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Abstract: Leaf area index (LAI) is a crucial biophysical indicator for assessing and monitoring the 
structure and functions of forest ecosystems. Improvements in remote sensing instrumental 
characteristics and the availability of more efficient statistical algorithms, elevate the potential for 
more accurate models of vegetation biophysical properties including LAI. The aim of this study was 
to assess the spectral information of Sentinel-2 MSI satellite imagery for the retrieval of LAI over a 
mixed forest ecosystem located in northwest Greece. Forty-eight field plots were visited for the 
collection of ground LAI measurements using an ACCUPAR LP-80: PAR & LAI Ceptometer. 
Spectral bands and spectral indices were used for LAI model development using the Gaussian 
processes regression (GPR) algorithm. A variable selection procedure was applied to improve the 
model’s prediction accuracy, and variable importance was investigated for identifying the most 
informative variables. The model resulting from spectral indices’ variables selection produced the 
most precise predictions of LAI with a coefficient of determination of 0.854. Shortwave infrared 
bands and the normalized canopy index (NCI) were identified as the most important features for 
LAI prediction. 

Keywords: machine learning; multispectral; variable importance; forest monitoring  
 

1. Introduction 

Leaf area index (LAI), commonly defined as the amount of leaf area (m2) in a canopy per unit of 
ground area (m2) [1,2], is a critical biophysical indicator recognized as an essential climate variable 
(ECV). LAI is applicable in evaluating land ecosystem condition and functions, as well as observing 
various characteristics of global ecosystems [3]. It can also be applied for the evaluation of the 
photosynthetic capacity of vegetation as a function of available leaf area [4]. The total amount of leaf 
area is an important vegetation parameter that can be used to model and quantify the role of 
vegetation cover to many Earth’s surface processes, such as primary productivity, rainfall 
interception, and carbon flux [5]. Thus, LAI can be used as a tool for adapting and implementing 
more sustainable forest management practices [6]. 

Direct field measurements such as point contact sampling, litterfall traps, or destructive 
sampling (area harvest) are considered to be the most accurate approach to estimate LAI. However, 
these processes are labor-intensive and are often constrained by site accessibility, logistical, staff-
related and financial factors [7]. Improved indirect, non-destructive field-based techniques such as 
the indirect point quadrat, allometric and canopy gap fraction analysis through terrestrial sensors, 
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and have an increased cost-efficiency of the traditional in situ approach. However, ground 
measurements cannot provide LAI information over large areas and extended temporal periods [8]. 

At the present time, airborne and satellite, passive and active sensors are used for the rapid, 
spatial explicit retrieval of LAI [9]. Satellite sensors assist the potential to retrieve LAI values from 
local to global scales, relying on the specific spectral attributes of green leaves (i.e., strong absorption 
in the visible and high reflectance in the near infrared) compared with other land surface materials 
[5].  

Currently, LAI estimating methods based on optical remote sensing include the development of 
empirical relationships between LAI and spectral/spatial information, biophysical modeling 
(inversion of radiative transfer models simulating canopy reflectance), and hybrid inversion methods 
[10,11]. Empirical approaches (parametric or non-parametric models) are set up on the association 
between texture or spectral features and field LAI values defined over sample plots. In the second 
approach (i.e., biophysical modeling), LAI is estimated through a reverse physical model using 
spectral reflectance as the input variable and LAI as the model’s output. Finally, the hybrid inversion 
approach integrates statistical and physical models [12,13]. Compared to the statistical models, the 
last two approaches are considered more accurate, generalizing well across a wider area extent, 
however, they are more time and data demanding during the training phase [14,15]. 

The most common approach for LAI estimation through remote sensing data relies upon the use 
of spectral vegetation indices, and it is a relatively simple and computationally efficient approach 
[11,15,16]. Vegetation indices serving as proxy indicators of the vegetation’s surface reflectance which 
can be used in order to reduce the dimensionality and redundancy of spectral information, as well as 
confounding variables such as scene illumination, soil background, topography or atmospheric 
effects [5,17]. Nevertheless, the statistical relationships between remotely sensed LAI and spectral 
indices are ecosystem dependent and do not typically generalize well across different ecosystems 
[16,18]. 

Until recently, Landsat imagery was the most frequent source of information for LAI, due to its 
spatial resolution, large area coverage, and free availability from the end of 2008 [11]. The launch of 
Sentinel-2A on 2015, providing a high revisit time and a spatial resolution imagery up to 10 m, also 
at no-cost, increased the analysis accuracy of biophysical parameters such as LAI which has been 
anticipated due its higher spatial/spectral resolution and higher revisit frequency [4]. In particular, 
Sentinel-2, apart from six bands that are comparable to Landsat-8, offers three bands in the red-edge 
part of the spectrum, met at 705, 740 and 783 nm. These additional bands located in the sharp-edge 
between the red absorption maximum and the near-infrared reflectance, respond to canopy 
reflectance as resulting from the multiple scattering among leaf layers [5,15]. In addition, spectral 
information from the red-edge region of the spectrum is less affected by biophysical attributes such 
as canopy structure and leaf spectral properties, solar zenith angle irradiance, and other atmospheric 
effects [19]. However, the improvement of LAI retrieval through the exploitation of spectral 
information available in the red-edge position of the reflectance spectrum is still open to research, 
since several studies presented controversy results [5,15]. 

Along with the advances in sensor characteristics, new approaches have been introduced for 
statistical model development, providing a more robust framework to model complex dynamics. The 
majority of the studies developing LAI prediction models over forest environments rely on the use 
of simple and multiple regression-based (i.e., linear, log-linear or exponential) models [5,11]. 
However, conventional regression methods might be insufficient for multiple independent 
predictors, such as multiple vegetation indices [12], because of its weakness to handle high-
dimensional nonlinear relationships, multi-collinearity limitations, and normal distribution 
requirement [20], raising the need for enhanced modeling approaches.  

Statistical machine learning methods including nonlinear and linear, non-parametric models 
such as support vector regression (SVR) [20–22], neural networks (NN) [20,23,24], partial least 
squares regression (PLSR) [23,25], random forest (RF) [22,26,27], and Gaussian process regression 
(GPR) [27–29] are modeling alternatives that have been applied to build predictive models of LAI 
[30] with high-dimensional characteristic parameters [12].  
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Meyer et al. [5] developed simple and multiple linear regression models for LAI estimation in a 
temperate forest in the southeastern Germany, using Landsat-8 and Sentinel-2 data. Omner et al. [20] 
compared SVM and NN regression models for the LAI retrieval of endangered tree species in South 
Africa, using WorldView imagery. SVM regression was also employed by Durbha et al. [21] to 
estimate LAI from multiangle imaging spectroradiometer in an agricultural area in France. Wang et 
al. [22] estimated the LAI of grassland in Oklahoma, United States, using Sentinel-1, Sentinel-2, and 
Landsat data in SVM and RF models. Cohrs et al. [16] used SVM classification to enhance the linear 
models of LAI-2200C data and the spectral information of Sentinel-2, in a pine plantation. Kial et al. 
[25] employed the PLSR algorithm to predict LAI in a grassland area, using hyperspectral data. 
Houborg et al. [26] assessed LAI in an agricultural area, suggesting a hybrid model on the base of 
decision tree regression algorithms. Campos-Taberner et al. [27] examined crops’ LAI retrieval using 
GRP and PROSAIL model with Landsat and SPOT5 satellite data. Verrelst et al. [28] developed GRP 
models for LAI estimations, using a field hyperspectral dataset in agricultural area. Verrelst et al. [29] 
tested a range of parametric, non-parametric and physical retrieval methods for LAI estimation in 
different crop types, using Sentinel-2 imagery. 

Nevertheless, the evaluation of statistical machine learning regression approaches to improve 
correlations between LAI and spectral reflectance over forest areas is still an open challenge [16], 
since studies were conducted in different biomes, the chosen algorithms are configured per biome, 
and the non-direct measurements of LAI are influenced by canopy structure [2]. To the best of our 
knowledge, the correlation of in situ LAI values of mixed forest with spectral values produced by 
Sentinel-2 imagery, using GPR algorithm, remains investigating in the Mediterranean environment. 

Specifically, Gaussian processes have become popular in Earth science and the remote sensing 
field [31,32] and present encouraging results in estimating biophysical variables [27–29,31]. Several 
studies’ findings support GRP advantages such as model stability and computation efficiency [33,34]. 
Comparative studies where statistical methods were evaluated for LAI prediction [29], demonstrate 
GPR’s efficiency on processing time as well as on performance accuracy. Moreover, the GP technique 
provides an insight in the model evaluating the relevance of variables according to the automatic 
relevance determination (ARD) and indicates the relative contribution of different predictors in 
model development [35]. Given its advantages for biophysical parameter prediction, GRP appeared 
to be a first choice to explore the spectral information for LAI estimation. 

In this framework, the aim of this study was to examine the utility of the Sentinel-2 optical 
images for LAI retrieval in a heterogeneous forest ecosystem in the Mediterranean area, through 
empirical statistical relationships built upon a GPR machine learning algorithm. Specific objectives 
were to evaluate both the original bands and spectral indices models for LAI prediction and to 
enhance LAI models using the variable selection approach and identifying the most informative 
spectral features. 

2. Materials and Methods  

2.1. Study Area  

The forest ecosystem under investigation is the Northern Pindos National Park, which is one of 
the largest protected terrestrial areas in Greece. The Park is located in Northwestern Greece and 
covers a total area 1969 sq. km. The region is characterized by a montane climate which varies in 
aspect and elevation. The annual precipitation ranges between 1000 and 1800 mm and the monthly 
temperatures average from 0.9 to 21.4 Celsius. 

Northern Pindos National Park has an outstanding diversity of flora and fauna and the 
woodland covers a unique aesthetic landscape. Lower and middle altitudes are covered by oaks (Q. 
macedonica, Q. cerris, Q. pubescens, Quercus frainetto), and other mixed or pure stands of deciduous tree 
species (Ostrya carpinifolia, Carpinus orientalis, Carpinus betulus, Fraxinus ornus). At higher altitudes, 
two conifers Pinus nigra and Abies borissii regis are found. Up to 1800 m, beech forest (Fagus sylvatica) 
extends on the northern slopes, and Bosnian pine (Pinus leucodermis) covers the verge of the mountain 
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slope. Above 1800 m, sub-alpine grasslands reach the peaks and often are dotted with Balkan pines 
(Pinus peuce). In the treeless alpine meadows, only certain types of scrubs are found. 

2.2. Field Data 

Field data were collected during August 2018. The set of ground data was constituted by 48 
elementary sampling units (ESU) (Figure 1), where biophysical parameters were measured. Each ESU 
has a size equal to a pixel size (20 × 20 m) and were located among various forest types.  

 
Figure 1. Study area and field plot location overlaid on a Sentinel-2 image (red: near infrared 2; green: 
red; blue: green). 

Canopy measurements were made with a portable photosynthetically active radiation meter 
ACCUPAR LP-80: PAR & LAI Ceptometer. The AccuPAR LP-80, facilitating non-destructive LAI 
measurements, consists of a linear array of 80 independent photosynthetically active radiation (PAR) 
sensors. The indirect field measurements with LP-80 AccuPAR Ceptometer consider the amount of 
light energy transmitted by a plant canopy and calculate LAI using a simplified version of the 
Norman–Jarvis radiation transmission and scattering model [36]. In each ESU, we collected above 
canopy measurements in nearby, unshaded open field, followed by six individual sensor retrievals 
below canopy, which were used to obtain a statistical mean of each ESU. The average LAI measures 
for broadleaved and coniferous species was 5.01 and 1.89, respectively. 

2.3. Remote Sensing Data Acquisition and Preprocessing 

The remotely sensing data employed in this study consist of a geometrically and atmospherically 
corrected at bottom-of-atmosphere (BoA) reflectance, and Sentinel-2 MSI (Level-2A) cloud-free image 
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acquired on 25 August 2018. Sentinel imagery was available for download at no-cost via Sentinels 
Scientific Data Hub website (https://scihub.copernicus.eu/).  

For the analysis, we retained 10 out of the 13 original spectral bands of the image (the 60 m 
spatial resolution bands were excluded), covering the visible to the shortwave infrared (SWIR) 
reflectance spectrum. The 10 m bands were resampled to 20 m to be compatible with the ESU size. 
Finally, three vegetation indices: normalized difference vegetation index (NDVI) [37], non-linear 
index (NLI) [38], and the normalized canopy index (NCI) [39], as well as their modified counterparts 
considering the red-edge and near-infrared regions of the spectrum [40,41], were estimated to 
generate the second feature set. In the second dataset, we also included the tasseled cap features 
(TCFs) [42] calculated upon the original spectral bands (Table 1). 

Table 1. Spectral Variables used in the present study. 

Sentinel-2 Spectral Bands Sentinel-2 Spectral Indices 

B2—Blue Blue Non-linear index NLI =  NIRଶ − RedNIRଶ + Red 

B3—Green Green Non-linear index red-edge 1 NLIୖ୉ଵ  =  REଵଶ − RedREଵଶ + Red 

B4—Red Red Non-linear index red-edge 2 NLIୖ୉ଶ  =  REଶଶ − RedREଶଶ + Red 

B5—Red Edge 1 RE1 Non-linear index near-infrared 1 NLI୒୍ୖ౤భ  =  NIR୬ଵଶ − RedNIR୬ଵଶ + Red  

B6—Red Edge 2 RE2 Non-linear index near-infrared 2 NLI୒୍ୖ౤మ  =  NIR୬ଶଶ − RedNIR୬ଶଶ + Red  

B7—Near Infrared 
narrow 1 

NIRn1 Normalized difference vegetation index 𝑁𝐷𝑉𝐼 =  𝑁𝐼𝑅 − 𝑅𝑒𝑑𝑁𝐼𝑅 + 𝑅𝑒𝑑 

B8—Near Infrared  NIR NDVI red-edge 1 N𝐷𝑉𝐼 =  𝑅𝐸ଵ − 𝑅𝑒𝑑𝑅𝐸ଵ + 𝑅𝑒𝑑 

B8a—Near Infrared 
narrow 2 

NIRn2 NDVI red-edge 2 NDVIୖ୉ଶ  =  REଶ − RedREଶ + Red 

B11—Short Wave 
InfraRed 1 

SWIR 1 NDVI near-infrared 1 NDVI୒୍ୖ౤భ  =  NIR୬ଵ − RedNIR୬ଵ + Red 

B12—Short Wave 
InfraRed 2 

SWIR 2 NDVI near-infrared 2 NDVI୒୍ୖ౤మ  =  NIR୬ଶ − RedNIR୬ଶ + Red  

  Normalized canopy index 1 NCIଵ  =  SWIRଵ − GreenSWIRଵ + Green  

  Normalized canopy index 2 NCIଶ  =  SWIRଶ − GreenSWIRଶ + Green  

Tasseled Cap Features (TCFs) 

Wetness WET =  0.1509 × Blue + 0.1973 × Green + 0.3279 × Red + 0.3406 × NIR − 0.7112 × SWIRଵ− 0.4572 × SWIRଶ 

Vegetation GVI =  −02848 × Blue − 0.2435 × Green − 0.5436 × Red + 0.7243 × NIR + 0.084 × SWIRଵ− 0.18 × SWIRଶ 

Brightness SBI =  0.3037 × Blue + 0.2793 × Green + 0.4743 × Red + 0.5585 × NIR + 0.5082 × SWIRଵ+ 0.1863 × SWIRଶ 
Green vegetation 

index MSS 
GVIMSS =  −0.283 × Green − 0.66 × Red + 0.577 × REଶ + 0.388 × NIR 

2.4. Statistical Analysis 

In the present study, a Gaussian process specified parametrically for regression problems was 
performed to determine the associations among field biophysical LAI measurements and spectral 
data. The Gaussian process is a Bayesian non-parametric algorithm, which could be considered as a 
generalization of a Gaussian (normal) probability distribution [43] extended to infinite 
dimensionality [44]. In contrast to other regression algorithms, the GPR algorithm does not define a 
conditional mean function but instead detects a befitting covariance between observations [45]. The 
GPR consists of a kernel method approach which can provide further advantages such as conditional, 
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statistical information for the predicted variable. This extracted knowledge allows the interpretability 
as well as the flexibility of GPR models.  

The GPR algorithm was used as implemented in the kernlab package [46] within the R 
environment software [47]. To assess the quality of the model, a 10-fold cross validation on the 
training data was performed. The determination coefficient (R2) and root mean square error (RMSE) 
were calculated to access the accuracy of the models. In general, the higher R2 values and the lower 
RMSE, the more accurate the model is. RMSE formula is: 

𝑅𝑀𝑆𝐸 =  ඩ1𝑛 ෍(𝑌ప෡ − 𝑌௜)ଶ௡
௜ ୀ ଵ  (1) 

where n represents the number of predictions,  𝑌෠௜  is the prediction produced for observation i, and 
Y represents the observed values which are the inputs to the equation. 

Initially, two GPR models (spectral bands and spectral indices) were developed using the full 
set of variables. In the next step, the importance of the individual predictors was estimated using 
permutation importance analysis. Permutation importance method figures the change in model’s 
performance before and after permuting the values of each variable and contrasts this to the 
predictions made on full dataset [48]. Using backward elimination selection technique [49] and 
gradually removing the least contributing variables, we established an adequate set of features as 
input for the new models. 

Subsequently, the minimal subset of predictors producing the lowest RMSE and the best 
coefficient of determination (R2) for the LAI model were selected. The permutation importance 
analysis process was applied within R environment software (R Development Core Team, 2014) using 
‘mlr’ package [48]. 

3. Results 

Two GRP models for LAI prediction were built, considering the original ten spectral bands and 
the full set of spectral indices (Table 1). The accuracy of the spectral indices model was slightly better 
(R2 = 0.825 RMSE = 1.415) than that of the spectral bands model (R2 = 0.811 RMSE = 1.646) (Figure 2).  

 
Figure 2. The relationship between the observed and predicted values of (a) the spectral bands model 
and (b) the spectral indices model on the full dataset. 

In the subsequent step of the analysis, we ranked the individual variables according to their 
importance on the model’s prediction performance. Figure 3 shows the permutation importance 
rankings for spectral bands and for the 16 spectral indices. 
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Figure 3. The most important predictor variables in rank order, using the permutation importance of 
(a) spectral bands and (b) spectral indices datasets. 

The most important variables in the spectral bands model were the SWIR (B11 and B12) and near 
infrared narrow band (NIRn1-B8A). The most important variables included in the spectral indices 
model were the NCI, the wetness (WET) and the modified NDVI index based on red-edge bands B5 
and B6 (NDVI_RE1 and NDVI_RE2). 

Figure 4 presents the results after the backward elimination and variable selection process. The 
highest performance for the spectral bands model was attained using seven spectral bands (R2 = 0.824 
RMSE = 1.628). The variable selection procedure simplified the spectral indices model. The spectral 
indices model reached the highest accuracy (R2 = 0.854 and RMSE = 1.234) using five input variables 
(NCI2, NCI1, WET, NDVI_RE1, NDVI_RE2). 

  
Figure 4. (a) The optimal predictive variable selection using the backward elimination process. (b) 
Relationships between the predictive and actual LAI values, using the best spectral bands and spectral 
indices model. Points represent measurements at the ESU level, dashed lines represent a 1:1 
relationship. 

Finally, we produced LAI maps (Figure 5) based on the best developed models considering 
spectral bands and the spectral indices model.  
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Figure 5. Leaf area index (LAI) maps based on Sentinel-2 (left) spectral bands and (right) spectral 
indices best prediction models. 

4. Discussion 

This study investigated the utility of Sentinel-2 spectral information for the estimation of the LAI 
over Northern Pindos National Park in Greece, using a GPR algorithm. As previous studies [29,50] 
have also indicated, the GPR technique provides a satisfactory accuracy of LAI estimates, efficiently 
handling a multi-dimensional dataset. In addition, GPR models generated through 10-fold cross 
validation on the training data reveal the most relevant variables to LAI in ranking order presenting 
an insight in the relation of LAI values with vegetation spectral response. The developed ranking list 
and the backward elimination process, pruning the least promising variables facilitated the 
development of less complex and computationally lighter model with less independent variables. 
and slightly improved accuracy.  

The GPR model based on the original full dataset of spectral indices has shown marginally better 
performance than the model developed upon the spectral bands. The same pattern was also 
presented by the models after the variable selection procedure. Spectral indices models, using five 
spectral indices (NDVI, NLI, WET and the modified NLI_RE1, NLI_RE2) slightly outperformed the 
best spectral bands model of the seven spectral bands. In the Korhonen et al. [51] study, indices 
models present lower but adequate predictive accuracy compared to the individual band’s models, 
for the assessment of biophysical variables. In Verrelst et al.’s [33] study where CHRIS hyperspectral 
satellite images were used, the Gaussian Process model of four or more well chosen bands 
outperformed vegetation indices for the assessment of vegetation biophysical parameters. However, 
the measurement of LAI values in these previous studies referred to different biomes affecting the 
relationship with spectral response. It has to be also noted that even though several studies examined 
the relation between Earth observation data with LAI, the fact that different techniques and methods 
for LAI measures were applied in the field, may render them not comparable to one another. 

Based on spectral bands’ importance rank order, SWIR (B11 and B12), NIRn2 (B8A), and NIR (B8) 
bands were found to be more proper for LAI assessment. Previous studies also found a strong 
correlation between SWIR bands with LAI [51,52]. Reflectance on the SWIR and NIR part of spectrum 
is noted to be affected by soil and vegetation attributes and thus can be useful for LAI estimation [53]. 
Moreover, the NIR as well the SWIR band has a capacity to sense plant components through 
combatively deep layers of vegetation [26,54]. In particular, the significance of the SWIR spectral band 
introduced by its relation to canopy reflectance and water content seems promising for the efficient 
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estimation of LAI mostly in closed canopy forests [52]. The first narrow NIR B7 (NIRn1) and the second 
red-edge B6 (RE2) bands also appear to contribute importantly to LAI evaluation, as they are 
recognized indicators of plant chlorophyll content [55]. These bands located over the transition 
spectral zone which is characterized by chlorophyll absorption to leaf scattering, thus a positive 
change of leaf chlorophyll content implies reflectance changes from low in red-edge region to very 
high in the NIR [56]. 

Regarding the spectral indices importance rank order, the results were not entirely unexpected. 
NDVI is a very common index for LAI assessment across a wide range of ecosystems [51,52,57–60] . 
NDVI boosts the contrast between vegetation and soil but it minimizes the influence rising by 
illumination conditions [61]. In addition, NDVI is associated with well known limitations of 
saturation at intermediate levels of LAI [26]. The importance of NDVI for LAI estimation becomes 
weaker while LAI is increasing beyond a species-dependent threshold, which is commonly around 
mid-LAI values [57,62]. 

The modified versions of NDVI derived from the red-edge and near-infrared narrow bands are 
also among the high important variables. Twele et al. [63], who evaluated LAI in a tropical 
environment, found that the performance of indices using narrowband indices was better than that 
of broadband indices. Red edge has also been also by previous studies as a valuable variable for the 
assessment of LAI [51,55] due to its detection strength of canopy depth under dense canopy and high 
biomass status [64,65]. Meyer et al. [5] also indicated that vegetation indices developed on near-
infrared bands were most highly correlated with LAI. 

Furthermore, indices and TCFs have been suggested to avoid the saturation problem and 
enhance the predictive accuracies regarding forest LAI. Schönert et al. [66] confirmed the great 
abilities of TCFs for the estimation of crop LAI, using RapidEye imagery. The index of wetness, as 
also its terms reveals, gages the moisture content of the vegetation or soil by abstracting the sum of 
the visible and near infrared band from the longer infrared bands [67]. The wetness feature is 
sensitive to canopy moisture, thus as the amount of canopy increases, the wetness values rise until 
maximum canopy cover is achieved [67]. 

Moreover, the NCI index, which was calculated from the SWIR and green band, was presented 
as the most significant variable for LAI estimation. The importance of NCI for LAI assessment is 
linked to the green band’s sensitivity to chlorophyll and on SWIR sensitivity to moisture. In a dry 
rangeland ecosystem, Barati et al. [68] detected that NCI presented low prediction accuracy for 
biophysical parameters, compared to other vegetation indices. Vescovo et al. [39] found that NCI 
showed stronger correlation to LAI when phytomass levels were relatively high in a grassland 
environment. Consequently, according to these previous studies, the correlation strength of NCI with 
LAI depends on the biomass level. This fact is aligned with the results of our study where NCI is 
among the top ranking important variables for LAI estimation in a Mediterranean forest ecosystem. 

All in all, the GPR algorithm, the variable selection technique, and the Sentinel-2 MSI spectral 
data seem appealing for LAI assessment over mixed Mediterranean forests. The achieved results 
could assist the efficient selection of proper Sentinel-2 MSI bands and spectral indices for LAI 
retrieval, in a regional setting approach and under an operational monitoring framework.  

However, additional studies are required to establish the relation between the specific forest 
ecosystem attributes and biophysical parameters using optical remote sensing data, since 
environmental conditions affect the spectral response. Previous research has also highlighted the 
importance of the understory vegetation, species diversity, and surface moisture for modeling the 
LAI and spectral information linkage [69].  

5. Conclusions 

Remote sensing-based LAI measurements could be used to monitor forest ecosystems response 
to the pressures induced by various drivers of change, and to indicate early warning signs regarding 
forest sustainability risks. In this paper, we evaluated the utility of Sentinel-2 MSI satellite imagery 
for estimating LAI in a heterogenous Mediterranean forest. Furthermore, we compared the 
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effectiveness of spectral indices and the spectral band to model LAI using the GPR algorithm and we 
identified the most relevant informative variables for monitoring and mapping LAI. 

The results of the present study can be summarized as follows: 

→ GRP algorithm seems promising for LAI estimation and LAI models’ interpretation through 
variables’ permutation importance rankings;  

→ Although SWIR bands have been designed for atmospheric correction applications and supposed 
to be of mirror significance for biophysical parameter estimation, GPR revealed spectral 
information in SWIR bands which is proven to be beneficial for the assessment of biophysical 
parameter such as LAI;  

→ LAI over a heterogeneous Mediterranean forest can be mapped at a high predictive accuracy using 
five spectral indices (NCI2, NCI1, WET, NDVI_RE1, NDVI_RE2). NCI, red-edge NDVI, and TCFs 
wetness indices have been proven to be important predictors for forest LAI modeling.  

Overall, the outcomes of this research provide proof of the potential of Sentinel-2 MSI spectral 
resolution for LAI assessment in Mediterranean forests. However, additional sampling efforts, 
extended over several growing seasons, could contribute in the verifying the robustness of our 
findings. 
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