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Abstract: In MOOCs, generally speaking, curriculum designing, course selection, and knowledge
concept recommendation are the three major steps that systematically instruct users to learn. This
paper focuses on the knowledge concept recommendation in MOOCs, which recommends related
topics to users to facilitate their online study. The existing approaches only consider the historical
behaviors of users, but ignore various kinds of auxiliary information, which are also critical for
user embedding. In addition, traditional recommendation models only consider the immediate
user response to the recommended items, and do not explicitly consider the long-term interests of
users. To deal with the above issues, this paper proposes AGMKRec, a novel reinforced concept
recommendation model with a heterogeneous information network. We first clarify the concept
recommendation in MOOCs as a reinforcement learning problem to offer a personalized and dynamic
knowledge concept label list to users. To consider more auxiliary information of users, we construct
a heterogeneous information network among users, courses, and concepts, and use a meta-path-
based method which can automatically identify useful meta-paths and multi-hop connections to
learn a new graph structure for learning effective node representations on a graph. Comprehensive
experiments and analyses on a real-world dataset collected from XuetangX show that our proposed
model outperforms some state-of-the-art methods.

Keywords: concept recommendation; MOOCs; heterogeneous information network; reinforcement
learning

1. Introduction

Massive Open Online Courses (MOOCs), aimed at unlimited participation and open
access via the web, are rapidly becoming an established online and distant education
method. For example, Coursera, edX, and Udacity, the three pioneering MOOC platforms,
offer millions of users access to numerous courses from internationally renowned universi-
ties. In China, XuetangX MOOCs has offered more than 1000 courses and attracted over
6,000,000 users worldwide; it is one of the largest MOOCs platforms in China. In MOOCs,
We use course concepts to refer to the knowledge concepts taught in course videos and
help users better to understand the related topics of course videos. The goal of concept
recommendation is to recommend related topics to users to facilitate their online study.

Many existing efforts have been made towards user behavior understanding and
concept extraction in MOOCs, such as prerequisite relation mining among knowledge
concepts [1], course concept extraction [2], learning behavior prediction [3], and course
recommendation [4,5]. Pan et al. propose to learn latent representation via an embedding-
based method for course concept extraction in MOOCs [2]. Both user interests and profiles
are employed to feed a proposed content-aware deep learning framework for course
recommendation in MOOCs [4,5].
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However, these approaches still suffer from two major limitations: (a) They ignore
rich heterogeneous information across MOOCs. These approaches [5] fully consider the
semantic information of user-profiles and leverage diverse historical courses to make
personalized course recommendations. Nevertheless, it is not enough to mine potential
semantics because a larger amount of semantic information hidden in relations among
different entities in MOOCs is not exploited. (b) They cannot consider current reward and
future reward simultaneously from an online recommendation in the dynamic learning
environment. For example, although Pan et al. leverage the demographics and course
prerequisite relation to better reveal users’ potential choices, they overlook the MOOCs
system as a dynamic learning environment, unable to model the current reward and future
reward of users’ choices [2]. This results in that its approach cannot provide personalized
candidate concepts.

These limitations mentioned above motivate us to design a model that learns more
comprehensive representations of users and offers personalized concept recommendation.
We model XuetangX MOOCs as a Heterogeneous Information Network (HIN) and propose
a concept recommendation framework with reinforcement learning (RL) to offer a person-
alized and dynamic knowledge concept label list to users for getting a course certificate.
For the limitation (a), it is common sense that users with diverse backgrounds or levels
have different domains of expertise, and the reinforcement learning course is well accepted
by certain users but might be hard for others. Meanwhile, existing concept labels listed in a
course video were previously provided by the teacher, but only in a fixed and single way.
It neither dynamically considered users’ historical learning behaviors, nor utilized other
users’ global progress on the MOOCs. For the limitation (b), the reasons why we employ
reinforcement learning in this study include: (1) The concept clicking rate in MOOCs is
relatively sparse [6], (2) in real online learning scenarios of MOOCs, the recommender
usually interacts with the users for multiple rounds [7], and (3) interactions between users
and the recommender agent should be sequential [8].

Figure 1 illustrates our motivation of this work. Figure 1a gives an example to show
the relationships among users, courses, and concepts in MOOCs. Specifically, a course
reinforcement learning may contain many related concept labels, e.g., Q-learning, policy
gradient, and actor-critic. Different users can click many concept labels to instruct his/her
learning of the reinforcement learning course. Figure 1b tells us that the more concept
labels are clicked by a user when learning a course, the bigger the studying process will be
that is achieved by him/her. Figure 1c states that the more concept labels are clicked by a
user when learning a course, the faster the studying speed will be obtained by him/her.
Both of them deliver the significant importance of concepts on users’ learning in MOOCs.
The former studying progress denotes the extent to which the concept label clicking can
influence the effectiveness of online course learning of a user, but the latter studying
speed states to what extent the course can be learned by a user considering the efficiency.
Based on these discoveries, the paper studies the problem of concept recommendation in a
fine-grained view when compared with the course recommendation.

In summary, the main contributions of the paper are as follows.

• We propose a novel model which can automatically identify effective meta-paths and
multi-hop connections to better represent users with sparse data in the heterogeneous
information network of MOOCs. Furthermore, we utilize the reinforcement learning
framework to capture users’ long-term interests and generate personalized dynamic
recommendation lists.

• Unlike the previous studies, we investigate concept recommendation, more fine-
grained than course recommendation, in XuetangX MOOCs from the perspective of
reinforcement learning.

• We validate the effectiveness of our proposed model on a real-world dataset collected
from XuetangX MOOCs. Comprehensive experiments and analyses show that our
proposed model is superior to some state-of-the-art methods.
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The remainder of the paper is organized as follows. We highlight some related works
with comparisons in Section 2. In Section 3, we introduce some preliminaries about
heterogeneous information networks and reinforcement learning. Section 4 presents the
details of our proposed approach. Section 5 shows the experimental results and analyses.
Finally, we conclude the paper and propose some future research directions in Section 6.

Electronics 2021, 1, 0 3 of 18

The remainder of the paper is organized as follows. We highlight some related works
with comparisons in Section 2. In Section 3, we introduce some preliminaries about
heterogeneous information networks and reinforcement learning. Section 4 presents the
details of our proposed approach. Section 5 shows the experimental results and analyses.
Finally, we conclude the paper and propose some future research directions in Section 6.

(a) The network in Moocs. (b) Studying process.

(c) Studying speed.

Figure 1. An illustration of concept recommendation. (a) The network in MOOCs. (b,c) The
correlation between the number of clicked concepts and the progress as well as speed of studying,
respectively.

2. Related Work

In this part, we review the related studies from three perspectives, namely existing
works on mining in MOOCs, recommender systems, and reinforcement learning for recom-
mendation.

2.1. Mining in MOOCs

As a newly emerging HIN, MOOCs are more typical and contain richer semantics in
objects and links, and thus they form a new development for data mining. Among previous
works on MOOCs, such as course concept extraction [2], learning behavior predicting [3],
and course recommendation [4,5], the course recommendation is the work most similar to
us, and employs a hierarchical reinforcement learning algorithm to revise the user profiles
and tune the course recommendation model on the revised profiles. However, our work
is different from it in many aspects. Our work considers MOOCs as a large HIN with
abundant semantic information to recommend more fine-grained knowledge concepts to
users. Furthermore, we integrate meta-path-based embedding of the HIN with an extended
deep reinforcement learning framework to recommend knowledge concepts.

2.2. Recommender Systems

Early works mainly adopt collaborative filtering (CF) or content-based methods to
complete recommendation tasks. CF utilizes historical interactions for recommendation,
either explicit or implicit feedback. The content-based recommendation is based on compar-
isons between items and users’ auxiliary information. However, the two methods usually
suffer from serious cold start problems and data sparsity issues [9,10]. Currently, many
recommender systems focus on enriching the semantic representation of users and items
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2. Related Work

In this part, we review the related studies from three perspectives, namely existing
works on mining in MOOCs, recommender systems, and reinforcement learning for recom-
mendation.

2.1. Mining in MOOCs

As a newly emerging HIN, MOOCs are more typical and contain richer semantics in
objects and links, and thus they form a new development for data mining. Among previous
works on MOOCs, such as course concept extraction [2], learning behavior predicting [3],
and course recommendation [4,5], the course recommendation is the work most similar to
us, and employs a hierarchical reinforcement learning algorithm to revise the user profiles
and tune the course recommendation model on the revised profiles. However, our work
is different from it in many aspects. Our work considers MOOCs as a large HIN with
abundant semantic information to recommend more fine-grained knowledge concepts to
users. Furthermore, we integrate meta-path-based embedding of the HIN with an extended
deep reinforcement learning framework to recommend knowledge concepts.

2.2. Recommender Systems

Early works mainly adopt collaborative filtering (CF) or content-based methods to
complete recommendation tasks. CF utilizes historical interactions for recommendation,
either explicit or implicit feedback. The content-based recommendation is based on compar-
isons between items and users’ auxiliary information. However, the two methods usually
suffer from serious cold start problems and data sparsity issues [9,10]. Currently, many
recommender systems focus on enriching the semantic representation of users and items
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based on deep learning. For example, Ma et al. [11] integrate social relations into matrix
factorization in recommendation. As a newly emerging direction, HIN can naturally model
complex objects and their rich relations in recommender systems [12,13].

The comprehensive information integration and rich semantic information of the
HIN make it the focus of everyone’s research [14,15]. Sun et al. [16] firstly propose to
explore the meta-structure of the information network, i.e., put forward the concept of
the meta-path to systematically capture numerous semantic relationships across multiple
types of objects defined as a path over the graph of network schema. Meta-path can
guide searching and mining the network (e.g., recommendation), and help to analyze
the semantic meaning of the objects and relations in the network [17]. Recently, Graph
Transformer Networks [18] has shown its effectiveness in HIN embedding. Meta-path-
based methods have shown performance superior to other existing methods due to their
excellent modeling of heterogeneous information.

2.3. Reinforcement Learning for Recommendation

Reinforcement learning has been widely used in the recommendation field [8,19–22].
There are several RL works on movie recommendation [19], news recommendation [20],
and music recommendation [21]. However, these methods have two major issues. First,
they fail to capture semantic relations among objects and usually employ the rating scores
between users and items in the recommender system. Thus, they recommend similar
objects, which may cause users to get bored. Different from the existing RL-based rec-
ommendation work [23,24], our model identifies effective meta-paths and leverages rich
meta-path-based contexts to learn interaction-specific representation for users, courses
and concepts. <user, meta-path, concept> has been explicitly modeled in an RL-based
interaction model for the task of multi-round concepts recommendation in MOOCs.

3. Preliminaries

Before introducing our proposed method, in this section, we first introduce some
background about HIN and the RL-based frameworks. Furthermore, we will give some
related preliminaries about our proposed method.

3.1. Heterogeneous Information Network

A HIN is a special kind of information network containing multiple types of objects
or multiple types of links.

Definition 1. Heterogeneous information network [25]. A HIN is denoted as G = {V, E}
consisting of an object set V and a link set E. A HIN is also associated with an object type mapping
function Φ : V → A and a link type mapping function ϕ : E→ R. A and R denote the sets of the
predefined object and link types, where |A| + |R| > 2. As shown in Figure 1a, we build a simple
heterogeneous information network with three entities: User, course, and concept.

Definition 2. Network schema [25]. The network schema is denoted as S = (A, R). It is a meta
template for an information network G = {V, E} with the object type mapping φ : V → A and the
link type mapping ϕ : E→ R, which is a directed graph defined over object types A, with edges as
relations from R. We define the network schema of XuetangX in Figure 2 and our proposed model
generates meta-paths based on this network schema.

Definition 3. Meta-path [16]. A meta-path ρ is defined on a network schema S = (A, R) and is

denoted as a path in the form of A1
R1→ A2

R2→ · · · Rl→ Al+1 (abbreviated as A1 A2 . . . Al+1), which
describes a composite relation R = R1 ◦ R2 ◦ . . . ◦ Rl between object A1 and Al+1, where ◦ denotes
the composition operator on relations. In our scenario, we pre-define two meta-paths to compare
with the meta-paths our model generates.

• U1-K-U2: Denotes users 1 and 2 click the same knowledge concept.
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• U1-K1-C-K2-U3: Associates two users who click different concepts in the same course.

Figure 2. Network schema of HIN in XuetangX.

A MOOCs Network is a typical heterogeneous network, containing objects from six
types of entities/objects: Courses (C), teachers (T ), users (i.e., users) (U ), concepts (i.e.,
reinforcement learning agents/environments) (K), videos (V) and schools (S). For each
course c ∈ C, it has links to a teacher, a set of users, a set of concepts, a video, and a school.
For each teacher ∈ T , it has links to a set of schools and a set of courses. For each concept
∈ K, it has links to a set of courses and a set of videos. Each video ∈ V has links to a course,
a set of users, and concepts. For each user ∈ U , it has links to a set of courses and videos
(the latter is decided by the former). Each school ∈ S has links to teachers and a set of
courses (the latter is decided by the former). Note that these relations define the link types.

Definition 4. Graph Convolutional Network (GCN) [26]. In our work, GCN is used to aggregate
the neighbors of users to learn user embedding. Assuming that Hl is the user feature of lth,
the feature of (l+1)th users is expressed as

H(l+1) = σ
(

D̃−
1
2 ÃD̃−

1
2 H(l)W(l)

)
(1)

where Ã = A + I ∈ RN×N is the adjacency matrix A of the graph G with added self-connections,
D̃ is the degree matrix of Ã and W(l) ∈ Rd×d is a trainable weight matrix.

3.2. Recommender as a MDP

We consider the concept recommendation problem under the standard RL framework.
At each time step t, the agent (recommender) observes a state st about the environment
and then takes action (concept) according to its policy π, which is usually a mapping from
states to action probabilities. One time step later, as a result of its action, the agent receives
a numerical reward (rating) rt+1 and a new state st+1 from the environment. The goal of
the agent is to maximize the cumulative reward it receives over T time steps. According
to [27], such an RL task can be mathematically described by an MDP, a tuple (S ;A;P ;R)
defined as follows.

S is the state space. The state St represents the observed preference of user u at time
step t. The representation of state is the n-dimensional user representation in the HIN.

A is the action space. We define A as the set of all concepts, i.e., A = K. In each
state st, an action at can be taken from the set of available actions A(st), which is defined
recursively: A(st) = A(st−1)\{at−1} for t 6= 0. In other words, the agent is not allowed to
choose the concepts that have been recommended at previous time steps.

P is the transition function. P a
ss′

= Pr[st+1 = s
′ |st = s, at = a] denotes the probability

that the environment transits to state s
′

after receiving action a in state s. In the recommen-
dation setting, the exact transition probabilities are unknown in advance. The agent can
observe specific state transitions by interacting with the environment step by step.

R is the reward function. Ra
ss′

= E[rt+1|st = s, at = a, st+1 = s
′
] denotes the expected

immediate reward the environment generates after the transition from state s to s
′

due to
action a. In the recommendation setting, the immediate reward of executing an action a
only depends on the rating given by user u. Therefore, we defineRa

ss′
= Rua.
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3.3. Notations and Explanations

The notations used throughout the paper are summarized in Table 1.

Table 1. Notations and Explanations.

Notation Explanation

G the heterogeneous information network
V the set of vertexs
E the set of edges
S the network schema
U the set of users
C the set of courses
K the set of concepts
s environmental status
a action
r reward
γ discount rate
τ the trajectory of completing an episode

P(si) probability of being in an environmental state
Pθ(T) the probability that the trajectory is τ
R(T) total reward

Rθ total reward expectations
LRL value function

πθ(ai | si) policy function
P(si+1 | si, ai) state transition probability

4. Materials and Methods

In this section, we introduce our proposed methodology in detail. We first give
an overview of the whole framework. Then we present our heterogeneous information
network for user embedding. Consequently, we introduce our reinforcement learning
approach to recommend concepts to users. We also provide some training techniques to
train the whole network.

4.1. An Overview of AGMKRec

Figure 3 shows an overview of the network architecture of our proposed model
AGMKRec. This framework mainly consists of two components. (a) Meta-path-based user
embedding (Section 4.2). This part has two components: One is the meta-path generation
(MG) layer shown in Figure 4, the other is node representation. We use the MG layer to
generate a new meta-path graph and employ GCN to aggregate node features in an end-to-
end fashion. (b) Reinforcement learning for concept recommendation (Section 4.3). In this
part, we integrate the embedding network and feed user embedding into the reinforcement
learning model to complete the concept recommendation task. We will elaborate on them
in the following subsections.
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Figure 3. An overview of our proposed model. It has two section: one is the Meta-path-based User Embedding, the other is
the Reinforcement Learning for Concept Recommendation.

Figure 4. Meta-path generation (MG) layer.

4.2. Meta-Path-Based User Embedding
4.2.1. Meta-Path Generation (MG) Layer

Existing studies [28–31] on heterogeneous graph representation learning are based on
the predefined meta-paths, which convert the heterogeneous graph into a homogeneous
graph according to the meta-paths to learn the representation of nodes on the heteroge-
neous graph. While this method has achieved good results, building effective meta-paths
manually needs to have specific domain knowledge or experience.

However, our proposed model can automatically identify valid meta-paths to learn
the representation of nodes and improve the accuracy of the downstream concept recom-
mendation task. As shown in Figure 4, through the MG layer, we select two of the adjacency
matrices Q1 and Q2 from the set of adjacency matrices A and get a new meta-path graph,
namely meta-path adjacency matrix. This computes the convex combination of adjacency
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matrices as ∑tl∈T e α
(l)
tl

Atl by 1×1 convolution as in Figure 4 with the weights from the
softmax function as

Q = F
(
A; Wφ

)
= φ

(
A; softmax

(
Wφ

))
(2)

where φ is the convolution layer and Wφ ∈ R1×1×K is the parameter of φ. Finally, the meta-
path adjacency matrix is computed by matrix multiplication, A(1) = Q1Q2. For numerical
stability, we use its degree matrix A(l) = D−1Q1Q2 to normalize it. In addition, the adja-
cency matrix of arbitrary length l meta-paths can be calculated by

Ap =
l

∏
i=1

∑
ti∈Te

α
(i)
ti

Ati (3)

where AP denotes the adjacency matrix of meta-paths, Te denotes a set of edge types and
α
(l)
tl

is the weight for edge type tl at the lth MG layer. When α is not one-hot vector, AP can
be considered as the weighted sum of all length-l meta-path adjacency matrices. However,
one problem is that as the MG layer increases, so does the length of the meta-path. It
cannot satisfy the application scenarios where long paths are as important as short paths.
So we add the identity matrix I to A, i.e., A4= I. This trick allows us to learn any length of
meta-paths up to l + 1 when l MG layers are stacked.

4.2.2. Node Representation

To consider multiple types of meta-paths simultaneously, the output channels of 1×1
convolution in Figure 4 are set to C. Then, the MG layer yields a set of meta-paths and the
intermediate adjacency matrices Q1 and Q2 ∈ RN×N×C. It is beneficial to learn different
node representations via multiple different graph structures. As shown in Figure 3, after the
stack of l MG layers, a GCN is applied to each channel of meta-path tensor A(l) ∈ RN×N×C

and multiple node representations are concatenated as

Z = ‖C
i=1σ

(
D̃−1

i Ã(l)
i XW

)
(4)

where || is the concatenation operator, C denotes the number of channels, Ã(l)
i = A(l)

i is

the adjacency matrix from the ith channel of A(l), D̃i is the degree matrix of Ã(l)
i , W ∈ Rd×d

is a trainable weight matrix shared across channels and X ∈ RN×d is a feature matrix. Z
contains the node representations from C different meta-path graphs with variable, at most
l + 1, lengths. We concatenate the user embedding obtained under different meta-paths
as input to the reinforcement learning framework. This architecture can be viewed as an
ensemble of GCNs on multiple meta-path graphs learned by the MG layers.

4.3. Reinforcement Learning for Concept Recommendation

The user interests develop with time, and the behaviors of the recommender systems
may have a significant impact on the development of the user interests. In a sense, it
guides user interests by displaying specific items and hiding the rest. To achieve dynamic
personalized recommendation, the system is required to change with the environment.

Many algorithms related to time series have been proposed to model user preferences
in different ways. For example, Hidasi et al. [32] propose to input a temporal sequence
of the historical items into the gated recurrent unit (GRU) model and output the last
embedding vector as the user preference. However, the model is limited by the assumption
that all the historical items play the same role in estimating the similarity between the
user profile and the target item. To distinguish the effects of different items, attention-
based models such as neural attentive item similarity (NAIS) [33] and neural attentive
session-based recommendation (NASR) [34] can be used to estimate an attention coefficient
for each historical item as its importance in recommending the target item. While the
existing attention-based model improves the recommendation performance, it still poses
an unresolved challenge. When a user selects diverse items, the effects of the historical
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items that indeed reflect the user’s interests in the target item will be diluted by many
irrelevant items.

Reinforcement learning is a mechanism to learn how to map state to action to get the
maximum reward [35,36]. Therefore, the recommendation strategy based on reinforcement
learning is more conducive to taking the long-term interests of users and the impact of
dynamic embedding into consideration [37].

In Deep Q-Learning Network (DQN) [38,39], the loss function comes from the differ-
ence between target Q and prediction Q̂. The target Q is used as the correct label guide in
the algorithm [40,41]. In our scenario, if the recommendation concept is wrong, the set of
adjacency matrices A will not be changed, and the user embedding will not be changed.
Then, the predicted Qt+1 will be identical to the target Qt. However, the Q-learning net-
work needs the next step transition st+1 of the current step st to update. The algorithm
based on Q-learning cannot meet our needs. In this paper, the policy gradient is used for
reinforcement learning, realizing the maximization of value function faster [42]. Figure 5
shows a policy gradient model. Since there is no correct label guidance in the policy
gradient, we use the expected return to optimize the policy function.

Figure 5. Policy Gradient Model.

The probability that the trajectory of completing an episode is τ:

Pθ(τ) =
T

∏
t=1

[P(si+1 | si, ai)πθ(ai | si)] (5)

The formula of total rewards for completing the trajectory is as follows:

R(ø) =
T

∑
t=1

γt−1rt (6)

Given the particular user if the predicted concept ŝ is confirmed, our model will
update HIN by adding a link between the user and the correct recommended concept.
Furthermore, the reward will be set as 1. Otherwise, it will be −1. The average reward for
all episodes is:

Rθ = ∑
τ

R(τ)Pθ(τ) ≈
1
N

N

∑
n=1

R(ø) (7)
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Because the goal of the policy gradient is to maximize the value function, the gradient
rising method is used to increase the value function. The gradient strategy is divided into
Monte Carlo MC and time-series differential TD. In the Monte Carlo algorithm, an episode
is learned once, while in the time series differential algorithm, each step is updated once. In
this paper, the policy gradient is accustomed to learning by reinforcement of the algorithm
after each episode. According to the policy gradient theorem [43,44], the gradient of
expected cumulative rewards can be calculated by the formula:

∇LRL(θ) = ∑
τ

R(ø)∇Pθ(τ)

=
1
N

N

∑
n=1

T

∑
t=1

R(τ)∇ log[πθ(at | st)]
(8)

In this paper, entropy regularization is used to alleviate the special problem of trade
off between exploration and utilization in reinforcement learning.

H[πθ(at | st)] =
T

∑
t=1

∑
ct∈C

πθ(at | st) log[πθ(at | st)] (9)

The final objective is:

Ec∼πθ(at|st)LRL(θ) + λH[πθ(at | st)] (10)

where λ is the weight of the regularization method. The algorithm process of AGMKRec is
summarized in Algorithm 1.

5. Experiments

In this part, We present the details and results of all the experiments. Our experiments
are designed to answer the following questions:

RQ1: Does our proposed model outperform state-of-the-art baselines?
RQ2: Are the new meta-path graphs generated by the MG layers effective for learning

node representations?

5.1. Experimental Dataset

We conduct a comprehensive statistical analysis on a real-world dataset from XuetangX
(Available online: http://www.xuetangx.com, accessed on 5 July 2020). This dataset
records the enrolled behaviors from 1 January 2015 to 31 December 2019. It consists of
2527 concepts, 3,708,461 users, 7327 courses, 96,950 videos and 140,446,950 relations among
them. The detailed statistics of the XuetangX MOOCs datasets are shown in Table 2.

We select the enrolled behaviors from 1 October 2016 to 30 December 2017 as the
training set, and those from 1 January 2018 to 31 March 2018, as the test set. Each instance
in the training or the test set is a sequence representing a user’s history of click behaviors.
During the training process, for each sequence in the training data, we hold out the last
clicked concept as the target. Furthermore, the rest is treated as historical clicked concepts.
For each positive instance, we randomly sample X concepts that a user has never interacted
with before as negative instances. In our experiments, we set X as 4, an empirical number
that has shown good performance in experiments [33]. During the test process, we treat
each concept in the test set as the target concept and the corresponding concepts of the
same user in the training set as the historical clicked concepts. Moreover, a user often
continuously clicks the same concept label and then generates multiple clicked concept
records. These records are treated as a single record. Each positive instance in the test set is
paired with 99 randomly sampled negative instances [33].

For our evaluation, we adopt four evaluation metrics that are widely used in the rec-
ommendation system, including Hit Ratio of top-K items (HR@K), Normalized Discounted

http://www.xuetangx.com
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Cumulative Gain of top-K items (NDCG@K) and Mean Reciprocal Rank (MRR), area under
the ROC curve (AUC). In the experiments, we set K to 5, 10 and 20.

Algorithm 1 The overall learning algorithm of AGMKRec.

Input:
Training set Utrain ,
Feature matrix X,
The set of adjacency matrices A,
Number of episodes K,
Number of time steps T,
Discount rate γ,
ε-greedy parameter piθ .

Output:
The learned recommender policy piθ .

1: Initialize characteristic matrix and adjacency matrix
2: Input the characteristic matrix and adjacency matrix into AGMKRec
3: Multi-channel 1×1 conv is used to generate l adjacency matrix Q
4: The characteristic matrix is generated by multiplying l adjacency matrices Q
5: The characteristic matrix is aggregated by GCN
6: Initialize recommender policy piθ with random weights
7: for episode = 1→ K do
8: Uniformly pick a user u0 ∈ Utrain as the environment
9: Learning the user embedding u

10: Set t=0
11: while ct and t≤T do
12: Select action at using ε-greedy policy w.r.t πθ

13: Take at observe reward rt+1
14: Update adjacency matrix and compute user embedding ut+1
15: Set t=t+1
16: end while
17: Update weights of πθ

18: end for

Table 2. An overview of XuetangX MOOCs dataset.

Nodes Count Links Count

concept 2527 concept-course 21,507
concept-video 11,732

user 3,708,461 user-course 15,045,219

course 7327 course-concept 69,012
course-user 16,724,852

Total 3,718,315 Total 31,872,322

5.2. Evaluation Metrics

HR@K is a commonly used metric to measure the recall rate. The HR@K is defined as

HR@K =
# Hits @ K
|GT| (11)

where |GT| denotes the size of the test set. NDCG@K is a position-aware metric that assigns
larger weights on higher positions. The NDCG@K is defined as

NDCG@K =
1
|Q|

|Q|

∑
q=1

Zkq

k

∑
j=1

2r(j) − 1
log(1 + j)

(12)
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where r(j) denotes the correlation score for each item and Zkq is a normalization factor.
MRR is used to evaluate the performance of the retrieval system by the correct ranking of
the retrieval results in the retrieval results. It is defined as

MRR =
1
|Q|

|Q|

∑
i=1

1
ranki

(13)

where |Q| is the size of the query set.

5.3. Baselines

To verify the effectiveness of our proposed model, we compare AGMKRec with the
method based on HIN and some other baselines. The comparison methods include:

• Matrix Factorization (MF): MF has the characteristics of collaborative filtering, hidden
semantic analysis, and supervised learning, coupled with easy implementation and
high expansibility. It has become a very classical algorithm in the field of recommen-
dation.

• Bayesian Personalized Ranking (BPR): BPR is a personalized ranking algorithm based
on matrix factorization. It does not optimize the global score but optimizes the ranking
according to each user’s item preferences.

• Mutiple Layer Perception (MLP): MLP is a forward-structured artificial neural network
that maps a set of input vectors to a set of output vectors.

• Factor Item Similarity Models (FISM): FISM is essentially an item-based collaborative
filtering algorithm. To solve the problem of sparse datasets, FISM uses the mapping of
item vectors to represent user vectors, which greatly improves the use of information.

• Neural Attentive Item Similarity (NAIS): NAIS adds attention network to traditional
item-based collaborative filtering.

• Neural Attentive Session-based Recommendation (NASR): NASR is a session-based
recommendation algorithm that takes into account the sequential behaviors and main
intentions of users in the current session.

• Heterogeneous Information Network Embedding for Recommendation (HERec):
HERec is a traditional heterogeneous model that learns node representations by
applying DeepWalk to predefined meta-paths.

• AGMKRec-SL: AGMKRec-SL represents that we only learn user embedding and use
supervised learning to complete recommendation tasks without reinforcement learning.

5.4. Implementation Details

For the proposed AGMKRec, we train our model on an Nvidia GeForce GTX2080Ti
GPU card with 11GB RAM and implement AGMKRec with Tensorflow. We use 80% of
the dataset as the training set, 10% as the validation set, and the remaining 10% as the
test set. The number of MG layers is set to 3, and the parameters of 1×1 convolution are
initialized with a constant value. Considering the memory overhead, we only use two
channels. We set the final user embedding dimension to 64. To improve the effectiveness of
the model, we use supervised learning to pre-train our model for 12,000 episodes and then
use reinforcement learning to train it. Finally, we optimize the model with Adam.

5.5. Experimental Results

As shown in Table 3, the recommendation performance of all methods on MOOCs
(RQ1). HIN-based methods (HERec, AGMKRec-SL, AGMKRec) perform better than tra-
ditional recommendation methods, which indicate heterogeneous information is helpful.
Compared with HERec, our model gets better results which demonstrate the meta-paths
that our model generates better information extraction than predefined meta-paths. Table 4
shows that MG layers can not only generate the same meta-path as the predefined meta-
path between target nodes (the first node in the meta-path is of the same type as the
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last node), but also find other essential meta-paths that are helpful for node representa-
tions (RQ2).

What is more, to interpret the meta-path graph learned by the MG layers, we visualize
the attention score of the adjacency matrix (edge type) in Figure 6. We find that the MG layer
sticks to the shorter meta-path by assigning the higher attention store to the identity matrix.

Table 3. Recommendation performance of all methods (%).

Methods HR@5 HR@10 HR@20 NDCG@5 NDCG@10 NDCG@20 MRR AUC

FM 43.29 59.87 76.25 33.92 36.78 36.09 31.22 85.64
BPR 36.58 61.6 78.03 33.12 38.01 41.72 32.13 86.42
MLP 44.48 62.64 76.62 31.35 34.84 36.11 28.37 84.05
FISM 55.61 70.87 75.31 38.8 41.51 43.56 32.75 85.35
NAIS 43.77 67.65 84.17 23.77 32.92 37.63 29.4 87.31
NASR 44.51 65.82 75.29 23.02 31.66 39.42 27.88 83.33
HERec 53.26 70.37 80.1 33.35 39.64 45.11 32.36 87.52

AGMKRec-SL 60.62 73.32 88.74 37.26 43.25 47.55 35.21 88.2
AGMKRec 61.57 76.85 87.53 40.6 45.28 49.88 37.91 87.76

Table 4. Predefined meta-paths and generated meta-paths by the MG layers.

Predefined Meta-Path Meta-Path Learnt by the MG Layers
Top 3 (between Target Nodes) Top 3 (All)

UKU UKU UKU
UKCKU UKCKU UKCKU

UKUKU UKC

Figure 6. After applying the softmax function on 1×1 Conv fillter Wi
φ (i: Index of the MG layer) in

Figure 4, we visualize this attention score of adjacency matrix (edge type) in XuetangX. Each edge
indicates (User-Concept), (Concept-User), (Concept-Course), (Course-Concept) and identity matrix.
KU, KC is the transpose of UK and CK, respectively. The darker the color, the higher the attention score.

5.6. Parameters Analysis

To get the best experimental result, we conduct many experiments by tuning three
model parameters, including the number of MG layers, user embedding dimension and
regularization rate.

5.6.1. Impact of MG Layer in HIN Embedding

Using the different number of MG layers can learn meta-paths of different lengths.
To select an appropriate value, we have carried out four groups of experiments, setting
the number of layers as 1, 2, 3, 4, respectively. As shown in Figure 7, we find that HR@K,
NDCG@K, and MRR achieve better results when the value is 3. While the number of
MG layers and the training time of the model are increased, the stability of the model is
improved, and a better effect is achieved.
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5.6.2. Impact of Embedding Dimension in HIN Embedding

As the input of the RL framework, user embedding directly affects the final recommen-
dation effect of the model. To analyze the effect of different user embedding dimensions,
we use different embedding dimensions 32, 64, 96, and 128 to conduct the experiment.
In Figure 8, we observe that different user embedding dimensions significantly influence
evaluation metrics and 64 is the optimal embedding dimension.

5.6.3. Impact of Regularization Rate λ

λ is the parameter of the RL framework. We conduct more elaborate experiments on it.
We first set λ from 0.01, 0.1, 1 to 10 and present their experimental results in the four bigger
figures of Figure 9. Then, for further analysis, we set λ from 0.01 to 0.1 (i.e., 0.02, 0.04, 0.06,
and 0.08) and present the results in the four smaller figures, each of which is contained in
the corresponding bigger one, respectively. From Figure 9, we can find that the value of λ
from 0.01 to 0.1 can benefit our AGMKRec model to achieve better performance on concept
recommendation. Otherwise, the model will gain a lower performance.

5.7. Case Study

We conduct case studies to demonstrate the effectiveness of our proposed method,
especially on the ability of adapting to the dynamic environment by recommending per-
sonalized concepts, as shown in Figure 10. We first randomly select two users, i.e., user A
with ID 3203335 and user B with ID 7796703, from our test set. Given the clicked history of
both users, Figure 10a shows the recommended concept lists to these two users, respec-
tively. From this figure, we can find that user A and user B are from different backgrounds
and have different clicked behaviors in the MOOCs. For example, user A is learning a

Figure 7. Parameter sensitivity of AGMKRec over the MG layer N.

5.6.2. Impact of Embedding Dimension in HIN Embedding

As the input of the RL framework, user embedding directly affects the final recommen-
dation effect of the model. To analyze the effect of different user embedding dimensions,
we use different embedding dimensions 32, 64, 96, and 128 to conduct the experiment.
In Figure 8, we observe that different user embedding dimensions significantly influence
evaluation metrics and 64 is the optimal embedding dimension.

5.6.3. Impact of Regularization Rate λ

λ is the parameter of the RL framework. We conduct more elaborate experiments on it.
We first set λ from 0.01, 0.1, 1 to 10 and present their experimental results in the four bigger
figures of Figure 9. Then, for further analysis, we set λ from 0.01 to 0.1 (i.e., 0.02, 0.04, 0.06,
and 0.08) and present the results in the four smaller figures, each of which is contained in
the corresponding bigger one, respectively. From Figure 9, we can find that the value of λ
from 0.01 to 0.1 can benefit our AGMKRec model to achieve better performance on concept
recommendation. Otherwise, the model will gain a lower performance.

5.7. Case Study

We conduct case studies to demonstrate the effectiveness of our proposed method,
especially on the ability of adapting to the dynamic environment by recommending per-
sonalized concepts, as shown in Figure 10. We first randomly select two users, i.e., user A
with ID 3203335 and user B with ID 7796703, from our test set. Given the clicked history of
both users, Figure 10a shows the recommended concept lists to these two users, respec-
tively. From this figure, we can find that user A and user B are from different backgrounds
and have different clicked behaviors in the MOOCs. For example, user A is learning a
course named “The Fundamentals of Psychology”, while user B is learning a course named
“Character Analysis”. These two users have clicked different knowledge concepts related
to their courses. While both of them have clicked the “Emotion Analysis”, our model can
adaptively consider the instant clicked information, and dynamically recommend the next
concept the user may be interested in. To prevent occasionality, we do the same experiment
on users C and D and get the same conclusion, as shown in Figure 10b.



Electronics 2021, 10, 1671 15 of 18

Electronics 2021, 1, 0 15 of 18

course named “The Fundamentals of Psychology”, while user B is learning a course named
“Character Analysis”. These two users have clicked different knowledge concepts related
to their courses. While both of them have clicked the “Emotion Analysis”, our model can
adaptively consider the instant clicked information, and dynamically recommend the next
concept the user may be interested in. To prevent occasionality, we do the same experiment
on users C and D and get the same conclusion, as shown in Figure 10b.

(a) Impact of d on HR@K (b) Impact of d on
NDCG@K

(c) Impact of d on MRR

(d) Impact of d on AUC

Figure 8. Parameter sensitivity of AGMKRec over embedding dimension d.

(a) Impact of λ on HR@K (b) Impact of λ on
NDCG@K

(c) Impact of λ on MRR

(d) Impact of λ on AUC

Figure 9. Parameter sensitivity of AGMKRec over regularization rate λ.

Figure 8. Parameter sensitivity of AGMKRec over embedding dimension d.

Electronics 2021, 1, 0 15 of 18

course named “The Fundamentals of Psychology”, while user B is learning a course named
“Character Analysis”. These two users have clicked different knowledge concepts related
to their courses. While both of them have clicked the “Emotion Analysis”, our model can
adaptively consider the instant clicked information, and dynamically recommend the next
concept the user may be interested in. To prevent occasionality, we do the same experiment
on users C and D and get the same conclusion, as shown in Figure 10b.

(a) Impact of d on HR@K (b) Impact of d on
NDCG@K

(c) Impact of d on MRR

(d) Impact of d on AUC

Figure 8. Parameter sensitivity of AGMKRec over embedding dimension d.

(a) Impact of λ on HR@K (b) Impact of λ on
NDCG@K

(c) Impact of λ on MRR

(d) Impact of λ on AUC

Figure 9. Parameter sensitivity of AGMKRec over regularization rate λ.Figure 9. Parameter sensitivity of AGMKRec over regularization rate λ.



Electronics 2021, 10, 1671 16 of 18

(a) Case 1

(b) Case 2

Figure 10. Diversity recommendation case with sequential clicked concepts information in a dynamic
learning environment of XuetangX MOOCs.

6. Conclusions

In this work, we present AGMKRec, a novel reinforced concept recommendation
model with a heterogeneous information network. It can automatically identify effec-
tive meta-paths and multi-hop connections to represent users in the HIN of MOOCs and
incorporate user embedding into the reinforcement learning framework. Our approach
converts a heterogeneous graph into multiple new meta-path graphs to learn user repre-
sentations. To improve the dynamic nature of user preferences, we use the reinforcement
method, which can consider current reward and future reward simultaneously to generate
the diversified recommendation list. The experiment results on MOOCs show that our
approach outperforms some state-of-the-art methods. We will try our proposed model in
other domains. For example, people usually want to watch different types of movies and
listen to different styles of music.
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Abbreviations
The following abbreviations are used in this manuscript:

AGMKRec Automatic Generation of Meta-path Graph for Concept Recommendation
HIN Heterogeneous Information Network
RL Reinforcement Learning
GCN Graph Convolutional Network
MG Meta-path Generation
MDP Markov Decision Process
DQN Deep Q-Learning Network
CF Collaborative Filtering
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