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Abstract: In past years, several visual saliency algorithms have been proposed to extract salient
regions from multimedia content in view of practical applications. Entropy is one of the important
measures to extract salient regions, as these regions have high randomness and attract more visual
attention. In the context of perceptual video coding (PVC), computational visual saliency models
that utilize the charactertistics of the human visual system to improve the compression ratio are
of paramount importance. To date, only a few PVC schemes have been reported that use the
visual saliency model. In this paper, we conduct the first attempt to utilize entropy based visual
saliency models within the high efficiency video coding (HEVC) framework. The visual saliency map
generated for each input video frame is optimally thresholded to generate a binary saliency mask.
The proposed HEVC compliant PVC scheme adjusts the quantization parameter according to visual
saliency relevance at the coding tree unit (CTU) level. Efficient CTU level rate control is achieved
by allocating bits to salient and non-salient CTUs by adjusting the quantization parameter values
according to their perceptual weighted map. The attention based on information maximization has
shown the best performance on newly created ground truth dataset, which is then incorporated
in a HEVC framework. An average bitrate reduction of 6.57% is achieved by the proposed HEVC
compliant PVC scheme with the same perceptual quality and a nominal increase in coding complexity
of 3.34% when compared with HEVC reference software. Moreover, the proposed PVC scheme
performs better than other HEVC based PVC schemes when encoded at low data rates.

Keywords: entropy; information maximization; high efficiency video coding; perceptual video
coding; visual saliency

1. Introduction

Currently, the majority of information being communicated and shared on the Internet is in the
form of multimedia. Images and videos captured from imaging and handheld devices possess an
enormous amount of redundant information, which needs to be exploited for efficient transmission
and storage. Traditionally, image and video coding techniques are developed with the aim to
remove redundant information to reduce size, while preserving visual quality. The International
Telecommunication Union (ITU) and the International Standards Organization (ISO) have developed a
series of video coding standards over the last three decades. In 2010, the ITU video coding experts’
group (VCEG) and the ISO motion picture experts’ group (MPEG) created a joint collaborative team
on video coding (JCT-VC) for the development of high efficiency video coding (HEVC), with the
aim of achieving high compression gain [1]. Since the first draft of HEVC in April 2013, the research
community has contributed to improving the performance of HEVC and its implementation on
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the hardware [2-5]. In Reference [2], a computationally scalable rate estimation algorithm is
proposed that addresses the complexity issue associated with HEVC for encoding higher resolution
videos. In Reference [3], FPGA-based hardware implementation of a video encoder is presented,
which addresses the throughput of high resolution and high-quality videos in the entropy coding
stage. A CABACDbit rate estimation algorithm is implemented in FPGA and ASICbased hardware
architecture, which exploits parallelism to improve the HEVC performance [4]. In Reference [5],
FPGA and ASIC-based hardware architecture of HEVC intra encoder is presented that achieve a better
performance in terms of computation workload reduction, BD-Rate and BD-PSNR.

Recently, researchers in the field of video coding have been focusing on reducing bit rate by
utilizing the characteristics of the human visual system (HVS) and targeting higher quality for salient
regions of video. This is going to benefit the network usability by reducing the required amount of
bandwidth and helps to enhance the user experience. Psychovisual aspects of HVS have been employed
in the video coding framework to remove perceptually redundant information. Video contains
perceptually irrelevant information as humans generally focus on certain regions in a scene called
region of interest (ROI). A perceptual video coding (PVC) scheme employs a visual saliency model
to remove perceptually redundant information. Taking advantage of HVS characteristics, the PVC
scheme screens out the perceptually irrelevant information present in the video. This improves the
performance of video coding systems in terms of bit rate reduction, while maintaining the same
perceived video quality. A visual saliency model can be integrated in a video coding framework in a
variety of ways, which results in diversified PVC schemes. Generally, the PVC schemes are classified
into two classes—pre-processing based PVC and embedded PVC [6].

Pre-processing based PVC schemes exploit HVS characteristics to modify the input video signal
characteristics prior to encoding. In Reference [7], visual saliency based smoothing and enhancing is
performed on the video frames before the encoding process. A foveation filter is incorporated at the
pre-processing stage, which is modified by moving pattern classifier and the Hedge algorithm to suit
the HVS mechanism. Spatial blurring is employed to remove the high-frequency contents from the
image background, which represent the non-salient region [8]. As a result, the background is encoded
at lower bit rate. In Reference [9], multiscale analysis and wavelet decomposition is employed to
compute salient regions in video frames. Smoothing filters are applied to non-salient regions to remove
high frequency content, which results in an improvement in compression efficiency. The overall
performance of the pre-processing based PVC schemes is low because these methods are unable to
fully utilize the video encoder characteristics. On the other hand, in embedded based PVC schemes,
one or more functional blocks of the video coding framework are optimized, consistent with the HVS
characteristics [10]. A visual saliency algorithm is employed to extract the perceptual features from
video frames and adjust the encoder parameters accordingly. In Reference [11], HVS characteristics
are utilized to optimize the distortion model of the HEVC encoder in accordance with the perceived
image quality. A simplified perceptual rate-distortion optimization (RDO) procedure is adopted for
the PVC scheme, which is influenced by the structural similarity index based divisive normalization
scheme. In Reference [12], the PVC scheme adapts the scaling factor in the quantization block to the
perceptual characteristics at macroblock level. In Reference [13], the frequency sensitivity of HVS is
employed to improve the subjective quality of the video coding framework. The adaptive frequency
weighting algorithm is utilized at the macroblock level to pick the frequency weighting factor for the
quantization matrix.

In video coding, the data rate of the encoded bitstream is controlled by varying the quantization
parameter (QP) value. As the QP value increases, the bitrate drops, but at the cost of visual quality.
In PVC, several rate-control schemes have employed perceptual information for efficient resource
allocation. In Reference [14], PVC architecture is proposed that computes a saliency map for each
frame of input video and incorporate saliency information in video coding for non-uniform bit
allocation. In Reference [15], the perceptual relevance of facial features in conversational videos is
incorporated for rate control of HEVC. In Reference [16], the HEVC coding tree unit (CTU) and QPs
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are adaptively adjusted based on a hierarchical perception model of facial features in conversational
videos. In Reference [17], a variable block-sized DCT kernel-based just-noticeable difference (JND)
profile is proposed for PVC, where transform coefficients are suppressed according to perceptual
distortion detection model. In Reference [18], a visual perception model is incorporated to extract
texture and motion masking properties that optimized the rate-distortion optimization process in
HEVC. Exploiting the fact that the HVS is not sensitive to the distortion of regions that have a complex
texture and intense motion, it modifies the Lagrangian multiplier and QP value adaptively to the
current CTU according to the video content. However, Lagrangian computation adds complexity,
while selecting the best QP values. In Reference [19], an RDO scheme is adopted in HEVC reference
implementation HM to select the best QP value in rate-distortion sense. The RDO scheme calculates a
Lagrange multiplier before computing QP. However, in the RDO scheme, the perceptual relevance of
each pixel in a frame is weighted uniformly [15], which results in needless equal bit allocation to ROI
and non-ROL.

The moving objects in a video are the potential points to catch human attention. The spatial,
as well as the temporal, characteristics of video have been utilized to generate a saliency map [20].
The spatiotemporal saliency map is then used for QP selection at coding unit level to guide bit
allocation in the HEVC encoding framework. The JND model is employed in transformation and
quantization blocks to phase out visually redundant information in HEVC [21]. For the transform
skip mode in HEVC, the JND threshold is computed in the pixel domain by taking into account the
luminance adaptation and contrast masking effects. For the transform non-skip mode, the transform
domain JND threshold is estimated by considering the contrast sensitivity function. In Reference [22],
the JND threshold based on perceptual redundancy in both luma and chroma channels is incorporated
in HEVC at transformation and quantization stages to achieve bitrate saving and complexity reduction.

To the best of our knowledge, entropy based visual saliency models have not been incorporated
in a video coding framework. Since entropy-based techniques have been effectively utilized to capture
image features, it is therefore worth investigating the effectiveness of entropy-based visual saliency
algorithms in a PVC framework. In this paper, a flexible and versatile HEVC compliant PVC framework
is proposed that achieves bitrate reduction without degrading the perceived visual quality. An entropy
based visual saliency algorithm is used to generate a saliency map at frame level. A binary saliency
mask is created by thresholding the saliency map. A perceptual weight map is generated that identifies
salient and non-salient CTUs. Different QP values are assigned to salient and non-salient CTUs in such
a manner that the data rate is minimized while preserving the perceptual video quality. The major
contributions of this work are:

1.  Performance comparison of different entropy based visual saliency algorithms is presented for
videos using a newly developed pixel-labeled ground truth.

2.  Information maximization based visual saliency algorithm is incorporated in an HEVC framework.

3.  An efficient algorithm to allocate quantization parameters for salient and non-salient CTUs is
presented that minimizes the data rate while preserving the perceived quality.

4. The proposed entropy based PVC framework is evaluated objectively and subjectively and shows
superior coding performance.

The rest of the paper is organized as follows. Section 2 describes the proposed HEVC compliant
PVC framework. Section 3 presents the experimental results followed by the conclusion in Section 4.

2. Proposed Methodology

The block diagram of our proposed HEVC compliant perceptual video coding framework using
entropy based visual saliency model is shown in Figure 1. The saliency map of each frame generated
by an entropy based visual saliency model is a grayscale image, which needs to be thresholded for a
binary saliency mask. An optimal threshold value is obtained by comparing the generated saliency
map with the human labeled ground truth to generate a binary saliency mask. The binary saliency
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mask is divided into CTUs in a similar fashion as in HEVC, which are categorized into salient and
non-salient CTUs based on their perceptual relevance. An optimal QP value for salient and non-salient
CTU is selected in such a way that the data rate is minimized while maintaining the perceived visual
quality. The details of each block are presented in the following subsections.
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Figure 1. Block diagram of the proposed high efficiency video coding (HEVC) compliant perceptual
video coding framework using entropy based visual saliency model.

2.1. Entropy Based Visual Saliency Model

Visual saliency has been the focus of psychologists, neurobiologists and computer scientists
over the last few decades [23]. Computer scientists have developed numerous computational
visual saliency algorithms, which aim at detecting the salient regions in an image. Computational
visual saliency models find their applications in a broad spectrum of domains including remote
sensing [24], watermarking [25], privacy [26], text detection [27], object recognition [28], multi-camera
calibration [29], binocular vision [30], and video coding [31]. Generally, saliency detection techniques
are categorized into bottom-up and top-down approaches. Bottom-up approaches are data-driven
where the perception starts at the stimulus and top-down approaches are goal-driven where the
saliency extraction is influenced by the task dependent cues. A great deal of research has focused on
how human attention shifts while viewing a scene [32]. Attention theories [33,34] and earlier work on
understanding human perception [35,36] suggest that the HVS is attracted to the regions in a scene
that carry the maximum information [37].

Entropy has been extensively utilized in extracting and analyzing the salient regions from an
image. It has been observed that image regions with high randomness attract more attention. A number
of methods have been proposed that compute visual saliency from an entropy and information
maximization perspective [38—-40]. In this work, we selected four entropy based visual saliency models,
namely attention based on information maximization [37], saliency and scale measures [41], entropy
based object segmentation [42], and fuzzy entropy based multi-level thresholding [43] to generate a
saliency map SM(p) from the input video frame. A brief description of each entropy based visual
saliency model is as follows:
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1. Attention based on Information Maximization (AIM): is based on Shannon’s theory and
computes the self-information at each location of the frame [37]. AIM takes advantage of the fact that
the HVS directs the attention mechanism to the most informative visual content in a scene.

2. Saliency and Scale Measures (SSM): capture the most salient features over different spatial
locations and feature space [41]. Entropy maximization is used as a measure to identify salient regions
in images. The scales are selected for each pixel location at which the entropy measure reaches its peak
value. Degree of self-similarity is measured by using local descriptor statistics over a window of scales
around the peak saliency measure.

3. Entropy based Object Segmentation (EOS): In EOS, a saliency map using local entropy as a
feature is used, which represents the complexity and unpredictability of a local region [42]. The regions
are considered salient if they have high complexity resulting in flat distribution, thus having higher
entropy values.

4. Fuzzy Entropy based Multi-Level Thresholding (FEMLT): utilizes fuzzy entropy to segment
an image’s foreground object from the background [43]. To segment foreground objects, the Shannon’s
entropy of the input frame is computed at different thresholds, which are determined by normalized
histogram. The entropy maximization approach is employed to select the optimum threshold, which
is then used for segmentation.

2.2. Thresholding

The saliency map generated by the entropy based visual saliency model is a grayscale image,
where pixel intensity specifies saliency relevance. The saliency map is normalized to range from 0 to
255 in such a way that the value 255 corresponds to the most salient pixels, while value 0 corresponds
to the least salient pixels. The perceptual weight of a pixel increases as the intensity of saliency map
increases. A binary saliency mask is generated by thresholding the grayscale saliency map as,

1 if SM(p) > Th,

0 otherwise,

BSM(p) = { 1

where Th, is the optimal threshold value. BSM(p) is a pixel-level binary mask, where pixel value
1 corresponds to salient pixel in a frame, while pixel value 0 corresponds to a non-salient pixel.
The choice of an optimal threshold value Th, to generate a binary saliency mask is critical as it
influences deciding on the salient and non-salient regions and hence the encoding cost of the overall
framework. A pixel-level accurate human labeled ground truth was required for comparison to select
the optimal threshold value. Pixel-accurate labeling of salient objects within the frame was obtained
through subjective experiment. Each frame was shown to 9 subjects and they were asked to label
the salient region. Majority voting criteria was adopted to generate a single aggregated ground truth
binary mask GTM(p) for each frame, where pixel value 1 corresponds to salient and 0 corresponds to
non-salient regions. The steps involved in selecting the optimal threshold value were as follows:

1. Initialize the threshold vector Th; with N values as,

iy IMax(SM(p)) — Min(SM(p))}

Th(1,i) = Min(SM(p)) + ( N

) @

where Min(SM(p)) and Max(SM(p)) represents the minimum and maximum value of the
saliency map generated by the visual saliency algorithm respectively. The number of threshold
levels is represented by Nand i =0,1,--- ,N — 1.

2. Initialize a vector Fy; of size 1 X N representing average F-measure values with all zeros.
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3. Calculate the thresholded saliency map TSM;(p) of each video frame in the dataset at threshold
value Th(1,i) as
1 if SM(p) > Th(1,i)

0 otherwise,

TSM;(p) = { ®)

4.  Calculate the F-measure between the thresholded saliency mask TSM;(p) and human labeled
ground truth binary mask GTM(p) for all video frames in the dataset.

5. Compute the average F-measure and store in the vector F,, at ith position.

6.  Repeat steps 3 to 5 for all threshold values.

7. Choose index from vector F, that gives maximum average threshold value as optimum
threshold value.

2.3. Perceptual Weight Map and Optimized QP Selection

The binary saliency mask generated by thresholding is divided into CTUs in a similar way as done
by HEVC reference software. CTUs are then categorized into two categories—salient and non-salient
CTUs—based on their perceptual significance. The salient and non-salient pixels are quantified to mark
the perceptual significance of each CTU. The percentage of salient pixels in a CTU is determined as,

N;
Pery = — x 100, 4
cTu = 3y % 4)

where N; and N represent the number of salient pixels and total number of pixels in the CTU of binary
saliency mask. The CTU based perceptual weight mask is obtained as,

0, Pery < 50%
WMcry = T 5)
1, Pery > 50%,

As the proposed PVC scheme depends on the perceptual significance of CTU, therefore an
optimized quantization parameter is required for each CTU based on their perceptual significance.
CTUs that fall in the salient region attract more attention as compared to those CTUs which belong to
a non-salient region. Therefore, to enhance the perceptual quality, an optimal criterion is required to
assign QP values to different CTUs.

Let QP; be the default QP value for all CTUs in the frame. The CTU-based perceptual weight map
categorizes CTUs into salient and non-salient CTUs. Then the optimized QP, values for non-salient
CTUs are computed as,

QP, = QP + AF, (6)

where AF represents the QP adjustment factor for non-salient CTUs. The value of AF depends on
the saliency significance of a CTU and is selected in such a way to minimize the perceptual distortion
at default quantization parameter i.e., QP;. The procedure of selecting optimum QP for non-salient
CTUs i.e., QP, depends on tolerated difference in perceptual quality i.e., AQ. The tolerated difference
in perceptual quality shows the difference in average perceptual quality using the default QP and
optimized QP. The computation procedure of selecting optimized QP for salient and non-salient CTUs
is described in Algorithm 1.
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Algorithm 1: Optimized QP selection algorithm for salient and non-salient CTUs

Input

1.  Input video: V,

Total number of frames: N,

CTU based perceptual weighted mask: WMcryy,
Default quantization parameter: QP;,

O W N

Tolerated difference in perceptual quality: AQ.

Output: Optimized quantization parameter for CTUs QP,.
1 Initialize quantization adjustment factor
2 AF =1
3 Compute default perceptual quality PQ,; using QP;

4 Initialize optimized perceptual quality
5 PQ, =100

6 while PQ; — PQ, < AQ do

7 for i=1:N do

8 if WMcry = 1 then

9 | QP = QP

10 end

11 else

12 ‘ QP, = QP; + AF

13 end

14 end

15 Compute optimized perceptual quality PQ, using QP,
16 AF = AF+1

17 end
18 return QP,

3. Experimental Results

Video content has a high impact on encoder performance, therefore test video sequences for
HEVC are defined according to resolution, application domain and genre [1]. In this paper, sixteen
test video sequences of class A, B, C, D, E, F and 4K were selected for the purpose of evaluation [44].
The selected video sequences cover a variety of resolutions, that is, 4K, HD 1080p, HD 720p, WVGA,
WQVGA and frame rates, that is, 24, 30, 50, 60 and 120 frames per second (fps) and statistical features.
The details of video sequences used in this paper are presented in Table 1. The experimental results are
presented in two sections. In the first set of experiments, the performance of different entropy based
visual saliency models is compared. In the second set of experiments, the best entropy based visual
saliency model is incorporated in HEVC standard for the proposed PVC scheme, which is compared
with HEVC reference software and other PVC schemes in an objective and a subjective manner.

Table 1. Test Video Sequences.

Class Video Sequence  Spatial Resolution Frame Count Frame Rate

A Nebuta 2560 x 1600 300 60
A SteamLocomotive 2560 x 1600 300 60
B BasketballDrive 1920 x 1080 500 50
B ParkScene 1920 x 1080 240 24
C RaceHorses 832 x 480 300 30
C BQMall 832 x 480 600 60
C PartyScene 832 x 480 500 50
C BasketballDrill 832 x 480 500 50
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Table 1. Cont.

Class  Video Sequence Spatial Resolution Frame Count Frame Rate

D RaceHorses 416 x 240 300 30
D BlowingBubbles 416 x 240 500 50
E FourPeople 1280 x 720 600 60
E Johnny 1280 x 720 600 60
F BasketballDrill Text 832 x 480 500 50
F SlideShow 1280 x 720 500 20
4K Bosphorus 3840 x 2160 600 120
4K Jockey 3840 x 2160 600 120

3.1. Performance Comparison of Entropy Based Visual Saliency Models

In this set of experiments, the performance of four entropy based visual saliency algorithms
(AIM [37], SSM [41], EOS [42], and FEMLT [43]) were compared in both quantitative and qualitative
manners. The main aim of this comparison is to select the best entropy based visual saliency
algorithm and optimum threshold value to generate a binary saliency mask based on a human
labeled groundtruth binary mask. In this work, pixel-accurate labeling of salient and non-salient was
adopted as it offers extensive and accurate evaluation as compared to rectangular bounding box based
labeling [45]. For pixel-level groundtruth mask construction, 9 subjects were involved. The video
frames were shown to subjects, which were instructed to precisely mark the salient objects at the
pixel-level accuracy. The final groundtruth mask was obtained by applying majority voting criteria to
remove labeling inconsistency.

Precision-recall (PR) curves and F-measure were employed as metrics for the quantitative
performance comparison of different visual saliency algorithms. Precision is the ability of a visual
saliency model to label the non-salient pixels as non-salient, whereas recall is an ability of a visual
saliency model to correctly mark the salient pixels as salient. F-measure presents the harmonic
mean of precision and recall. The binary saliency maps are evaluated objectively to figure out the
correspondence with the human-labeled groundtruth. The precision, recall and F-measure score varies
with the change of threshold value, therefore the appropriate selection of threshold value is a critical
issue to generate a binary saliency mask. The saliency map generated by each visual saliency algorithm
was thresholded at 32 threshold values. For each threshold value, a corresponding binary mask
was generated and the equivalent precision and recall were computed using a binary groundtruth
mask. Figure 2 shows the PR curves of different entropy based visual saliency algorithms (AIM,
SSM, FEMLT and EOS) computed over all 16 videos in the dataset. It is evident that the AIM visual
saliency algorithm gives the best PR curve except for the Johnny video. This shows that the AIM visual
saliency algorithm gives higher precision and recall values for majority of the videos. Figure 3 depicts
the performance comparison of different entropy based visual saliency models in terms of average
F-measure computed over all video sequences for different threshold values. A higher F-measure value
indicates better performance of the visual saliency model when compared with the human labeled
groundtruth binary mask. It is evident that AIM gives higher average F-measure values than SSM,
FEMLT and EOS for all threshold values. Moreover, a maximum value of average F-measure achieved
by AIM is at threshold value 9. The average precision, recall and F-measure values by different entropy
based visual saliency algorithms, when compared with pixel-level binary groudtruth mask at Th, = 9,
are shown in Table 2. It can easily be observed that high precision, recall and F-measure values are
achieved by AIM as compared to SSM, EOS, and FEMLT based visual saliency algorithms.
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Figure 2. Precision-Recall curves of different entropy based visual saliency models for video sequences
(a) Nebuta (b) SteamLocomotive (c) BasketballDrive (d) ParkScene (e) RaceHorses (f) BQMall (g)
PartyScene (h) BasketballDrill (i) RaceHorses (j) BlowingBubbles (k) FourPeople (1) Johnny (m)
BasketballDrillText (n) SlideShow (o) Bosphorus (p) Jockey.
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Figure 3. Performance comparison of different entropy based visual saliency algorithm in terms of
average F-measure for different threshold values.

Table 2. Performance comparison of entropy based visual saliency algorithms in terms of average
precision, recall and F-measure when thresholded at Th, = 9.

Visual Saliency Model Precision Recall F-Measure

AIM [37] 0.851 0.738 0.790
SSM [41] 0.349 0.828 0.491
EOS [42] 0.357 0.785 0.490
FEMLT [43] 0.326 0.693 0.443

The qualitative comparison of salient regions detected by different entropy based visual saliency
algorithms and groundtruth for representative frame from seven video sequences of class A, B, C,
D, E, E and 4K in the dataset at optimum threshold Th, = 9 is shown in Figure 4. We observed
that the AIM visual saliency algorithm gives a better binary saliency mask after thresholding than
SSM, EOS and FEMLT visual saliency algorithms, when compared with aggregated pixel-level binary
groundtruth mask. The pixel-level binary groundtruth mask highlights salient and non-salient regions
in the frame with white and black values, respectively. The salient pixels detected by AIM in Figure 4c
coincide well with the groundtruth binary mask. Moreover, very few non-salient pixels are detected
as salient. On the other hand SSM, EOS and FEMLT partially detect salient pixels as salient and
majority of the non-salient pixels are also detected as salient, which is evident from Figure 4c,d,e.
These qualitative results are also consistent with quantitative results as average precision, recall and
F-measure achieved by AIM is much higher than the average precision, recall, and F-measure of the
SSM, EOS and FEMLT models.



Entropy 2019, 21, 964 11 of 21

Figure 4. Qualitative comparison of different entropy based visual saliency algorithms (a)

representative video frames, (b) aggregated pixel-level binary groundtruth mask (c) AIM (d) SSM (e)
EOS (f) FEMLT, Row 1: SteamLocomotive (Class A), Row 2: ParkScene (class B), Row 3: BQMall (class
C), Row 4: BlowingBubbles (class D), Row 5: FourPeople (class E), Row 6: BasketballDrillText (Class F),
Row 7: Jockey (4K).

3.2. Perceptual Video Coding

To verify the effectiveness of the proposed PVC framework, the saliency model AIM was
incorporated into the HEVC reference software HM 16.11 [46]. The AIM model was selected because it
gives a better performance than other entropy based visual saliency algorithms.The saliency map of
each frame is thresholded by using Th, = 9 to generate a binary saliency mask that is used to divide a
frame into salient and non-salient regions. A perceptual weight map is computed, which indicates
the perceptual significance of a coding tree unit (CTU) in each frame. The saliency map of each frame
is divided into CTUs as in HEVC. Experiments are performed under common test conditions with
random access (RA) configuration for quantization parameter values QP = 22, 27, 32 and 37 [47].
The performance evaluation of the proposed HEVC compliant PVC scheme is performed in terms of
bitrate saving, computational complexity, quality assessment using objective and subjective measures.

3.2.1. Bitrate Reduction and Computational Complexity

Bitrate reduction is computed to gauge the compression efficiency. The bitrate reduction ABR
between the proposed PVC scheme and the HEVC reference model is computed as,
Rp

Rer = Rem 100, ?)

ABR =
Rum

where Rp, and Ry represents the bitrate required to encode video using the proposed PVC scheme
and HEVC reference software respectively. A negative value of ABR indicates percentage bitrate
saving achieved by the proposed scheme in comparison with HEVC. Encoding time is used to measure
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the computational complexity of the proposed PVC scheme in comparison with HEVC. Computational

complexity is computed as,

TP’T_ﬂ % 100, (8)
HM

AT =
where Tp, and T represents encoding times of video coding using proposed PVC scheme and HEVC
reference software respectively. A positive value of AT indicates a percentage increase in encoding
time by the proposed PVC as compared to HEVC reference software. The encoding time is measured
on a computer system with Intel 3.6 GHz quadcore processor, 16 GB RAM.

The proposed PVC scheme is compared with HEVC reference software (HM 16.11) in terms of
bitrate saving and encoding time and results are summarized in Table 3. It is evident that the proposed
PVC achieves highest bitrate saving at QP = 22. An average bitrate saving for sixteen video sequences
at QP = 22 is 10.37% with maximum 20.08% bitrate saving for video sequence RaceHorses. However,
the coding complexity increased by 2.96%. At QP = 27, the average bitrate saving for sixteen videos
is 6.68%, with a maximum bitrate saving 11.67% achieved by video sequence RaceHorses. However,
the coding complexity increased by 2.97%. The average bitrate saving for all video sequences at
QP = 32 is 5.12%, with a maximum bitrate saving of 9.69% achieved by video sequence Jockey.
The coding complexity increased at QP = 32 is 3.46%. Whereas the average bitrate saving for sixteen
video sequences at QP = 37 is 4.10% with a maximum bitrate saving of 7.80% for video sequence
Jockey. The coding complexity increase is 3.99% at QP = 37. The proposed PVC achieves an average
bitrate reduction of 6.57% as compared to the HEVC reference software. This shows a superior
performance of the proposed PVC scheme when compared with HEVC reference software.

Table 3. Performance comparison of the proposed perceptual video coding (PVC) scheme with HEVC
in terms of bitrate reduction and encoding time.

QP =22 QP =27
Video Datarate in Kbps Execution Time in Seconds Datarate in Kbps Execution Time in Seconds
HEVCam PVCp, ABR HEVCyym PVCp, AT  HEVCgym PVCp, ABR  HEVCym PVCp, AT

Nebuta
Class A, (2560 x 1600)  8273.54  7530.27 —8.98 615.43 624.36  1.45 4045.32 373582 —7.65 579.97 587.88  1.36
SteamLocomotive
Class A, (2560 x 1600)  6167.96  5483.52 —11.10  604.76 611.89 1.18 2937.66  2648.242 —9.85 584.66 59123 1.12
BasketballDrive
Class B, (1920 x 1080)  2735.02 2621.11 —4.16 436.98 44222 1.20 1411.63 136820 —3.08 389.59 401.38  3.03
ParkScene
Class B, (1920 x 1080)  8284.99  6819.50 —17.69  469.80 481.23 243 360623  3260.44 —9.59 376.31 391.10 3.93
RaceHorses
Class C, (832 x 480) 269451 2505.65 —7.01 129.27 13165 1.84 1429.59 135299 —5.36 105.54 108.04 2.37
BQMall
Class C, (832 x 480) 2866.08 2634.54 —8.08 83.48 91.01 9.03 1499.76  1446.73 —3.54 71.22 74.25 425
PartyScene
Class C, (832 x 480) 5429.73  4804.70 —11.51 114.32 11599 146 283348  2595.78 —8.39 95.90 97.09 1.24
BasketballDrill
Class C, (832 x 480) 2511.80 2371.85 —5.57 95.85 101.12  5.50 123553  1205.83 —2.40 78.98 81.75 3.51
RaceHorses
Class D, (416 x 240) 1193.70  954.00 —20.08 33.61 3436 224 603.53 533.07 —11.67 27.09 29.01 7.09
BlowingBubbles
Class D, (416 x 240) 826.60 76350 —7.63 16.25 16.99 4.53 504.90 47940 —5.05 14.63 15.13 3.39
FourPeople
Class E, (1280 x 720) 326220 297021 —8.95 144.35 14952  3.58 1692.81 1660.50 —1.91 129.69 132.87 245
Johnny

Class E, (1280 x 720) 2461.98 222879 —9.47 149.62 151.18  1.04 1024.89  1009.11 —1.54 127.18 129.60  1.90
BasketballDrill Text
Class F, (832 x 480) 2929.41 2685.74 —8.32 114.52 118.39  3.38 1488.25 1369.92 —7.95 98.34 10146 3.17

SlideShow
Class F, (1280 x 720) 3688.73 3251.62 —11.85 15273  156.75 2.63 194256  1778.11 —8.47 121.89 12578 3.19
Bosphorus
4K, (3840 x 2160) 10,367.34 9108.77 —12.14 986.33 998.54 124 4898.65 4406.66 —10.04 902.42 91270 1.14
Jockey

4K, (3840 x 2160) 8522.09 738245 —13.37  979.25 992.38  1.34 412254 369152 -1046  899.77 909.61  1.09
Average —10.37 2.96 —6.68 297
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Table 3. Cont.

QP =32 QP =37
Video Datarate in Kbps Execution Time in Seconds Datarate in Kbps Execution Time in Seconds

HEVCyym PVCp, ABR HEVCyym PVCp, AT HEVCyym PVCp, ABR HEVCyym PVCp, AT

Nebuta
Class A, (2560 x 1600)  1936.38  1798.56 —7.12 556.82 563.96 1.28 1038.88 97249 —6.39 529.44 535.84 1.21
SteamLocomotive
Class A, (2560 x 1600) 1488.45 134526 —9.62 541.75 547.56  1.07 834.64 773.84 —7.28 519.63 52462 096
BasketballDrive
Class B, (1920 x 1080) 746.62 729.32 232 348.82 356.21 212 432.17 42154 246 319.04 33732 573
ParkScene
Class B, (1920 x 1080) 166940  1587.44 —4.91 326.31 34122 457 792.64 76859 —3.03 296.06 306.06  3.38
RaceHorses
Class C, (832 x 480) 723.77 707.04 -—2.31 87.60 89.33 1.97 395.37 388.12 —1.83 7524 79.12 5.15
BQMall
Class C, (832 x 480) 830.85 81259 —2.20 65.15 70.91 8.84 488.82 47540 275 58.91 6124 396
PartyScene
Class C, (832 x 480) 1379.75  1310.73 —5.00 76.29 7882 332 703.90 68493 —2.70 62.64 64.71 3.31
BasketballDrill
Class C, (832 x 480) 630.00 614.10 —2.52 67.80 70.34 374 360.58 35275 —2.17 62.21 6644  6.79
RaceHorses
Class D, (416 x 240) 299.90 285.74 —4.72 22.01 23.68  7.59 165.11 161.60 —2.12 18.65 19.78  6.09
BlowingBubbles
Class D, (416 x 240) 28238  271.83 374 1378 1409 224 15478 15101 —243 1292 1364 553
FourPeople
Class E, (1280 x 720) 101052  989.04 —213 12337 12743 329 619.92  607.62 —198 12030 12496 3.87
Johnny

Class E, (1280 x 720) 563.64 55197 —2.07 11848 12258 346 332.31 325.61 —2.02 115.17 12055  4.67
BasketballDrill Text
Class F, (832 x 480) 732.76 680.68 —7.11 86.12 88.46 2.72 451.89 42403 —6.17 72.78 74.56 2.45

SlideShow
Class F, (1280 x 720) 811.33 75045 —750  110.34 11285 227 460.81 429.31 —6.84 97.54 100.28  2.81
Bosphorus
4K, (3840 x 2160) 243852 221794 —9.05  881.15 89045 1.06 1542.44 142417 -7.67  854.34 862.65  0.97
Jockey
4K, (3840 x 2160) 2093.55 1890.78 —9.69  861.02 869.93  1.03 112729 103941 -7.80  837.88 846.12  0.98
Average —5.12 3.46 —4.10 3.99

3.2.2. Objective and Subjective Quality Assessment

An objective evaluation of the proposed scheme was performed by two metrics—multiscale
structural similarity index (MS — SSIM) [48] and perceptual peak signal to noise ratio (PPSNR) [49].
MS-SSIM takes into account the mechanism of processing in the early vision system and implements it
on multiple scales. The MS — SSIM index between original and distorted videos is computed as,

M
MS — SSIM = [I34(Orig, Dist)]*M [ lcj(Orig, Dist)Pi] [sj(Orig, Dist)1], )
j=1

where I (Orig, Dist) denotes luminance comparison, while ¢;(Orig, Dist) and s;(Orig, Dist) represent
contrast and structure comparisons at j-th scale of original and distorted videos. As mentioned earlier,
removing perceptual redundancy while maintaining visual quality is the primary focus of this work.
The proposed PVC framework removes perceptually irrelevant information from non-salient regions,
while maintaining the visual quality of salient regions. It is worth measuring the PSNR of only salient
regions, where perceived visual quality needs to be preserved. Perceptual peak signal to noise ratio
has been used as an objective measure to compute the perceived quality [49], which is calculated as,

255 x 255
wem L1 Ly (V(xy) = V(6 9))2 x 6 (x,y)

PPSNR = 101log;, X (10)

where d;(x,y) = 1 for salient region and ;(x, y) = 0 for non-salient region of original V and decoded
V’ frames.

Subjective evaluation of the proposed PVC scheme was performed through double stimulus
continuous quality scale (DSCQS) [50]. Test and reference videos were shown to the subjects one after
the other. The subject compared the visual quality of both the videos and assigned comparative scores
to the test and reference videos. Figure 5a shows test and reference video presentation structure in the
subjective experiment. Video sequences were randomly ordered with respect to the test and reference



Entropy 2019, 21, 964 14 of 21

for different QP values. To alleviate grading tiredness from session to session, the test sessions were
arranged such that the maximum test time taken by each subject was 25 min.

Mid Mid Mid Mid
100 A .]E 100 A Grily B (l}rily A Gl“lay B GI:y
Excellent
80 T T 80
Good
60 T T 60 //J —
Fair T, T, T, T, T, T, T, T, _'
40 + T 40 ¢ Voting ™
Foor T,: 10seconds Testsequence A
20 T 120 T,: 3seconds Mid-Gray sequence
Bad T;: 10seconds Testsequence B
0 +- + 0 T,: 7seconds Mid-Gray sequence
(a) (b)

Figure 5. DSCQSMethod. (a) Presentation sequence of test and original video sequences.
(b) Quality-rating form of using continuous scale of DSCQS

Sixteen subjects (8 males and 8 females) participated in subjective experiments. Display conditions
and viewing distance were set according to ITU-R subjective assessment methodology [50]. All subjects
were graduate students, aged from 24 to 34 years and were not experts in video coding. For subjective
voting, a quality-rating form, as shown in Figure 5b, with continuous scores from 0 to 100 was used.
Scores 0 and 100 represent the worst and the best visual qualities, respectively. Subjects observed the
overall quality of video sequences and inserted a mark on a grading scale. Mean opinion score (MOS)
at each QP for each video sequence was computed by taking an average of the opinion scores of all
subjects. For subjective comparison, a difference mean opinion score (DMOS) is computed as,

DMOS = MOSp, — MOSpum, (11)

where MOSp, and MOS;) are the mean opinion scores of the video sequences encoded by proposed
PVC and HEVC, respectively. A DMOS value close to zero shows that the perceived visual quality of
the videos encoded by proposed PVC is as good as that of the HEVC reference software.

Table 4 summarizes MS — SSIM, PPSNR and DMOS results for ten test video sequences at QP
22,27,32 and 37. A negative value of MS — SSIM shows a drop in the values of MS — SSIM. It is
evident that the average drop in MS — SSIM for sixteen videos encoded by the proposed PVC scheme
is 0.367% in comparison with HEVC. Such a minute difference in MS — SSIM value does not produce
a noticeable visible difference. The average PPSNR difference between the proposed PVC and HEVC
is 0.019, which signifies that the proposed PVC scheme preserves the visual quality in the salient
regions. The average DMOS value of —0.107 is observed for sixteen video sequences, which is not
significantly different. This shows that the visual quality of the proposed PVC scheme as perceived
by subjects is same as the HEVC reference software but at a lower data rate. A comparison of our
proposed HEVC based PVC and HEVC in terms of bitrate and PPSNR is also shown in Figure 6. It is
evident that our proposed PVC scheme performs better than the HEVC reference software scheme for
all the video sequences used in this work.

Figure 7 shows the decoded frames of ParkScene, FourPeople, BQMall and BlowingBubbles video
sequences at QP = 22 using the HEVC reference software and proposed PVC scheme. It is evident
that the proposed HEVC compliant entropy based PVC has the same visual quality for visually salient
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regions in the decoded frame as compared to the reference HEVC encoder but with a reduction in data
rate by 17.69% for ParkScene, 8.95% for FourPeople, 8.08% for BQMall and 7.63% for BlowingBubbles.

The comparison of perceptual video coding schemes available in the literature is a challenging task
as each scheme utilizes a different set of video sequences and quality evaluation metrics. For example,
Sehwan [51] used six video sequences for evaluation and compared results with HEVC HM 16.17.
Similarly, Bae [17] used six video sequences and compared results with HEVC HM 11.0. Table 5
presents a comparison in terms of bitrate reduction and DMOS for the video sequences that are
common among the proposed, Sehwan [51] and Bae [17] PVC schemes. It is evident that the proposed
PVC scheme achieves more bit rate reduction as compared to Bae [17] PVC schemes when encoded at
QP = 32and QP = 37. This shows that the proposed scheme performs well at low data rates. Similarly,
the proposed PVC scheme achieves more bit rate reduction as compared to the Sehwan [51] PVC
scheme when encoded at QP = 22 and QP = 37, which shows better performance of the proposed
scheme at low and high data rates. The proposed PVC scheme DMOS values are close to zero for all
QP values when compared with both the PVC schemes. This shows that the proposed PVC scheme
achieves the same perceived quality with more bit rate saving.

Table 4. Performance comparison of the proposed PVC scheme with HEVC in terms of objective
(MS-SSIM and PPSNR)and subjective (DMOS) measures.

MS — SSIM PPSNR

Video (0) 4 DMOS
HEVCyym PVCp, Apms—ssiy HEVCp, PVCpr Appsnr

Neb 2 0.992 0.994 0.192 41614 41691  0.077 0.07

Clea S:tg 27 0.992 0.991 —0.040 40289 40384  0.095 0.20

(2560 % 1600) 32 0.987 0.986 —0.091 36472 36384 —0.087 0.3
37 0.981 0.979 —0.133 33371 33380 0009  —0.13

SteamL y 2 0.997 0.994 —0.248 43102 43203 0.101 0.20
ea“‘Cl;’SCS"K" ve o7 0.993 0.989 —0.357 42430 42529 0.099 -0.13
(2560 % 1600) 32 0.989 0.996 0.749 36171 36170 —0.001  —0.53
37 0.983 0.974 —0.851 33405 33403 —0.002  —0.60

BasketballDri 2 0.996 0.994 —0.171 46145 46143  —0.002  0.13
as Elasas B rve o7 0.992 0.990 —0.232 44267 44266 —0.001  —0.13
(1920 % 1080) 32 0.985 0.982 —0.304 41496 41494  —0.002  —0.20
37 0.974 0.969 —0472 38918 38917 —0.001  —0.07

Parks 2 0.990 0.990 —0.077 40814 40791  —0.023 0.0

"‘Crlasgeé‘e 27 0.983 0.982 —0.065 40391 40384  —0.007  0.07

(1920 x 1080) 32 0.969 0.968 —0.047 35339 35337 —0.002  0.07
37 0.944 0.944 —0.034 33371 33380 0009  —0.13

RaceH 22 0.995 0.989 —0.583 43192 43192 0.000 0.27
st 27 0.989 0.982 —0.728 39.630  39.629 —0.001  —0.20

(832 x 480) 32 0.976 0.947 —3.022 36171 36170  —0.001  0.07
37 0.954 0.947 —0.786 33405 33403 —0002 —0.33

BOQMall 2 0.997 0.996 —0.167 44933 45034  0.101 0.13
Clacs C 27 0.994 0.992 —0.182 41087  41.092 0005  —0.07
(832a;5480) 32 0.988 0.986 —0.223 37799 37791 —0008  —0.33
37 0.976 0.974 —0.258 34281 34278  —0003  —047

PartvScene 2 0.996 0.986 —1.074 42480 42492 0.012 033

c1y c 27 0.991 0.978 —1.241 38452 38458  0.006 0.13

(832"i5 150) 32 0.976 0.963 —~1.375 34644 34653  0.009 0.07
37 0.950 0.938 ~1.302 31552 31493  —0.059  —0.07

. 2 0.995 0.994 —0.097 44879 44884  0.005 0.13

Bas‘g’f:;:“CD““ 27 0.990 0.989 —0.105 41321 41379  0.058 0.00
(832 x 480) 32 0.981 0.979 —0.158 38299 38290 —0.009  —0.60

37 0.964 0.962 —0.255 35.459 35.444  —0.015 —0.53
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Video oP MS — SSIM PPSNR DMOS
HEVCgm PVCpr Ams—ssim HEVCp, PVCp,  Appsnr

RaceH 2 0.995 0.989 —0.614 43809 43844  0.035 0.07

accf‘asg’ges 27 0.988 0.980 —0.863 39.811  39.822  0.011 0.20

(416 x 240) 32 0.974 0.965 0921 36209 36201  —0.008  0.13
37 0.948 0.938 ~1.130 33227 33224  —0.003 —0.13

BlowingBubbles 22 0.998 0.995 —0.255 43908 43911  0.003 0.13
c1g D 27 0.994 0.991 —0.225 39366 39364 —0.002  —0.40

( 416ai52 10) 32 0.985 0.983 —0.148 35562 35540 —0.022  —0.53
37 0.967 0.965 —0.207 32022 32021 —0.001  —0.60

FourPeople 2 0.995 0.995 —0.026 44239 44455 0216 0.13
s ]f:’ 27 0.993 0.993 —0.022 42042 42270 0229  —027
(1280“; 720) 32 0.989 0.989 0.000 39.883  39.884  0.001 —0.13
37 0.982 0.982 0.013 36802 36781 —0.021  —0.40

Johnn 2 0.993 0.993 —0.028 44122 44318  0.19 0.07
a ]f:' 27 0.991 0.991 —0.009 42502 42622 0120  —027
(moasxs 720) 32 0.987 0.987 0.003 40700 40715 0.016 ~0.13
37 0.981 0.981 0.012 38351 38347  —0.003  —0.60

. 22 0.992 0.991 —0.082 44933 45034  0.101 0.13

B“kefgl“al;?F““Te"f 27 0990 0989  —0.094 41087 41092  0.005 0.07
(832  480) 32 0.986 0.985 —0.139 37799 37791  —0.008  —0.07
37 0.972 0.970 —0.187 34281 34278  —0.003  —0.53

SlideSh 2 0.996 0.994 —0.203 42533 42572 0.039 0.20
‘CIZSS 1‘:’“’ 27 0.994 0.992 —0.231 39.165  39.169  0.004 —0.07
(1280 x 720) 32 0.986 0.982 —0411 35626 35644 0018  —0.33
37 0.982 0.977 —0.442 32452 32393  —0.059  —047

Bosohorus 2 0.993 0.992 —0.058 46214 46021 —0.193  0.20

ZK 27 0.991 0.990 —0.120 44035 44191  0.156 0.13
(3840 x 2160) 32 0.987 0.985 —0.220 41398 41586  0.188 -0.07
37 0.978 0.976 —0.274 39.017 38981 —0.036 —0.53

Jocke 2 0.995 0.991 —0.354 43011 42813 —0.198  0.13

po y 27 0.991 0.985 —0.687 40389 40488  0.099 0.00
(3840 x 2160) 32 0.988 0.979 —0.869 37982 37901 —0.081 —0.13
37 0.979 0.969 —~0.971 35110 35183 0073  —0.53
Average 0.985 0.981 -0.367 39262 39281 0019  —0.107

Table 5. Performance comparison of the proposed PVC with Sehwan [51] and Bae [17] in terms of

bitrate reduction and DMOS values for common videos.

Video QP Sehwan [51] Bae [17] PVCp,

ABR DMOS ABR DMOS ABR DMOS

ParkS 2 -1239 -100 -21.10 200 1769 02

aélas;e];‘e 27 —1352 —090 —600 —120 —9.59 0.07

(1920  1080) 32 —623  —0.10  —0.80 0.0 491 0.07
37 —043 040 0.00 ~010 —303 —0.13

2 275 060 —17.5 1.70 808  0.13
]é%t’iaél 27 —1043 —020 —560 —110 -354  —007
(832 % 480) 32 843 —100 030 020 22 033
37 —178 010 030 010 275  —047

RaceH 22 1553 —020 —2740 120 ~7.01 0.27
aéfas;’g‘es 27 1478 —080 —1040 —080 536  —02

(832 x 480) 32 942 040 ~110 050 231 0.07
37 -18 0.0 ~0.10 1.10 ~183  —033

PartvScene 22 —623 =020 2670 030  —1151 033

c1y o 27 1493 060 —970 110  -839  0.13

ass 32 -1369 —010 —150  0.10 —4.91 0.07

(832 x 480)

37 -295 060 —040 —010 —3.03 —007
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Figure 6. Performance comparison of the proposed PVC scheme and HEVC reference software in
terms of bitrate and PPSNR for video sequences (a) Nebuta (b) SteamLocomotive (c) BasketballDrive
(d) ParkScene (e) RaceHorses (f) BQMall (g) PartyScene (h) BasketballDrill (i) RaceHorses (j)
BlowingBubbles (k) FourPeople (1) Johnny (m) BasketballDrillText (n) SlideShow (o) Bosphorus

(p) Jockey.
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Figure 7. The decoded frames with highlighted salient region of video sequences (a) ParkScene,
(b) FourPeople, (¢) BQMall and (d) BlowingBubbles encoded at QP = 22 using HEVC reference
software and the decoded frames with highlighted salient region of video sequences (e) ParkScene,
(f) FourPeople, (g) BOMall and (h) BlowingBubbles encoded video at QP = 22 using proposed
PVC scheme.

4. Conclusion

In this paper, a new HEVC compliant PVC scheme is proposed. An information maximization
based visual saliency model was utilized to identify the salient and non-salient regions in each video
frame. The perceptual significance of each CTU in a frame was figured out by considering the number
of salient and non-salient pixels. A QP value for each CTU was selected in an optimum way based
on their perceptual relevance. As a result, fewer bits were assigned to non-salient CTUs in a frame.
The proposed PVC scheme was incorporated in HEVC reference implementation HM 16.11. Sixteen
test video sequences belonging to Class A, B, C, D, E, F and 4K were encoded using random access
configuration. Objective and subjective evaluations were performed to measure the efficacy of the
proposed PVC scheme. The proposed HEVC compliant PVC scheme achieves 10.37% of average bitrate
reduction at QP = 22 for all video sequences, while preserving the perceived visual quality. However,
performance improvement costs a nominal increase in computational complexity of the encoder.

Author Contributions: M.Z. and M.M. conceived and designed the experiment, analyzed the results and wrote
the paper.
Funding: This research received no external funding.
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