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Abstract: Electric vehicles (EVs) are a promising technology to reduce emissions, but its development
enormously depends on the technology used in batteries. Nowadays, batteries based on lithium-ion
(Li-Ion) seems to be the most suitable for traction, especially nickel-manganese-cobalt (NMC) and
nickel-cobalt-aluminum (NCA). An appropriate model of these batteries is fundamental for the
simulation of several processes inside an EV, such as the state of charge (SoC) estimation, capacity and
power fade analysis, lifetime calculus, or for developing control and optimization strategies. There are
different models in the current literature, among which the electric equivalent circuits stand out,
being the most appropriate model when performing real-time simulations. However, impedance
models for battery diagnosis are considered very attractive. In this context, this paper compares and
contrasts the different electrical equivalent circuit models, impedance models, and runtime models for
battery-based EV applications, addressing their characteristics, advantages, disadvantages, and usual
applications in the field of electromobility. In this sense, this paper serves as a reference for the
scientific community focused on the development of control and optimization strategies in the field
of electric vehicles, since it facilitates the choice of the model that best suits the needs required.
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1. Introduction

Nowadays, electric vehicles (EVs) are booming, due to the existing environmental problems.
Among the different storage technologies in electromobility, batteries stand out the most. Although there
are other alternatives such as hydrogen storage, a battery is also required for DC bus voltage stabilization
and switching on of other essential or auxiliary devices of the fuel cell system [1]. High capital costs,
limited lifetime, and relatively poor performance at low temperatures are the most important issues
in EVs [2–5]. Therefore, the development of efficient storage technologies is an essential part for
electromobility [6].

Lithium technology is highlighted for electromobility among the studied batteries options [7].
Its specific power and energy density are the highest, with the lowest self-discharge ratio [8]. In addition,
voltage by cell is higher, which is the major drawback of the low overcharging tolerance. Therefore,
a specifically designed charging system is required for this type of battery.

Lithium is the material basis of this type of battery, since lithium ions are carried from cathode
to anode (charging) through a separator, and vice versa (discharging). However, lithium-ion (Li-Ion)
batteries can be classified among different categories based on other elements, mainly those corresponding
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to the cathode chemical composition. Figure 1 shows a comparative summary of the best-known lithium
ion batteries.
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Figure 1. Lithium-ion (Li-Ion) technology comparison. (a) LCO; (b) LMO; (c) LFP; (d) NMC; (e) NCA;
(f) LTO.

Specific energy is a key factor in storage, as it defines the driving range of an EV. As it can be seen
in Figure 1, lithium-cobalt-oxide (LCO), nickel-cobalt-aluminum (NCA), and nickel-manganese-cobalt
(NMC) technologies stand out within specific energy, but LCO can practically be discarded due to
Solid Electrolyte Interphase (SEI) problems and toxicity [9]. Figure 2 shows the expected advances in
specific energy for different types of battery [10].
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braking, which can be more than ten times higher than the average power. To overcome this 
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model of the battery becomes a key factor when improving the techno-economic efficiency of the 
system. The Battery Management System (BMS) is responsible for the correct management of the 
energy stored in the batteries, and indirectly for the safety of the passengers of the vehicle [11]. 

The choice of the adequate battery model according to the purpose or application for which it 
will be used is essential. Some of the most common applications are battery design, their 
characterization, state of charge (SoC) or state of health (SoH) estimation, and thermal analysis or 
mechanical stress studies in specific applications. Depending on the field of study, there are several 
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The average lifetime of batteries in EVs tends to be approximately 8 to 10 years, which is defined
by a 20–30% degradation in battery capacity compared to its initial capacity [3]. In practice, the lifetime
of a battery is reduced due to the high-power profile of the vehicle during acceleration and braking,
which can be more than ten times higher than the average power. To overcome this drawback, not only
innovation in battery technology to increase the specific energy is required, but also advanced control
and optimization techniques are necessary. In this context, the use of a reliable model of the battery
becomes a key factor when improving the techno-economic efficiency of the system. The Battery
Management System (BMS) is responsible for the correct management of the energy stored in the
batteries, and indirectly for the safety of the passengers of the vehicle [11].

The choice of the adequate battery model according to the purpose or application for which it will
be used is essential. Some of the most common applications are battery design, their characterization,
state of charge (SoC) or state of health (SoH) estimation, and thermal analysis or mechanical stress
studies in specific applications. Depending on the field of study, there are several battery models,
which are gathered in Table 1.

Models usually known as electrochemical models, as presented in [12], are aimed at describing the
electrochemical reactions that occur within cell level. Thus, they are the most detailed models, but also
the costliest in terms of developing and suiting. Besides, they require many computing resources.

Electrical models, however, are commonly based on an equivalent circuit to reproduce the effects
of the batteries under operation, being faster than electrochemical ones by neglecting some high levels
of detail.

Mathematical or analytical models depict operation effects by complex differential equations of
second or greater order. Considering that many parameters are not necessary, they are sufficiently
fast. However, these models do not have physical correspondence, so they are not appropriate
either. Abstract models use several analysis tools such as artificial intelligence to predict the batteries
performance. Accuracy depends majorly on data amount at training stage. Interpretability is practically
impossible since only experimental results are used.

Combined models are composed by several sub-models to depict effects of variables from different
nature. Thermoelectric models stand out within these models as their effects are related to each other.
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Table 1. General classification of battery models.

Model Nature Model Data Physical
Interpretability Analogy Accuracy Complexity Suited

Application

Electro-chemical
Pure Electro-Chemical P H White box VH H Battery design
ECM/Reduced order

Electro-Chemical SE M Grey box H M

Electrical

Analytical

Peukert’s model E L

Black box

M M

Prediction
Rakhmatov and Vrudhula SE M M M
Sheperd other iterations SE M M M

State-Space E L M M

ECM

Simples
Simple Rint E M

Grey box

L L

Real time control,
SoC estimation,

. . .

Enhanced Rint SE M L L
RC SE M L L

Thevenin

1st order SE M

L–H L–H
2nd order SE M
3rd order SE M
nth order SE M

PNGV
1st order SE M

L–H L–H2nd order SE M
nth order SE M

Noshin SE M M M
Neural nets E L H H

Impedance Frequency domain SE L–M Grey box M M
Characterization

and real time
operation

Thermal
Analytical Thermal P–SE H White box H H

Real timeECM Thermal SE M Grey box M M

Mechanical/Fatigue Fatigue/Mechanical P–SE H Grey box H Design

Abstract model Artificial Intelligence E L Black box M M Offline analysis

Combined models
Electro-Thermal SE M

Grey box
M

Real timeThermo-electrochemical P H L–H H
Thermo-Mechanical SE H H

* E: Empirical, H: High, L: Low, M: Medium, P: Physical, SE: Semi-Empirical, VH: Very High.

Thus, electrical and combined models are predominant in electromobility studies, as electrochemical
ones are too complex, and mathematical ones do not have physical correspondence. Therefore, they are
not suitable for real-time control. In this sense, this paper focuses on the analysis and description of
the most relevant existing electrical models that are suitable to be implemented in a BMS of an EV.
In this paper, simple models, Thevenin models, partnership for a new generation of vehicles (PNGV)
models, impedance models, and runtime models are considered.

Simple models are the most basic models, which are only appropriate for steady-state analysis,
Thevenin and PNGV models are suitable for transient state simulation, Impedance models focus
on AC behavior, and runtime models depict DC behavior while runtime of the battery is predicted.
These applications are collected in Table 2 [13].

Table 2. Batteries electrical model classification.

Predicting Capability Thevenin Based/PNGV
Models (ECM)

Impedance Based
Models

Runtime-Combined
Based Models

DC No No Yes
AC Limited Yes No

Transient Yes Limited Limited
Battery Runtime No No Yes

This paper is organized as follows: Section 2 analyzes several electrical models currently
applied to Li-Ion batteries within electromobility. These models are subcategorized as simple models,
Thevenin models, PNGV models, and Noshin model, arranged from the simplest, which considers
only ideal elements, to the most complex, which could be a third-order model or a model considering a
large number of elements. Section 3 explains impedance models, which can also be useful for other
models’ parameter definition. Section 4 introduces runtime models, and V-I performance of the models
is explained in Section 5. Finally, conclusions are shown in Section 6.
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2. Equivalent Circuit Models

In this section, several equivalent circuit models (ECMs) available in the literature that are used in
electromobility applications are described, arranged from simpler to more complex.

2.1. Simple Models

2.1.1. Ideal Battery Model

The first electrical model of a battery was developed in PSpice by Hageman in [14], which allows
the simulation of Pb-acid, nickel-cadmium, and alkaline batteries. Later, Gold developed a similar
model for Li-Ion models with errors of up to 12% [15].

An ideal model is the simplest model, with only a constant voltage source and neglecting other
internal parameters. Terminal voltage matches the open-circuit voltage in every moment. Thus,
this model does not consider voltage variation under load variation, SoC changes, or any other
transient phenomena.

General specifications of an ideal battery are given in capacity (Ah) and voltage (V). Stored amount
of energy is given by their product (Wh). This model maintains a constant voltage independently from
other factors until it is fully discharged, when the voltage drops to zero [16]. However, in real batteries,
voltage is affected by the SoC, since the capacity lowers when the load is increased.

Results of this model are acceptable for steady-state analyses where the battery performance is
not the scope. The most common application is the feeding of power devices, usually converters.

An improvement of this model could be the replacement of the voltage source by a SoC-controlled
voltage source. Thus, voltage is varied depending on the SoC based on a look-up table, which improves
the accuracy while its simplicity is maintained.

2.1.2. Simple or Linear Battery Model

The simple model, linear battery model, or internal resistance model (IR) [17], contains a resistance
Rint, apart from the voltage source, Voc (Figure 3).
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Figure 3. Simple or linear battery model.

The resistance Rint represents the energy losses, which make batteries heat up. Terminal voltage
VT matches up with open-circuit voltage VOC only when it is in open circuit. However, when a load is
connected, this voltage is given by:

VT = VOC −Rint·I. (1)

Therefore, this model can emulate the instantaneous voltage drop when the circuit is completed,
which is directly proportional to the circulating current. The higher the internal resistance in a battery,
the greater the losses, and the lower the available maximum power.

The main drawback of this model, as well as of the previous one, is that neither the terminal
voltage VT nor the open-circuit voltage Voc vary according to the SoC or others, as this can be electrolyte
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concentration. Resistance is constant too, independent from SoC or temperature. In this sense, it has
to be noted that, in a real battery, the resistance is highly dependent on battery type, SoC and SoH
state, and temperature (Figure 4 [18,19]). Generally, resistance increases when SoC lowers (Figure 4a),
SoH lowers (degradation increases) (Figure 4b), and temperature lowers (Figure 4c).
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Figure 4. Rint variation in NMC with (a) state of charge (SoC); (b) state of health (SoH); and (c) temperature.

Applicability of this model is restricted to studies where the battery operates at the middle range
of SoC, where the internal resistance and temperature are almost constant. At low SoC, however,
resistance varies too much. Available energy to be released, that is, capacity, cannot be depicted, and it
is supposed to be unlimited [20]. The most common application is the feeding of power devices as
converters or inverters [21].

Within EVs applications, this model is used in maintenance studies, as battery preheating at cold
environment [22], and dynamic simulations of hybrid and electric vehicles. Dynamic simulation can
be improved by considering a SoC-controlled voltage source [23,24].

Resistance from Figure 3, Rint, differs in charging or discharging mode, as shown in Figure 5a.
Therefore, different resistances can be considered for better accuracy, RC for charging and Rd for
discharging, as shown in Figure 5.
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Figure 5. Simple battery model considering charging and discharging resistances.

Diodes shown in Figure 5 are supposed to be ideal and are aimed at activating the correct resistance.
Thus, terminal voltage is given by:

Charging : VT = VOC + RC·I, (2)

Discharging : VT = VOC −Rd·I. (3)

When charging, the diode associated with Rc is directly polarized and will conduct, but the diode
associated with Rd is reversely polarized, avoiding current circulation. When discharging, Rd will be
activated and Rc blocked, so that only one resistance will be activated in each process. This model has
the same drawbacks as the previous one, but improves accuracy, and is used in hybrid and EVs [25].
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2.1.3. Enhanced Simple Battery Model

Figure 6 shows the enhanced simple battery model, which considers the effect of the SoC in
the resistance.
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Figure 6. Simple battery model considering power fade (PF).

In this model, terminal voltage is given by:

VT = VOC −Rint(SoC)·I (4)

where internal resistance can be expressed as [26]:

Rint(SoC) =
R0

SoCK (5)

where R0, SoC, and k are initial internal resistance, current SoC, and a capacity factor calculated from
manufacturer load curves, respectively. The current SoC is given as:

SoC = 1−
A·h
C10

(6)

where A is the equivalent demanded current, h is the operation time in hours, and C10 is capacity for
10 hours operation at reference temperature. Since actual capacity is dependent on the current, it also
will be the error.

However, some authors change the internal resistance calculation method while maintaining the
same schematic model, but including a resistance with non-linear behavior, given as:

Rint(SoC) = Rint +
k

SoC
(7)

where Rint (SoC) is the variable internal resistance, k is a polarization constant, and SoC is the state
of charge.

This model has been historically used by several manufacturers for batteries monitoring purposes
in stationary stages, as well as for traction simulation in Pb-acid batteries [27]. Additionally, it can also
be applied to lithium batteries. Among drawbacks, it does not reduce capacity when load increases,
so it is not valid for dynamic systems or transient states. Although resistance varies, it does not vary as
a function of the temperature, which is one of the major drawbacks of EVs.

This model can be improved in case a SoC-controlled voltage source VOC is considered. Real battery
VOC variation is shown in Figure 7, which includes the usual hysteresis effect between charging
and discharging.
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Terminal voltage VT is given by [29]:

VT = VOC(SoC) −Rint(SoC)·I, (8)

VOC(SoC) = VO − k·SoC, (9)

Rint(SoC) = Rint − kR·SoC (10)

where VOC (SoC) is the SoC-dependent open-circuit voltage, Rint (SoC) is the SoC-dependent resistance,
I is the current, VO is the open-circuit voltage when the battery is fully charged, Rint is the internal
resistance when the battery is fully charged, SoC is the state of charge, and k and kR are empirically
obtained constants.

Even though this model improves accuracy, it is very limited in terms of energy released,
temperature consideration, and is not valid for simulation of transient states. To improve the accuracy,
temperature and SoH can be considered in the voltage source and resistance, but only for steady-state
analyses [17].

2.1.4. Voltage Sources-Based Model

The voltage sources-based model is based on the connection of several voltage sources,
which represent different phenomena. The general scheme for this model is shown in Figure 8.
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The terminal voltage VT is given by:

VT = Ebat + EPol + ETemp −Rint·I (11)

where EBat is a voltage source representing cells internal voltage, EPol is a voltage source representing
polarization effect caused by the active material, ETemp is a voltage source representing temperature
effect, Rint is the internal resistance, and I is the current.

Each voltage source value is experimentally determined by the relation between each effect and
voltage, at each SoC value. This model can be applied to Pb-acid, Ni-Cd, and Li-Ion batteries, and is
used in EV and hybrid vehicles driving simulation [30].

On one hand, the accuracy of this model relies on the accuracy of the relation specified in each
voltage source. On the other hand, there is an inherent error by the consideration of each variable
separately instead of considering them in a coupled manner.

2.1.5. Resistor-Capacitor (RC) or Dynamic Model

The RC or dynamic model is shown in Figure 9. It was first developed in 2000 by SAFT Battery
Company for the NREL.
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This model includes a capacitor CB, which represents the stored capacity, a series resistance
RB, which represents the propagation effect, a capacitor CP, and a current dependent resistance RP,
which represent the polarization and diffusion effects, respectively, and an internal resistance Rint.
The value of CP is very small, while the value of CB usually takes very large values. Generally,
the self-discharge resistance is neglected in Li-Ion batteries [31,32]. SoC value is represented in the
voltage variation through the capacitor CB. The equations that govern its operation are:

VT = VOC − IB·RB −Rint·I, (12)

VT = VCP − IP·RP −Rint·I. (13)

This model is the preferred one among simple models in automotive simulations. Usually, it is
used for SoC estimation [33–35], as it is accurate and complex enough.

2.2. Thevenin-Based Battery Models

None of the models presented above are valid for transient state simulations. In order to simulate
transients, some phenomena as polarization must be considered. In this subsection, some of the most
used models for transient state simulation are explained.
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2.2.1. (First-Order) Thevenin Model

The simplest Thevenin model, commonly called first order or one time constant (OTC) [17],
is composed by a voltage source VOC, an internal resistance Rint, and a RC pair (R1 and C1) representing
the capacitance effect between two parallel plates and the contact resistance. This model is shown in
Figure 10.
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Figure 10. (First-order) Thevenin model.

The aim of adding a RC pair to the simple linear model is to represent transient phenomena.
The main drawback of the Thevenin model is that all the parameters are considered to be constant.
However, it is known that parameters are dependent on SoC, C-Rate, temperature, SoH, etc.

An improvement for transient state simulation can be made by considering SoC in the voltage
source VOC, that is, the open-circuit voltage VOC is related to the SoC of the cell. Among classic
applications of this model are dynamic voltage resistor (DVR) [36] with Pb-acid batteries, but it can
also be used in Li-Ion batteries.

An application of this model can be found in [32], where authors present a SoC estimation method
for an LCO battery. The self-discharge resistance is neglected, as these losses are minimum in Li-Ion
technology (2–10% per month). Authors of [37] apply this model in their stability analysis and SoC
estimation method design for a Li-Ion battery. Authors of [38], however, apply this model in their
study of batteries parallelization. In [39], in addition to the SoC, a SoH estimation method in Li-Ion
cells is also proposed.

Some authors consider the SoC influence in all the parameters, which improves the results
accuracy. The authors of [40], for example, apply it in their study of a power train of an EV.

It is also possible to derive this model in the so-called “EP-Thevenin”, as developed in [41]. In this
paper, authors consider the polarization effect in a deeper way and validate their model in LIFEPO cells.

Among the characteristics of Li-Ion cells, their low hysteresis effect can be highlighted. In [42],
a model development considering this hysteresis effect, as well as the effect of the temperature and the
SoC, can be found. Although considering hysteresis improves model accuracy, this type of model is
surpassed by the second-order Thevenin model [42].

The correct adjustment of the parameters involved is a key factor when comes to achieve a good
precision in the model, for which it is common to use different tests. In [43], a set of charge-discharge
pulses are used, and a prediction error-minimization (PEM) algorithm is applied. Although the SoC is
discretely estimated online using a neuro-fuzzy inference method, the model obtained is fast enough
for real-time operation. In [44], however, moving-window least-square method is used for parameter
estimation in frequency domain. In both papers, only SoC is considered, and other relevant variables,
such as temperature and aging effects, are neglected in their estimation. In this sense, the models
obtained still show some room for improvement.
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2.2.2. Second-Order Thevenin Model

The second-order model, two time constants (TTC), or dual polarization model, adds a second
RC pair (R2 and C2) with a larger time constant (Figure 11) to the previous model. Thus, it is possible
to accurately represent the terminal voltage when the current is zero, which was not possible for the
OTC [17].
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Therefore, the first RC pair has a low time constant for describing short-term transient effects,
while the second RC pair has a larger time constant for describing long-term transient effects.
These transient effects are related to electrochemical and concentration polarization effects, including
charge transfer effect, diffusion, and other factors.

Equations that govern its operation are:

VT = VOC −Rint·I −VC1 −VC2 (14)

where:
.

VC1 = −
1

R1·C1
·VC1 +

1
C1
·I (15)

.
VC2 = −

1
R2·C2

·VC2 +
1

C2
·I. (16)

A development of this model can be found in [45], where a second-order Thevenin model is
used for capacity fading (CF) characterization. In this, Rint is divided into two elements, the original
resistance Rseries, and the resistance Rcycling, which considers the cycling of the cell. All parameters are
defined considering the SoC and temperature.

The authors of [46] apply this model in their SoC estimation method based on a combination of the
least-squares method and an extended Kalman filter. They only consider the SoC, neglecting temperature
and SoH. In [47], however, SoC, SoH, and SoF are considered.

Thevenin models can be used in combination with others to create a multidisciplinary model.
The study performed in [48] develops a model considering three aspects: (i) Electrical model,
(ii) thermal model, and (iii) degradation model for Li-Ion batteries installed in EVs. Authors apply
a modified particle swarm optimization (PSO) for parameter defining and results are validated
experimentally. In [49], an online parameter identification method is proposed based on several offline
tests. Since temperature is considered to be a great source of error, a temperature compensation is
added as an offset. SoH is calculated according to the rate of change of several parameters but is not
used for the parameters identification.

2.2.3. Third-Order Thevenin Model

The third-order Thevenin model is obtained by adding a third RC pair, as can be shown in
Figure 12.
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Terminal voltage VT is given by:

VT = VOC − I·Rint −VC1 −VC2 −VC3 (17)

where:
.

VC1 = −
1

R1·C1
·VC1 +

1
C1
·I, (18)

.
VC2 = −

1
R2·C2

·VC2 +
1

C2
·I, (19)

.
VC3 = −

1
R3·C3

·VC3 +
1

C3
·I. (20)

The most interesting applications of the third-order Thevenin model within electromobility include
the parametric modelling of the battery [50] and the Vehicle-to-Grid (V2G) operation studies [51].

It is possible to increase the complexity of the model for higher accuracy, but the computation cost
is not worth the improvement. Therefore, it is not usual to find higher order models, assuming that
their application in electromobility would be unfeasible for real-time control.

2.3. PNGV Models

2.3.1. (First-Order) PNGV Model

A partnership for a new generation of vehicles (PNGV), composed of a cooperative research
program between U.S. government and the three major domestic auto corporations (DaimlerChrysler,
Ford, and General Motors), proposed the PNGV model, which is shown in Figure 13.Energies 2019, 12, x 13 of 27 
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This model is obtained by adding a series capacitance C0 to the Thevenin model. Here, VOC is
the open-circuit voltage source, Rint is the internal ohmic resistance, RP and CP are the polarization
resistance and the capacitance given by polarization (due to the gradient concentration), respectively,
and C0 is the capacitance that represents the changes in the open-circuit voltage (OCV) due to the
integration of the current I.

When the Li-Ion battery is in a charging or discharging state, the integration of current with time
causes the SoC to change, which in turn, changes the OCV of the battery, which is represented by
the voltage changes on the capacitor C0. In this model, the capacitance C0 not only represents the
capacity of the Li-Ion battery, but also its direct current response. In addition, the effect of hysteresis
is partly described by C0, thereby compensating some of the deficiencies of the Thevenin model.
Parameter identification experiments based on current pulses can easily be conducted, with this model
being among the most frequently adopted models.

Terminal voltage in this model is given by:

VT = VOC − I·Rint −VC0 −VCP (21)

where:
.

VC0 =
1

C0
·I (22)

.
VCP = −

1
RP·CP

·VCP +
1

CP
·I. (23)

However, the PNGV standard model does not consider the cycle number or C-rate effects. In turn,
polarization effect, polarization, and activation as a whole, are considered. The OCV only depends on
total current throughout, which conducts to an increasing error with time [52].

In the current literature, this model is used in SoC as well as in SoH estimation [53,54].
An improvement of this model can be found in [55]. In this, authors have related the parameters

to SoC and temperature to improve its accuracy. They also consider the hysteresis effect and the
non-linearity when operating under high currents.

2.3.2. Second-Order PNGV Model

The first-order PNGV model, as the first-order Thevenin model, is not very accurate when the cell
is fully charged or fully discharged [56]. The PNGV model can be extended to a second-order one,
which is shown in Figure 14.Energies 2019, 12, x 14 of 27 
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In this model, Rp and Cp represent polarization effects by concentration, as in classic PNGV, but Ra

and Ca are added to represent polarization effects by activation. The general equation that governs its
operation is:

VT = VOC − I·Rint −VC0 −VCP −VCa (24)
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where:
.

VC0 =
1

C0
·I (25)

.
VCP = −

1
RP·CP

·VCP +
1

CP
·I (26)

.
VCa = −

1
Ra·Ca

·VCa +
1

Ca
·I. (27)

An advantage of this second-order model is the accuracy improvement in transient and
stationary state compared to the first-order PNGV and first-order Thevenin [57], but considering that
computational requirements are too high, it is poorly used.

2.4. Noshin’s Battery Models

Generally, battery models do not consider the hysteresis effect. Noshin’s model is a derivation
from the Thevenin model, which considers this hysteresis effect and the nonlinearity of the
internal parameters.

Parameters of the Thevenin and PNGV models are obtained by a hybrid pulse power
characterization (HPPC) test [58] and, generally, making several assumptions, such as same charging
and discharging resistances, or same charging and standing resistances. However, these resistances do
vary in a real battery, and therefore, it may be necessary to consider all them to obtain a high accuracy
model. Figure 15 shows the Noshin’s model electrical scheme.
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In this model, the internal resistance during charging Rint,ch, is different from the internal resistance
during discharging Rint,dch. Furthermore, RL,ch and RL,dch are added to represent the resistance increase
due to the cycle aging, and four RC pairs, which represent the polarization effects, two during cycling
and two during resting. Finally, a self-discharge resistance Rself-dis can be considered for more accuracy.
A development of this model can be found in [58].

3. Impedance Models

One of the most commonly used techniques for parameter determination in ECM refers to
electrochemical impedance spectroscopy (EIS) [59]. The electrochemical impedance is defined as the
response of an electrochemical system to an applied voltage. In this technique, an impedance sweep in
frequency spectrum is performed, easing a model definition. Therefore, an impedance is got at each
frequency value. Test results are graphed in a Nyquist diagram, depicting the resistance in abscise axis
and the reactance in y-axis.

In frequency spectrum, it is common to find constant phase elements (CPEs). These elements
have a constant phase independent from frequency value and are commonly used in Li-Ion battery
modelling [60–63].

The impedance of a CPE can be expressed in fractional calculus as:

ZCPE(s) =
1

Wsα
(28)

where ZCPE is the impedance of the CPE; s is the Laplace operator; W is the fractional coefficient; and α

is the fractional order, 0 ≤ α ≤ 1. Note that the CPE represents a resistance when α = 0 and represents a
capacitance when α = 1.

A typical circuit obtained though EIS tests for Li-Ion batteries is the so-called Randle’s Circuit,
which is shown in Figure 16. Some authors prefer to draw the Warburg impedance ZW out of the
parallel branch, in series with Rint, but the difference between these two models is negligible [64].
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Figure 16. Randle’s circuit and its approximation.

The internal resistance Rint used to represent the electric conductivity of the electrolyte, separator,
and electrodes, matches with horizontal displacement, that is, where the curve meets the x-axis.
The ZARC impedance element is composed of a parallel association of the charge transfer resistance
Rct and the double-layer capacitance Cdl, which represent the activation polarization voltage drop,
and is graphed as a semicircle, while ZW is a specific CPE, which models the diffusion effects, and is
graphed as a line with 45-degree slope at very low frequencies [59]. These parameters are shown in
Figure 17, in a commonly used circuit in these studies, and its Nyquist diagram with its corresponding
physical interpretation.
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Figure 17. An impedance model of Li-Ion battery.

The analytical expression is as follows:

Zmodel(s) = Ls + Rint +
RSEI

1 + RSEICSEI
+

Rct

1 + RctCdls
+

1
QWs1/2

(29)

where Zmodel denotes the impedance of the equivalent circuit model; L and Rint are the inductance
and resistance in the high-frequency region, respectively; RSEI and Rct are the resistances in the
middle-frequency region; CSEI is a CPE modelled as a capacitor; Cdl is another CPE modelled as a
capacitor; and QW is the fractional coefficient of the Warburg impedance.

The effects of this Warburg impedance can also be reproduced by using multiple resistor–capacitor
(RC) networks in series [65]. Although for an exact equivalence an infinite RC pairs network is needed,
the circuit can often be modelled precise enough over some frequency range by using a small number
of RC pairs. In addition, double layer capacitance Cdl is often omitted, as its impact is predominant
only at very high frequencies [66]. If Cdl is removed and Warburg impedance is replaced by a small
finite number of RC pairs, the cell model becomes the Thevenin model explained in Section 2.2.

EIS is recommended to be performed in stationary state and considering low input signal to avoid
non-linearity effects. Besides, very low currents must not be used to avoid noise in results. This test
must be repeated for each case of interest (SoC, temperature, current, etc.), as it is necessary to wait
until stationary state. Some EIS analysis can be found in [67,68]. Figure 18 [69–71] shows the results
dependency on temperature, SoC, and SoH.

The direct effect that the temperature has on all the parameters can be observed, greater in ZARC,
enlarging the radius of the circle in Nyquist diagram. The SoC has its larger effect in Rint, while the
SoH affects all the parameters similarly.
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Impedance models can be very useful in Li-Ion cell diagnosis. Thus, identifying the cell-aging
reason is possible by observing the larger variation parameter. Rint is a contact or an ohmic resistance,
and its variation means conductivity loss, collector corrosion, or side reactions in electrolyte. An increase
in RSEI and CSEI means an increase in the solid electrolyte interface, which together with an increase of
the RCT, means a loss of lithium in the cell. A variation in Warbug impedance, in turn, is normally due
to a loss of active material [72]. The number of semi-circles before the Warburg tail depends on the
usage history of the cell as they are originated from SEI and the electronic properties of materials [73].

Several models derived of this technique can be found in the literature [74–77].

4. Runtime Models

4.1. Simple Runtime Models

The models introduced above are able to represent the voltage and current evolution. However,
runtime data are not provided. Figure 19 shows a runtime model, which is commonly used for runtime
simulation of a battery under a fixed average current.
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Figure 19. Runtime model.

where Rself-dis is the self-discharge resistance, CCap is the capacitor that represents the charge stored in
the battery (capacity), and I(t) is a current source that represents the operating current.

Since the voltage of a battery is dependent on the SoC, this model simulates the SoC and is
commonly used in combination with other models.

4.2. Runtime-Combined Models

Runtime-combined models are generally composed by two sub-circuits connected to each other.
Generally, a runtime model combined with a Thevenin one is widely used. In Figure 20, a typical
circuit based on the third-order Thevenin is shown.
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In the first sub-circuit, Rself-dis is a self-discharge resistance, CCap is a capacitor representing
the charge stored in battery, and I(t) is a current controlled current source, measuring the current
flowing in sub-circuit 2. The first sub-circuit is designed for energetic considerations, such as SoC
measurement, remaining capacity, or self-discharge ratio. The second sub-circuit is composed of a
third-order Thevenin model but replacing the voltage source by a voltage-controlled voltage source,
measuring voltage (SoC-dependent) from the first sub-circuit. The second sub-circuit is designed for
simulating I-V performance.

Several works focused on the development of this model for electromobility application can be
found in the current literature, the most usual being those composed of a second-order Thevenin
model [13,78] and a third-order Thevenin model [5,79,80].

5. V-I Performance

For better comprehension, below are the performance differences from the main ECMs analyzed
in Section 3 are explained. Figure 21 shows the typical behavior of a Li-Ion cell during a discharge-
charge cycle.
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Starting from SoC0, an instantaneous voltage drop V0dch happens when the discharge is started
due to Rint (Electrolyte resistance majorly). Then, voltage goes on decreasing exponentially, due to
a combination of RC pairs (diffusion and surface reactions) and SoC decrease in the voltage source.
Voltage drop V0dch is recovered instantaneously when current falls to zero, and due to RC pairs,
voltage needs some time to be stabilized in a new SoC state, SoC1. When the charging state starts,
an instantaneous voltage increase V0chg happens due to Rint, followed by an exponential increase due
to RC pairs and SoC variation in voltage source. Finally, when the charging stops, an instantaneous
voltage drop happens due to Rint, and an exponential decrease due to RC pairs, until final SoC is
reached, SoC2. Thevenin and PNGV models are more accurate when RC pairs are increased and can
model these effects. However, when using an ideal model with SoC consideration, as it can be seen
in Figure 21, Voc graphed in purple only considers part of the dynamic: Voltage variation with SoC
variation. The enhanced simple model with SoC consideration is more accurate, since it considers the
instantaneous voltage drops too, graphed in green in Figure 21. Therefore, a linear model cannot be
considered for SoC direct measurement, as it does not consider SoC in the voltage variation [17]

Consequently, Thevenin and PNGV models are best considered for most applications. Based on
the characteristics of the study, the most-used RC pairs number in Thevenin and PNGV models
are between 1 and 2. Its waveform is graphed in blue. A greater number of RC pairs increases
computational effort without providing a reasonable enough accuracy increase [81]. In design or
diagnosis applications, where simulation speed is not important, it is common to use three RC pairs.
Therefore, the number of RC pairs is defined by accuracy and complexity dilemma [59]. The values of
the elements of the RC pairs are usually obtained by experimental results.

Within Thevenin and PNGV models, the first-order one can represent transient state approximately
and it is enough for most studies, especially those where simulation speed is a priority. Second-order
models can represent transient state fairly accurate, and therefore, it is applicable in SoC estimation.
Within electromobility, a second-order model is considered appropriate, even better if it is combined
with a runtime model [78]

Table 3 [57] gathers the accuracy results of a comparative study among different models.
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Table 3. Comparison of the error in percentage [%] among electrical equivalent circuits.

Test 50%
SoC, 1C

Pulse Test DDP Test Capacity Test 1C Capacity Test 5C

DoD [%] 0–5 5–90 90–100 0–5 5–90 90–100 0–5 5–90 90–100 0–5 5–90 90–100

Rint 0.2 4.5 7 14 5 15 20 3 5 18 8 9 19.2
RC 0.3 8 2 55 5 5 46 7 2 58 6 5 50

Thevenin 0.2 3.5 5 17 4 4 15 2 1 20 2 7 19
PNGV 0.2 2 1.5 25 4 3.5 19 2 1.5 29 6 12 18

2nd order PNGV 0.1 2 2 19 2.5 2 14 2 2 25 4 14 35
3rd order PNGV 0.2 1.5 2 17 3 1 13 2 2 23 3 12 28

Noshin 0.2 2 1.5 13.5 2.5 3 14 2 1 16.5 2 2 12.5

Although all the models are very accurate under standard fixed conditions (5–90% Depth of
Discharge (DoD)), results depend on operating current, but, overall, on DoD, reaching an error of 58%.

The batteries are operated typically with a 60% DoD when cycled near the middle of the SoC.
In these applications, the Thevenin or PNGV models are usually accurate enough, while maintaining a
high computational speed. In case large computation resources are available and if the application
would demand a charging/discharging profile more similar to dynamic discharging profile (DDP),
a third-order PNGV model would be the most accurate, as well as RC model for the pulse test profile.

Nevertheless, batteries operating in deep cycles are a critical application for current models.
The Noshin model seems to offer better results in those tests that aim to measure the capacity of a
battery, independently from the DoD.

Table 4 gathers analyzed literature with electromobility application.

Table 4. Analyzed literature summary.

Model Objective Considerations Battery Type Year Ref
Effects Parameters

ECM

Simple

Ideal Model VOC Li-Ion 1997 [15]

Linear

Energy management SoC, T

VOC, Rint

LFP (Li-Ion) 2017 [22]

HEV Simulation SoC Li-Ion
2007 [23]
2017 [24]

SoC estimation Lead-Acid 2001 [25]
Model Ccap, Rint LFP (Li-Ion) 2013 [82]

RC SoC estimation Pol, Prop, SoC CB, RB, Rint, RP,
CP

Li-Ion
2013 [33]
2014 [35]

LIPO (Li-Ion) 2008 [34]

Thev

1
Order

SoC estimation
Pol, SoC

VOC, Rint, RP, CP

LCO (Li-Ion) 2018 [32]
Stability analysis and SoC estimation

Li-Ion

2015 [37]
Batteries parallelization 2016 [38]

SoC and SoH model Pol, SoC, SoH, T 2011 [39]
Power Electronic Pol, SoC, 2013 [40]

EP-Thevenein model LFP (Li-Ion) 2011 [41]
Life model Pol, SoC, T LFP (Li-Ion) 2017 [83]

System design Li-Ion 2002 [84]

Parameter regression Pol, SoC, T, Hyst Pb-acid, NiMH,
Li-ion 2006 [85]

2 order

Model T, CF

VOC, Rint, 2RC

Li-Ion
2009 [45]

SoC estimation Pol, SoC 2016 [46]
SoC, SoH, and SoF estimation SoC, SoH, SoF 2018 [47]

Model Pol, SoC, SoH, T NMC (Li-Ion) 2018
[48]

Characterization [18]

Model Pol, SoC, T

NMC, LFP, LTO
(Li-Ion) 2018 [86]

NMC (Li Ion) 2016 [87]
2018 [88]

Fault diagnosis Pol, SoC
Li-Ion

2013 [89]
Life model Pol, SoC, T, SoH 2017 [90]

3 order
Model SoC,Pol VOC, Rint, 3RC Li-Ion

2016 [50]
Model for V2G SoC, Pol, T, Hyst 2012 [51]
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Table 4. Cont.

PNGV 1 order
SoH estimation

Pol, ID, SoC, LFP (Li-Ion) 2018 [53]
Pol, ID, SoH,

SoC, T VOC, Rint, C0, RC 2016 [54]

Model Pol, ID, Hyst,
SoC, T

LFP and NMC
(Li-Ion) 2014 [55]

2 order Life model Pol, SoC, T VOC, Rint, C0,2RC LFP (Li-Ion) 2014 [91]

Noshin Model Pol, SoC, SoH, T VOC, Rint, RP, CP Li-Ion 2012 [58]

Freq 2 order
Kinetics Study Pol VOC, Rint, 2ZArc LFP (Li-Ion) 2015 [74]

Characterization Pol, SoC, T NMC (Li-Ion) 2014 [75]
Model Pol, SoC VOC, L, Rint, 2ZArc Li-Ion 2014 [77]

3 order Model Pol VOC, L, Rint, 3ZArc Li-Ion 2012 [76]

RT Thev

2 order
Model Pol, SoC, T,

cycles
VOC, Rint, 2RC,

Ccap

Li-Ion, Ni-MH 2006 [13]
Model for EV LFP (Li-Ion) 2011 [92]

3 order Model for EV
Pol, SoC, T,

cycles
VOC, Rint, 3RC,

Ccap

Li-Ion 2011 [5]
Li-Ion, Ni-MH 2008 [79]

SoC, Pol, T Li-Ion, Lead
acid, Ni-MH 2016 [80]

CF: Capacity fade, ECM: Equivalent circuit model; Freq: Frequency, Hyst: Hysteresis, ID: Ion-diffusion, Pol:
Polarization, Prop: Propagation, RT: Runtime, SoC: State of charge, SoF: State of function, SoH: State of health,
T: Temperature, Thev: Thevenin.

Power variation studies, so-called power fade (PF), and capacity variation studies, so-called CF,
are within the most usual and interesting current applications of battery models in electromobility.
These studies represent the capacity or power variation when a battery is aged. It is known that average
current, temperature, DoD, and average SoC are most influent variables in battery degradation by
cycling [93]. However, an adequate model is required to know the performance differences, as can be a
runtime-combined model with a first-order Thevenin considering hysteresis, second-order Thevenin,
or Noshin model. This model should not only consider the current and the SoC, but also the SoH and
the temperature in its parameters (Rint, VOC, etc.). Therefore, it would be possible to predict a battery
performance when it is degraded by the use and charging events. Indeed, charging events can be
optimized if degradation is foreseen.

The definition of the parameters is, perhaps, the most expensive process in terms of time and
effort. For this purpose, experimental tests to analyze the evolution of the parameters depending on
the behavior to be characterized are necessary. These tests may consist of cycling a series of cells at
different currents, temperatures, and DoDs, as well as in the continuous recording of their behavior
until the end of their lifetime.

While Voc and Rint are easily characterized by measuring the open-circuit voltage and the
instantaneous voltage drop when the cells start discharging, characterizing their capacity at different
SoH points requires specific capacity tests. Since these tests are carried out discretely, it may be
necessary to interpolate the values obtained to calculate intermediate solutions.

An analysis of the contribution of each variable to the evolution of each parameter would allow a
greater accuracy when extrapolating the results of the tests. Although these tests are carried out at
constant current, it would be possible to apply the superposition method to emulate a real variable cycle.

Although these tests may involve a large time and computational cost, they are worth it since it
would be possible to optimize the BMS of the vehicle that incorporates the tested cells.

6. Conclusions

Battery models can be classified into several categories; generally, these categories are electrochemical
models, mathematical models, and electrical models.

Electrochemical model are the most accurate ones in emulating all the internal phenomena.
However, they consume excessive computational resources and are very slow. Therefore, they are
suitable for battery design, but not for real-time control or emulation purposes.

Mathematical models are appropriate for certain calculus or prediction parameters, such as
statistical cycle life based on experimental tests.
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Finally, electrical models are the most appropriate for real-time control or emulation purposes
and are the best solution to be implemented in actual battery management systems (BMSs), chargers,
or similar devices. These models are composed of simple elements, such as resistances and capacitors,
which are characterized based on the influence of several parameters (temperature, current, etc.).

In this paper, several Li-Ion battery electric models available for automotive applications have
been analyzed and categorized, showing their advantages and drawbacks.

Simple models are sufficient for those studies where the battery is not the focus. Thevenin and
PNGV models are adequate when the battery works in a certain SoC range, however they are not
suitable for DC response analysis or runtime prediction. It is common to use variable resistances
and capacitors, which consider SoC or temperature for improving these deficiencies, but it increases
the computational requirement. These models are appropriate for transient state analysis, but AC
response is limited. Impedance models, in turn, are appropriate for AC response analysis, as they
are developed in the impedance domain. However, their transient state response is very limited.
Runtime models offer a DC and runtime response simultaneously with an average fixed current.
At last, combined models also combine the models’ advantages, improving accuracy by decreasing
simulation speed.

The estimation of the parameters is another key aspect. While variables such as SoC or SoH have to
be measured online, the estimation of the parameters can be done offline, and adjusted online if desired.
In case an offline estimation of SoC or SoH based on laboratory tests is performed, and therefore not
relating the parameters to the actual cycling of the battery, a high error in the results would be obtained.

An optimal model to be implemented in an EV must match a series of considerations:

1. Accuracy: An accurate model, and with consideration of enough general aspects is required.
These general aspects can be:

a. Electrical model: Knowing the I-V behavior of a battery is essential for any study associated
with its operation.

b. Thermal model: Since a battery resistance varies inversely with temperature, it is common to
have accuracy errors in performance simulation and runtime estimation when temperature
is neglected.

c. Runtime model: Necessary for those studies considering battery runtime, capacity
increasing, or effects derived.

2. Computational simplicity: A simpler model is preferred easing real-time operation as simulation
speed is increased.

3. Configuration simplicity: A simple model to be configured is preferred, with the lowest parameters
to be identified and defined.

4. Interpretability: An interpretable model would ease the identification of the origin if any issue
would appear in the battery.
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75. Olofsson, Y.; Groot, J.; Katrašnik, T.; Tavcčar, G. Impedance spectroscopy characterisation of automotive
NMC/graphite Li-ion cells aged with realistic PHEV load profile. In Proceedings of the 2014 IEEE International
Electric Vehicle Conference (IEVC), Florence, Italy, 17–19 December 2014; pp. 1–6.

76. Osaka, T.; Momma, T.; Mukoyama, D.; Nara, H. Proposal of novel equivalent circuit for electrochemical
impedance analysis of commercially available lithium ion battery. J. Power Sources 2012, 205, 483–486.
[CrossRef]

77. Li, S.E.; Wang, B.; Peng, H.; Hu, X. An electrochemistry-based impedance model for lithium-ion batteries.
J. Power Sources 2014, 258, 9–18. [CrossRef]

78. Zhang, H.; Chow, M.H. Comprehensive dynamic battery modeling for PHEV applications. In Proceedings
of the IEEE PES General Meeting, Providence, RI, USA, 25-29 July 2010; pp. 1–6.

79. Kroeze, R.C.; Krein, P.T. Electrical battery model for use in dynamic electric vehicle simulations. In Proceedings
of the 2008 IEEE Power Electronics Specialists Conference, Rhodes, Greece, 15–19 June 2008; pp. 1336–1342.

80. Cao, Y.; Kroeze, R.C.; Krein, P.T. Multi-timescale Parametric Electrical Battery Model for Use in Dynamic
Electric Vehicle Simulations. IEEE Trans. Transp. Electr. 2016, 2, 432–442. [CrossRef]

81. Huria, T.; Ceraolo, M.; Gazzarri, J.; Jackey, R. High fidelity electrical model with thermal dependence
for characterization and simulation of high power lithium battery cells. In Proceedings of the 2012 IEEE
International Electric Vehicle Conference, Greenville, SC, USA, 4–8 March 2012; pp. 1–8.

82. Blanco, C.; Sánchez, L.; Gonzalez, M.; Anton, J.C.; Gacia, V.; Viera, J.C. An Equivalent Circuit Model With
Variable Effective Capacity for LiFePO4 Batteries. IEEE Trans. Veh. Technol. 2014, 63, 3592–3599. [CrossRef]

83. Mathew, M.; Kong, Q.H.; McGrory, J.; Fowler, M. Simulation of lithium ion battery replacement in a battery
pack for application in electric vehicles. J. Power Sources 2017, 349, 94–104. [CrossRef]

84. Gao, L.; Liu, S.; Dougal, R.A. Dynamic lithium-ion battery model for system simulation. IEEE Trans. Compon.
Packag. Technol. 2002, 25, 495–505.

85. Verbrugge, M.; Koch, B. Generalized Recursive Algorithm for Adaptive Multiparameter Regression.
J. Electrochem. Soc. 2006, 153, A187. [CrossRef]

86. Nikolian, A.; Jaguemont, J.; de Hoog, J.; Goutam, S.; Omar, N.; Van Den Bossche, P.; Van Mierlo, J.
Complete cell-level lithium-ion electrical ECM model for different chemistries (NMC, LFP, LTO) and
temperatures (−5 ◦C to 45 ◦C)—Optimized modelling techniques. Int. J. Electr. Power Energy Syst. 2018, 98,
133–146. [CrossRef]

http://dx.doi.org/10.3390/wevj3010127
http://dx.doi.org/10.1149/2.0331816jes
http://dx.doi.org/10.1016/j.jpowsour.2013.01.094
http://dx.doi.org/10.1016/j.energy.2015.03.019
http://dx.doi.org/10.1016/j.jpowsour.2017.03.042
http://dx.doi.org/10.1016/j.jpowsour.2015.01.097
http://dx.doi.org/10.1016/j.jpowsour.2015.04.103
http://dx.doi.org/10.1016/j.jpowsour.2012.01.070
http://dx.doi.org/10.1016/j.jpowsour.2014.02.045
http://dx.doi.org/10.1109/TTE.2016.2569069
http://dx.doi.org/10.1109/TVT.2014.2309394
http://dx.doi.org/10.1016/j.jpowsour.2017.03.010
http://dx.doi.org/10.1149/1.2128096
http://dx.doi.org/10.1016/j.ijepes.2017.11.031


Energies 2019, 12, 2750 27 of 27

87. Mesbahi, T.; Khenfri, F.; Rizoug, N.; Chaaban, K.; Bartholomeüs, P.; Le Moigne, P. Dynamical modeling of
Li-ion batteries for electric vehicle applications based on hybrid Particle Swarm-Nelder-Mead (PSO-NM)
optimization algorithm. Electr. Power Syst. Res. 2016, 131, 195–204. [CrossRef]

88. de Hoog, J.; Jaguemont, J.; Abdel-Monem, M.; Van Den Bossche, P.; Van Mierlo, J.; Omar, N. Combining an
Electrothermal and Impedance Aging Model to Investigate Thermal Degradation Caused by Fast Charging.
Energies 2018, 11, 804. [CrossRef]

89. Sidhu, A.; Izadian, A.; Anwar, S. Adaptive Nonlinear Model-Based Fault Diagnosis of Li-Ion Batteries.
IEEE Trans. Ind. Electron. 2015, 62, 1002–1011. [CrossRef]

90. Yuksel, T.; Litster, S.; Viswanathan, V.; Michalek, J.J. Plug-in hybrid electric vehicle LiFePO4 battery life
implications of thermal management, driving conditions, and regional climate. J. Power Sources 2017, 338,
49–64. [CrossRef]

91. Omar, N.; Monem, M.A.; Firouz, Y.; Salminen, J.; Smekens, J.; Hegazy, O.; Gaulous, H.; Mulder, G.;
Van den Bossche, P.; Coosemans, T.; et al. Lithium iron phosphate based battery—Assessment of the aging
parameters and development of cycle life model. Appl. Energy 2014, 113, 1575–1585. [CrossRef]

92. Lam, L.; Bauer, P.; Kelder, E. A practical circuit-based model for Li-ion battery cells in electric vehicle
applications. In Proceedings of the 2011 IEEE 33rd International Telecommunications Energy Conference
(INTELEC), Amsterdam, Netherlands, 9–13 October 2011; pp. 1–9.

93. Thompson, A.W. Economic implications of lithium ion battery degradation for Vehicle-to-Grid (V2X) services.
J. Power Sources 2018, 396, 691–709. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.epsr.2015.10.018
http://dx.doi.org/10.3390/en11040804
http://dx.doi.org/10.1109/TIE.2014.2336599
http://dx.doi.org/10.1016/j.jpowsour.2016.10.104
http://dx.doi.org/10.1016/j.apenergy.2013.09.003
http://dx.doi.org/10.1016/j.jpowsour.2018.06.053
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Equivalent Circuit Models 
	Simple Models 
	Ideal Battery Model 
	Simple or Linear Battery Model 
	Enhanced Simple Battery Model 
	Voltage Sources-Based Model 
	Resistor-Capacitor (RC) or Dynamic Model 

	Thevenin-Based Battery Models 
	(First-Order) Thevenin Model 
	Second-Order Thevenin Model 
	Third-Order Thevenin Model 

	PNGV Models 
	(First-Order) PNGV Model 
	Second-Order PNGV Model 

	Noshin’s Battery Models 

	Impedance Models 
	Runtime Models 
	Simple Runtime Models 
	Runtime-Combined Models 

	V-I Performance 
	Conclusions 
	References

