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Abstract: Static Random-Access Memory (SRAM)-based Field Programmable Gate Arrays (FPGAs)
are increasingly being used in many application domains due to their higher logic density and
reconfiguration capabilities. However, with state-of-the-art FPGAs being manufactured in the
latest technology nodes, reliability is becoming an important issue, particularly for safety-critical
avionics, automotive, aerospace, industrial robotics, medical, and financial systems. Therefore, fault
tolerant system design methodologies have become essential in the aforementioned application
domains. The Isolation Design Flow (IDF) is one such design methodology that has promising
prospects due to its ability to isolate logic design modules at the physical level for fault containment
purposes. This paper proposes a methodology to evaluate the effectiveness of the IDF. To do so,
reverse engineering is used to enable fault injection on the IDF designs with minimal changes in
the bit-stream. This reduces the time needed to inject a fault significantly thus accelerating the
evaluation process. Then this methodology is applied to a case study of a single-chip cryptography
application on a ZynQ SoC. Specifically, an Advanced Encryption Standard (AES) Duplication With
Comparison (DWC) design is physically isolated with IDF and subsequently subjected to frame-level
Fault Injection (FI) in the configuration memory.

Keywords: isolation design flow; design failure; fault injection; processor configuration access port
(PCAP); FPGAs

1. Introduction

Field Programmable Gate Arrays (FPGAs) revolutionized the field of embedded systems by
providing the flexibility of reconfiguration in real time. FPGAs are considered to be a cost-effective
replacement for ASICs in many applications as they provide benefits for users on two fronts: time
and cost. First, they provide users with the flexibility to replace or amend their logic in the field,
reducing the lengthy time involved in the process of ASIC manufacturing and development. Secondly,
the cost incurred in the procurement of FPGAs is much less than developing an ASIC from scratch.
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However, the fact that state-of-the-art SRAM-based FPGAs are fabricated in the latest technology
nodes, for example, Xilinx UltraScale+ in a 14 nm FinFET node, means that this class of semiconductor
devices are vulnerable to radiation-induced failures, aging and electro-migration issues to name a
few. Therefore, FPGAs also pose a challenge with respect to safety and security in mission-critical
application areas and government/military sectors respectively; where the need for a reliable system
is a must.

However, even these vulnerabilities have not hindered the widespread adoption of FPGAs in
safety-critical fields such as avionics, aerospace, automotive, biomedical, financial and cryptographic
systems where high reliability, high availability and high assurance are critical requirements.
Systems, targeting these application domains are rigorously designed to achieve the required level
of hardness-assurance according to industrial standards, for example, ISO26262 [1]. Vendors,
also continuously spin-off design tools and methodologies to address the market needs for
safety-critical domains. Information security standards for cryptographic modules or devices such as
ISO27001 [2] and FIPS 140-2 [3] promote the idea of implementing well-defined, physically and logically
separated data paths for information exchange on black (enciphered data) and red lines (plain data).
The IDF itself is a part of the certified Xilinx IEC61508 toolchain [4]. IDF, in particular, achieves better
system-level fault tolerance due to the module-level fault containment approach. For this purpose, it
maps the logical interconnections of modules in a way that its physical level floor-planning on-chip
avoids Single Point of Failures (SPOFs) which can make redundancy-based approaches such as
Duplication With Comparison (DWC) and Triple Modular Redundancy (TMR) useless. Until now,
designers for this market segment relied on multi-chip solutions for fault containment but the increased
logic density and the industry-shift to processor-integrated FPGA fabrics, such as ZynQ SoCs demand
on-chip isolation solutions.

To assess the effectiveness of the IDF, fault injection is needed to ensure that Single Point of
Failures (SPOFs) are indeed avoided. Due to strict layout constraints imposed by IDF, use of Internal
Configuration Access Port (ICAP) located in the Programmable Logic (PL) part of ZynQ, is not a
good option as it can make isolation difficult to achieve. Therefore, fault injection has to be done over
the Processor Configuration Access Port (PCAP) located in the Programmable System (PS) part of
ZynQ. To the best of our knowledge, Xilinx does not provide any built-in EDA tools or library for
frame-level fault injection over the PCAP interface as compared to AXI-ICAP. Therefore, existing fault
injection methodologies for PCAP such as [5–7] require a large reconfiguration time and are thus slow.
Furthermore, previous works that utilize PCAP rely on full bit-stream for fault injection purposes
that have significant memory overhead. This paper introduces a testing and evaluation methodology
for IDF designs that overcomes those limitations. This is achieved by reverse-engineering the partial
bit-stream format for error injection so that full reconfiguration is not needed. To do so, a Partial
Bit-stream Frame Template (PFT) is developed to enable run-time partial bit-stream generation and
bit-flips inside DRAM memory. Then, the modified PFT is written back to the configuration memory
using PCAP.

The proposed methodology was tested on a Xilinx ZynQ SoC housing an AES-based DWC Design
Under Test (DUT) in the programmable logic portion. The DUT is carefully floor-planned with the
strongest layout requirements of IDF with the overall goal of minimizing cross-domain errors or
common mode failures. The results show that the proposed PFT-based methodology allows for much
faster fault injections in comparison to existing schemes.

The paper is structured in the following manner: Section 1 provides the introduction and the
motivation for the research, Section 2 covers the related work and background needed to follow the rest
of the paper, Section 3 discusses the proposed methodology and Section 4 evaluates the methodology
using a case study. Finally, Section 5 concludes the paper and provides some ideas for future work.
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2. Background and Related Work

When creating an FPGA- or SoC-based design, the fundamental performance metrics for the designer
have traditionally been area, time, and power. These constraints are what limit the implementation or
impact of the cost in many systems. However, in order to create a robust and dependable design, there are
other aspects that must be considered as well. In the following, other considerations that must be taken care
of when developing reliable and dependable systems are summarized.

Security: Design security is a critical need in many industries, and classified and non-classified
military applications. For this purpose, data encryption techniques are being used to mask actual data from
the adversary. However, with the emergence of Side Channel Attacks (SCAs), researchers proposed and
evaluated several designs, exposing their weaknesses. For example Lumbiarres et al. [8] created a method
for achieving data security termed as “Faking countermeasure”. Their proposed solution is processing
the unencrypted or plain-text data with the help of a false/fake key whose Electromagnetic (EM) wave
emissions will mislead the attacker. The False key used for the purpose holds the KFALSE = KREAL

⊕
KMASK relationship with the original key. The additional operation needed at the end of each mix-column
operation is exclusive-or of the false output with KREAL. This process adds a huge overhead for large
chunks of data, with a primary focus on the AES design and thus cannot be extended to other cipher
schemes. In the past, the National Security Agency (NSA) worked with Xilinx to secure Virtex-4 against
attacks mentioned in [9]. The work performed was focused on evaluating isolation of basic building blocks
on an FPGA; CLB’s and Global switch matrix (GSM) which is used to facilitate interconnect between CLB
to CLB. The idea of a Fence; to provide a physical isolation was introduced in this paper. Xilinx further
improved on this idea to create the IDF [10,11].

Reconfiguration: With the invention of dynamic partial reconfiguration (DPR), many applications
can now share the same FPGA chip, carrying out their desired operations, side by side. DPR also
opened doors to an entire new threat model, originally not present in traditional FPGAs. Zao et al.
showed that side channel attacks on such environment are possible by using ring oscillators (RO),
placing them in close proximity to secondary user’s space with the sole purpose of snooping data
and information gathering/leaking [12]. Their RO based design acts as a power monitoring device
which can relay information such as switching of bit(s) from 0 to 1 which can then be monitored to
build a dictionary model upon which co-relation can be applied to extract the actual data. Moreover,
such a design can be placed without using place and route constraints. Hence isolation (between users
sharing the same FPGA space) to prevent Side Channel Attacks (SCA) is necessary.

Reconfiguration enabled FPGAs to gain a massive acceptance for big data analytics and parallel
and distributed computational systems. Many companies employ solutions comprising an FPGA
that can hold multi-tenants in cloud computing; as their general purpose computation machine. DPR
is one of the key requirements to enable this form of cloud computing. DPR allows users to time
multiplex FPGA resources enabling effective use of chip logic density. The reconfiguration time was
thus reduced as the partial bit-stream size is fairly smaller than the whole bit-stream [13]. DPR allows
a user design to be placed in static and dynamic parts. The dynamic or partial reconfigurable module
can be arranged on chip in various configurations namely island style, slot style and grid style [14].
Each style has its own pros and cons. The island style is the simplest to implement but suffers from
internal fragmentation resulting in a high percentage of resource wastage. Slot style configuration
does not have fragmentation problems where a module can occupy resources as per its needs. Tiling
of Reconfiguration Module (RM) region is a very complex task in which one has to keep in mind the
placement of routes and their cross-over from static to dynamic regions. Thus, the DPR style to use
depends on the user requirements and may vary from application to application. It may also consist of
a model that is hybrid combining two or more styles.

Single Point of Failure (SPOF) Prevention: Embedded systems are designed and deployed every
day to be used in every aspect of life ranging from submarines to handheld smart phones. If proper
fault isolation and control mechanisms are not kept in mind during the design, the damages could be
catastrophic as safety-critical systems are designed with the ultimate goal of being reliable. To avoid
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SPOF in systems, various solutions were provided. SPOF prevention can be put in place at (a) Internal
components level (b) System level (Distributed Systems) (c) or a site wide level (Repetition). In the
work provided in [15], SPOF prevention is introduced by building upon the existing Triple Module
Redundancy (TMR) methods. In Reference [15], the authors propose the use of minority voters along
with the majority voters to detect faults with better granularity. This technique can detect and help the
user in correcting the fault by using the output of minority voters as a flag. Should the system fail to
correct/detect the SPOF, it can minimize the damages if only the system is implemented upon isolated
model; preferably at both physical and logical levels.

Heterogeneity: The first FPGAs developed were homogeneous devices. Presently, various
functionalities are bundled down on a single chip. Isolated design helps achieve the best of FPGA
heterogeneous nature, where a user can access and explore DSPs, BRAMs, and CLBs all in one
place. In a heterogeneous system on chip (HRSoC) devices, user applications can be easily divided
into various tasks. They can be either hardware accelerators-based which are built-into devices at
pre-defined partition(s) or locations or can be implemented as a software task based on computing
elements or CLBs. Gantel et al. in [16] made use of the heterogeneous nature of FPGA along
with isolation to combine flexibility and reliability. Gantel used two isolated partitions (separately)
that are identical to each other (resource wise) to ensure that the relocation process is achievable
without physically damaging the chip (just as in IDF trusted routes are established to communicate
various modules of a partition). A signal that is sink to two or more modules is split into different
signals and passed through LUT resources to form trusted routes. Use of hard macros such as
INST < HardMacro > LOC = SLICEXiYj where ’i, j’ are the valid XY coordinates of the chip, is
done to constraint the synthesizer to a valid and desirable position. The isolation of designs ensured
the error free relocation of modules in accessible dynamic partition space.

Fault Tolerance: The ability to control and withstand system failures is always a desired feature
and is a requirement in government cryptographic systems, avionics, and functional safety electronics.
This can be achieved by combining several systems that operate in parallel to ensure that the failure of
some of them would not cause a global failure. This was proposed in [17], “A system composed of
two or more redundant subsystems connected in parallel fashion, has a failure probability which is
equals to the multiplicative product of the probabilities of each of the subsystems failing”. i.e., If the
subsystems both had failure probability of 10−9, then the system made up of these subsystems has a
reduced failure probability of 10−9 × 10−9 = 10−18, which is many degrees lower in magnitude than
individual subsystem failure rate [17]. However, this calculation assumes that probabilities of failure
on each module are independent in nature i.e., the subsystems do not have a SPOF or common failure
mode. This notion is the genesis of the isolation design flow. Fault-tolerance (FT) can be achieved by
configuration scrubbing, floor-planning, module decomposition, reduced functionality modes, built-in
self-tests (BIT) fault containment, failover and failback, redundant alarms, configuration memory
error detection and error-recovery or correction mechanisms. Validation and verification of such
FT methods can be realized using automated test procedures, diagnostic logging, design for test,
and formal verification.

Xilinx Isolation Design Flow: Incorporating IDF in a user design has several advantages, such as;
(1) IDF provides physical isolation between various modules, placed on a single-chip. (2) IDF helps in
restricting error propagation between modules in an event of failure. (3) IDF allows ease of debugging
and identification of the module causing a fault in an event of failure. (4) IDF allows enhanced
failure protection by the use of trusting routing and well-defined logical boundary and separation
of the modules. Although the advantages that IDF provides are important, it also has the following
drawbacks: (1), IDF rules can be difficult to comprehend for novice users as sometime, they require
FPGA placement and routing information that normal users may not possess. (2) IDF essentially limits
users to design in a constrained environment (area wise) so larger designs might be difficult to fit onto
chip along with IDF and lastly, incorporating IDF in a design, restricts the usage of dynamic partial
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reconfiguration once enabled. If a user wishes to implement IDF and DPR, side by side he has to do it
with the help of third-party tools and API such as Go-Ahead [18] and BITMAN [19].

From this literature review, it is clear that modular isolation has many beneficial use cases.
Many applications demand that the system works flawlessly, with an extreme degree of reliability.
However, to verify that IDF is effective in avoiding or reducing SPOFs fault injection is needed. Current
methodologies such as in [5–7,13,20] use PCAP to to emulate errors by placing ready-made partial
bit-streams in an SD card to inject the errors. This results in a large injection time.

Other FI methods such as [21,22] make use of JTAG and ICAP interface respectively, to inject faults
in DUT using external hardware whereas our proposed technique does not require any additional
hardware to inject faults. Moreover, [21,22] also requires modification in DUT, such as insertion of Data
Generator, Fault Generator, Error-detection, JTAG BSCAN modules and usage of external PCB hardware
in order to emulate successful SEUs. Tobias et al. in [23] proposed usage of Soft-core processor in
combination with ICAP, to inject and mitigate faults within 0.82 ms of its generation at the overhead
of 32 KiB MicroBlaze memory. However, using a soft-core processor not only incurs a toll on PL
resources (routing and logic) but may lead to other side-effects suggested by Villalta et al. in [5,24].
Author’s stresses that using ICAP for FI might be precarious and could easily lead to injection
side-effects if a configuration bit that belongs to logic controlling ICAP is flipped and thus discourages
the use of ICAP interface for FI.

In the following, a methodology that significantly accelerates fault injection is presented and
evaluated on a single chip cryptographic application i.e., AES core mapped onto a ZynQ SoC.Proposed
methodology uses PCAP for non-intrusive FI, saving precious PL resources and additional PCB
hardware or OCD tool [25] in comparison to existing methodologies in [21–23].

3. Proposed Methodology

This section describes the methodology developed to accelerate error injection over the PCAP
interface. The first part describes the Partial Frame Template (PFT) that is used to support injection at
the frame level, the second part focuses on the challenges associated with using the PCAP interface
and the third part presents the algorithm used for fault injection.

3.1. Partial Frame Template (PFT)

To introduce bit flips, we require to Read-Modify-Write the PL frames in a similar fashion as
ICAP does. As previously stated, Xilinx neither allows module-level partial reconfiguration once
IDF is enabled nor provides any library support for run-time partial bit-stream generation. To work
around this problem, we studied the bit-stream structure of 7- Series FPGAs [26] and successfully
reverse engineered the partial bit-stream structure. Using [26,27] and many generated bit-stream’s
(full and partial) we devised a template, namely Partial Frame Template (PFT). The PFT contains all
the necessary header and footer sequences (Refer Figure 1) that are required to target any 7-Series
FPGA frame. PFT allowed us to generate our own partial FPGA configuration files without going
through the extensive process of Vivado’s bit-stream generation, all in run-time. All the commands
and frame data in the PFT were kept in SMAP x32 mode as we used PCAP to deliver configuration
file to PL. Also, it is a requirement for PCAP that binary swapping of binary files must be disabled
when targeting PCAP or MCAP [27]. It is to be noted here that PFT could only be loaded to the
design, once the CRC check was disabled in original design file, as the partial bit-streams contain the
CRC verification functionality, as a countermeasure to prevent faulty designs from loading onto PL
which can cause permanent damage. Bit-stream CRC generation information is Xilinx proprietary and
serves as a fail-safe. However, for our test and purposes it introduced an additional overhead thus,
we bypassed it, saving time. After bypassing the CRC check, our PFT was able to load and configure
any targeted PL frame, successfully. The contents of our proposed PFT are shown in Figure 1 for the
reader’s understanding while Figure 2 shows the process to use our PFT to help readers, better follow
the flow of our proposed methodology.
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Figure 1. Partial Frame Template (PFT) Structure.

Figure 2. Partial Frame Template (PFT) Flow.

3.2. Challenges in PCAP

There are some limitations when performing read-back transfers that must be understood when
performing PCAP-based PL read-back. When a PL read-back is requested, the returning data comes
at a constant rate from the PL, whether or not the PCAP receiver FIFO is ready to receive incoming
data. To prevent overflow of the receiver FIFO, the PCAP must transfer this data from the receiver
FIFO to the destination memory via DMA over the PS AXI interconnect faster than the configuration
module can fill up the receiver FIFO. The data rate can be calculated using the combination of PCAP
clock rate and the PS AXI interconnect [28]. When performing continuous PCAP read backs, the DMA
controller could hang and freeze the AXI bus, if too many frames are being read or if the frames are
being read back too fast. This can be handled using two methods.

1. Read fewer PL frames, preferably with long delays between each read back; in the order of
milliseconds or more.

2. Slow the PCAP clock frequency (default frequency = 100 MHz).

We slowed down the PCAP read-back clock to 50 MHz by writing to System Level Control
Register-1 (SLCR). Another limitation of PCAP based PL read-back is that a single read-back request
cannot be split over multiple DMA accesses. i.e., sending a command requesting 303 words of
read-back data cannot be followed by a read of 101 words, then another read of 202 words. It must
read all 303 words in one transfer. Thus, extreme care must be taken when specifying source and
destination lengths of the data transfer.

Finally, due to hardware restrictions, all DMA transactions must be organized such that they do
not cross a 4 KB boundary. Since PL read-backs request the number of desired frames plus one dummy
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frame for the frame buffer per transaction, the most data that the PS can request from the PL in a single
transfer are 9 configuration frames + 1 dummy frame = 10 frames. It will be less than 10 frames if the
transfer is reading data that crosses a row boundary. As 10 frames equate to 1010 words or 4040 bytes,
which is just under the 4096 bytes (4 KB) boundary. Attempting to read more than 10 frames in a single
transfer will result in a DMA transfer error. Each read-back performed on Zynq SoC requires two
PCAP transfers processes, consisting of:

1. Request the PL read-back data.
2. Receive and store the incoming PCAP data.

While the PCAP has sufficient bandwidth capabilities to write bit-streams to the configuration
without problems, the read back hardware is smaller i.e., the receiver FIFO is smaller than the transmit
FIFO, 1 KB [20] and thus more limited. Our test setup, used to perform the PCAP-based PL read-backs
and introduce the SEU’s to PL is shown in Figure 3 for the reader’s understanding.

Figure 3. Test Setup.

3.3. Fault Injection Process

Our proposed FI algorithm for replicating the effects of SEU’s in a controlled environment is
presented in Algorithm 1. Step Write PFT shown in Algorithm 1 entails the following:

1. During the initialization stage of our design we upload the complete PFT at a specific location in
DRAM i.e., 0 × 200,000 with FAR address and data initially set to zero.

2. A read back using PCAP is performed for the desired PL frame, which is saved as a golden frame
(until all 3232 bits of a frame are checked).

3. We update the FAR address location in PFT, present in DRAM at 0 × 20002C. It is to be noted here
that only the FAR address location is being modified in the header section of PFT.

4. We now pick the golden frame read in 2, modify one bit and write the modified (erroneous) frame,
in data section of our PFT present in DRAM from 0 × 200044 – 0 × 2000A9 (101 Words).

5. Hence, the run time partial bit-stream is generated.
6. We load this newly generated, run time partial bit-stream to PL via PCAP.
7. At this point, our algorithm checks, whether or not we have reached the last partial bit-stream

(LPB), if so, it terminates, otherwise we go back to step 2 and continue, where LPB is calculated
as follow:

LPB = (Total FI Target frames) × (Number of Words in a frame) × (Number of bits in a word)

Hence, for 15 FI Targeted frames that will be used in the next section the total run-time generated
partial bit-streams were:

LPB = 15 × 101 × 32 = 48,480
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Algorithm 1: Fault Injection Algorithm

1 Result: Pass Count, Fail Count
2 Initialization ;
3 FAR = 0, value = 0, Pass = 0, Fail = 0, Word = 1, Bit = 1, Clock Enable =1;
4 procedure
5 if (FAR != Last Frame) then
6 value = Read PL Frame ;
7 while (Word ≤ 101) do
8 /* 101 Words in one Frame of 7-Series FPGAs */
9 while (Bit ≤ 32) do

10 /* 32-bits in one word of 7-Series FPGAs */
11 ClockEnable = 0;
12 value = value

⊕
(1 << Bit);

13 Write PFT(value);
14 ClockEnable = 1;
15 Read Match;
16 if Match then
17 Fail ← Fail + 1

else
18 Pass← Pass + 1

end
19 ClockEnable = 0;
20 value = value

⊕
(1 << Bit);

21 Write PFT (value) ;
22 ClockEnable = 1
23 Bit← Bit + 1

end
24 Word←Word + 1

end
25 value← value + 1;
26 FAR = value;

else
27 return (Pass Count, Fail Count);

end
28 endprocedure

4. Evaluation

This section evaluates the proposed methodology using a single-chip cryptography application
as a case study. Specifically, an Advanced Encryption Standard (AES) Duplication With Comparison
(DWC) design is used.

Xilinx provided IDF comes in two flavors: (1) IDF for Plan-ahead and (2) IDF for Vivado. The rules
and key concepts of IDF defined for both do not vary, but the approach for its use and isolation
verification method varies significantly i.e., IVT for (1) and VIV for (2) respectively. We chose to
work with Vivado’s IDF because the other tool has become obsolete. For this purpose, a design
has been implemented on Zynq SoC, “Zed-Board” that conforms to the rules specified by the IDF.
The verification of all IDF Design Rule Checks (DRCs) were performed using the Vivado’s Isolation
Verifier (VIV) to qualify the implemented design for IDF. Xilinx has also provided an application
note for user’s ease of understanding of IDF rules and regulations [11]. The first part of the design
was implemented using Processing System (PS) part of the Zynq SoC whereas the second part of
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the design was realized on the Progammable Logic (PL) part of the Zynq SoC. We built our own
custom AES-256 [29] cryptographic Verilog core based on a similar hierarchy presented in [11] using
Vivado 2018.2 (the latest stable version available at the time of this study). The block diagram of our
implementation is presented in Figure 4. The design was realized using IP Integrator (IPI) feature of
Vivado 2018.2. Each module, shown in Figure 4, lies in its own separate hierarchy with each module
partitioned and mapped to a well-defined location.

Figure 4. AES-256-based IDF Design Hierarchy.

These constraints were placed using Vivado’s XDC file to keep track of all routing and logic
track placements. AES_ZERO (FI Target) and AES_ONE (Golden Copy) are DWC design under
test. Each AES module has 4 input signals; clock (50 MHz), active low reset signal, a clock enable
(realized using clock buffer) and a start signal to initiate the encryption process. Clock and reset
signals were provided by Zynq processing system (PL-Fabric Clock and Clock Resets), whereas the
clock enable, start signal for these modules were controlled and provided externally via PS MIO
(controlled programmatically from PS). There exists another output signal Match, routed to PS via
MIO which is used to monitor and record the output of the modules on each iteration. Logic use of our
design (programmable logic) is summarized in Table 1 for reader’s reference.

Table 1. Logic Use Summary for IDF and Non-IDF Designs.

Module Slices LUT FF BRAM DSP

Controller 0 0 0 0 0
Comparator 74 51 256 0 0
AES_Zero 409 1303 445 3 0
AES_One 426 1303 445 3 0

Total Resource Use 909 2664 1152 6 0

The Hardware–Software co-design technique was used to test the effectiveness of the IDF in the
presence of faults and SEUs. The Fault Injection (FI) logic was implemented completely on ZynQ
PS section for the purpose of making it non-intrusive. Faults were introduced to the HW evaluation
part using the PCAP interface present on ZynQ SoC. The ZynQ SoC contains a new configuration
interface known as the Processor Configuration Access Port (PCAP). The PCAP is the gateway for the
PS to access the PL configuration memory. PCAP includes a Direct Memory Access (DMA) controller,
an AXI bus interface to communicate on the PS AXI interconnect, and a pair of FIFOs (transmit
and receive) [28]. This interface essentially grants the PS an easy access to perform configuration
operations (such as programming a bit-stream) to the PL. The PCAP is somewhat unique, among
configuration interfaces as it does not require a specialized cable or dedicated I/O pins (unlike JTAG or
Select-MAP). Instead, the PCAP is accessible to the user, purely through software by using dedicated
memory-mapped registers. We used PCAP to read PL frames, perform FI on the frame and load the
erroneous frame back to PL to emulate the SEUs caused by radiation.
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The evaluation process of IDF begins by uploading a Partial Frame Template (PFT) in PS
DRAM containing all the necessary, Synchronization header, Frame Data, Dummy Frame Data and
De-Synchronization footer sequence for 7-series FPGA [26]. After PFT is loaded, a frame is read back
using PCAP and written to the same Frame Address register (FAR) location with a difference being that
1-bit is now flipped from its original state to emulate the effects of an SEU in a controlled environment.
Prior to this process, the clock of the HW evaluation part is stopped to better observe the results of FI
introduced in the system.

Once the erroneous PFT insertion is complete, the clock is restored to the HW evaluation part and
the DWC AES-256 cores are given the start signal to begin the encryption process. Outputs of both
AES cores (Golden and FI target) are fed to a comparator for matching which generates a Match signal
if the results of both AES cores differ. The Match signal is read back to PS via external MIO and its
occurrences are logged for each iteration. After logging the Match signal, the FI originally performed is
removed and then FI is performed on the next bit of a current FAR. The 7-Series FPGAs frame consists
of 101 words. Each word is 32-bits wide. Hence, the test input space for a frame wide SEU is calculated
as 101× 32 = 3232. For replicating the SEU in one frame of 7-Series FPGAs, the aforementioned process
was run repeatedly for 3232 iterations over various frames (FAR’s) to better assess the effectiveness of
IDF in the presence of FI.

The layout of our IDF-based designs, as shown in Figure 5, depicts the placement of isolated
modules, FI target for our evaluation methodology and IDF-based fences around the various resource
such as FIFO, BRAM and IOB Buffers.To investigate and comprehend the effectiveness of IDF, two
designs were compared; one with all the IDF and placement constraints and another without IDF
constraints (with the same placement constraints as the first design). The FI algorithm mentioned in
the previous section was run repeatedly, in several iterations for both designs, injecting non-intrusive
SEUs and the effects of these SEUs were recorded. The results were obtained by performing FI in
several PL locations which are marked in Figure 5 for the reader’s visualization, along with the areas
where the HW evaluation candidate AES_ Zero and AES_ One were located on ZynQ SoC Chip.
Some of the results collected during this analysis are also tabulated in Table 2 where the areas that
correspond to the interconnections of the two AES modules are highlighted in boldface. It can be seen
that those areas such as 43B and 25F showed a higher concentration of errors in the Non-IDF design
because this is where the logic boundaries (AES _ Zero and Comparator module horizontally and
AES _One vertically) were present. Critical routing bits of these modules were located without any
isolation between them and our introduced SEUs resulted in a disconnection between logic. However,
once the IDF was enabled and fences were placed around this area, the number of errors reduced
significantly in those areas, as IDF ensured the placement of critical routing information with-in the
specified isolated, p-block regions. Areas 1A-22L were mostly vacant slices, with minimum or no logic
present, hence FI on these locations did not produce many noticeable errors.

From Table 2, it is evident that once the IDF was incorporated in our design (and trusted
routing was enabled by Vivado), the error rate reduced drastically for the areas that correspond
to the interconnections of the two modules. However, the elimination of these errors that could lead
to SPOFs is not cost-free. The trusted routing and design fence that were incorporated in the design
reserved resources with-in the ZynQ SoC chip and these resources were thus essentially unavailable to
our design.
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Figure 5. IDF Design, Implementation view with Controller marked in Green, AES_Zero marked in
Blue, AES_One in Purple and Comparator marked in Yellow.

Table 2. Error Rate Comparison for IDF and Non-IDF-Based Design (Annotated Markers in Figure 5).

Frame Annotation Errors in Errors in Percentage Boundary
Number Markers IDF Design Non-IDF Design Effectiveness Frame

1 1A 0 0 100.00 Yes
2 2B 0 0 100.00 No
3 6D 0 0 100.00 No
4 11G 0 1 100.00 No
5 23I 43 43 00.00 No
6 24J 44 48 08.33 No
7 24M 18 18 00.00 No
8 25F 6 11 45.45 Yes
9 31M 41 42 02.38 No

10 31N 36 41 12.20 No
11 38Q 3075 3129 01.73 No
12 40Q 2685 2875 06.61 No
13 41R 2681 2934 08.62 No
14 42S 2742 2876 04.66 No
15 43B 14 2394 99.42 Yes

Table 3 summarizes the total Zynq SoC resources available to our design in IDF and Non-IDF
design environment along with the total percentage use of resources reserved by IDF by employing
fences, trusted routing and modular isolations. By carefully analyzing the resources use obtained in
Table 3, we observed the following: (1) When IDF is enabled for a design, Vivado’s synthesizer reserves
some resources from the chip and prohibits its usage in user design thus, creating a physical boundary;
a separation between each isolated module which restricts the propagation of error in an event of
system failure. (2) The size of resources that are effectively marked unusable, as a result of enabling
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IDF in a design varies and depends on (a) Number of isolated modules (b) Height of fence applied
(c) Width of fence applied (d) Complexity of logic being implemented in terms of slice and primitive
use (e) Number of global clocking components (f) Route/signals exempt from isolation. The resource
overhead that IDF incurs thus, may vary from design to design. However, the resource overhead in
comparison to its effectiveness against fault containment over-weighs itself.

Table 3. IDF Resource Utilization Overview.

Site Resources Available Resources Available Total Resources Reserved
& in in Reserved Resource

Resource Type IDF Design Non-IDF Design by IDF (%)

Slice LUTs 51,940 53,200 1260 2.3
LUT as Logic 51,940 53,200 1260 2.3

LUT as Memory 17,072 17,400 328 1.8
LUT as Distributed RAM 48 48 0 0

Slice Registers 103,880 106,400 2520 2.3
Register as Flip Flop 103,880 106,400 0 0

Register as Latch 103,880 106,400 0 0
F7 Muxes 25,970 26,600 630 2.3
F8 Muxes 12,985 13,300 315 2.3

Block RAMB36/FIFO 126 140 14 10
DSP Slices 200 220 20 9

Bonded IOB’s 192 200 8 4
OUT_FIFO 12 16 4 25

IN_FIFO 12 16 4 25
IBUFDS 184 192 8 4.16
OLOGIC 192 200 8 4
ILOGIC 192 200 8 4

IDELAYE2/IDELAYE2 192 200 8 4
MMCME2_ADV 2 4 2 50

PLLE2_ADV 2 4 2 50

Using Vivado design power estimator we collected the power consumption data for our IDF and
Non-IDF design which is presented in Table 4. It can be seen that the power consumption is almost the
same in both cases and the use of IDF seems to have little impact.

Table 4. Power Consumption of IDF and Non-IDF Designs.

Power Statistics IDF Design Non-IDF Design

Total On-Chip Power 1.730 W 1.729 W
Device Dynamic Power 1.588 W 1.587 W

Device Static Power 0.141 W 0.141 W

The timing summary of our implemented modules is presented in Table 5. In this case, there is
an increase of the maximum frequency of operation when using the IDF but the difference is not large.

Finally, let us discuss the benefits in terms of fault injection acceleration provided by the proposed
methodology. As discussed before this acceleration is the main objective of the proposed methodology.
There are two main components in the time needed for fault injection that depends on the methodology.
The first one is the generation of the bit-streams used for the fault injection and the second is the time
needed to download those bit-streams to the FPGA to test the error.
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Table 5. Timing Constraints Summary in nanoseconds (ns).

Module Worst Negative Slack Worst Hold Slack Worst Pulse Width Slack
Name (WNS) (WHS) (WPWS)

IDF Design

AES_Zero 12.348 0.027 8.750
AES_One 11.729 0.051 8.750

Comparator 12.349 0.038 9.500
Critical Path 11.729 0.001 8.750

Maximum Design Frequency 130.68 MHz

Non-IDF Design

AES_Zero 11.869 0.062 8.750
AES_One 11.816 0.059 8.750

Comparator 11.834 0.060 9.500
Critical Path 11.816 0.009 9.500

Maximum Design Frequency 122.98 MHz

For the first component, our novel, one frame PFT is generated in real time in comparison to the
partial bit-streams generated by Xilinx tools. It is to be noted here that the average time to generate a partial
bit-stream taken by Xilinx Vivado Design Suite 2018.2 on our average PC with Intel(R) Core (TM) i5-4500M
Quad core CPU @ 2.50 GHz and 8.0 GB RAM was roughly 10 minutes whereas our PFT was generated in
0.2 s thus achieving a 3000× reduction in the time needed. It must be noted that the proposed methodology
also eliminates the need to store the partial bit-streams used for fault injection. Table 6 gives the sizes and
generation times of the different options for the for the XC7020 bit-stream.

Table 6. Generation Time Comparison for XC7020 Bit-stream.

Bit-Stream Type Bits-Tream Size Generation Time

Full Bit-stream 4,045,564 bytes [30] 900 s
Partial Bit-stream 134,392 bytes [5] 600 s

Proposed PFT Bit-stream 940 bytes 0.2 s

For the second component, the time needed to download the bit-stream to the device, the size
of the Zynq XC7Z020 All Programmable SoC full bit-stream is 4,045,564 bytes and its configuration
time using PCAP in a standalone, bare-metal environment is measured to be 32 ms in [30]. As the
size of the partial bit-stream is smaller than the full bit-stream, it requires less configuration time,
approximately 1 ms. However, Xilinx tools cannot generate a partial bit-stream which targets and
configures only one frame [5]. This is where the proposed PFT provides a significant advantage
by enabling the single frame modification that can be done in less than 0.015 ms. The times are
summarized in Table 7 and corresponds to an average time, measured between the beginning and
end of DevC DMA transfer function call with PCAP clocked at 100 MHz whereas, for our proposed
PFT, PCAP was clocked at 50 MHz. It can be seen that the proposed methodology reduces the time
needed to download the bit-stream that injects the failure by a factor of approximately 67× compared
to the previous scheme that performs fault injection by downloading larger partial bit-streams over
the PCAP interface [5–7,13].

Table 7. Configuration Time Comparison for XC7020 Bit-stream.

Bit-Stream Type Bit-Stream Size Configuration Time

Full Bit-stream [30] 4,045,564 bytes 32,000 micros
Partial Bit-stream [5,7] 134,392 bytes 1060 micros

Proposed PFT Bit-stream 940 bytes 14.90 micros
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As a summary, the results discussed show that the proposed methodology is able to provide
very significant reductions in both the time needed to generate the partial bit-streams needed for fault
injection and also in downloading those to the configuration memory of the FPGA.

5. Conclusions

This paper proposed an evaluation methodology for validating and verifying the effectiveness
for Xilinx Isolation Design Flow (IDF). The proposed methodology addresses the problem of
non-intrusiveness of fault injection infrastructure and develops a reverse-engineering-based approach
to enable Processor Configuration Access Port (PCAP)-based frame-level bit-flip manipulation.
The fault injection infrastructure is not only non-intrusive but does not requires any resource in
the programmable logic portion and is entirely contained in the programmable system of ZynQ SoC.
The proposed scheme enables a very significant acceleration of the fault injection reducing the time
needed to generate a run-time partial bit-stream and downloading it to the FPGA by a factor of more
than 67×. As future work, we would like to explore how the IDF rules can be utilized to reduce
cross-domain errors in FPGA-based TMR designs.
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