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Abstract: Unmanned autonomous vehicles for various civilian and military applications have be-
come a particularly interesting research area. Despite their many potential applications, a related
technological challenge is realizing realistic coordinated autonomous control and decision making in
complex and multi-agent environments. Machine learning approaches have been largely employed
in simplified simulations to acquire intelligent control systems in multi-agent settings. However,
the complexity of the physical environment, unrealistic assumptions, and lack of abstract physical
environments derail the process of transition from simulation to real systems. This work presents
a modular framework for automated data acquisition, training, and the evaluation of multiple un-
manned surface vehicles controllers that facilitate prior knowledge integration and human-guided
learning in a closed-loop. To realize this, we first present a digital maritime environment of multiple
unmanned surface vehicles that abstracts the real-world dynamics in our application domain. Then,
a behavior-driven artificial immune-inspired fuzzy classifier systems approach that is capable of
optimizing agents’ behaviors and action selection in a multi-agent environment is presented. Evalu-
ation scenarios of different combat missions are presented to demonstrate the performance of the
system. Simulation results show that the resulting controllers can achieved an average wining rate
between 52% and 98% in all test cases, indicating the effectiveness of the proposed approach and
its feasibility in realizing adaptive controllers for efficient multiple unmanned systems’ cooperative
decision making. We believe that this system can facilitate the simulation, data acquisition, training,
and evaluation of practical cooperative unmanned vehicles’ controllers in a closed-loop.

Keywords: unmanned surface vehicles; training system; intelligent autonomous systems; fuzzy
learning classifier systems; multi-agent systems; artificial immune system; reinforcement learning

1. Introduction

Intelligent decision-making and the coordinated control of multiple unmanned sys-
tems such as unmanned surface vehicles (USVs), unmanned aerial vehicles (UAVs), un-
manned ground vehicles (UGVs), and unmanned underwater vehicles (UUVs) have be-
come an intense research area because of their high performance, efficiency and extensive
application potentials. With the increasing development and application of unmanned
systems, intelligent decision-making and the coordinated behavior of these systems are
receiving more attention [1]. For unmanned systems to be able to reach a maximum level of
autonomy, they must be able to make decisions under unpredictable situations taking into
considerations its performance constraints and other vehicles acting in the environment.
However, a prior specification of the optimal and robust coordination is difficult due to the
complexity and dynamics of their operating environment and missions. The situations in
the operation environment of these systems can change rapidly. Hence, it is imperative
for these systems to adapt their decision-making strategy to accommodate changes in the
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environment. One way to achieve robust coordinated behaviors and dynamism for these
systems on their various missions is training and learning using virtual environments
dovetail with machine learning algorithms. By integrating machine learning in virtual
environments with human-guided learning and guided interventions, multi-agent systems
can be trained on mission specific scenarios that closely resemble the physical environment
of the unmanned systems. Moreover, data which can be valuable in the training and evalu-
ation of these systems using state-of-the-art methods such as deep-reinforcement learning
techniques are scarce, and it is difficult to obtain experimental data in a real environment
since training and/or testing can be costly and sometimes dangerous in the physical envi-
ronments or using the real systems. In order to obtain large chunks of operational data and
optimized decision making, abstract (virtual) environments are powerful tools that can
facilitate this process by allowing machine learning algorithms to manipulate parameters,
store data and visualize results. They can provide cost-effective and risk-free training and
testing mechanisms while advancing research and development with humans in the loop.
By using abstract environments with machine learning approaches, agents can be built as
physical controllers and trained in settings and scenarios that would have been either too
costly or too difficult to replicate in the field. Specifically, this study envisions a multi-USV
training system for realizing autonomous coordinated control in a variety of maritime
applications such as escort missions, search and destroy, maritime patrol missions, etc.,
as the rapid growth of maritime activities extends multi-USV research for applications in
civilian [2–5] and military services [6–8]. USVs are marine vessels capable of performing
various marine operations with no crew on-board in a variety of complex and dynamic
ocean environments. In comparison with other unmanned systems, the USV offers a
significant number of advantages such as resources localization [9], the use of traditional
communication capabilities [10], as well as payload and energy capacities [11].

In the literature, several attempts have been made towards the development of multi-
USV systems for various maritime missions. Advances in areas such as the use of statistical
or machine learning techniques to derive knowledge from data as well as through qualita-
tive logic-based approaches [12] can facilitate intelligent or robust behavior realization of
unmanned systems, especially in multi-agent missions. Indeed, recent designs approaches
for facilitating the execution of autonomous unmanned systems missions employs simu-
lations for modeling and qualitative logic-based approaches as well as machine learning
techniques such reinforcement learning and bio-inspired approaches for control systems
design. For instance, intelligent decision-making for multiple unmanned vehicles using ge-
netic fuzzy trees is presented by the authors in [13]. The proposed system, as demonstrated
in combat scenarios was capable of obtaining strategies that are robust, aggressive and
responsive against opponents. A localization framework for underwater robotic swarms to
dynamically fuse multiple position estimates of an autonomous underwater vehicle while
using a fuzzy decision support system is presented in [14]. The authors in [15] used deep
q-neural networks to obtain combat strategies in an attack–defense pursuit–warfare of
multiple unmanned systems in a simplified environment. A heuristic planning approach
for guarding a valuable asset by a team of USVs operating in a continuous state-action
space is presented in [16]. By evolving planning decision trees, they succeeded in auto-
matically generating decision trees expressing a blocking policy for the USVs. In contrast,
our approach allows the actual organization and optimization of behaviors peculiar to the
mission. These behaviors are provided by the designer and fined tuned using immune
network dynamics and clonal selection. On the other hand, refs. [16,17] employs deep
reinforcement learning for path planning and the formation of USVs. In relation to one of
the scenarios being considered in this work, ref. [18] employs deep reinforcement learning
in order to train a team of escorts to maintain payload safety while navigating alongside
the payload. We extend this case to the complex maritime environment with increased com-
plexity in input and output space. While minimizing assumptions and prior knowledge
may also result in realizing more robust controllers, the complexity of the learning process
is greatly reduced when prior knowledge is utilized in complex multi-agent problems
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peculiar to multi-USV missions. The authors in [19] present a multi-agent based intelligent
training system for USVs where the authors proposed the use of genetic fuzzy trees [13]
to realize controllers for the multi-USV system. The fuzzy tree is a tree-based algorithm
with branches, where each branch handles a sub-task of the control problem and employs
genetic algorithms for optimization. On the contrary, in this work, behaviors and sub-tasks
are independently defined while immune dynamics are employed for behavior activation
and action selection.

On the other hand, ref. [20] presents an overview and comparative study of free
simulation software for mobile robots and concluded that simulators supporting USV
operations as compared to other platforms are lacking. This claim was validated in a
more recent work in [21] where the authors evaluated several realistic simulators and
presented a simulation environment integrated with robotic middleware which models the
forces that act on a USV in a disaster scenario. The authors in [22,23] present a simulation
strategy and experimental design for developing and testing controllers for UAVs and
USVs coordination with the aim of significantly reducing development and delivery times
by providing an off-the-shelf simulation environment and a step-by-step implementation
guideline. A virtual RobotX simulation capable of approximating the behavior of USVs
operating in complex ocean environments is presented in [24]. Moreover, the authors
in [25] developed a platform to model and visualize the behavior of marine vehicles in
three-dimensional space for surface and subsurface applications.

To contribute to the available literature and provide simulation support for the emerg-
ing domain of autonomous combat USVs, this work presents a modular framework for
the automated training, simulation and evaluation of multiple unmanned surface vehicles
controllers that facilitate prior knowledge integration and human-guided learning through
designer-provided behaviors in a closed loop. To realize this, we first present a digital
maritime environment of multiple unmanned surface vehicles that abstracts the real-word
dynamics in our application domain. Then, a behavior-driven artificial immune-inspired
fuzzy classifier systems approach that is capable of optimizing agents’ behaviors and action
selection in a multi-agent environment is presented. More specifically, we modeled the
training systems as artificial immune system with agents as organs and behavior models as
immune cell containers of fuzzy learning classifier systems whose classifiers were modeled
as B-Cells of the artificial immune system.

Learning classifier system is a machine learning approach that evolves a group of
if–then rules by employing evolutionary machine learning to solve practical learning
problems that is general enough for a wide range of tasks [26–30]. In fuzzy learning
classifier system, which is an extension of the learning classifier system (LCS), classifiers
are modeled as fuzzy rules and are applied to realize tactical behavior [31] of robotic
systems. The LCS [32,33] concept in general has inspired a multitude of implementations
adapted to manage the different problem domains to which it has been applied. On the
other hand, various control problems have benefited from fuzzy if–then rules [31,34]
with the advantage of easy comprehension as compared to ‘blackbox’ methods such as
deep-reinforcement learning (DRL), dynamic programming and policy functions. Unlike
research in DRL methods that focus on the training of networks in various problem settings,
a fuzzy LCS framework in general trains classifiers (rules).

On the other hand, the artificial immune system is a typical multi-agent and decen-
tralized information processing system, capable of learning and remembering, which was
inspired by the working mechanisms exhibited by the biological immune system [35,36].
The dynamics exhibited by the biological immune system has inspired various theories
and models which represent the different aspects proposed under the artificial immune
system such as the immune network [37], clonal selection [38], and negative selection [39]
and several applications have been demonstrated based on these theories [40].

The immune network theory is a critical theory of the artificial immune system which
exhibits characteristics such as learning and memorizing in immune system. The immune
network theory proposed by Jerne [37] suggests that the immune system is capable of
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achieving immunological memory by the presence of a mutually reinforcing network of
B-Cells by producing the interaction mechanism between the network cells. The interaction
of cells happens regardless of the presence of harmful foreign agents. Jerne’s theory
stipulates that the antibody of an immune cell’s epitope is recognized by a set of different
antibodies (paratopes) with various levels of precision. The idiotope of one antibody
can be recognized by the paratope of another antibody with or without the presence of
an antigen that possesses an epitope (analogous to an idiotope). This recognition and
interaction results in a network that is dynamic and leads to stimulation and suppression.
The recognized antibody is suppressed while the recognizer antibody is simulated. In the
robotics domain, ref. [36] proposed a computational model of Jerne’s idiotypic network
theory which has been notable as a means of inducing adaptive behavior mediation and has
demonstrated some encouraging results. In these idiotypic networks, competence modules
(antibodies) are linked not only to environmental stimuli (antigens) but also to each other,
which leads to the formation of a dynamic chain of suppression and stimulation that affects
their concentration levels globally.

On the contrary, negative selection abstracts an aspect of the immunological mech-
anism of organisms that deals with self-non-self-classification. This process of negative
selection of B-Cells in the biological immune system involves the destruction of B-Cells that
react against the ’self’ and the promotion of B-Cells that attack only foreign agents. This is
the underlying principle of the negative selection algorithms and their modifications [39].

On the other hand, clonal selection provides the immune system the ability to adapt
B-Cells to new types of antigens. This adaptation is proportionate to the degree of matching
between B-Cells and antigens. Hence, a stronger match causes a B-Cell to be cloned many
times compared to a weaker match. Cloned B-Cells undergo mutation from the originals at
a rate inversely proportional to the matched strength. This mechanism is the inspiration
behind the artificial clonal algorithms [41] and their applications in different tasks and
domains [42].

Comparatively, multi-agent coordinated control is similar in characteristics with those
in the biological immune system (BIS), in that, there is the need for coordination and the
adaptive control of agent’s behaviors in a dynamic environment. In our approach, we
combined immune-based methods with fuzzy classifier systems to find an appropriate
amount of the suppression and simulation of behaviors in the architecture, in addition to
learning the internal mechanism of each behavior so that behaviors are adaptive to the
agent’s environment. The contributions of this work are as follows:

• A generic framework for an autonomous unmanned systems training system design
that supports operational data collection in a closed-loop was developed;

• We present a realistic abstract digital maritime environment for interactive multi-USV
systems that can be used for multi-agent reinforcement learning;

• A behavior-driven immunized fuzzy classifier system approach for multi-USV coordi-
nated intelligent control and decision-making is presented;

• We demonstrate the feasibility of our approach in realizing improved decision-making
in multi-USV missions.

The rest of this work is organized as follows. Section 2 presents the background and
motivation of this work. Section 3 presents the approach and system architecture of the
training system. Section 4 presents the details of the digital maritime environment design
and modeling. Section 5 details the training and learning approach and the experimental
evaluation scenarios and results are presented in Section 6. Section 7 concludes this work.

2. Background and Motivation

The increasing number of maritime assets and infrastructures, ocean exploration and
the military’s need to operate in littoral and asymmetric warfare situations are all factors
influencing USV research and development. This work is part of a larger project aimed at
designing artificial general intelligence control systems for coordinating unmanned systems
in multiple and complex missions. In particular, this paper focuses on tasks that requires
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multiple USVs to coordinate in the guarding, selecting and intercepting hostile threats,
performing intelligent combat maneuvers, surveillance and taking counter measures in
the presences of several environmental disturbances. This is necessitated by the widening
possible applications and happenings in the maritime domain. For instance, in January
2017, for the first time an unmanned surface vehicle was operated from a distance in a
real warfare environment with its full operational capability being demonstrated when a
vessel of the Saudi navy was damaged in an attack carried out by the Houthis using an
unmanned suicide vehicle [7]. Prior to this, in 2000, a similar event occurred when the USS
Cole-guided missile was a target of a terrorist attack during a refuel [8]. This attack was
executed by a small fiberglass boat carrying C4 explosives. These two events could have
been avoided by taking advantage of autonomous USVs. The main question is how does a
USV employed for this mission become informed of the appropriate behaviors or actions
to take under the different situations they will encounter on their missions? This process is
called training.

Leveraging the potential and practicality of learning classifier systems and the artificial
immune algorithms, a hybrid approach for multi-USV control learning is discussed and
its applicability to realizing the coordinated control and decision making of a multi-USV
system is presented. Ultimately, a modular multi-USV training framework for the auto-
mated training, simulation and evaluation of multi-USV systems in a closed loop was
realized. Particularly, the training of USV is realized by designing behavior-driven fuzzy
classifier systems whose working mechanism in this work was inspired by the biological
immune system. Using prior behavior encoded by domain experts, appropriate primitive
actions can be learned to realize robust internal behavior mechanisms. This way, we can
accelerate the learning while reducing the computational requirements. In order to make
the system’s results a reference for real-system decision making, there is the need for a
physics-based meta-model of the USVs and the environment in order to realize a digital
maritime environment that abstracts the real process and constraints while conforming to
the physical rules governing the multi-USV operations.

3. Multi-USVs Training System Design

In this section, we present the design and approach used to realize the training system.
We first introduced the schematic framework of the system and then followed it with the
component description.

System Architecture

As shown in Figure 1, this approach presents a layered architecture. In the first level
from the top is the real or simulated environment of the controlled platforms. The second
level, referred to as the USV (platform) abstraction layer, represents the core of the system
as it provides the framework for the resources and data management of the vehicles in the
environment. The third level is the immunized strategy and decision-making layer which
provides the necessary mechanisms for behavior definitions and learning during training.
The last level of the architecture is the optimization (behavior learning) layer which pro-
vides learning algorithms for the implementation of the appropriate behavior. The third
and fourth layers together provide the training and learning mechanism. This is done by
the creating, grouping and mapping of behaviors that provides the learning objective of an
agent to the individual optimization algorithms. This design approach enables the imple-
mentation of different behavior controllers while enabling the implementation of several
learning algorithms based on the scenario being modeled. This also enables centralized
learning and distributed control implementation. Due to the high computational require-
ments of both machine learning algorithms and simulations, the modular design adopted
allows for a distributed and parallel processing since each part of the system is designed as
a separate process or subsystem. Different components interface and exchange data with
other processes and subsystems through generic interface of sockets and/or a message
passing interface. These design approaches ensure the effective evolution of data services
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and control requirements of the different unmanned systems. The proposed framework of-
fers the necessary interfaces for collecting data through a data engine and decision-making
mechanism that interfaces with agents of the unmanned system for receiving observations
and sending commands.

Figure 1. The proposed multi-USV training system architecture.

During training, the data of relevant variables are fetched and fed to the intelligent
agent that interfaces the learning algorithm for individual behaviors. In order to obtain
a large chunk of operational data and optimized decision making through data-oriented
learning methods, the training system can be used to obtain a database of observed cases,
actions taken to respond to those cases and the results of the action through the data engine.
The data engine stores the data as a resource tree which can be transformed into common
formats such as excel data sheets. The agent layer provides the abstraction and interface for
simulated or real USVs. Thus, to achieve a seamless transition between the physical systems
and their abstract simulation, this layer provides a data pipeline for the various sensors
and actuators of the control platforms through the intermediate resource manager. Using
this data pipeline, the important sensor data are extracted through platform-dependent
virtual sensors.

In the proposed system, the values extracted from the real/simulated sensor read-
ings from the environment are computed by a predefined set of virtual sensor functions.
The world model of the intelligent agent provides an environment, detection, relational
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and velocity virtual sensor functions to process the sensor data in the context of high-level
functionalities. The detection virtual sensors return the relative positions and distances of
other objects with a classification function that determines and classifies objects. The rela-
tional virtual sensor returns information about how an agent is situated to and from other
objects. While the velocity sensor returns, the velocity of the objects remains within the
detection range of the model. The environment virtual sensor returns normalized values of
the observed ocean wind, currents and waves. Table 1 presents the data models extracted
from the environment for agent world modeling.

Table 1. Information extracted from the agent environment as contained in a data model.

Data Item Description Examples

Internal state These data consist of information that is internal to the USV
Rudder angle, radar range, engine power,

weapon type, number of
ammunition, etc.

External state This consists of USV external information in relation to the
environment coordinates position, orientation, speed, heading, etc.

Observation These data include the external state information of objects
detected by USV sensors

distance, relative heading, relative
position, dimension, etc.

Weather This data model holds the environment data contents of
wind, currents and waves data

wind speed, wind direction, waves
height, currents speed, etc.

Simulation info The information and data pertaining to the abstract
environment of the USV

simulation mode, simulation time steps,
and configuration data

Figure 2 shows an abstract data model representing the data concerning the state and
observation of controlled USVs and environment. The content data model represents the
structure that is used to hold the actual value of the data instance. The properties of the
content data model are the type and value fields. This data model consists of the state,
observation, and weather information data contents. The observation includes information
on detected objects computed from the virtual sensors. The state includes the internal state
such as the rudder angle, radar range, etc. and the external state such as the vehicle speed,
position and heading. The platform (simulation) information consists of the task-specific
data, decision times and other relevant information. The weather information model
contains information about the wind, water currents and waves.

Figure 2. Data model of platform as a resource.
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4. Multi-USV Interactive Environment Design

The usefulness of the trained controllers is directly related to the accuracy of the
models that are used. As such, significant efforts are required to ensure the models used
for vehicles dynamics, sensors, and the environment are realistic. Despite the availability
of third party open source resources such as Webots [43], Gazebo [44] and UWSim [45]
that can provide the USV physical engine, environment, and sensors modeling, these
resources are limited in some instance such as combat vehicles modeling and in some
instances specific to one or two types of vehicles. For instances, Gazebo focus on UGVs and
UUVs with few works introducing new features designed for USVs. In UWSim, the wind
simulation appears not to affect the vehicle movement and its focus is clearly on UUVs.
Hence, in this section, we present the details of the digital maritime multi-USV environment
design of the training system that provides a straightforward realistic behavior modeling
of combat capable USVs.

4.1. USV Physical Engine

The USV abstract model presented accounts for wind and wave-induced currents
to make it applicable to a wider range of sea conditions. Figure 3 shows USV motions
in 6-DOF. Considering the USV movement dimension in 6-DOF of freedom, the basic
USV model used is based on Fossen’s 6-DOF model for marine vehicles [46]. This model
expresses the resulting movement of USV as the combined effect of five main forces as
shown in Equation (1)

τRF = τhs f + τhyd f + τwind + τwaves + τ (1)

where τhs f is the hydro-static forces, τhyd f is the hydrodynamics forces, τ is the control and
propulsion forces, while τwind, τwaves are the wind and wave forces, respectively. The kine-
matic and kinetic model with wind and wave disturbances is defined in Equation (2).
The complete kinematic and kinetic model including the perturbations due marine currents
can be found in [47]:{

η̇ = J(η)ν
MRBν̇ + CRB(ν)ν + MAν̇r + CA(νr)νr + D(νr)νr + g(η) = τE + τ

(2)

where:

• η = [x, y, z, φ, θ, ψ]T is a vector of position and euler angles in the m-frame;
• ν = [u, v, w, p, q, r]T is a vector of linear and angular velocities in the d-frame;
• vr is the hydrodynamic terms of relative velocities vector, i.e., the difference between

the vessel velocity relative to the fluid velocity and of the velocity of marine currents
expressed in the reference frame;

• τE is the forces and moments of environmental disturbances of superimposed wind,
currents and waves;

• The parameters J, M, D, C are the rotational transformation, inertia, damping and the
coriolis and centric fugal matrices, respectively.

The USV state model integrated the state of a physical dynamical model to the param-
eters of the corresponding constructed geometric model of the USVs, given external forces
and torques. Currently, the physical properties are only available to describe the ranges
and activation of the available sensors of an USV entity including their physical properties.
In order to compute the drag and lift forces of the USVs, the coefficients and the USVs’
velocity relative to the water velocity are used. To calculate these forces, the apparent
velocity of the difference between the model and the ocean current is used together with
lift and drag coefficients, as described in [48].
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Figure 3. USV motion model in 6 DOF.

4.1.1. Modeling Buoyancy

To represent the buoyancy effects on the vehicles in the environment, the Archimedes
principle as shown in Equation (3) is used to compute the buoyant force:

‖Fb‖ = ρ · v f · g (3)

where g is the gravitational acceleration constant, ρ is the known density of the water and
v is the volume of the water displaced. Because each USV entity can be approximated with
basic geometries, the volume of the displaced water is computed every time step of the
simulation using the submerged region of the basic geometries of the vehicle. The buoyancy
effects on the USVs consider the height of the water due to waves. This is particularly
important for combat USVs since the orientation of the USV can affect the required elevation
of a targeting weapon. The buoyancy is therefore assessed by the buoyant force and the
gravitational force (computed from the mass of the vehicle). However, to improve the
buoyancy effect on the USV, each USV is represent by six links joined together and the
gravity and buoyancy forces applied to each link’s center.

4.1.2. Actuator and Sensor Modelling

Marine radar is an important environmental perception sensor for USVs. Considering
the problems of noise, jamming, and target lost in marine radar images, as well as the
high-speed of the USV to the requirement of realistic representation, Radar and Lidar
beams are simulated using the ray casting and ray-geometry collision detection approach,
which we implemented through the ODE physics engine. The rays cast are affected or can
be blocked by objects making detection performance realistic. By comparing the time the
ray left the radar/scanner to the time each return is received, the range measurement can
be computed. The range distance can be calculated as

‖−→r ‖ = c
t
2

(4)
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where c is light speed and t is the difference in time between transmission and receiving a
pulse. To simulate the LiDAR, in each simulation step, the range of α degrees is sampled N
times to generate different rays using Equation (5):

]−→r = i
α

N
iε[1, . . . , N] (5)

The physics engine reports the collision and returns the range distance of the col-
lided every time a ray hits an object. The detected points are then computed using this
information and the current position of the model.

An inertial measurement unit (IMU) and global position system (GPS) for positioning
and attitude information were modeled using a Gaussian model to account for sensor noise.

Moreover, to be able to represent combat USVs, a gun component was modeled
in our simulated environment. The control parameters of the weapon are the elevation
and angle in addition to the fire actuator. In order to produce a more realistic weapon
performance, a fired weapon impact velocity at the target location can be estimated taking
into consideration the aerodynamic drag of the weapon. For example, the aerodynamic
drag force in one dimension of the fired weapon can be estimated in Equation (6):

Fdr = 0.5Cdr Aρaυ2; (6)

where υ is the speed of the ammunition, A is the defined area of the ammunition, ρa is the
mean density of the air and Cdr is the aerodynamic drag coefficient. Based on Equation (6)
the impact velocity of a ammunition can be estimated upon which we can estimate the
damage to the target hit.

The damage of the ammunition is simplified by Equation (7), where d is the distance
between the point where a bullet was fired and the hit target, while υ is the impact
velocity, and κ and η are the wind and scalar constants. Hence, the ammunition is also
simulated as constrained by the physical properties of the weapon type and is affected by
the environmental conditions:

D(H|bj) =
|υ|

d ∗κ ∗ η
(7)

4.1.3. Wave, Wind and Current Modeling

To provide realistic waves, we adopted the Gerstner swell wave model which is
commonly used in computer graphics [49,50] and simulates trochoides. In order to take
into account the combination of many different waves for difference training instance,
we generated wave trains for specific a wave spectrum inspired by [51] using randomly
generated wave parameters within constraints. Using a different set of parameters, we
continuously updated the waves and all trains. This representation was used to affect the
physical motion of the USVs at the ocean surface.

To represent the wind disturbance for objects at the sea surface, we used the modeling
in [24] to generate the wind direction and wind speed. The forcing influence of wind
direction and the wind speed in the reference plane on the model above the water surface
was modeled as

urw = u− uw (8)

vrw = v− vw (9)

where uw and vrw are the x and y components of the simulated wind velocity in the vessel
body frame, expressed as

uw = Vw cos(βw − ψ) (10)
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vw = Vw sin(βw − ψ) (11)

The resulting wind force can then be computed using:

Xwind = c̄xurw|urw| (12)

Ywind = c̄yvrw|vrw| (13)

Nwind = −2.0c̄nurwvrw (14)

where c̄x, c̄y, c̄n are the dimensional wind coefficients.
To model the effects of water current, a first-order Gauss–Markov processes is used to

homogeneously generate the parameters of currents at different nodes of the environment.
The forcing terms are then obtained using the current vector vE

c similar to the wind forcing
terms.

Figure 4 shows the trajectory of the USVs with no disturbance (Figure 4b) and when
wind and currents are activated (Figure 4b). In addition, the performance of a USV radar
shown at bottom left corner of Figure 4c. In this figure, we only activated the radar of the
non-blue boat to demonstrate the detection range and performance. As can be seen in the
radar, only two USVs appear on the target radar and the closest USV on the right appears
more clearly than the one on the left.

(a) Trajectory of USVs on calm sea (b) Trajectory of USVs with disturbances

(c) Simulated USV radar detection performance (d) A closer look of USVs in the virtual environment

Figure 4. Snapshot depicting environmental conditions’ effect on USVs maneuverability and detection performance.



J. Mar. Sci. Eng. 2021, 9, 560 12 of 26

5. Multi-USV Training Algorithm Design

In the previous sections, we described how the digital environment of the training
system is abstracted and simulated by describing how the physical environment and
entities are modeled. In this section, we present our approach for learning controllers of
USVs to realize multi-USV cooperative decision making.

The approach adopted in this work was inspired by the working mechanism of the
biological immune system, which can be regarded as a typical distributed multi-agent
system. In this approach, agents are designed as physical controllers of vehicles that owns a
set of behaviors models (T-Cells models) encapsulating fuzzy classifier units (FCUs) which
output its control decisions (antibodies). Each FCU possesses a detector which matches the
attributes (antigens) of the agent environment obtained through its sensors and internal
measurement units. The objective is to learn the primitive behaviors of the agents while
coordinating the different behaviors of the agent. The key idea in our approach is to
generate, activate and assign the behaviors of B-Cells to agents executing a mission so
that the entire multi-agent team can learn an optimal control strategy faster. In this case,
diverse behaviors that constitute the multi-agent mission serve as motivations for the
immune agents. That is, the focus of execution within each behavior model is guided
by the underlying objective of that particular behavior with which a local reinforcement
program can be defined.

In what follows, we present the detail algorithmic approach towards realizing au-
tonomous multi-USV control decision making in combat tasks.

5.1. Agent Knowledge Modelling and Representation

The agents in the training system are equipped with sensor (radar) and weapon
systems for detecting and firing threats, as shown in Figure 5. An agent control system only
requires important sensors information abstracted from the raw sensor data. The extracted
information is then formatted and sent to the decision-making layer.

Figure 5. USV agent and virtual sensors modelling.

The equipped detection radar of the agents has a circular detection region with a
radius r which determines its range. This radar is partitioned into the virtual sensors of
the same range by assigning a reach for each virtual sensor. These virtual sensors return
the relative positions and the normalized distance of other objects. The relational virtual
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sensor returns information about how an agent is situated to and from other objects, while
the velocity sensor returns the velocity of objects within the detection range of the agent.

In our approach, the agent is analogous to an organ in the body and owns a set of T-
Cells which encapsulate a behavior or decision model that generates antibodies in response
to the environment stimulation. T-Cells perform fuzzy matching between classifiers and
environment attributes. A fuzzy classifier is modeled as a B-Cell which consists of several
parts: an ID, condition (attributes of T-Cell receptors), consequent (specific antibody or
antibodies) and connection (idiotope) parts. A set of B-Cells constitute a strategy. T-
Cell models activate B-Cells which together results in an immune network of B-Cells.
In the BIS, T-Cell receptors can only recognize antigens that are bound to certain receptor
molecules, and undergo a process called rearrangement, causing the recombination of
a gene that expresses T-Cell receptors. The process of rearrangement allows for a lot of
binding diversity. This process is likened to the generation of the rule base of the FCU
inputs. During training, T-Cells activated B-Cells which are optimized to obtain a good
performance strategy. Figure 6 shows an abstract immune network of the T-Cell interaction
of an agent. Each T-Cell is associated with a decision-making model within the overall
mission and is identified by a unique identifier, receptors, specific antibodies and local
antibody network which forms the knowledge base of a behavior. The inputs and outputs
are defined as fuzzy sets with different degrees of membership and represented as binary
strings similar to the representation used in [52]. The detector receives the real values of
input variables (antigens) and transforms each of these values into a group of fuzzy sets.
In this study, we adopted a triangular membership functions type for defining a range of
values for each variable of a behavior model. Figure 7a,b presents the example heading
and range inputs membership functions and their encoded strings positions or indexes,
which are determined by the designer. For instance, a real-value of 100 for heading can
be represented as a 11000 binary string. The possible outputs of a T-Cell represent the
constituents of antibodies that can be activated by it, while the inputs define the set of
pathogens that a B-Cell reacts to. Here, we loosely model the T-Cell as a container of B-Cells
and its responsibility is to activate the B-Cells generated from the recombination of genes
(attributes of agent tasks) that express T-Cell receptors.

Figure 6. An abstract immune B-Cells generation model.
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(a) Example heading input fuzzy set and string encoding. (b) Example range input fuzzy set and string encoding.

Figure 7. Example inputs (antigens) encoding in an immunized fuzzy classifier system.

5.2. Decision-Making and Evaluation Mechanism

Behavior units interact with the environment through the agent, its detectors and
effectors, whilst the actions of classifiers (B-Cells) are evaluated through a reinforcement
program that captures the motivation or objective of the behavior. Classifiers are strength-
ened or weakened based on the performance of the behavior unit modeled by the T-Cells.
During the execution, behaviors are activated based on the stimulation from the environ-
ment and a match set of classifiers which determines the stimulation level of the behavior
to the agent’s observation is formed for each behavior in parallel. Each matched classifier
is collected when the agent is exposed to the environment state and its parent behavior is
activated to form a network of B-Cells. To determine the affinity between the behavior unit
and the environment’s antigens, we used the average affinity of the activated classifiers by
the behavior unit. The final actions of the environment is emitted from the classifiers with
a higher concentration after interacting with other classifiers. Classifiers that contributed
to the overall fitness obtained during the evaluation of a behavior unit receive a relative
reward as its contribution to how well the agent performs the behavior based on the rein-
forcement program of the behavior. This means that individuals are evaluated in parallel
and evolved according to its experience in the environment.

The algorithmic approach for the agent’s decision making of a multi-USV system
consists of the following steps, which are executed at each sample time by each agent:

1. At each decision step, the agent activates behaviors according to the environmental
stimulation;

2. For every activated behavior, we generate a set of strategies or determine the match
set of strategies (B-Cells). When multiple tasks are detected within the behavior,
a match set is formed for each task. For example, when a track behavior is activated
after USV detects multiple targets, the behavior model generates a strategy for each
target using the attributes of each task (target);

3. Then, the agent establishes connections between B-Cells based on the selected task.
Connections between B-Cells are established based on the tasks and behavior under
which they are generated or activated.

4. To coordinate with nearby agents, the same is done by the agent with respect to
nearby agents and the detected targets. Agents can also communicate with nearby
agents within a communication range to obtain the strategy concentration for shared
behaviors’ activation to select the best strategy with respect to a task and submit to a
behavior learner;

5. Apply immune network dynamics to update the concentration of each B-Cell;
6. The final actions of the environment are emitted from the classifiers (B-Cells) with a

higher concentration after interacting with other classifiers.

In order to evaluate an agent’s performance of a behavior, classifiers within behavior
units are evaluated based on the local objective of the behavior and global reward using
Equation (15):

F(tj+1) = (1− α)F(tj) + α1Rg(α1Rl) (15)
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where Rg is the team reward return by the environment as computed by the global rein-
forcement program. Rl is the local reward of a particular behavior, in other words, the
estimate of how well an agent performs a particular behavior which is evaluated by the
local behavior objective function or human-provided reinforcement during training. The
variables α1 and α are discount factors used to discount the local and global objective func-
tions. The local reinforcement program (evaluation functions) allows for reward shaping,
the independent learning of behaviors by agents, and facilitates the sharing of learned
policies between team members while the global reinforcement program implements the
global objective function that evaluates the team performance on a task or the overall
mission performance by the agents. The global reinforcement program in the evaluating
cases are designed to capture the overall mission objective using the cumulative rewards
received from the environment after an episode ends. In this case, a score was assigned
as the strength of each behavior’s B-Cells that were triggered during an episode run as
obtained from reinforcement programs.

Based on the immune system mechanisms, stimulation and co-stimulation occur
among B-Cells. In our case, B-Cell i is said to stimulate B-Cell j if the strength or fitness
of j is higher than that of i. This implies that the control action proposed by j leads to a
better performance than that of i. At the lower level, when a B-Cell is activated during
a behavior execution, this will lead to the stimulation of B-Cells under same conditions
but with a different output in the global immune network when the output of the B-Cell
leads to a better performance and vice versa. A relative affinity between a B-Cell and
environment pathogens can be measured using a modified version of Equation (15) that
takes into account the number of times the B-Cell was activated, as shown in Equation (16):

A f f inity(Bi) = F(tj+1)−
1

Nt
(16)

With the knowledge of B-Cell’s affinity and how to obtain the affinity between B-Cells,
the concentration (fitness) Ca of the ath B-Cell can be realized using Equation (17) [53]:

Ca(t + 1)
dt

=

(
α

N

∑
j=1

mjacj(t)− β
N

∑
k=1

makck(t) + γma −ω

)
ca(t) (17)

where:

• N is the number of B-Cells that have an inhibitory or stimulating effect on the B-Cell;
• ma is the affinity between B-Cell a and current stimuli (antigens);
• mja is the mutual stimulus coefficient of antibody j into B-Cell a;
• mki represents the inhibitory effect of B-Cell k into B-Cell a;
• ω is the rate of the natural death rate of B-Cell a;
• ca(t) is the bounded concentrations imposed on a B-Cell modeled as a squashing

function for normalized concentration values [53];
• The coefficients α, β and γ are weight factors that determine the significance of the

individual terms.

The concentration level of a B-Cell in this case affects the chances of a particular action
that the classifier can propose as the optimal action that maps the conditions of the classifier.
This means that the objective of the optimization algorithms is to learn the optimal action
of a classifier map to a compact number of classifiers necessary to realize an optimal and
adaptive execution of the independent behaviors.

5.3. Evolution Mechanism: Clonal and Negative Selection

In classifier systems, genetics-based learning approaches are employed by using
genetic operators to realize solutions for different problems and exists in two forms,
i.e., Michigan-style [54] and Pittsburgh style [55] approaches. In the Michigan-style ap-
proach, an individual is a single rule, while in the Pittsburgh approach, one individual is a
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set of rules. In this work, the Pittsburgh approach is used to represent the antibody set as
the possible solution or optimal actions mapping for individual classifiers of a behavior.
The clonal selection and negative selection mechanism enables the evolution and learning
of our optimal internal behavior execution while the immune network dynamics allows the
coordination between and within behaviors for effective realization of controllers. In what
follows, we present the process for evolving classifiers.

1. At the beginning of training, T-Cell receptors must undergo the rearrangement process
for the recombination of genes that express T-Cell receptors to form the knowledge
base of all encoded behaviors;

2. Initialize a non-self database to empty or using prior knowledge where the designer
encodes inconsistent antibody (control action) mapping as the antibody set for indi-
vidual behaviors (T-Cells);

3. Randomly initialize an N population of the antibody set for each T-Cell by assigning
an antibody from the valid antibodies of the respective T-Cell to each B-Cell to form
the initial controllers;

4. Compare the current generated antibodies with those in the non-self database to
remove/modify inconsistent antibody-sets;

5. Next, the simulator is run with the current generation of antibodies for each behavior
N times to test each set in the population. In each run, we apply the decision-making
mechanism described above to select the classifiers whose actions are posted to
the environment;

6. At the end of each episode, we apply the evaluation mechanism to evaluate the
antibody set of each behavior;

7. At the end of each generation of the population of antibodies, the concentration
level of classifiers (B-Cells) based on the performance of individual behaviors’ entire
antibody set is used to determine the n best antibody sets;

8. Clone and store the classifiers of the elite antibody sets that were triggered and re-
compose the global cure database with these classifiers. Submit the population of
clones to a hyper-mutation scheme by randomly selecting and changing the antibodies
of classifiers to form temporary antibody sets to be evaluated next;

9. Add the set of antibodies that results in the poor performance of the behavior to
the non-self database. After the B-Cell undergoes mutation by changing the action
(antibody) parts of the B-Cells, the resulted antibody set is compared with those
in the non-self database and modified if the similarities between them is below a
predefined threshold;

10. On the other hand, elite B-Cells resulting from other agents are cloned by other agents
when other agents succeed in finding more optimal actions for a behavior execution;

11. Repeat Steps 5 to 10 until a termination condition is met

6. Experiments

In this section, we demonstrate the performance of the training system and approach
in the context of training multi-USV systems in two combat tasks. The cases presented
are real-world scenarios designed to test the performance generalization and learning
speed of the system and approach. Experiments are setup and the USVs trained in the
virtual environment and the obtained controllers are evaluated. Moreover, the trained
controllers are evaluated in different configurations of the underlying scenarios in all cases.
Two training scenarios’ designs were based on different missions of unmanned surface
vehicles. The cooperative target and escort task saw the island conquered in the realistic
environment.

6.1. General System Setup

The USVs behavior configuration consists of several high-level behaviors as T-Cells
shown in Table 2. Depending on the mission or tasked to be learned, behaviors peculiar
to the task are activated and the execution of these behaviors are tuned and optimized
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to maximize USV performance on the mission in different situations. Each behavior has
receptors that define a minimum of one antigen it responds to, and as specified by the
designer based on the knowledge of the tasks and behavior. Table 3 shows the repository
of antigens used during experiment. Table 4 lists our primitive control actions (antibodies
of classifiers) that can be suggested by a classifier (B-Cell). The primitives of steer control
and throttle control directly translate into fuzzy sets. For weapon control, the fuzzy set of
the aim angle include aimLeft, aimCenter and aimRight. Radar control involves turning
on/off of the radar system of the USV. In each experiment, the number of antibody sets in
a population is set to 40 and a simulation episode lasts for 3 min. The detection and firing
range of both teams are set to 300 and 80 m, respectively, with a maximum speed of 25 m/s
during training, while the maximum turning angle of the USV is 30. The wind and current
speed are set between [0–10] and [0–8] meters per second with a variable direction across
the sea surface. The different configurations used during testing are shown in Table 5.

Table 2. Behaviors defined in the training system.

Behavior
Module (T-Cell)

Control Actions
(Antibodies) Description

Alignment Speed, direction Align with other agents or an object
Avoid collision speed, direction Avoid colliding with a static or dynamic object

Pursue Speed, direction Chase a target
Detour Speed, direction Get behind a target as soon as possible
Track Speed, direction Follow a target at a specific distance
Search Speed, direction Search an area
Attack Weapon angle, salvo fire at a target with an appropriate number of salvos

Assist teammate Speed, direction Move to a teammate performing a task
Conquer Speed, direction Move to an island location

Table 3. Attributes of the tasks and environment for the different behavior models.

Attribute (Antigen or Input Variable) Description

VA The current velocity of usv
VE The velocity of a detected threat usv
VT The velocity of the protected target
HA Current heading of usv
HE Current heading of detected threat usv
HT Heading of protected target.
D Distance to task (enemy usv or island to be conqured)

DT Distance to protected target
HDi f f Heading difference of task and current usv
Dscout Distance to the assigned neighbor

Nc Number of threats detected by this usv
Nt Number of threats detected by neighbor USVs
Tst Number of available neighbors
Cun Number of un-responded calls
Cst Number of objects or agents in collision region

DCc distance to potential collision point
Wv Speed of wind
Wd Direction of wind
Cv Speed of water current
Cd Direction of water current
Wh Wave height
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Table 4. Primitive control actions.

Type Primitive Fuzzy Terms (Antibodies)

Steer control straightAhead, turnSlightlyLeft, turnVeryLeft, turnLeft,
turnExtremelyLeft,

turnVeryRight, turnRight, turnSlightlyLeft,
turnExtremelyRight,

Throttle control reverseSpeed, verySlowSpeed, lowSpeed, normalSpeed,
fastSpeed

Gun and radar control fire(angle), performDetection

Table 5. USVs and team configuration in evaluation scenarios.

Scenario/
Settings

B6vsR3 (Scene 1) B10vsR7 (Scene 2) B10vsR10 (Scene 4) B7vsR10 (Scene 3)
Blue Red Blue Red Blue Red Blue Red

Radar range 300 m 300 m 200m 300 m 300 m/s 250 m/s 250 m/s 300 m/s
Firing range 95 m 95 m 75 m 95 m 75 m 90 m 70 m 80 m

Max gun turn 30◦ 30◦ 25◦ 30◦ 25◦ 25◦ 20◦ 30◦

Max turn angle 30◦ 30◦ 25◦ 30◦ 25◦ 25◦ 20◦ 30◦

Max speed 30 m/s 30 m/s 30 m/s 25 m/s 25 m/s 30 m/s 30 m/s 30 m/s

Wind speed 3 m/s 3 m/s 5 m/s 8 m/s
current speed 2 m/s 1.5 m/s 3 m/s 6 m/s

6.2. Case 1: Multi-USV Target Escort

This scenario is motivated by the practical domain of protecting oil tankers or cargo
ships, and protecting forces and maritime warfare in general. These assets of tremendous
economic value may be the target of terrorist organizations or pirates using small boats
parked with remotely or manually controlled explosives or as in the case of pirates boarding
small boats to carry out attacks. In this case, small and fast USVs with combat capabilities
can provide protection in such situations, especially when multiple hostile threats are
involved.

(a) Simulation in virtual environment (b) Simulation setup in 2D environment

Figure 8. Snapshot of target escort scenario setup of the environment. In (a), the controlled agents are blue boats and the
red boats are the threats. The protected target is in the middle and the blue frames show the radars of the blue USVs. In (b),
the setup is shown in 2D with a smaller detection angle and firing range for evaluation.

In the training setup, six USVs (blue team) are required to protect a dynamic target
from the hostile boats (red team). Figure 8 shows a typical setup of the scenario during
training. The blue team must coordinate their actions so that they result in creating a
safety fence around the target while intercepting and neutralizing any incoming threat.
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The goal of the team is to ensure the safety of the target and successfully destroy any
detected threat (red USVs) by engaging in combat. In this scenario, a successful cooperative
control enables the blue team to balance their resources between several main tactical
behaviors. A dynamic redeployment or formation may maximize the coverage area and an
interception and combat tactics may destroy the detected threats. Based on this criterion,
the global reinforcement program implements the following objective function:

〈Rteam, π∗〉 = arg max
R,π

E[(β + γ)− (α +
ρ− 1

ρ
] (18)

where β is the damage caused to the opponent team, γ is the time taken for the target
to be destroyed—normalized between 0 and 1—α the damage caused by opponents to
the team members and ρ is the total resource utilization of the team. On the other hand,
the staying power of a USV is the health of the USV which deteriorates as the amount of
damage caused by its opponent’s fired weapon increases. In addition to the global objective
function, the local reinforcement program implements the local objective functions based
on the objective of a defined behavior.

The design of the opposing (red) team control policy is crucial for providing realistic
challenge blue team. In this regard, the red team control policy is designed to be competitive
in the sense that their action selection within executing behaviors is not fixed to similar
states, hence no predefined pattern can be easily deduced by the blue force. Table 6 shows
an example encode rules used for the red team behavior selection during simulation.

Table 6. Example encoded task selection rules used by red teams and baseline policy.

Protected Target Enemy Detected Behavior Output

Destroyed Is none Retreat
Destroyed Is more Intercept closest enemy
Destroyed Is behind me Perform detour

Is alive Is many Intercept closest enemy
Is alive Not attacking Attack target
Is alive Is behind me Perform detour

Is in firing range - Fire at target
Is alive or dead Is in firing range fire at enemy

Is alive Is none Attack target

(a) Simulation setup in 3D environment (b) Simulation setup in 2D environment
Figure 9. Island conquering simulation setup in 3D settings (left) and the simplified 2D environment (right).
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6.3. Case 2: Cooperative Islands Conquering

In this scenario, multiple USVs competing for conquering more islands while engaging
in combat is simulated as described in [19]. We implement this scenario in our virtual
environment while using the environment in [19] for evaluation. Figure 9 shows simulation
setup for this scenario in two different environments. The environment consisted of N
islands and two teams of unmanned surface vehicles (boats). Each team had information on
the location and number of islands and their states, whether conquered or unconquered by
the team. An island is said to be conquered by a team if a member of the team moves to the
coordinate of the island and stays there for that time period and no opponent boats move
to that particular island conquered by the team. If two opponent boats occupy an island at
the same time, the island is not awarded to any team for the elapsed time steps. The red
force uses fixed rules while the blue force is trained with our approach, which implements
or modifies the additional behaviors described in [19]. We compared the performance of
these policies and the trained controllers in both environments and settings. In this case,
the global objective function as defined in [19] is as follows:

〈Rteam, π∗〉 = arg max
R,π

E[(β + γ)− α] (19)

where β is the damage caused to opponent team, γ is the time taken for the target to be
destroyed, and α the damage caused by opponents to the team.

6.4. Results and Discussion

In the first case, the blue team is declared the winner of the confrontation if the
target is not destroyed within the episode run. After a number of training episodes,
the obtained results show a better performance corresponding to a higher score and an
average score for our agents as the training progresses. This can be seen in the results of
Figure 10. Figure 10a shows the score obtained by the team based on the global objective
function while Figure 11b shows the average score per generation. To evaluate the trained
controllers, the results of different configuration of the case is presented in a simplified
2D environment and the virtual environment in this work. The results in both settings
are being compared with a baseline heuristic policy. In the heuristic strategy, the USVs
are uniformly distributed around the protected target(s) and moves according to a pre-
planned way points. When the intruder boats appear, the blue USVs intercept the closest
by simultaneously moving closer to the intruder with a fixed speed and fixed turning
angles. The intruder is automatically fired at when it is within the firing range of the blue
USVs. Alternatively, selecting the intruder for interception is done randomly and one on
one, i.e., only one blue USV intercepts an intruder or two blue USVs randomly intercept
a selected intruder two to one, where the USVs employ similar rules defined in Table 6.
Figure 11a,b presents the evaluation results as compared to the baseline heuristics in both
the virtual environment and simplified environment with a varied team configuration
to demonstrate the transferable and scalable nature of the learned controllers. While the
2D environment assumes calm sea conditions in all settings, different sea conditions are
specified in the 3D environment to test the performance in both settings. The results show
that in two of the environment settings, the blue team achieved the highest success rate
in setup B6vsR3 when all teams had the same configuration. There is no significant drop
in performance in B10vsR7 despite the constraints in the capability of the blue team. This
may be as a result of the team’s size and speed advantage of the blue team. However, there
is further drop in performance in both environments with the equal team size and when
the red team has an advantage over the team size. A significant drop in performance was
witnessed in B7vsR10 setup. This can be attributed to the impact of large environmental
disturbances caused by the wind and currents in addition to the team size advantage of the
red team. The impact of wind and current can be seen in all settings as the performance
in the 2D environment (with no environmental disturbances modeled) is better in all
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scenarios. Moreover, in all setups of the escort task, the trained controllers outperformed
the heuristic-based fixed strategies with a win rate between 10% and 30%.

(a) Learning agents score per episode (b) Average score over 50 episodes of simulation run
Figure 10. The learning curve of agents based on the proposed approach during training.

(a) Win rate under variable team size in simplified environment (b) Win rate under variable team size in virtual environment

Figure 11. Simulation results under variable team size in different environment configurations. Here, the control team wins
the confrontation if the target is not destroyed and at least one USV is still escorting it or all the intruder USVs are destroyed.

On the other hand, Figure 12 shows the episodic score and average score over 50
episodes (generation) of simulation in the case 2 scenario. The average score per generation
of antibodies and score per episode during training increases as training progresses as
shown in Figure 12a,b, respectively. To evaluate the performance of the output controllers
after training, the different configuration of the scenario is also run on both the virtual
environment and the environment developed in [19] without any major changes to the
output controllers and compared with a heuristic baseline approach which comes in two
forms in terms of selecting a task to perform.

CCI: Under this strategy, each member of the blue force selects and conquers the
closest island. When an opponent appears, it also selects the closest to attack. The intruder
is automatically fired at when it is within the firing range of the blue USVs. Fixed rules for
behaviors such as detour, track and retreat can be employed by the USV during combat
engagement, similar to one shown in Table 6.
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CIU: This is also known as conquer in units, a strategy which works by grouping team
members to perform the conquering in units. In this case, the groups can select the islands
to conquer randomly. However, when multiple opponents are detected, the units maybe
dissolved during combat.

(a) Score per episodes obtained by agents (b) Average score over 50 episodes of simulation run
Figure 12. The learning curve of agents based on the proposed approach during training.

The average wining rate, defined by the number of islands, the losses of the team and
the damages to the opponent faction, is shown in Figure 13a,b, respectively. A win here
means that the blue team scores higher than the red team based on the objective function.
In this scenario, interestingly, the trained controllers obtained its maximum performance in
the Scene 4 setup despite the more significant environment disturbances compared with
Scenes 1 and 2. Moreover, as can be observed, the highest performance obtained in this
scenario was about 4% less that of the one obtained in the escort task. However, it appears
to have performed very well when evaluated in the 2D settings. This is also evident in that
the trained controllers outperformed both fixed strategies in both environments.

(a) Comparison of the win rate in simplified environment (b) Comparison of win rate in realistic environment
Figure 13. Comparison of team win rate under variable team configuration in 3D and 2D environment. Scene 1 consists of 3
islands, and 5 USVs in each team. In Scene 2, there are 15 each with 8 islands. In Scene 3, there are 9 islands, 12 blue USVs
and 15 red USVs. Scene 4 is the reverse of Scene 3.

To develop realistic coordinated control strategies, multi-USV systems need an adap-
tive navigation strategy to face unpredictable environmental forces such as waves, wind,
and water currents. A starting step toward this goal is to have a digital environment with re-
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alistic modeling where designers can assess their control strategies under different degrees
of environmental disturbances. While some physics-based simulators exist for other types
of unmanned vehicles, very few exist in the literature for simulating multi-USV missions.
Moreover, to the best of our knowledge, the few available simulators do not provide the
data storage engine that can facilitate scenario recreations during and after simulation.
The digital maritime environment developed in this work provides this functionality.

On the other hand, learning in the digital environment can be time consuming as the
complexity of the environment increases. However, our proposed learning algorithms
were able to learn a stable control policy that achieved the coordination requirement of the
multi-USV systems after a few generations and the evolution of classifiers as can be seen in
the learning performance graphs. This, we believe, is facilitated by the behavior-driven
approach as the objective within each behavior can easily be formulated. By modeling the
physical environment and constraints of USVs in a digital environment, the obtained control
systems could be implemented in real systems, as the controllers were able to perform
credibly in settings they were not trained on. The above results show the robustness and
scalability of the controllers realized by our training system and approach.

7. Conclusions and Future Work

This work presents a training simulation platform that includes a realistic simulation
environment. We present a generic framework that can be used for training system designs
that are flexible enough and easily scalable. An abstraction of the physical platforms and
environment dovetail immunized behavior-driven decision-making and behavior learning
are the key contributions of this work. Our approach to implementation enables different
learning approaches and algorithms to be developed as learning or training algorithms
and also allows the various components of the physical simulator to scale at the local level
without major changes to other components.

A unified approach to USVs training presents a modular and simple development
process for intelligent controllers. The purpose of all the experiments was to obtain realistic
controllers that are adaptable and understandable to meet the requirement in real USV and
the physical environment. As can be seen in the performance graphs provided, the training
system is able to discover policies that improve the performance of the USVs on their tasks.
By continually updating the non-self database, agents do not waste time in evaluating
antibodies that are already evaluated by others, hence speeding up the training process
to realize a stable policy with few simulations. Simulation results show that the resulting
controllers can achieve an average wining rate between 52% and 97.6% in all test cases, in-
dicating the effectiveness of the proposed approach and its feasibility in realizing adaptive
controllers for efficient cooperative decision-making among multiple unmanned systems.
The results further point to the importance of the model’s environmental disturbances
since the performance of the controllers increases when transferred to calm environments.
Even though the controllers’ performance decreases with the different teams’ configura-
tion, about 20% of this performance degradation can be attributed to the environmental
disturbances at sea.

Finally, using the proposed system, real or simulated sensor data can be obtained
and processed based on the model definition. This allows for straightforward switching
between real and simulated sensors and actuators. We also introduce, as part of our contri-
bution, more realistic multi-USV learning tasks that can be used for evaluating cooperative
control strategies and for multi-agent reinforcement learning research advancement. Sub-
sequently we intend to improve parts of the system by mathematical models and real
equipment will be used in a human-in-the-loop configuration and to acquire real opera-
tional data from field tests to be used by the trainer to improve the tactical behaviors of
unmanned systems. In the future, more experiments will be conducted by implementing
different learning algorithms on the training system. A field test will be carried out to
ascertain the performance of these controllers in the real world. We will also design and
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improve the training algorithm and develop more real-world scenarios that can be used as
benchmarks for training and designing controls systems for multi-USV systems.
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