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Abstract: Currently, the use of machine learning models for developing intrusion detection systems is
a technology trend which improvement has been proven. These intelligent systems are trained with
labeled datasets, including different types of attacks and the normal behavior of the network. Most of
the studies use a unique machine learning model, identifying anomalies related to possible attacks.
In other cases, machine learning algorithms are used to identify certain type of attacks. However,
recent studies show that certain models are more accurate identifying certain classes of attacks than
others. Thus, this study tries to identify which model fits better with each kind of attack in order to
define a set of reasoner modules. In addition, this research work proposes to organize these modules
to feed a selection system, that is, a dynamic classifier. Finally, the study shows that when using the
proposed dynamic classifier model, the detection range increases, improving the detection by each
individual model in terms of accuracy.

Keywords: intrusion detection system; dynamic classifier; ensemble machine learning;
multiclass; cybersecurity

1. Introduction

Intrusion detection systems (IDS) are computer systems designed to monitor network traffic.
These systems are capable to find atypical records and attack patterns based on the behavior of the
networks. Thus, the aim of IDS is the early detection or prediction of possible real harm to the network,
host, or cloud caused by a security issue. To perform this, IDS, as a software application, analyze
possible anomalies detected at the network layer. This process is, traditionally, static and linked to
the rules or algorithms used for detecting cyberattacks. Nevertheless, this static process is difficult
to adapt to the detection of new types of attacks because it implies updating it with new rules in the
cases of signature-based IDS [1], or the re-training of the detection model in the case of anomaly-based
IDS [2]. Specifically, anomaly-based IDS are related directly to the application of machine learning
(ML) techniques. These techniques, depending on the underlaying classification model, are capable of
detecting anomalies by means of binary classifiers, or different types of attacks by means of multiclass
classifiers. In general, the aim of ML-based IDS is to increase their ability of attack detection by
reducing the quantity of possible false positives [2]. The reduction of possible false positives is a crucial
issue in the design of IDSs, as the continuous development of automated malware forces the IDSs to be
as accurate as possible, trying to be one step ahead of attackers. Nevertheless, the accuracy of this
software still has important limitations, and therefore, there is a margin for their improvement.

In recent studies, it is possible to observe this use of ML techniques for detecting possible
cyberattacks in a more efficient way [3,4]. Most of these studies are based on a binary classification,
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but some investigations have improved the prediction by establishing a multiclass classification [5].
The main drawback of the systems presented in these studies is that they offer low levels of general
precision [6,7] although they do offer a high level of efficiency in very specific attacks. Thus, it could be
possible to identify and characterize certain types of models that allow a better detection of specific
classes of attacks.

However, IDS performance is impaired and, in combination with the fact that the same algorithm
is applied to a probably complete dataset, a problem to identify certain types of attacks has been posed.
When a model is trained, it recognizes better patterns in some features, usually related to a type of
intrusion. This is the main reason for the need of an adaptable system, to take advantage from the
inclination of each algorithm to detect better some types of attacks over others.

In order to mitigate this disadvantage of current models, this research proposes a dynamic
classification model that can obtain the main contributions in terms of rate detection of each individual
ML model with the aim of generating reliable predictions of attacks from them. To perform this,
the system introduces the separate training, validation, and metrics of different algorithms such as
classical ML models and neural networks, and then join their predictions into a module, which aims to
compare the different outcomes and extract the most suitable one.

This paper presents the related work in the state of the art in Section 2. Furthermore, in Sections 3–5,
we explain the problem statement, the proposed methodology, and experimentation, defining the
new architecture for the dynamic classifier introduced in this research. These sections also include
several tests for different ML learning techniques, including data preprocessing and feature selection.
Section 6 provides the obtained results for the individuals ML models proposed and the application
of the dynamic classifier proposed using the dataset UNSW-NB15, concluding with a comparison
between results obtained by the different tests done and related works. Finally, Section 6 includes the
discussion of the main conclusions and future lines for this article.

2. Related Works

Nowadays, the research related to the selection of the most suitable IDS is addressed from different
perspectives based on the description of the input problem and the analysis of the performance of
underlaying algorithms. In general, the aim of these research works is to study the algorithm selection
problem in order to determine the most proper one.

Some studies are based on basic ML techniques, selecting an algorithm, and training it with a
complete dataset. Such as the case of [8], where the application of a multi-layer perceptron (MLP)
network is applied to detect large scale datasets and predict malicious attacks. In this case, the selection
of the attributes is based on the co-variance, standard deviation, or correlation. The authors of the
paper obtained an accuracy of 0.9935 selecting the attributes with a near perfect correlation. In [2],
Larriva-Novo et al. propose an analysis based on a categorization of a cybersecurity dataset, where they
used a static algorithm based on MLP. The analysis was done in order to select the best hyperparameters
related to the best performance in terms of accuracy. Furthermore, the different characteristics selected
were based on: basic connection, content, traffic statistical and direction characteristics. The model
proposed below presented an accuracy near to 99%, based on anomaly detection.

A typical approach for the design of IDS based on anomalies is the application of the support
vector machine (SVM) algorithm, to predict if the input data represents an anomaly or not. The authors
of [9] improved the results of their system using a non-linear scaling method for data preprocessing.
The classifications conducted were binary and multi class, measured by accuracy (AC), detection rate
(DR) and false positive rate (FPR). The accuracy obtained was 85.99% for binary classification and
75.77% for multi-class classification. In [10], they tried to go deeper in the classification based on
SVM algorithms. The authors developed an efficient IDS, with an improved performance in terms of
accuracy due to the binary gravitational search. The results obtained were 86.62% in terms of accuracy
without the application of feature selection and 94.4% with its application, improving the results
obtained in [9] for the binary classification.
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Another approach based on deep learning techniques such as feed-forward neural networks is
presented in [11]. This method consisted on selecting the optimal activation and features. The authors
conducted three experiments: selecting the best activation function, deploying a feature selection
and applying the obtained results to new data. The optimal results exposed an accuracy of 99.5%.
Despite these results, basic algorithms for anomaly detection are not effective enough to perform the
classification problem in IDS based on ML algorithms because they must be optimized, related to its
hyperparameters and the quality of the data [12].

On the other hand, a large variety of algorithms have been used with the objective of finding a
better performance in IDS multiclass attack detection. This is the case of the extreme gradient boosting
(XGBoost) [13], which was used to deploy better results. The authors experimented with 39 numerical
features, excluding those like IP Address or Protocol Type. The best results were achieved with an
accuracy of 88% for the testing dataset [14]. Furthermore, the research conducted to include a data
preprocessing phase, where the optimal features were reduced from 39 to 23. The same models were
applied, obtaining again the best accuracy by the XGBoost model. However, in this case, the accuracy
rate fell to a 76%. It should be noted that in this case the category “attack analysis” presented difficulties
to be detected.

Recent works proved the effectiveness of different techniques to make predictions in IDS. However,
just a few of them used time-series information and categorical information. This is the case in [15],
where the authors used a long short-term memory (LSTM) network with feature embedding. The model
makes a multi class classification based on chronologically order information. The research presented
multiples combinations in order to deploy the most accurate model: feature embedding selection,
transformation of categorical data, and projection of the features as vectors values in the space.
The results in terms of accuracy was of 83% for a multiclass classification.

Another standpoint to confront the algorithm selection problem is based on the use of a Bayesian
approach, because these models are able to reason under uncertainly. In [16], a static automatic
selection is proposed, designing an expert system that presents knowledge representation, learning,
and inference ability. The methodology presented in that work was based on the identification of
representative characteristics and a list of suitable candidates to generate a random training dataset.
They then use the dataset to analyze the performance of each algorithm. This method obtained an
accuracy of 76.08% in its prediction, which was the best result in comparison with other proposed
candidate algorithms. This approach was also used to select other hyperparameters among a wide
space of choices as kernel functions [17].

Alternatively, a method called HYDRA is presented in [18], which represents a new approach to ML
models setup that combines automated algorithm configuration and portfolio-based algorithm selection
techniques [19,20]. The base of this approach is to join the advantages of techniques, i.e., less domain
knowledge required, mechanization from automated algorithm configuration, and variety of candidate
algorithms. HYDRA accepts five inputs: a parametrized solver, a set of training problem instances,
an algorithms configuration procedure, a performance metric to optimize, and portfolio-based algorithm
selection. During the conducted test, it was proved that HYDRA outperformed in almost every case,
the accuracy of the proposed algorithms.

Over time, completely automatic ML models were developed which tries to outperform the best
accuracy of selected algorithms over a determined output. An example of this is Auto-WEKA [21],
designed to choose the most appropriate algorithm and its optimal hyperparameters automatically,
between a large number of possible combinations (39 WEKA’s algorithms are available) using a
Bayesian optimizer. Since its original release in 2013 some updates were included in Auto-WEKA
2.0 [22].

In [23], the authors discuss the need for a dynamic ML system. The objective they propose is
to avoid the loss of efficiency, characteristic of a static model. This derives from the choice of the
selected features, inferring that a single model is not sufficient. The authors discuss the need of a
dynamic selection of a model. At first, Ensemble ML is proposed as a solution, but the drawback of
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the need for continuous training makes it an inefficient option. The author of the research mentioned
above, introduced a new methodology based on a cloud device operations architecture. The research
proposed different containers to train a model, so each of them made a prediction to be sent to a model
selector. The model selector was able to choose the most suitable one in terms of precision. Analyzing
obtained results based on supervised options, an accuracy of 61% was obtained. This value increased
substantially when the system was integrated with label categorization. Taking into account these
results, unsupervised learning by clustering was only recommended for those attacks with lowest
accuracy. The objective was to select the most accurate model according to real-time data received.
The authors mentioned that it is imperative to automate this task, as there were at least 70 models to
choose from. Furthermore, the dataset used for the researches introduced above was the benchmark
dataset UNSW-NB15 [14]. Finally, [24] introduced a multiclassification approach which combines the
outputs from related classifiers in the state of the art, such as the one proposed in [25], for mobile and
encrypted traffic classification based on hard/soft combiner enhancing up to 9.5% of recall.

As a conclusion, this section has identified and detailed several related works focusing on the
study of statics models for the application of IDSs based on ML algorithms. These studies conducted
several analysis based on the performance of different ML models in terms of accuracy. The models and
ML techniques applied obtained, in the best cases, an overall accuracy of 99% for a binary classification.
Furthermore, some of these researches included the study and application of multiclass classification
evaluation, experimenting a low rate of detection in terms of accuracy. In addition, other works such
as [23], lead to the need of dynamic auto selection ML models with the objective to perform the rate
detection by a dynamic selection of a model. All these works are based on several ML techniques
such as correlation, feature selection, multiclass classification evaluation and dynamic model selection.
Therefore, most of these techniques are covered and evaluated in this proposal.

3. Background

3.1. Cybersecurity Datasets

Nowadays, there exist different cybersecurity datasets that can be used for IDS based ML
experimentation, i.e., UNB-ISCX-1012 [26], CTU-13 [27], MACCDC [28], UGR-16 [29], CICDS [30],
KDD-99, NSL-KDD [31], or UNSW-NB15 [32]. Some of them have been widely used, like for instance
the dataset KDD-99, which has been stablished as the main benchmark dataset for the different studies
cases in the application of ML-based IDS. In [6], there is a representation of the most used datasets
in the last decade for anomaly detection based on ML algorithms. This study points out that the
NSL-KDD and the KDD-99 are the most used, with a 11.6% and 63.8% of use respectively.

In this study, however, the chosen dataset was UNSW-NB15 [14], because it has been considered
as a benchmark dataset for the evaluation of IDS based on ML models thanks to the variety of the
current cybersecurity attacks to date, now being widely used in cybersecurity [32].

3.1.1. Attack Categories in UNSW-NB15

The following are the nine different attack categories considered in the UNSW-NB15 dataset used
in our study:

Fuzzers: Injection of an invalid random data into a program to cause crashes and exceptions.
Analysis: Involves network monitoring i.e., port scanning, spam, or penetration through HTML files.
Backdoor: Action of avoid security mechanisms of a system to access to stored data.
Denial of Service (DoS): Attempt to make a system temporarily unavailable to its users.
Exploits: Take the advantage of a security flaw to gain access of it.
Generic: Technique that works against all blockages, regardless of the encryption used.
Reconnaissance: Malicious actions that involves the collection of information.
Shellcode: Code used as a payload against an identified vulnerability in a system.
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Worms: Replication of an attacker to spread an intrusion to other systems through the network.

3.1.2. UNSW-NB15 Description

This dataset contains information about multiple connections being labeled to differentiate those
data that represent an attack and the normal behavior of the network, making suitable for supervised
learning such as the case of this research.

The UNSW-NB15 includes 47 different features. In addition, it contains two fields that represent if
the traffic flow is an attack or not, and the attack category, being one of those mentioned in Section 3.1.1.
The features of the dataset are classified into flow features, basic features, time features, content features,
additional features, and labeled features [14,32,33].

The dataset is divided in 10 categories including the nine presented before and the normal behavior
among them, as presented in Table 1, where the number of records of each category and the percentage
of records from the total are also shown.

Table 1. UNSW-NB15 distribution by types of attacks.

Type % Records No. Records

Normal 36.092 2,218,761
Fuzzer 9.409 24,246

Analysis 1.039 2677
Backdoors 0.904 2329

DoS 6.346 16,353
Exploits 17.279 44,525
Generic 22.847 215,481

Reconnaissance 5.428 13,987
Shellcode 0.586 1511

Worms 0.067 174

3.2. Machine Learning Applied to Intrution Detection Systems

Nowadays, ML has been incorporated in cybersecurity, specially to the design of IDS. It has been
widely used, involving different levels of complexity, from the choice of an algorithm, to complex
systems with the ability to autoconfigure themselves [23,34]. It is a field which focuses on the
estimation of different mathematical functions with the objective of extract and represent behavioral
generalizations of the data [3]. In addition, ML can be defined as a subset of the artificial intelligence
with the ability to produce desired outputs referred to an input data without being programed.

ML algorithms can be classified into different categories: supervised learning, unsupervised
learning, and semi-supervised learning. In this paper, we focus specifically in supervised learning
methods, as the others are currently out of the scope of our research.

Supervised learning algorithms are based on what they are capable to learn about a set of features
with an explicit label. Therefore, if the function is capable to adequate the input data to a desired output
label, the algorithm is able to predict outputs given inputs in a similar scenario. After the training of
the model, the algorithm can be executed until it reaches an acceptable level of performance [35].

3.3. Machine Learning Algorithms under Study

In the context of supervised learning, ML offers different types of algorithms because each one
presents a different response to a unique input [23]. We have evaluated the results of the works
presented in Section 2, analyzing the algorithms evaluated in those researches, in order to improve
their results with our proposal. Additionally, other algorithms with similar procedures were taken into
account, for those whose working methods fit the requirements of this research. After that evaluation,
the models selected are the following:
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1. K-nearest neighbors (KNN): It is an algorithm that calculates and orders the distance from
new data to the existing one, classifying this input according to the frequency of the labels
of the K-nearest ones. This distance is usually measured by the Euclidian norm presented in
Equation (1). For the correct adjustment of this method [36], a correct value of the number of
neighbors considered is essential.

d(x, y) =

√∑k

i=1
(xi − yi)

2 (1)

2. Decision trees (DT): In the DT algorithm each node represents a test over an attribute, and each
branch is a possible outcome from it. It uses a decision support to show the prediction lead by
features splits [37]. In this case, among the hyperparameters, we can list maximum depth of the
diagram, minimum number of samples required to split an internal node or minimum number of
samples required to be at a leaf node.

3. Random forest (RF): RF is composed by many DT [34], each one created from a subset of features
to be considered. Each one votes and the algorithms compute all of them to choose the best
prediction. The main advantage of this method is the prevention of the over-fitting [38].

4. Support vector machines (SVM): SVM allows find the optimal classification, maximizing the
margin between classes, whose border is defined by support vectors. In case there is not a lineal
separation, the kernel trick is applied to redefine inner products [39].

5. XGBoost: It is an algorithm that starts with weak classifiers over a set of data with the objective to
enhance their results by means of a sequential processing with loss function to minimize the error
with every iteration, obtaining a strong model at the end [40].

6. Multi-layer perceptron neural network (MLPNN): It is composed by a group of linear classifiers
denominated perceptron. The perceptron itself contains a group of layers (i.e., input layer, output
layer and hidden layer). MLPNN is a type of feed forward neural network (FFNN), where the
layers have a non-linear activation function. MLPNN is trained by a back-propagation model
which stablish the relation between the input features and the output features, with the objective
to minimize the error [2]. The different hyperparameters (i.e., number of hidden neurons, layers,
iterations, activation function, etc.) must be optimized in order to achieve better results.

7. Long short-term memory neural network (LSTMNN): LSTMNN are recurrent neural networks
(RNN). These units are capable of connect previous information to the input data, learning
those long-term dependencies. This model is configured to maintain the back-propagation error
constant through the time between the different layers [2]. In this case, the hyperparameters to be
optimized are batch size and number of hidden neurons.

4. Proposal

The dynamic classifier proposed in this research is designed to achieve the objective described
throughout this document, a system capable of obtaining the best prediction results from various ML
algorithms based on a multiclass classification. To develop the dynamic classifier, previously optimized
models are required [41]. The proposed system is presented in Figure 1. As it can be seen in the figure,
we propose an architecture composed of different modules: a series of static ML algorithms manually
preconfigured by means of a study of hyperparameter selection and feature selection, and finally by a
dynamic classifier.
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In our research work we include the development of that series of static ML models, capable of
predicting possible attacks. Each model will count on its own configuration of hyperparameters and
a specific feature selection. The related work study from Section 2 indicates that not all models are
able to achieve good prediction accuracy for every type of attack. Instead, each ML model seems to be
more suitable for certain attack categories. In the following sections we confirm this, by carrying out
tests using different models to predict different attacks.

The dynamic classifier works by evaluating the incoming information by each one of these static
ML models. The output of each one, consisting on a prediction on the possible attack (based on the
attack categories defined by the UNSW-NB15 dataset, shown in Section 3.1.1 of this paper) is then
used as input data for the actual classifier. The classifier is then able to determine the best prediction
from those generated by the ML models, and select it, regardless of the attack category. This method
improves the accuracy of attack prediction.

5. Methodology and Development

5.1. Dataset Preparation

For this research, the dataset selected was the UNSW-NB15 [14], as was mentioned before in
Section 3.1. In [2], the importance of selecting the most important features between all the features
available is established, as it has an enormous impact in the algorithm’s performance. The less
important features do not bring performance in terms of accuracy while consuming computer resources.
For this purpose, the features were classified according to its type—i.e., numerical values were
transformed into z-score [42] values—and categorical features were transformed into numerical
values [2]. As was presented in Table 1, some attack categories expose a low distribution, what may
not produce accordance results in terms of accuracy. To prevent this, some researches have used
SMOTE [43] to balance the dataset UNSW-NB15, obtaining good results [44]. This algorithm was
applied in this research with the objective to compare the results between a balanced dataset by SMOTE,
and an unbalanced dataset as the original dataset.

Additionally, we have performed a feature selection based on the correlation Kendall coefficient [45],
which has improved the results of the selection task. We improved the tests with both a balanced and
unbalanced dataset. In Figure 2, the features correlation matrices for the UNSW-NB15 are presented.
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For this research, the best results were achieved by removing the features with a correlation higher than
0.8 for both balanced and unbalanced dataset. Table 2 presents the features selected for both datasets.
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Table 2. UNSW-NB15 selected features after correlation Kendall coefficient feature selection.

Balanced Dataset Unblanced Dataset

‘sloss’, ‘dinpkt’, ‘rate’, ‘dwin’, ‘synack’, ‘dmean’,
‘dload’, ‘sjit’, ‘ct state ttl’, ‘stcpb’, ‘ct w http mthd’,

‘djit’, ‘dloss’, ‘ct ftp cmd’,
‘ct dst sport ltm’, ‘ackdat’, ‘dtcpb’, ‘tcprtt’, ‘swin’,

‘dbytes’, ‘sinpkt’, ‘sload’,
‘dpkts’, ‘dttl’.

‘ackdat’, ‘synack’, ‘dpkts’, ‘ct srv dst’, ‘dloss’,
‘dwin’, ‘sload’, ‘sinpkt’, ‘ct w http mthd’, ‘ct dst

sport ltm’, ‘sloss’, ‘stcpb’,
‘tcprtt’, ‘dinpkt’, ‘ct ftp cmd’, ‘dtcpb’, ‘sjit’, ‘dbytes’,

‘ct state ttl’, ‘rate’,
‘djit’, ‘swin’, ‘dmean’

After the selection process, the dataset was divided into training (75%) and testing (25%) data.
The training data was used for the generation of models in each algorithm selected. The testing data
was used for the validation of each algorithm and for testing the dynamic classifier proposed.

In addition, some algorithms present a better performance using less features [45]. To achieve
better results over the correlated feature selection, K-Best [46] function was applied. The final feature
selection is presented in the following section.

5.2. Machine Learning Models Applied

All the considered algorithms were trained both for the balanced and Unbalanced dataset
presented in Table 2, to analyze the performance in terms of rate detection differences of each method.

1. KNN: This model was trained using the six features obtained with K-Best. From the balanced
dataset ‘sbytes’, ‘dbytes’, ‘sload’, ‘smean’, ‘dmean’, ‘ct srv dst’ were extracted, meanwhile for the
unbalanced case, the selected features were ‘dur’, ‘proto’, ‘service’, ‘sbytes’, ‘dttl’, ‘smean’. The best
result was obtained for 12 neighbors (balanced dataset) and 27 neighbors (unbalanced dataset).

2. SVM: Due to the large increase of data from the balanced dataset, the training of this model for
this dataset could not be completed, due to memory restrictions in the experiment environment.
The model was trained for the unbalanced dataset using features from K-Best analysis (‘dur’,
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‘proto’, ‘service’, ‘sbytes’, ‘dttl’, ‘smean’). The best results were obtained with the hyperparameters:
kernel = ‘rbf’, gamma = ‘scale’, C = 50 and max_iter = 50,000.

3. DT: The best results were achieved by using the entire dataset. The best hyperparameters obtained
were max depth = 28 and random_state = 4 for both balanced and unbalanced datasets.

4. RF: The best results were achieved by using the entire dataset. The best hyperparameters
obtained were criterion = ‘entropy’, max_depth = 50 and n_estimators = 50 for both balanced and
unbalanced datasets.

5. XGBoost: The best results were achieved by using the entire dataset. The best hyperparameters
obtained were n_estimators = 500.

6. MLPNN and LSTMNN: The best results were carried by using all the features of the dataset.
The model configuration applied was with the model introduced in [2].

In the case of the KNN, SVM, DT, RF, and XGBoost algorithms the cross validation function with
GridSearch [47] was applied in order to find the optimal hyperparameters.

5.3. Dynamic Classifier

The dynamic classifier, as presented in Figure 3, was designed to aggregate the predictions from
the individual ML models, and make an automatic selection of the optimal prediction obtained from
each one for a single sample, while the models are executed in parallel to make predictions over the
testing dataset.
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Diverse tests were done in order to design the dynamic classifier system i.e., probability analysis,
voter model [48], and ensemble ML model [12,23]. After several tests, the dynamic classifier was
designed by an ensemble ML model based on XGBoost. The ensemble model was more accurate than
the voter model by 3% of difference in comparison with the balanced dataset. In relation with the
probability analysis the results were not relevant, so this method was excluded. Also, the use of a
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ML algorithm permits increasing the detection rate by optimizing its hyperparameters. Taking into
account these results, the ensemble model based on XGBoost was selected for the dynamic classifier.

The goal of the dynamic classifier proposed is to combine opinions of the base experts (individual
ML models) in an ensemble, which is shown in the Algorithm 1. Each expert assigns a dynamic
coefficient based on its own prediction, over the decision taken from the input data. This weight
coefficient (0–1 scale) depends on the general accuracy by each individual model. For this purpose,
an alternative dataset was created with the accuracy of each model presented in Section 5.2. The fitting
was done selecting as input features, the predictions from the individual models mentioned below,
and as outcome the desired classification attack. The proposed system classifies the predictions from
the individual models, and the output is based on the relations that the ensemble model has found
exposing the most relevant one from the individual algorithms.

The goal of the dynamic classifier is to bring together of several individual models to improve the
accuracy of prediction with respect to an individual static model.

Algorithm 1 Ensemble proposed model

1: Ensembleproposedmodel
2: open full dataset file
3: drop incomplete rows
4: application of feature selection
5: for each individual ML model
6: fit each individual machine learning model
7: validate each individual machine learning model
8: save accuracy coefficient
9: fit dynamic_classifier (x_test =accuracy_coefficient, y_test=attack_categories)

10: prediction = prediction each individual ML model (accuracy-multiclass)
11: validate dynamic_classifier (x_validate = prediction)
12: write dynamic_classifier (True Positive Rate and Accuracy (multiclass-attack))

6. System Analysis and Evaluation

6.1. Analysis of Statics Models

The evaluation metrics presented in this research are derived from the elements of the confusion
matrix. The evaluation metric proposed for this research is the true positive rate (TPR) which considers
the proportion of real positives correctly predicted, that is, the portion of attacks correctly identified
over all possible attacks [12]. In Figure 4, we show the obtained results in terms of TPR of each
individual model proposed in the present research for the unbalanced dataset. As we can see some
models present a high detection over some types of attacks such as the case of exploits and generic.
Instead, in the case of attacks such as analysis, backdoor DoS present a low range of detection, even less
than 30% by each class.

In Figure 5, it is presented the obtained results in terms of TPR of each individual model proposed
in the present research for the balanced dataset. It is shown how all the models raised the rate of
detection over the attacks in comparison with the unbalanced dataset. Despite the increase of rates,
in the case of attacks—such as analysis and backdoor exploits—there is still a low rate of detection,
even less than 65% for each class. On the other hand, all the models show a decreased the detection rate
over class exploits in comparison with the unbalanced dataset. In the case of worms, all the models
except SVM (which could not be trained as was exposed in Section 3), raised the rate of detection over
the 99%.
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Figure 5. True positive rate metrics for static models applied to the balanced dataset.

In Table 3, we summarize the best results in terms of TPR peer class of attack. The unbalanced
dataset presents a low rate of detection in different attacks categories such as analysis, backdoor,
and DoS. The improved detection is raised by the balance of the data. All the attack categories improved
their detection rate once the data was balanced, except for the exploits and generic categories.

As can be seen in Table 3, different models are more suitable for each different type of attack.
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Table 3. Best true positive rate detection per class of attack for balanced and unbalanced datasets
applying static models.

Class Balanced Dataset
TPR Model Unbalanced Dataset

TPR Model

Analysis 0.585 RF 0.127 DT
Backdoor 0.65 DT 0.103 RF

DoS 0.892 RF 0.323 DT
Exploits 0.591 KNN 0.943 LSTMNN
Fuzzer 0.832 RF 0.615 RF
Generic 0.983 KNN 0.982 DT

Reconnaissance 0.843 RF 0.78 XGBoost
Shellcode 0.998 RF 0.7 XGBoost

Worms 0.997 LSTMNN 0.605 XGBoost

6.2. Dynamic Classifier Results

The dynamic classifier model proposed was based on an ensemble ML model, which consists in
obtaining the major benefits per each individual static model, using those introduced in this research
work. In Figure 6, we show the confusion matrices for the balanced and unbalanced dataset. The most
important differences between both datasets appear on worms, DoS, analysis, and backdoor being
practically undetectable using the original dataset. The detection was improved using the SMOTE
algorithm, where the lowest rates of detection belongs for analysis and exploits. According to this
results, balanced model can improve the accuracy of the ensemble model, since it is able to distinguish
better the traffic that is not normal.
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We applied different metrics in order to understand better the results given by the proposed
models. Table 4 show the results given by the metric TPR for both datasets balanced an unbalanced.
In reference to balanced dataset some attacks present a high detection rate over 90% (worms, shellcode,
generic, and DoS). In any case, the dynamic classifier presents an acceptable TPR for some attack
categories (reconnaissance, fuzzer, and backdoor). On the other hand, classes such as analysis and
exploits present the lowest detection rates.

Table 4. True positive rates by class category obtained by the dynamic classifier.

Class Balanced Dataset
TPR

Unbalanced Dataset
TPR

Analysis 0.551 0.089
Backdoor 0.701 0.09

DoS 0.921 0.030
Exploits 0.577 0.95
Fuzzer 0.819 0.601
Generic 0.981 0.995

Reconnaissance 0.835 0.744
Shellcode 0.998 0.737

Worms 0.999 0.65

Table 4 also shows the results given by the classification of the dynamic classifier. The results
obtained by some attacks are near to 0% (analysis, backdoor, and DoS). These results are related to the
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percentage of data by each class, as can be seen Section 3.1.2. On the contrary, the results for the classes
exploits and generic and worms were improved in comparison with the results shown in Table 3.

Table 5 shows the results obtained by each individual model proposed and the dynamic classifier.
The dynamic classifier improves the results obtained in terms of accuracy up to 5% for the balanced
dataset and 3% for the unbalanced dataset being similar for the results obtained the by the F1Score.

Table 5. Comparison between statics models and dynamic classifier in terms of accuracy for balanced
and unbalanced dataset.

Model
Balanced Dataset Unbalanced Dataset

Accuracy F1-Score Accuracy F1-Score

KNN 0.739 0.7406 0.779 0.7673
SVM - - 0.739 0.685
DT 0.816 0.8066 0.801 0.8062
RF 0.823 0.824 0.828 0.820

XGBoost 0.795 0.796 0.824 0.803
MLPNN 0.709 0.715 0.811 0.784

LSTMNN 0.747 0.754 0.816 0.792
Dynamic Classifier 0.876 0.879 0.851 0.829

As stated in Section 2, there are different approaches for IDS based on ML techniques.
Table 6 compares the proposed dynamic classifier for both applied datasets in this research, balanced
and unbalanced, with related works. This table shows an improvement in multiclass detection for auto
machine learning selection in terms of accuracy in comparison with other studies in the state of the art.
The table mention different aspects such as the model, dataset, TPR by attack, and accuracy obtained.

Table 6. Comparison between proposed solution and related works.

Study Algorithm Dataset Data Preprocessing Feature
Selection

Selection
Model

Dataset
Balancing TPR Accuracy

[9] SVM
multiclass UNSW-NB15 Non-linear scaling

method X X X X 75.77%

[13] XGBoost
multiclass UNSW-NB15 X X X X X 86%

[15] LSTM
multiclass UNSW-NB15 One-hot encoding X X X X 83%

[23]
Dynamic
classifier

multiclass
UNSW-NB15 Label encoding K-best Voter

classifier X X 61%

[12]
Dynamic
classifier

multiclass
NSL-KDD One-hot encoding X Ensemble

voting X X 85.2

Proposed
solution

Dynamic
classifier

multiclass
UNSW-NB15 Label encoding

Correlation
Kendall

Coefficient
and K-best

Ensemble
model Smote X 87.6%

7. Discussion and Conclusions

Most of the diverse studies that proposes IDS based on ML algorithms are based on a static model
with an improved performance in terms of accuracy [3,6] with a variation over its hyperparameters.
The dataset proposed for this study is the UNSW-NB15 which is considered up to date a benchmark
dataset [2]. This dataset has been highly used because its relevance to its recent cyberattacks.

This article exposes through several tests that multiple algorithms can detect significantly better
some type of attack over different hyperparameters configurations, as it can be concluded from the
data shown in Table 3. Thus, after experimentation with static ML algorithms described in Section 5.2,
some categories of attacks presented a better rate of detection as well as RF for attacks—such as analysis,
DoS, fuzzers, reconnaissance, and shellcode. However, when comparing these same attacks with the
unbalanced dataset, other models allowed obtaining a better detection such as DT, RF, and XGboost.
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Following this idea, this research proposes a dynamic auto-selection classifier over different
ML models with the objective of obtaining the best capabilities of each individual model to detect
cyberattacks. For this purpose, different models purposed in Section 5.3 were studied and tested,
obtaining as the best option an ensemble ML based on the XGBoost algorithm [48].

The need of different techniques for data preprocessing and data balancing with the objective to
enhance the rate detection was presented in Section 2. We selected the SMOTE to achieve data balancing
in our dataset. Also, a feature selection was applied with a correlation index of 0.8 between different
features which improved rate detection of the models proposed. Furthermore, two datasets—balanced
and unbalanced—were created with the objective to compare the importance of the models proposed.

Several tests and configuration were carried out, with the objective of improving the algorithms’
rate detection proposed in Section 3.3. The metric chosen to expose the results is the TPR, which allows
evaluate the results in terms of correctly predicted individual classes of attacks. In Figure 4, TPR is
taken into account for each individual model for the unbalanced dataset, where the lowest rate of
detection was for the categories analysis, backdoor, fuzzers, and worms. In the case of the category
attack worms; the algorithms XGBoost and DT could obtain a TPR over 0.5. Other attacks—such
as rxploits, generic, and reconnaissance—presented overall an acceptable TPR for each individual
algorithm. Comparing the results between Tables 3 and 4, some attacks—such as exploits, fuzzers,
generic, and worms—enhanced the detection rate. Instead other categories remaining decreased
insignificantly the detection rate. This could be determined by the low numbers of samples for the
unbalanced dataset for each class.

On the other hand, for the balanced dataset, static models showed better results in terms of TPR.
Figure 5 exposes the enhancing rate detection rate detection up to 50% in comparison with Figure 4.
However, the category exploit was the only one decreasing the TPR, up to 40%. The balancing algorithm
was successful because it was able to improve the results obtained by the static models. This comparison
can be appreciated in Table 3. Furthermore, the application of the dynamic classifier proposed in
this research could improve the overall results in terms of TPR. The following classes increased the
detection rate: backdoor 5.1%, DoS 2.9%, exploits 8.5%, generic 0.7%, and worms 0.2%. The shellcode
class upheld its TPR. Classes such as analysis, fuzzers, and reconnaissance decreased the TPR with a
mean of 1.83% which is acceptable, maintaining the highest TPR for the static models proposed.

Finally, Table 5 shows a comparison of the accuracy reached by each individual model and by the
dynamic classifier proposed. The dynamic classifier was able to improve the results in 5.3% and 2.3%
compared with the best static model for the balanced and unbalanced dataset. The key idea of the
model proposed in this research is to auto select, by a ML model, the best rate detection, gathering the
individual advantages of each model. We used the method based on an ensemble model based on
XGBoost to improve the detection rate. Compared with other related works such as the mentioned in
Table 6, it can be seen that our research work achieves a noticeable performance increase in terms of
detection rate for IDS based on multiples classes of attacks.

Although our model increases the detection rate, it takes longer time in execution to detect
an attack. This happens because the data has to be processed by each individual algorithm and
the dynamic classifier model. In a practical scenario, this could delay the time of detection of a
possible attack.

For unbalanced classification scenarios, our proposed model also could enhance detection rate as
was mentioned above. In practical applications in the area of IDS based on ML algorithms, one of
the principal approaches is to improve the quality of the training data, optimizing the features and
apply preprocessed methods in order to improve the data quality for the training of the ML algorithms.
As for future research lines, some future directions can be considered. The main one is the application
of our proposal into a real scenario with real collected data in real-time taking into account the features
applied during this research and the proposed models. This can be done with technologies such as
Apache Spark Structured Streaming [49] which is designed for real time processing data.
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