI3K/AKT/mTOR signaling pathway and suppress
growth and induce apoptosis of nasopharyngeal carcinoma cells in vitro and in vivo [55].
Co-overexpression of HER-2 and PNCK has also been known to enhanced tumor cell
proliferation and Trastuzumab resistance [56].

ERN2, a serine/threonine kinase, was overexpressed in KIRP, STAD, THCA, and
UCEC and downregulated in PRAD. We identified overexpression of ERN2 and other
kinases including NIMA-related kinase 2 (NEK2), serine/threonine/tyrosine kinase 1
(STYK1), and polo-like kinase 1 (PLK1) in a subset of 146 pancreatic ductal adenocarcinoma
(PDAC) patients after removing endocrine, invasive adenocarcinoma, undifferentiated,
or mixed pancreatic cancers from TCGA-PAAD samples [57]. Overexpression of ERN2
has earlier been reported 60–70% of colorectal samples [58]. Recently, ERN2 was found
differentially expressed in different mediastinal lymph node metastasis (MLNM) in lung
adenocarcinoma [59]. However, our analysis suggests that ERN2 can be explored as a
potential target in multiple cancer types despite limited literature support.

The DM analysis shows significant differences in the kinase methylation levels be-
tween tumors and adjacent normal samples in BLCA, CHOL, COAD, ESCA, HNSC, KIRC,
KIRP, and LIHC LUAD, PRAD, THCA, and UCEC were observed. However, the expected
inverse methylation-expression relationship was not reflected in some cancers when we
plotted the corresponding gene expression values (Figure 3a). This is probably because of
other genetic and epigenetic factors that regulate the expression pattern and might not be
a direct consequence of changes in the DNA methylation status alone. However, further
in-depth correlation analysis showed that the inverse relationship was found to be more
enriched within 1.5 kb from the TSS. The peak indicates a more significant correlation with
a lower p-value in the plot (Figure 4a). Finally, this pan-cancer analysis uncovered the
potential value of many novel kinases, including several dark kinases as novel prognostic
and diagnostic markers owing to their association with survival. The findings of this study
could be coupled with the sequencing of a patient’s genome to enhance cancer detection,
tumor prognosis, and prediction to treatment and response. Hence, this study paves the
way for further investigation and experimental validation of novel kinase targets for their
potential therapeutic use in multiple cancers.

5. Conclusions

Many kinases are associated with cancer initiation and progression. However, only
a small proportion are currently being targeted due to a lack of characterization of their
biochemical and biological functions. Therefore, it is important to prioritize and identify
newer kinase targets. In this study, we showed kinase-based clustering of the tumor
and normal samples based on their organ system and tissue histology, which revealed
commonality and uniqueness of expression and methylation profiles among different
cancer types. We also demonstrate that the gene expression and DNA methylation profiles
of the kinome alone, independently, or combined are sufficient to achieve the above
grouping. While this pan-cancer study reiterated the importance of known kinase targets,
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we also demonstrated that several novel dark kinases due to their strong association to
survival could serve as prognostic and diagnostic biomarkers across multiple cancers. In
conclusion, our study paved the way for the therapeutic characterization of many poorly
understood dark kinase genes (PKMYT1, PNCK, BRSK2, ERN2, STK31, STK32A, MAPK4)
that need to be investigated further.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-669
4/13/6/1189/s1, The data presented in this study are available in supplementary material. Figure S1:
t-SNE plots using multi-omics data. Figure S2: t-SNE plots showing distribution of tumor and normal
samples based on expression and methylation data. Figure S3: STK32A as prognostic and diagnostic
marker in STAD. Figure S4: MAPK4 as prognostic and diagnostic marker in STAD. Table S1: List of
kinase and dark kinases included in the study; dark kinases from DKK are highlighted. Table S2:
Differentially expressed kinase genes for cancers analyzed. Table S3: Differentially methylated kinase
probes in promoter region for cancers analyzed. Table S4: List of significant association within +/−
1500 from TSS from meQTL analysis. Table S5: Significant survival associated kinase genes based on
high and low expression groups at p-value < 0.05. Table S6: Significant survival associated kinase
CpG probes based on high and low methylation groups at p-value < 0.05.
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