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Abstract: Double-precision general matrix multiplication (DGEMM) is an essential kernel for mea-
suring the potential performance of an HPC platform. ARMv8-based system-on-chips (SoCs) have
become the candidates for the next-generation HPC systems with their highly competitive perfor-
mance and energy efficiency. Therefore, it is meaningful to design high-performance DGEMM for
ARMv8-based SoCs. However, as ARMv8-based SoCs integrate increasing cores, modern CPU
uses non-uniform memory access (NUMA). NUMA restricts the performance and scalability of
DGEMM when many threads access remote NUMA domains. This poses a challenge to develop
high-performance DGEMM on multi-NUMA architecture. We present a NUMA-aware method
to reduce the number of cross-die and cross-chip memory access events. The critical enabler for
NUMA-aware DGEMM is to leverage two levels of parallelism between and within nodes in a purely
threaded implementation, which allows the task independence and data localization of NUMA
nodes. We have implemented NUMA-aware DGEMM in the OpenBLAS and evaluated it on a
dual-socket server with 48-core processors based on the Kunpeng920 architecture. The results show
that NUMA-aware DGEMM has effectively reduced the number of cross-die and cross-chip memory
access, resulting in enhancing the scalability of DGEMM significantly and increasing the performance
of DGEMM by 17.1% on average, with the most remarkable improvement being 21.9%.

Keywords: BLAS; DGEMM; ARMv8; NUMA; high-performance computing (HPC)

1. Introduction

By considering the advantages of high performance and energy efficiency, ARM-based
SoCs have stimulated the development of ARM-based servers [1]. This ARM-based server
is not only widely used in data centers but is also applicable for supercomputers. For
example, the Japanese supercomputer Fugaku, which won the champion of TOP500 in
June 2021, uses Fujitsu’s ARM architecture A64FX [2] in its processor. ARM architecture
server chips for data center services have been vigorously developed in recent years,
including HuaweiKunpeng920 [3], AWSGraviton2, AmpereQuickSilver2019, and Mar-
vellThunderX3. Meanwhile, the 64-bit ARMv8 ISA supports a broader range of address
searching, NEON vector unit, fused multiply-add (FMA) operation, and scalable vector ex-
tensions (SVE). Therefore, it is meaningful to create HPC based on 64-bit ARMv8 multicore
processors architecture.

In the field of HPC, BLAS, as a principal component in many dense linear algebra
operations, is widely used in scientific and engineering calculations. BLAS standardizes an
application programming interface, which can be used for different implementations and
is divided into three types of calculations: vector–vector (Level-1), matrix–vector (Level-2),
and matrix–matrix (Level-3). The most critical operation is general matrix multiplication
GEMM at Level-3. Processor vendors and HPC researchers usually provide BLAS im-
plementations that are highly optimized for their respective processors, such as Intel’s
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MKL; AMD’s ACML; IBM’s ESSL; NVIDIA’s cuBLAS. ARM provides the arm performance
libraries (ARMPL) [4], a commercial math library that meets the needs of scientific comput-
ing and HPC community on arm architecture. The HPC community also offers excellent
open source libraries, including ATLAS [5], GotoBLAS [6], OpenBLAS [7], and BLIS [8]. In
these numerical libraries, the research community has devoted effort to optimizing GEMM
for different architectures [9–12] based on the fact that the double-precision general matrix
multiplication (DGEMM) is the core part of the LINPACK benchmark.

Recently, processor manufacturers have introduced an increasing amount of cores
on a CPU and begun to integrate more CPUs on an SoC to improve the performance of
ARMv8-based SoCs, resulting in dozens or even hundreds of cores on an SoC while using
NUMA architecture to accelerate memory access. Theoretically, DGEMM adopts the most
straightforward parallelization strategy, where all threads should be using roughly the
same amount of time to execute a subtask. Regardless of the system’s memory allocation
strategy, threads on different cores may have different speeds in practice due to NUMA.
Su et al. [13] proposed a hybrid-grained dynamic load-balancing method to reduce this
drawback of the NUMA effect by allowing fast threads to steal work from slow ones.
Wail et al. [14] proposed a novel user-level scheduling and a specific data alignment
method on the NUMA architecture to solve the data locality problem in such systems and
alleviate memory bottlenecks in problems with large input datasets. Although we have
common goals, our implementation methods and platforms are very different. Unlike Su’s
and Wail’s methods, we reduce the impact of NUMA effect on performance by reducing
the number of cross-die and cross-chip memory access events when DGEMM runs on a
multi-NUMA architecture compatible with ARMv8.

After analyzing the source of NUMA effects in DGEMM, we identify DGEMM’s
performance and scalability bottlenecks. This paper designs and implements an efficient
NUMA-aware DGEMM based on OpenBLAS on a dual-socket server with 48-core pro-
cessors to reduce the number of cross-die and cross-chip memory access events. The key
insight is to obtain two levels of parallelism: node-level parallelism between NUMA nodes
and thread-level parallelism within NUMA nodes. First, NUMA-aware DGEMM allocates
node-level tasks based on the NUMA structure and wakes up the main thread on each
NUMA node. Second, the remaining threads in each NUMA node are awakened and
bound to separate cores. Then each NUMA node redeploys local data. Finally, DGEMM
subtasks are executed in parallel by multiple threads in each node.

The main contributions of this research are as follows:

• After constructing a comprehensive empirical characterization design on Kunpeng920
about how NUMA impact DGEMM, we discover the scalability issues and settle the
problem from the root;

• We propose a NUMA-aware DGEMM method and design details to reduce cross-die
cross-chip memory access caused by NUMA architecture. NUMA-aware DGEMM
is a two-level parallelized multi-solver design based on NUMA, used to accelerate
DGEMM in 64-bit ARMv8 multicore processor architectures;

• We have implemented this method on dual-socket servers with 48-core processors.
The results show that DGEMM performance is improved by 17.1% on average, with
the highest rate being 21.9%. Furthermore, the scalability speed-up ratio is increased
by 71% if expanding from one NUMA node to four NUMA nodes. The cross-die
and cross-chip write operations are reduced by 62.6% and 29.4%, respectively. At the
same time, the cross-die and cross-chip read operations are reduced by 24.8% and
22.7%, respectively.

The rest of the paper is organized as follows. Section 2 reviews the Kunpeng920
dual-chip processor architecture and introduces the blocking and packing algorithms in
OpenBLAS. Section 3 analyzes the impact of NUMA on the performance and scalability
of DGEMM on 64-bit ARMv8 multicore processors. Section 4 describes our DGEMM
implementation by focusing on optimizing cross-die and cross-chip access under a NUMA
architecture. Section 5 presents and analyzes our experimental results. Section 6 reviews
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the related work. Section 7 discusses the future research prospects. Finally, Section 8
concludes the paper and describes some future work.

2. Background

This section provides a brief insight into the details of Kunpeng920 dual-chip processor
architecture, non-uniform memory access (NUMA), and the implementation of DGEMM
in BLAS3.

2.1. Details of Kunpeng920 Dual-Chip Processor Architecture

Figure 1 shows the memory hierarchy of the Kunpeng920 dual-chip processor system-
on-chip [15]. There are two super core clusters (SCCLs) on each chip, with each SCCL
having six core clusters (CCLs), which further contain four cores. Each SCCL is packaged in
a CPU die. The Kunpeng920 core uses TaiShanV110, which is compatible with the ARMv8-
A architecture. Therefore, the dual-chip system function is based on two 48-core processors.

Each processor core integrates private 64 KB 4-way set-associative L1i cache, 64 KB
L1d cache and 512 KB 8-way set-associative L2 cache. Each SCCL is configured with
a 24 M shared L3 cache which uses the write-back strategy and supports the random
re-replacement algorithm. L3 cache is a three-level cache shared on a system-level chip.

Figure 1. The hierarchical structure of the memory in the Kunpeng920 dual-chip processor system.

In the Kunpeng920 architecture, each core is a single-threaded four-issue superscalar
pipeline that supports out-of-order execution, with each core running on 2.6 GHz, as well
as having a 128-bit floating-point unit (FPU) capable of executing double-precision fused
multiply-add instructions. In addition, the ARMv8 ISA defines 32 128-bit floating-point
registers, v0-v31, which can be used for SIMD instructions.

L3 cache is a system-level on-chip three-level cache. The cache is shared by the SCCL
where it is located and shared by CPU, various accelerators, and I/O devices. In Figure 1,
the data access between the chips is through the hydra root agent (HHA) module, which is
not only based on Huawei’s custom-defined protocol standard HUAWEI cache coherency
system (HCCS) [15], for maintaining data consistency between multiple clusters, but also a
module used to maintain data consistency between chips and sockets. The hydra protocol
can achieve MESI protocol consistency among multiple L3 caches. Therefore, the access
mode for shared data in memory should first access the local L3 cache on a dual-chip
system supported by HHA. If data on the local L3 cache is missing, the L3 cache of the
adjacent NUMA node on the same chip will be accessed. If there is also a cache miss, it will
be accessed in the local memory. If it is still not available, it will be queried in the L3 cache
on another chip.
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2.2. Non-Uniform Memory Access (NUMA)

The Kunpeng920 processor system-on-chip supports NUMA architecture. Multiple
processor cores form a NUMA node, and each node contains local DRAM. The interconnec-
tion and communication between each node in the system-on-chip are realized through the
network-on-chip, while the interconnection and communication between different chips
with high bandwidths and low latency are realized through the hydra interface. Both form
the abstraction of the global shared memory of the application program.

On a chip, the time delay for each processor core to access memory depends on the
location of the memory relative to the processor. Therefore, the latency highly depends on
the distance (i.e., hops) between nodes [16]. Generally speaking, access to the cache and
memory in the local node exhibits the best performance.

In Kunpeng920, an SCCL, regarded as a CPU die, can be considered a NUMA node
(24 cores). Each chip contains two NUMA nodes. Hence, the dual-chip Kunpeng920 system-
on-chip is a four-NUMA node architecture. Each Kunpeng920 processor core accesses not
only its private L1 cache and L2 cache but also the shared L3 cache in the same SCCL, as
well as the L3 cache in other SCCLs or off-chip DDR memory. Obviously, the processor’s
memory latency is affected by memory bandwidth and physical distance.

As shown in Figure 1, numbers 1 to 6 represent each of the six typical memory access
paths. Memory latency is depicted in the order of fast to slow:

¬ Access to the private L1 cache of the processor core;
­ Access to the private L2 cache of the processor core;
® Access to the L3 cache data shared within the same SCCL;
¯ Access to the shared L3 cache DATA in other SCCLs on the same chip;
° Access to off-chip DDR memory;
± Access to the shared L3 cache DATA of an SCCL on other chips.

2.3. The Implementation of DGEMM in OpenBLAS

Several prevalent open-source BLAS implementations are ATLAS [5], GotoBLAS [6],
BLIS [8], and OpenBLAS [7]. ATLAS relies on auto-tuning to generate the kernel, which
makes it highly compatible with the platform. BLIS is a portable software framework for
instantiating high-performance BLAS-like dense linear. OpenBLAS is an extension and op-
timization on GotoBLAS. It manually compiles the kernel GEBP (a basic computation unit)
for a series of architectures to improve its performance on various platforms. As a result,
we choose the OpenBLAS library with the best performance in the Kunpeng920 architecture
for optimization. This section describes the DGEMM blocked algorithm in OpenBLAS and
a parallel strategy in a multicore architecture.

DGEMM computation indicates that C := αAB + βC, where A, B, and C are matrices
of sizes M × K, K × N, and M × N, respectively. For a better understanding, we assume that
both α and β representing the scalars of a matrix are equal to 1, and a matrix is stored in
column-major order. The simplified DGEMM can be expressed as C := AB + C. Figure 2
shows the DGEMM blocked algorithm in detail, which explains the original three-loop
nest unrolling into six layers of high-performance implementation cycles.

The purpose of the DGEMM blocked algorithm in OpenBLAS is to determine the
appropriate size for kernel GEBP to maximize cache performance so that the computing
power of each core is fully utilized.

In the outermost layer, the K × M matrix B and the M × N matrix C are partitioned into
column panels of sizes K and M, respectively. At layer 2, the M × K matrix A and a K × Nc
submatrix of B are partitioned into column panels of size M × Kc and row panels of size
Kc × Nc, respectively. The result of the multiplication of these two panels is a component
of matrix C, and it also shows that several GEPPs can form the GEMM. At layer 3, each
panel of size M × Kc in matrix A is partitioned into blocks of Mc × Kc. At this point, the
kernel GEBP is generated, which is decomposed by GEPP. The result of kernel GEBP is a
panel of size Mc × Nc in matrix C, which is obtained by multiplying a block of size Mc × Kc
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in matrix A and a panel of size Kc × Nc in matrix B. The GEBP includes layers 4–7 and also
undertakes a packing operation.

As shown in Figure 2, the calculations for layer4, layer5, and layer6 are performed in
the L3 cache, L2 cache, and L1 cache, respectively. Each Kc × Nc panel of B should not only
reside in the L3 cache all the time [7] but, also, in order to further improve the access speed,
OpenBLAS packages the blocks of matrix A and the panels of matrix B into A continuous
buffers. Packing A is the process of extracting sub-blocks of size Mr × KC from blocks of
size Mc × Kc in matrix A and organizing them together into the L2 cache (layer5). Similarly,
packing B is the process of extracting sub-blocks of size Kc × Nr from a Kc × Nc panel of
matrix B and organizing them together into the L3 cache (layer6). To minimize packaging
overhead, each sub-block of size Kc × Nr is moved to the L1 cache one by one. At layer 5,
the multiplication of an Mc × Kc block of matrix A and a Kc × Nr sliver of the Kc × Nc panel
of B is called GEBS (block-sliver). Similarly, the calculation in layer6 is called GESS, also
known as the micro-kernel, which results in a series of C sub-blocks of Mr × Nr size. At the
last layer, the calculation of an Mr × 1 column sub-slivers of A and a 1 × Nr row sub-slivers
of B is called the register kernel, where all the data are stored.

Figure 2. The implementation of DGEMM in OpenBLAS and the representation of the kernel GEBP.

3. Challenges and Issues

In order to analyze the impact of NUMA on the performance and scalability of
DGEMM in the Kunpeng920 architecture, we design a series of comparative experiments
to explore NUMA architecture. Generally, there are two ways to achieve high-performance
DGEMM: (1) a highly optimized kernel GEBP for a specific architecture (2) an appropriate
size of the block to make full use of the parallelism of the multicore. Here, we focus on
the impact of NUMA events on the parallelism performance of DGEMM on multicore
processors. OpenBLAS not only has two multithreading models, OpenMP and Pthreads,
but also designed a high-performance kernel, GEBP, in assembly language. In addition,
we believe that Pthreads is more suitable for the optimized implementation of DGEMM in
NUMA architecture.

This paper evaluates the impact of NUMA architecture on DGEMM performance and
scalability in a Kunpeng920 dual-chip processor equipped with four NUMA nodes. The
detailed configuration of Kunpeng920 can be found in Section 2. This section first explains
the reason why Pthreads was chosen. Second, we observed the scalability of DGEMM
in NUMA architecture. Then, we designed six DGEMM computing scenarios using the
numactl tool and libnuma API to identify the performance bottleneck of scalability. Finally,
e explored the source of the NUMA effect in DGEMM. We analyzed the micro-architecture
transactions and memory access events in six scenarios with the top-down tool [17] “Mal-
luma” developed by HUAWEI. Micro-architecture analysis based on ARM performance
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monitor unit (PMU) events reflects the operating status of instructions in the CPU pipeline,
helping us to quickly locate hardware events that affect performance. Memory access
events can determine performance bottlenecks in the memory access process, as well as
give possible reasons for these performance problems and optimization suggestions.

3.1. Pthreads vs. OpenMP

The parallel implementation of DGEMM has two multithreading models in Open-
BLAS, Pthreads, and OpenMP. However, different threading models perform differently on
different platforms. The parallel implementations in Intel’s MKL library and AMD’s ACML
library are based on the OpenMP model. Chen et al. [18] found that OpenMP has a higher
implicit parallelism overhead in MKL and ACML. In order to determine which model is
more suitable for the Kunpeng920 architecture, we carefully compared the differences and
characteristics of the two threading models.

In the Kunpeng920 architecture, we measured DGEMM performance with different
scales using Pthreads and OpenMP threading model, respectively. In Figure 3, the single-
threaded performance of the two models is very similar, and the overall performance
decreases as matrix size increases. However, when matrix size exceeds 5632 (M = N = K),
the performance of OpenMP decreases faster than Pthreads. This is because the design of
the original GEMM kernel is not ideally suitable for the Kunpeng920 processor, which also
means that cache is underutilized. The larger the size of DGEMM, the greater the number
of memory accesses. These memory access behaviors that are not specifically designed will
result in lower cache utilization as the number of memory accesses increases, resulting in a
decline in single-core processors performance. In Figure 4, the performance of Pthreads
is 13.3% higher than that of OpenMP on average. Regardless of Pthreads or OpenMP is
used in OpenBLAS, the performance of DGEMM will produce more considerable jitter
with different matrix sizes, which is caused by cache thrashing in a multithreaded system.

Figure 3. Performance of DGEMM implementations (single-thread).

Figure 4. Performance of DGEMM implementations (ninety-six threads).
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Pthreads and OpenMP represent two totally different multiprocessing paradigms.
Pthreads is a very low-level API for generating threads and synchronization explicitly.
Thus, we have highly fine-grained control over thread management, mutexes. On the other
hand, OpenMP is much higher level and is more easily scaled than Pthreads. OpenMP
should be used for loops that have to be computed on all the cores. Pthreads can do
that too, but that is much work. However, as usual, we attain more flexibility with
Pthreads. In the Kunpeng920 architecture, the Pthreads implementation of DGEMM
in OpenBLAS is superior to the OpenMP implementation in performance. Of course,
overlapping calculations and data transmission are critical. Considering the above points
and DGEMM algorithm optimization must be implemented according to the hardware
architecture, we utilized Pthreads to optimize DGEMM in the Kunpeng920 architecture
and enable it to achieve better parallelism.

3.2. Observations on Scalability

In order to observe the scalability of DGEMM on NUMA architecture, we tested the
scalability of six scales DGEMM on four NUMA nodes (24 cores per NUMA node). Re-
gardless of the multithreaded distribution strategy, all thread groups were deployed in the
global processor cores with the default strategy. Figure 5 shows the scalability of DGEMM
in a strong expansion scenario across NUMA nodes. We made the following observations:

(1) All scales DGEMM have poor scalability on NUMA architecture. Meanwhile, by
comparing the scalability of different scales DGEMM, it can be found that the smaller
matrix size is, the worse the scalability will be. The reason for this phenomenon is simple.
For small-scale DGEMM, multithreading creation and communication overheads have
gradually concealed the benefits of multithreaded parallel computing. The scalability of
DGEMM of all sizes on NUMA architecture usually begins to drop significantly with the
addition of more than three nodes. Obviously, if NUMA overhead exceeds the computing
power, performance will decrease;

(2) The multithreading performance of all scales DGEMM is almost the same at one
NUMA node, with the peak performance at three NUMA nodes. However, the scalability
begins to decline after more than 3 NUMA nodes. As the scale of matrix multiplication
increases, the scalability declines more slowly. It is because when all 96 cores participate
in the calculation, the amount of calculation of this scale cannot make full use of the
multilevel cache. This illustrates that the Kunpeng920 architecture is more suitable for
matrix multiplication with a scale of M, N, and K over 10,000;

Figure 5. Scalability of DGEMM on NUMA architecture.
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(3) All the above evidence indicates that when the number of NUMA nodes increases,
the performance of all scales DGEMM on NUMA architecture suffers from serious scal-
ability problems. Since the experiment was conducted in a strong expansion scenario,
we focused on memory-level scalability. Next, we applied system-level analysis tools to
quantify the bottleneck effect and explore the potential source of the scalability problem of
DGEMM on a multicore architecture.

3.3. Cause of DGEMM’s Scalability Bottleneck

By analyzing OpenBLAS source code and the Kunpeng920 processor architecture, as
well as considering the impact of the memory hierarchy on the performance of DGEMM [19],
the NUMA factor may be the most crucial factor affecting the scalability of DGEMM in
the Kunpeng920 architecture. Therefore, we used hardware event counter tool “numastat”
to explore whether remote NUMA access is frequent. Node-load-miss was used as an
evaluation indicator, representing the load of acquiring data from DRAM and Cache in the
remote NUMA domain.

Figure 6 shows the node-load-miss with the growing NUMA counts on Kunpeng920.
We clearly observe that remote memory access increases. The figure indicates that the
current DGEMM designs might not have taken NUMA scalability into consideration.

Figure 6. Node-load-miss when performing DGEMM on Kunpeng920.

In order to further quantify the impact of NUMA, we use numactl, which employs a
specific NUMA scheduling or memory placement strategy to run the process, to design six
DGEMM computing scenarios for the position of the thread on the NUMA node. Node x
means that DGEMM runs on NUMA node x. Then, the hyper tuner [20] tool, Malluma, was
used to measure event-accurate sampling [21] in six designed comparative experiments, in-
cluding all_write_count, local_write_count, cross-die_write_count, cross-chip_write_count,
all_read_count, local_read_count, cross-die_read_count, and cross-chip_read_count. These
events represent the total number of write, the number of local write, the number of cross-
die write, and the number of cross-chip write, respectively. The situation of reading data
is similar. Table 1 shows the number of PMU events for a DGEMM with a size of 50,000
(M = N = K) in six experiments. The number of local accesses, the number of cross-die
accesses, and the number of cross-chip accesses can be observed in Table 1. We observe
that when the number of NUMA nodes is expanded from 1 to 4 (experiment ID 1, 2, 5,
and 6), the number of cross-die and cross-chip increases significantly each time a NUMA
node is expanded. The results show that the number of cross-die increased by 33.3%, and
cross-chip increased by 14.09%. Due to the frequent remote memory access, the proportion
of access time spent on DRAM increased significantly, which ultimately led to a decrease
in the computing performance of DGEMM.



Electronics 2021, 10, 1984 9 of 23

Table 1. The number of PMU events for a DGEMM with a size of 50,000 (M = N = K) in six experiments.

ID 1 2 3 4 5 6

Experiment Settings Node 0 Node 0, 1 Node 0, 2 Node 0, 3 Node 0, 1, 2 Node 0, 1, 2, 3

local_write_count 4.63 × 109 7.17 × 107 7.25 × 107 7.33 × 107 7.06 × 107 6.88 × 107

cross-die_write_count 4.26 × 104 1.92 × 107 2.14 × 107 2.09 × 107 3.26 × 107 4.07 × 107

cross-chip_write_count 3.21 × 106 4.56 × 105 1.80 × 107 1.80 × 107 1.66 × 107 1.89 × 107

local_read_count 4.66 × 1013 6.10 × 1010 6.10 × 1010 6.09 × 1010 5.91 × 1010 5.65 × 1010

cross-die_read_count 1.23 × 107 4.03 × 1010 4.13 × 1010 4.17 × 1010 4.96 × 1010 5.80 × 1010

cross-chip_read_count 4.57 × 107 5.24 × 107 9.89 × 1010 1.09 × 1010 1.20 × 1010 1.37 × 1010

3.4. Source of NUMA Effects in DGEMM

The reason why DGEMM frequently performs remote memory access on NUMA
architecture must be explored theoretically. Remote memory access is caused by the
absence of data required for the calculation task of the NUMA node in the DRAM and
cache of the local NUMA itself. In order to analyze the reasons, the parallel process of
DGEMM on the NUMA architecture should be carefully studied.

Section 2.3 has discussed in detail the detailed process of decomposing DGEMM into
GEBP kernel units. In Figure 2, the kernel GEBP in layer4 is split from GEPP in layer3. The
computing task of an M × Kc panel of A multiplied by a Kc × Nc panel of B is decomposed
into several computing tasks of the Mc × Kc block and Kc × Nc panel. In this process,
a panel of size M × Kc in GEPP is first divided into blocks of size Mc × Kc, which are
multiplied by the same panel of size Kc × Nc, resulting in matrices of size Mc × Nc in C.
Consequently, multiple blocks share a row panel in GEBP. For a single thread, a block of
size Mc × Kc and a panel of size Kc × Nc are packaged into the L3 cache to produce a
GEBP unit. After completing the calculation of this GEBP, the next block of size Mc × Kc is
replaced into the L3 cache and calculated with the same panel of size Kc × Nc. The next
GEPP task will not start until the execution of this GEPP is completed. For the parallelism
of multi-core processors, the execution process of a GEPP is a synchronization cycle. In a
synchronization cycle, each core executes a GEBP task separately, and all the cores share
a panel of Kc × Mc with the size of matrix B. Only when all the threads complete all the
GEBP tasks in this cycle can the next GEPP task be executed.

Taking the execution process of DGEMM on the dual-chip Kunpeng920 processor as an
example, the reason why DGEMM generates remote memory access on the multi-NUMA
architecture is explained in detail. When the process is created, the OS default memory
allocation policy is most likely the first-touch policy. As we all know, many applications
must change their initialization in order to take advantage of NUMAness. However,
regardless of the operating system’s default memory allocation policy, the distribution of
data and work on NUMA nodes is rough. For a computationally intensive program with
rules, such as DGEMM, the data required for the calculation may still exist on other NUMA
nodes, which will lead to a large number of remote memory accesses. Therefore, we use the
first-touch policy as an example to analyze the detailed process of remote memory access.
According to the first-touch policy, memory is allocated to the local memory of the NUMA
node where the main thread is located. Therefore, matrix A, matrix B, and result matrix
C are all in the local memory of the NUMA node where the main thread is located. Since
the current DGEMM implementation does not consider NUMA boundaries, threads work
across NUMA nodes.

Figure 7 illustrates the thread mapping and data access of the reading process of
DGEMM parallelized on a multi-NUMA machine, where each thread is statically mapped
to a core, with the private L1 cache and L2 cache of each core being omitted in the figure.
Assuming that the main thread is created on NUMA node 0, the main thread divides
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the task of DGEMM into several GEBP subtasks and wakes up a subthread on each core
simultaneously. Each thread has a private block of matrix A whose size is Mr × Nr,
and 96 threads share a panel of matrix B with a size of Kc × Nc. Since NUMA node0 is
where the main thread is located, the matrices A, B, and C allocate memory in the DRAM
corresponding to node0. The calculation task of 24 cores on node0 requires 24 blocks of size
Mr × Nr in matrix A and a row panel of size Kc × Nc in matrix B, so these 24 cores directly
read data from the local DRAM to the L3 cache. In NUMA nodes 1–3, 72 cores numbered
core 24 to 95 must obtain data from the DRAM of NUMA node 0 through remote access.
In a synchronization cycle, each core needs to fetch a block to execute the next GEBP task
from the DRAM corresponding to NUMA Node0 whenever it completes a GEBP task.
Nevertheless, the row panel remains unchanged in the L3 cache during this cycle until the
GEPP implementation is complete. The implementation of fine-grained parallelism must
frequently cross NUMA boundaries to read or write data from remote memory domains,
which significantly increases the memory access latency under limited bandwidth.

Figure 7. Parallel DGEMM thread mapping and data access paths.

4. Design Methodology

We propose a high-performance implementation method of NUMA-Aware DGEMM
based on multicore and multi-CPU architecture to address the challenges and issues above.
The core thought of this article is to reduce the number of cross-die and cross-chip memory
accesses to improve computing performance. In order to avoid frequent remote NUMA
access, the data should be coordinated with the calculation in the same place. It is natural to
replace threads with processes to ensure the co-location of data and calculations. However,
using processes instead of threads consumes more memory space [22]. It is unsuitable
for computationally intensive applications to run a process on each core or NUMA node
in machines with limited memory. Consequently, the implementation of NUMA-aware
DGEMM should maintain a pure thread mode.

NUMA-aware DGEMM is different from various existing versions of DGEMM. It
makes use of hierarchical parallelism on the multi-NUMA architecture to distribute tasks
across threads. Figure 8 outlines the design of NUMA-aware DGEMM. At the algorithm
level, NUMA-aware DGEMM decomposes the task into two parallel levels. The entire
DGEMM task is first decomposed into N computing tasks with disjoint computing data
according to the number N of NUMA nodes on the processor architecture. These computing
tasks and computing data are deployed to different NUMA domains to benefit from NUMA
node-level parallelism. Section 4.1 covers the details and verifies that the cost of data
redeployment is reasonable. Then, NUMA-aware DGEMM further divides computing
tasks for each processor core in each NUMA node to benefit from thread-level parallelism
in the NUMA node. Section 4.2 describes the NUMA-aware algorithm in DGEMM.
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Figure 8. NUMA-aware DGEMM thread mapping and data access paths.

Then, NUMA-aware DGEMM maps the algorithm to a machine supporting NUMA
architecture for calculation and data assignment. Compared with the implementation
of DGEMM based on OpenMP, NUMA-Aware DGEMM adopts a more flexible multi-
threading solution. Section 4.3 elaborates on the thread mapping method on the dual-chip
Kunpeng920. Finally, Section 4.4 discusses the key issues in the implementation of NUMA-
aware DGEMM.

4.1. Task Distribution and Data Redeployment

There are many ways to divide tasks in the parallel implementation of DGEMM.
Among them, the above block algorithm used by DGEMM in OpenBLAS is efficient. In a
synchronization cycle, all CPU cores share a panel of size Kc × Nc in matrix B and execute
each GEBP independently and efficiently. In fact, for a server processor equipped with a
large-scale core, the overhead of a synchronization cycle for all cores to execute a GEPP task
is expensive. There is no data dependency on computing tasks in an asynchronous period.
It can be seen from Section 3.4 that, since the initial data are stored in the local memory of
the node where the main thread is located, a large number of remote memory accesses will
be caused when all the cores in the remaining nodes participate in the calculation, which
causes vast overhead. Given the nature of the DGEMM block algorithm, this paper divides
the computation into data disjoint tasks to achieve independent node-level parallelism.

The scheme of task division and data redeployment on the four NUMA nodes architec-
ture is shown in Figure 9. The four colors in matrix A, matrix B, and matrix C, respectively,
correspond to the four calculation tasks that the four NUMA nodes are responsible for, and
these four tasks are not related in any way. At this time, we call the NUMA node a solution
module. Two points should be emphasized here: on the one hand, task division and data
redeployment are only for matrix A and matrix B, and no improvements in the result matrix
C. On the other hand, the processor cores in each solution module directly update the
sub-blocks in the result matrix C after calculating the GEBP tasks they are responsible for.
Therefore, there are no synchronizations between threads/processes while updating the
result matrix C. NUMA-aware DGEMM performs thread-level fine-grained calculations
based on local data in each solution module, giving full play to multicore parallelism. Each
solution module acts as an independent machine to perform its DGEMM tasks. As the
solution module after task division has its independent calculation tasks, in each solution
module, we are only required to wait for the slowest core among the 24 processor cores
to complete this round of tasks, and then the solution module starts the next local GEPP
task. Therefore, the number of threads sharing a panel of size Kc × Nc in matrix B is
reduced from the original 96 threads to 24 threads, which means that the synchronization
range is reduced from the original 96 to 24 threads. Additionally, the method reduces the
implementation of DGEMM multithreading synchronization overhead.
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Figure 9. The DGEMM task division and data redeployment scheme on four NUMA nodes.

In order to reduce the number of cross-die and cross-chip memory accesses, it is
vital to achieve the data localization of each solution module after the task allocation is
completed. As the memory access overhead of a NUMA node is related to the memory
location, the data deployment will seriously affect the application performance. On the
one hand, the cache has an essential impact on performance in computationally intensive
applications. When the data are required, the application must obtain them from memory
to cache. If the data are stored in remote memory, the delay will be huge. After testing,
the local memory access delay, cross-die access delay, cross-chip near-end access delay,
and cross-chip remote access delay were 90, 156, 241, and 293 ns, respectively. On the
other hand, non-local threads will access the data required by the computing task in the
local memory of the NUMA node where the main thread is located, which will cause
remote memory accesses to be much greater than the number of local memory accesses.
In particular, when calculating large-scale DGEMM, the original algorithm will cause a
more significant number of remote memory accesses, and data deployment is critical in
this scenario.

Local memory access overhead is mainly related to the memory hierarchy and the
frequency of cache replacement. The DGEMM in OpenBLAS optimizes the local cache
utilization through the packing and blocking operations. Accordingly, each GEBP block
and panel will not be read to the cache repeatedly, and there will only be one cache miss
for each data block. It is known that initial data matrices A, B, and C are all stored in the
memory of the NUMA node where the main thread is located, and the delay of reading and
writing data are determined by the memory access delay and memory access bandwidth.
For ease of description, assuming that the remote thread must read N data blocks, the total
remote memory access overhead can be expressed as Tremoteaccess:

Tremoteaccess =
N

∑
i

(
blocki
Brm

+ Tr−delay

)
(1)

In Formula (1), blocki represents the size of the i-th data, Brm represents the bandwidth
of remote access, and Tr_delay represents the delay of remote access. When data need be
localized, the data will be redeployed based on the number and distance of nodes, and then
the data from the remote NUMA node is copied to the local DRAM. After the operation
is completed, the node will read data in the local DRAM. The time overhead of data
redeployment comes from remote copies of data and multiple reads of local data. The total
time cost is expressed by Tcopy+localaccess

Tcopy+localaccess = 2
(

blocki

Br−l
+ Tr−l−delay

)
+

N

∑
i

(
blocki
Blm

+ Tl−delay

)
(2)

In Formula (2), A and B represent the bandwidth and delay of the remote copy,
respectively.

Regardless of whether the data are read from non-local memory to local registers or
local memory, the overhead in the two cases is almost equal. On the contrary, the remote
access bandwidth and latency are much greater than the local memory access bandwidth
and latency, so we can assume that Tr−delay ≈ Tr−l−delay, Tr−delay > Tl−delay, Brm ≈ Br−l
and Brm < Blm. The difference between the overhead of the above two access methods is
shown in Formula (3). When there are N data blocks and the value of N is large:
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∆(i) = N
(

N − 2
N

(
blocki
Brm

+ Tr−delay

)
−

(
blocki
Blm

+ Tlm−delay

))
(3)

According to the above reasoning, it can be concluded that ∆(i) > 0, the overall over-
head of data redeployment is less than the overhead of continuous access to remote memory.

4.2. NUMA-Aware DGEMM Algorithm

After discussing task division and data redeployment, this paper realizes efficient
two-level parallelism on the dual-socket servers with 48-core processors, which combines
node-level parallelism and thread-level parallelism. NUMA-aware DGEMM first divides
the task into independent subtasks by node, forming an independent DGEMM solution
module with NUMA nodes as the unit. Next, these modules are deployed on the nodes
and then redeploy data according to the tasks of the solution module. Finally, multicore
parallelism within the node is realized through fine-grained division of tasks on the node.

Algorithm 1 elaborates the parallel optimization algorithm of DGEMM in the Kun-
peng920 architecture. The optimization algorithm is implemented based on OpenBLAS.
OpenBLAS determines the number of threads at compile-time according to the number of
processor cores. Therefore, each thread is only required to wake up to perform a specified
task during the algorithm’s running without creating a thread. In the algorithm, lines 1–3
detect the number of NUMA nodes in the architecture and node processor cores. Lines 4–15
describe a task division algorithm to determine matrix A and B’s range of K dimensions.
Lines 16–22 wake up the main thread on each NUMA node, also called a management
thread, and each management thread is bound to the first processor core of the local NUMA
node. The tasks between NUMA nodes are parallel. The tasks in the NUMA node are
shown in lines 23–41. More specifically, line 26 indicates that the main thread on the NUMA
node wakes up the remaining threads and binds to the kernel. Lines 27–31 allocate local
memory space for the main thread on each NUMA node and copy into local memory
some of the data from matrix A and B that will be used in subsequent calculations. The
details inside the two nested loops in lines 33–40 indicate what the Pthreads thread is
responsible for within the same NUMA node. First, a panel in matrix B shared by all
threads in NUMA node is fetched to the shared L3 cache in line 33. Secondly, in line 34,
each thread fetches a block of matrix A needed for its calculation to the private L2 cache.
Then in line 35, each thread calculates the position of block C of the result of this task, and
finally calculates with the kernel optimized for the core TSV110 in lines 36–37 and writes
the result directly back to the position of result block C. The function pthread_brarrier() is
used for thread synchronization.

4.3. Two-Level Calculation and Data Mapping Method

The two-level parallelism of NUMA-aware DGEMM can be naturally mapped to
threads running on the NUMA architecture. Binding these threads to the processor core
is necessary but challenging. Because each thread has equal importance in the original
DGEMM parallel implementation, these threads cannot only predict the creation order but
are not bound to the core. Therefore, if we want to improve the performance of DGEMM,
the two-level parallel NUMA-DGEMM will have to carefully design the specific behavior
of Pthreads on the NUMA architecture.

NUMA-aware DGEMM can automatically map threads to the appropriate processor
core for any NUMA architecture thanks to its thread scheduling strategy. Above all,
NUMA-aware DGEMM uses functions in libnuma library to detect NUMA topology
to determine the relationship between NUNA nodes and cores. Second, NUMA-aware
DGEMM allocates and records a unique ID for each NUMA node while allocating a
management thread for each NUMA node. Furthermore, all threads of the local node are
awakened by the management thread. Finally, NUMA-aware DGEMM traverses all cores
in the NUMA node and calls sched_setaffinity to bind all threads to the NUMA node where
the management thread is located.
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Algorithm 1: Parallel Optimization Algorithm of DGEMM on Kunpeng920
Input: A[MxN], B[NxK], C[]
Output: C[MxN]

1 Get information about NUMA architecture.;
2 Nodes = getNodes();
3 CPUsPerNode = getCPUsPerNode();
4 Task distribution:Calculate the partition range of matrix A and matrix B in k

dimensions;
5 RangeK[0] = 0;
6 CPUK = 0;
7 while K > 0 do
8 width = (K + Nodes - CPUK - 1) / (Nodes - CPUK) ;
9 K = K - width;

10 if K < 0 then
11 width = width + K;
12 end
13 RangeK[CPUK + 1] = RangeK[CPUK] + width;
14 CPUK = CPUK + 1;
15 end
16 Wake up the main thread on each NUMA node and bind it.;
17 j = 0 ;
18 for j < Nodes do
19 WakeThread(j * CPUsPerNode, &PrimaryNodeThread, j);
20 SetThreadAffinityMask(thread[j], j * CPUsPerNode);
21 j++;
22 end
23 Tasks for the main thread on each NUMA node;
24 foreach Thread n in PrimaryNodeThread do
25 /* Prepare and bind other threads on the local NUMA node */;
26 n.PrepareOtherThread();
27 data redeployment:;
28 allocOnNode(LocalA, n.nodeID);
29 allocOnNode(LocalB, n.nodeID);
30 memcpy(LocalA, A[:, RangeK[n.nodeID]:RangeK[n.nodeID+1]]);
31 memcpy(LocalB, B[RangeK[n.nodeID]:RangeK[n.nodeID+1], :]);
32 parallelism in node with Pthreads.;
33 foreach Block panelB in LocalB do
34 foreach Block blockA in LocalA do
35 blockC = C.getCorespondentBlock();
36 /* The NUMA main thread and the other threads on the node complete

the GEMM calculation */;
37 doBlockMultiply(blockA, blockB, blockC): kernel optimization with

SIMD. Each thread calculate private Block A with common PanelB by
vector instructions by vector instructions. The kernel is written in
ARM64 assembly.

38 end
39 pthread_barrier();
40 end
41 end

From an implementation perspective, after completing the task allocation and data
redeployment stage according to NUMA features, the actual multithreaded parallel com-
puting implementation mapping of NUMA-aware DGEMM is performed on three levels:
(1) At the top level, NUMA-aware DGEMM is for each NUMA node wakes up a Pthreads-
based management thread; (2) In the middle layer, the management thread of each NUMA
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node executes independent matrix multiplication tasks by waking up the number of threads
corresponding to the number of cores of the NUMA node. The management thread of each
NUMA node maintains affinity with the NUMA node through binding; (3) At the bottom
layer, each Pthreads thread binds the processor core and executes the single-threaded
DGEMM’ kernel GEBP operation to maintain affinity with this NUMA node.

NUMA-aware DGEMM should ensure that each CPU core can execute the DGEMM
kernel GEBP correctly while binding threads to cores. In addition to ensuring that the data
are adequately deployed in the local DRAM, the management thread within each NUMA
node also applies the classic DGEMM partition algorithm to ensure all cores’ efficient
parallelism within the node.

4.4. Discussion

NUMA-aware DGEMM is designed for the NUMA architecture, with the following
advantages: (1) It performs data localization for each NUMA node, eliminating the primary
cross-die and cross-chip access in the parallel layer; (2) It is adaptive, as NUMA features
of different architectures are different. It dynamically divides tasks and data according to
the architectural features and keeps the data between NUMA nodes free of dependencies.
This design is suitable for any NUMA architecture; (3) This design is accurate, which
means that it calculates and writes back the result every time it is the same as the original
DGEMM design.

5. Results

We implemented our methods through optimizing the DGEMM interface in Open-
BLAS and evaluated its performance and scalability on Huawei’s TaiShan2280(2 ∗ Huawei
Kunpeng920 5250 processor) server described in Table 2, which is a high-performance
server with multicore processors based on the ARMv8 architecture. The NUMA-aware
method we present is compatible with all variants of GEMM methods, such as SGEMM and
ZGEMM. Since the Linpack benchmark used by TOP500 strongly relies on the DGEMM
variant, we only evaluated the DGEMM method’s performance.

Table 2. The experimental platform.

Feature Description

Hardware

Architecture AArch64 (Arm64)

Number of Core 96, no hyper-threading support

Frequency 2600 MHz

SIMD AArch64 Neon instructions (128-bit)

SIMD pipelines 1

FLOPS/cycle 4

Register File 32 128-bit vector registers

L1 Data Cache 64 KB, 4-way set associative, 64 B cache line, LRU

L2 Data Cache 512 KB, 4-way set associative, 64 B cache line, LRU

L3 Data Cache 96 MB, 1 MB per core

Memory 256 GB

NUMA Nodes 4 NUMA Nodes

Software

Operating System GNU/Linux 4.19.0 AArch64

Compiler GNU/GCC 9.2.0

Thread Model Pthreads

BLAS OpenBLAS 0.3.13 version
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This section presents the evaluation results. We proved NUMA-aware DGEMM’s
high performance and excellent scalability in the Kunpeng920 architecture. Additionally,
we collected NUMA-related events through hardware performance counter APIs to prove
that NUMA-aware DGEMM method can eliminate massive remote memory access, which
leads to its high performance and scalability.

5.1. Overall Performance and Scalability

Among all open source libraries, DGEMM in OpenBLAS has the best performance on
the Kunpeng920 processor. Therefore, our optimization is based on OpenBLAS and we
use OpenBLAS as a major comparison object. The differences before and after DGEMM
optimization are exhibited by how they divide and organize the computations, as shown in
Figures 7 and 8. We evaluated eight DGEMM implementations: NUMA-aware DGEMM
with 8 × 6 GEBP kernel, NUMA-aware DGEMM with 8 × 4 GEBP kernel, NUMA-aware
DGEMM with 4 × 4 kernel, OpenBLAS 8 × 6 kernel, ATLAS, BLIS, ARMPL and NUMA-
aware DGEMM without data localization. ARMPL is a commercial math library developed
by ARM. NUMA-aware DGEMM without data localization can be used to prove the
correctness of the performance model in Section 4.1. In this experiment, square matrices
were used with their sizes ranging from 10,240 to 61,440, with a step of 1024, to demonstrate
the superior performance of NUMA-aware DGEMM. For each matrix size, the execution
time was measured as the average of ten runs.

For further comparison, we also evaluated the performance of BLIS and ATLAS on
TaiShan 2280. We use thread average efficiency (Eavg) to describe the result; Eavg is
normalized from GFlops, and computed by Eavg = GFlops/(nt × dGFlops), where dGFlops
represents the theoretical peak performance of a core.

Figure 10 shows our performance results. NUMA-aware DGEMM with 8 × 6 GEBP
kernel stands out as the outstanding performance in nearly all inputs. The performance of
NUMA-Aware DGEMM-8×6 is 17.1% higher than OpenBLAS-8 × 6 on average, with the
most remarkable improvement being 21.9% (M = N = K = 47,104). ARMPL is the worst
performer among all eight implementations. ATLAS uses an automatically-tuned technique
unoptimized for a particular hardware platform, which leads to poor performance. BLIS
performs better than ATLAS, closer to the results of NUMA-aware DGEMM with the 4 × 4
GEBP kernel, but not better than other NUMA-aware DGEMM versions. BLIS kernel
is optimized by the compiler but not hand-crafted as with the OpenBLAS kernel. The
performance of NUMA-aware DGEMM with the 8 × 6 GEBP kernel is the best within all
inputs, which proves that our method is effective in 64-bit ARMv8 multicore processor
architecture.

Figure 10. Performance of six DGEMM implementations.

For NUMA-aware DGEMM and NUMA-aware DGEMM without data localization, the
former outperforms the latter across nearly all the input sizes with an average performance
increase of 4.46%. These results show that our performance model in Section 4 model
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is reasonable. The overall overhead of data redeployment is less than the overhead of
continuous access to remote memory.

It is worth noting that when the square matrix size is smaller than 15,360, the per-
formance of OpenBLAS is superior to NUMA-aware DGEMM, but with a larger matrix
size, the advantage of OpenBLAS dwindle. When the matrix size is larger than 15,360,
our method starts better than OpenBLAS. The reason for the phenomenon is that in the
full-threaded running state, the calculation data cannot fully utilize the advantages of the
three-level cache due to the too-small matrix size. At the same time, the creation cost of
multithreading is far greater than the benefit of multithreading parallelism. Therefore,
NUMA-aware DGEMM is more suitable for large-scale matrix multiplication operations.

Table 3 summarizes the results of the peak efficiency and average efficiency for dif-
ferent configurations. NUMA-aware DGEMM with the 8 × 6 GEBP kernel is the best
among all six objects. The peak efficiency and average efficiency of NUMA-aware DGEMM
reach 92.34% and 86.97%, respectively. Compared with OpenBLAS-8 × 6, NUMA-aware
method improves DGEMM’s peak efficiency from 80.70% to 92.34% and average efficiency
from 78.12% to 86.97%. These translate into peak and average efficiency improvements by
11.64% and 8.85% on 96 cores, respectively.

Table 3. Efficiencies of four dgemm implementations.

Efficiencies
NUMA-Aware DGEMM OpenBLAS

ATLAS BLIS
8 × 6 8 × 4 4 × 4 8 × 6

Peak 92.34% 86.33% 78.11% 80.70% 70% 79.33%

Average 86.97% 81.20% 73.23% 78.12% 64% 74.61%

Figure 11 shows the scalability of NUMA-aware DGEMM for square matrices of
different sizes on a multi-NUMA architecture. Compared to OpenBLAS DGEMM’s scala-
bility in Figure 5, the performance of NUMA-aware DGEMM improves significantly on
multi-NUMA architecture. The acceleration ratio is 1.93 when expanded from one NUMA
node to two nodes and 2.73 from one to three. In particular, when expanding the NUMA
node from one to four, the parallel acceleration ratio is increased from 2.01 to 3.45, an
improvement of approximately 71%. As the number of NUMA nodes increases, there is no
obvious downward trend in scalability.

Figure 11. Scalability of NUMA-aware DGEMM.

Our work compares performance against codes that use the default OS memory
allocation policy, which is most likely a first-touch policy. No matter what default memory
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allocation strategy the OS uses, the distribution of data and work on NUMA nodes is
rough, so our work focuses on how data and work are orchestrated across NUMA nodes.
Assuming the first data touch is to be completed by the thread that will work with that
data according to a classical owner computes rule.

It is well known that the initialization must be changed to exploit NUMAness. There-
fore, we believe that comparing default initialization vs parallel NUMA-oriented initial-
ization is very necessary. We tested the performance of DGEMM using three memory
allocation strategies, first-touch, interleave, and bind, before and after optimization. Inter-
leave refers to interleaving and allocating memory on all nodes or designated nodes. Bind
refers to the forced allocation of memory to the specified node.

Figure 12a,b, respectively, show the performance results of DGEMM using different
memory allocation strategies before and after optimization. Figure 12a shows that if
matrices of the same size use different memory allocation strategies, they will have a more
significant performance gap. Comparing the two curves of Origin_Interleave_All and
Origin_Interleave_node1_node2, we can conclude that the more nodes that participate
in memory allocation for large-scale matrix multiplication, the better the performance of
DGEMM. At the same time, it can be observed that the performance of the first-touch
strategy and the interleave strategy are comparable. Figure 12b shows that optimized
DGEMM will not fluctuate with the default memory allocation of the operating system. No
matter what memory allocation strategy is adopted, the larger the matrix size, the better
the matrix multiplication performance. Therefore, the careful arrangement of data and
work on NUMA nodes is beneficial to improving DGEMM performance.

(a) OpenBLAS DGEMM (b) NUMA-Aware DGEMM

Figure 12. Performance of DGEMM using different memory allocation polices.

5.2. Reduced Remote and Random Accesses

To evaluate NUMA-aware DGEMM optimization effect on remote memory access,
we used hardware performance counter APIs on TaiShan 2280 server to collect relative
events. Except eight events mentioned in Section 3.3, four extra hardware events were
included: instructions, IPC, L1-dcache-loads, and L1-dcache-load-misses, which represent
the number of instructions to be executed, the number of instructions to be executed in
each CPU cycle, the hit number of L1 data cache and the missing number of L1 data
cache, respectively. We used a square matrix with a size of 50,000 (M = N = K = 50,000) as
input below.

Figure 13a,b show that DGEMM NUMA-aware has less remote memory access opera-
tion than OpenBLAS DGEMM in four NUMA-nodes ARMv8 server. We analyzed them
by dividing memory access operation in DGEMM into the reading and writing processes.
In the reading process, DGEMM requires 5.079 × 1013 read operations when using origin
OpenBLAS implementation. Our method reduces them to 3.818 × 1013 (24.8%). At the
same time, the number of local memory access operations increases by approximately
20%. As a result, cross-die read operations are reduced by approximately 24.8%, and
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cross-chip read operations are reduced by approximately 22.7%, respectively. In the writing
process, our method reduces the number of remote write operations from 5.052 × 1011 to
3.712 × 1011 (26.5%), and local memory write operations, cross-die write operations and
cross-chip write operations are reduced by 5.3%, 62.6%, and 29.4%, respectively. It proves
that our method is accelerated by reducing the number of remote memory access.

(a) Remote Read Memory Access Events (b) Remote Write Memory Access Events

Figure 13. Remote read and write memory access events for both NUMA-aware DGEMM and
OpenBLAS DGEMM.

NUMA-aware DGEMM reduces the number of remote memory access operations,
the number of instructions after compiling, and the number of CPU cycles the program
requires. Figure 14 shows that the program uses 36.54% fewer cycles and 58.1% fewer
instructions. It proves our method can be an improvement on the architecture level.

Figure 14. Number of cycles and instructions for both NUMA-aware DGEMM and Open-
BLAS DGEMM.

Figure 15a,b compare the number of l1-dcache-load and l1-dcache-load-misses be-
tween NUMA-aware DGEMM and OpenBLAS DGEMM, respectively. Obviously, both
methods will execute the same amount of floating-point operations. Our method is superior
as it can overlap computation and data movement more effectively, especially moving data
from the L1 data cache to register. At the same time, the number of l1-dcache-misses in
our method is 16.3% less than that of OpenBLAS, with less l1-dcache-loads as mentioned
before; finally, it shows better performance, which proves that l1-dcache-load-misses and
l1-dcache-loads are key to high performance in the Kunpeng920 architecture.
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(a) L1-dcache-loads (b) L1-dcache-load-misses

Figure 15. The number of L1-dcache-loads and L1-dcache-load-misses for both NUMA-aware
DGEMM and OpenBLAS DGEMM.

6. Related Work

In dense linear algebra, high-performance GEMM is the core implementation and the
base of BLAS3 [19,21]. Many state-of-the-art BLAS libraries, such as GotoBLAS [6] and
its derivative version OpenBLAS [7], are implemented based on this idea. There are two
possible ways to optimize GEMM operations. The one is to optimize the computation
kernel of GEMM, and the other one is to optimize its parallel performance in multicore
architecture. We introduced cross-die remote memory access and cross-chip memory access
into optimizing GEMM as reducing them will achieve better performance.

Optimizing the GEMM kernel must consider a trade-off between performance and
portability. For example, GotoBLAS [6] supports many CPU architectures, such as x86,
ARM64, Itanium, and MIPS64, but not all are outstanding. OpenBLAS [7] is based on
GotoBLAS by handcrafting the kernel but generating by a compiler for every architecture.
OpenBLAS achieve excellent performance among lots of open-source BLAS implementa-
tion. In particular, Wang et al. [10] designed and implemented a highly efficient DGEMM
kernel based on OpenBLAS for 64-bit ARMv8 eight-core processors, which allows Open-
BLAS to perform better when it runs in the ARMv8 multicore platform, and we are still
using this kernel within our method. ATLAS [5] adopts an automatically tuned technique
to find the kernel which will achieve the best performance. Nuechterlein and Whaley [23]
also optimized a GEBP kernel of DGEMM implementation in ATLAS. AUGEM [24] and
POCA [25] also use automatically tuned techniques and kernel optimization. BLIS [8]
reduced the necessary kernels to what we believe is the simplest set that still supports the
high performance that the computational science community demands.

The two-layer parallel DGEMM design based on the NUMA-aware algorithm pro-
posed by us is not the only method to design DGEMM for NUMA architecture. Su et al. [13]
proposed a hybrid-grained dynamic load-balancing method to reduce this drawback of the
NUMA effect by the improved work-stealing algorithm. Wail et al. [14] proposed a simple
user-level thread scheduling and a specific data alignment method on the ccNUMA archi-
tecture to solve memory bottlenecks in problems with large input datasets. Smith et al. [12]
added parallelism to the BLIS framework for matrix multiplication appears to support
high performance.

The workload distribution methods on homogeneous and heterogeneous platforms
to achieve performance gains and energy efficiency for DGEMM is a well-researched
area. Li et al. [26] described some GPU GEMM auto-tuning optimization techniques
that allow us to keep up with changing hardware by rapidly reusing. Nath et al. [27]
presented GPU specific acceleration techniques to develop new kernels (e.g., syrk, symv).
Moss et al. [28] presented a customizable matrix multiplication framework for the Intel
HARPv2 CPU+FPGA platform. Alonso et al. [29] investigated the balance between the
time-to-solution and the energy consumption of dense linear algebra operations on a hybrid
platform equipped with a multi-core processor and several GPUs.
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7. Discussion

As we enter the era of petaflops, the demand for data processing and computing has
grown exponentially. In order to meet this demand, researchers have begun to frequently
use high-performance computing (HPC) platforms, such as multi-core processors, FPGA
and GPU.

However, many high-performance CPUs achieve higher performance at the expense
of large power consumption. Therefore, the power consumption of the CPU has increased
significantly in recent years. The increase in CPU power consumption significantly impacts
its deployment to a wide range of applications. It is estimated that exascale machines built
with the technology used in today’s supercomputers will consume hundreds of millions
of watts of electricity [Miller 2013]. In order to continue to improve performance while
expanding performance, low-power technology is indispensable for the CPU. In recent
years, ARM-based SoCs have competitive performance and energy efficiency, making ARM-
based SoCs the candidates for the next-generation HPC systems. The energy consumption
of DGEMM on ARM has not been fully explored. For these reasons, the energy efficiency
evaluation of DGEMM on the ARM architecture is worthy of study.

8. Conclusions

In this article, we presented the NUMA-aware DGEMM method based on the Kun-
peng920 architecture to optimize cross-die and cross-chip access under the NUMA archi-
tecture. The experimental results show that the method is proven to be effective in the
TaiShan 2280 server. Furthermore, our parallel implementation achieves good scalability
across various matrix sizes evaluated, which is conducive to calculating large-scale matrix
multiplications on architectures with larger-scale processor cores in the future. In addition,
we did not design the high-performance kernel GEBP of this architecture in this article. In
future work, we will establish a performance model design and implement an efficient
GEMM core for this architecture.
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