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Abstract: The present paper introduces the concept of integral manifolds for a class of delayed
impulsive neural networks of Cohen–Grossberg-type with reaction–diffusion terms. We establish
new existence and boundedness results for general types of integral manifolds with respect to the
system under consideration. Based on the Lyapunov functions technique and Poincarè-type inequality
some new global stability criteria are also proposed in our research. In addition, we consider the
case when the impulsive jumps are not realized at fixed instants. Instead, we investigate a system
under variable impulsive perturbations. Finally, examples are given to demonstrate the efficiency
and applicability of the obtained results.

Keywords: integral manifolds; Cohen–Grossberg-type neural networks; delays; reaction–diffusion
terms; variable impulsive perturbations; boundedness; stability

1. Introduction

The neural network models of Cohen–Grossberg type have been initially introduced in
1983 [1]. Since the above pioneered publication, the theory and applications of the Cohen–Grossberg
neural networks (CGNNs) have been developed in numerous research papers [2–4]. In addition,
delayed CGNNs have been massively investigated due to their enormous opportunities of applications
in diverse areas of science and engineering [5–10].

Moreover, many researchers considered the effect of reaction–diffusion terms on the dynamic
behavior of neural networks [11–15]. Indeed, diffusion effects are essential in modelling and scientific
understanding of natural and artificial neural networks. The properties of the hybrid type of CGNNs
with reaction–diffusion terms have been also widely investigated in the existing literature [16–19].

In addition, the effect of various types of impulsive perturbations such as those at fixed moments of
time, at variable times or delayed impulsive perturbations has been found to be remarkably important
in the behavior and control of numerous systems. That is why impulsive differential equations and
impulsive control systems are intensively used as tools in modelling of processes studied in widespread
areas of the mathematical, physical, chemical, engineering, and statistical sciences [20–29].
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Because of the boundless opportunities for modelling applications, a growing activity in the
study of impulsive CGNNs with and without reaction–diffusion term has been noted in recent years.
Many important results focused on the qualitative properties of such models increasingly appear in
the literature. We will direct the reader to [30–40], and the references therein, for example.

However, in most of the existing results for impulsive CGNNs, the authors investigated the
behavior of single states of interest. For example, in [30] the authors studied some fundamental
and stability properties of asymptotic almost automorphic solutions for impulsive delayed CGNNs.
The behavior of almost periodic states for delayed CGNNs under variable impulsive perturbations has
been investigated in [31]. Fundamental and stability properties of the equilibrium point of delayed
CGNNs under impulsive control are the subject of interest in [32]. The global exponential stability
behavior of periodic solutions for delayed impulsive CGNNs with two layers of neurons is studied
in [33]. In [34,35,37,40] different sufficient conditions for the fundamental and global exponential
stability properties of equilibrium points for delayed impulsive CGNNs with reaction–diffusion terms
are established. In [36] the global exponential stability behavior of anti-periodic solutions to impulsive
CGNNs on time scales is mainly investigated. In [38] the authors are interested in the study of the single
periodic solution for higher-order delayed CGNNs with impulses. The global exponential stability of
equilibrium points of delayed impulsive CGNNs with diffusion is the subject of investigation in [39].

In the proposed paper, we consider the behavior of integral manifolds instead of single solutions.
This is the first important novelty in our research. For a class of reaction–diffusion impulsive CGNNs
with time-varying delays we introduce the concept of integral manifolds. In fact, the integral manifolds
methods are powerful tools in the qualitative theory of different types of systems and that is why,
they are of great interest in connection with numerous problems in physics and engineering [41–48].
It is reasonable that the analysis of integral manifolds and their behavior is one of the most interesting
problems, and it is not yet developed for neural network models. In the present paper, we study the
fundamental and qualitative properties of integral manifolds related to reaction–diffusion impulsive
CGNNs with time-varying delays, namely existence, boundedness, global asymptotic and exponential
stability which is the second contribution of our research.

The third highlight of this paper includes the consideration of variable impulsive perturbations
in our analysis which are not considered in the existing results on impulsive CGNNs [30–40].
Instantaneous changes at not fixed instants of time have a considerable impact on the dynamics of the
systems and are more general, hence, more important for applications [49–52]. However, the study of
systems with variable impulsive perturbations is more challenging because of the existing opportunities
for loss of the property of autonomy, bifurcation, “merging” of solutions, “beating” phenomena,
etc. [27,49]. The impact of variable impulsive perturbations on the almost periodicity of delayed
impulsive CGNNs has been investigated in [31]. However, the class of impulsive CGNNs in [31] does
not include reaction–diffusion terms. In addition, the integral manifolds methods are not applied in
the above paper. In the present article, we will expand and complement the pioneered stability results
in [31] to the integral manifolds case and considering reaction–diffusion terms.

The fourth contribution of our research is devoted to the application of a Poincarè-type integral
inequality [53] which will allow us a more accurate estimation of the reaction diffusion terms, and leads
to a better exploration of the diffusion effect on the qualitative behavior of the considered class of
impulsive CGNNs. See [54], and the references therein.

The plan of the rest of the manuscript is as follows. In Section 2, for a class of delayed
reaction–diffusion CGNN models under variable impulsive perturbations, we will introduce the
concept of integral manifolds. Some basic notations, definitions and comparison results are also given.
Section 3 is devoted to existence and boundedness results for integral manifolds associated with the
introduced in Section 2 model. In Section 4, integral manifolds global stability analysis is conducted
and new criteria are proved. In Section 5, we present two examples to demonstrate the applicability of
the the proposed existence, boundedness and exponential stability criteria. Finally, conclusions are
given in Section 6.
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2. Preliminaries

Let R+ = [0, ∞), ||x|| = ∑n
q=1 |xq| be the norm of x = (x1, x2, . . . , xn)T ∈ Rn. In Rn consider

an open and bounded set Θ that has smooth boundary ∂Θ and the measure is expressed by mes Θ > 0.
Let 0 = (0, 0, . . . , 0)T ∈ Θ.

In this paper we will introduce the integral manifolds approach to the following CGNN model
with reaction–diffusion terms and time-varying delays under variable impulsive perturbations

∂ui(t, x)
∂t

=
n

∑
q=1

∂

∂xq

(
Diq

∂ui(t, x)
∂xq

)
− ai(ui(t, x))

[
bi(ui(t, x))

−
m

∑
j=1

cij(t) f j
(
uj(t, x)

)

−
m

∑
j=1

wij(t)gj
(
uj(t− sj(t), x)

)]
, t 6= τk(ui(t, x)), i = 1, 2, . . . , m, k = 1, 2, . . . ,

∆ui(t, x) = Jik(ui(t, x)), t = τk(ui(t, x)), i = 1, 2, . . . , m, k = 1, 2, . . . ,

(1)

where:

a m, m ≥ 2 is the number of neurons in the GCNN model, t > 0, x = (x1, x2, . . . , xn)T ∈
Θ, ui(t, x) denotes the state of the i-th neuron at time t and in space x, u(t, x) =

(u1(t, x), u2(t, x), . . . , um(t, x))T ∈ Rm;
b sj(t) denote the time-varying delays of the i-th neural unit, the functions sj are continuous and

t > sj, j = 1, . . . , m, 0 ≤ sj(t) ≤ ν,
dsj(t)

dt
< δj (ν > 0, δj < 1);

c ai(ui(t, x)) ≥ 0, i = 1, 2, . . . , m, are the amplification functions and are continuous on their
domains;

d bi(ui(t, x)) are appropriately behaved continuous functions with real values, i = 1, 2, . . . , m;
e cij(t) and wij(t) are the connection weight and time-varying delay connection weight of j-th

neural unit on the i-th neural unit at time t, respectively, and are continuous real-valued functions;
f f j(uj(t, x)) and gj

(
uj(t− sj(t), x)

)
, j = 1, . . . , m are the activation function and time-varying delay

activation function of the j-th neuron, respectively, and for any j = 1, 2, . . . , m the functions f j, gj
are continuous with real values;

g Diq = Diq(t, x) ≥ 0, q = 1, 2, . . . , n, i = 1, 2, . . . , m are the diffusion coefficients along the
q-th coordinate for i-th neural unit and are continuous functions for any i = 1, 2, . . . , m and
q = 1, 2, . . . , n.

h Jik(ui(t, x)), i = 1, 2, . . . , m, k = 1, 2, . . . , are the real-valued functions that characterize the weights
of the impulsive perturbations on the i-th nodes at the at the variable times for t = τk(u(t, x)),
where τk(u) are continuous functions, k = 1, 2, . . . ; ∆ui(t, x) = ui(t+, x) − ui(t−, x) for any
i = 1, 2, . . . , m, t = τk(ui(t, x)), k = 1, 2, . . . , x ∈ Θ, where ui(t−, x) = ui(t, x) is the state of the i-th
neuron before the jump perturbation at t = τk(ui(t, x)) and ui(t+, x) is the impulsively controlled
output of the i-th unit.

In order to formulate the initial condition for the delayed model (1), we consider an initial function
ϕ0 = (ϕ01, ϕ02, . . . , ϕ0m)

T with real-valued components ϕ0i(s, x) defined on [−ν, 0] × Θ, that are
bounded and piecewise continuous functions with respect to their first variable s with eventually finite
number of points of discontinuity of the first kind s ∈ [−ν, 0] at which ϕ0i(s+, x) and ϕ0i(s−, x) exist
and ϕ0i(s−, x) = ϕ0i(s, x), i = 1, 2, . . . , m, x ∈ Θ.
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Denote by u(t, x) = u(t, x; ϕ0) the solution of the delayed impulsive reaction–diffusion CGNN
model (1) under the following initial and boundary conditions:

ui(s, x) = ϕ0i(s, x), s ∈ [−ν, 0], x ∈ Θ, i = 1, 2, . . . , m, (2)

ui(t, x) = 0, t ∈ [−ν, ∞), x ∈ ∂Θ, i = 1, 2, . . . , m. (3)

According to the theory [27,31,49], the solution

u(t, x) = (u1(t, x), u2(t, x), . . . , um(t, x))T

of the model (1) with variable impulsive perturbations is such that at the moments tlk when the integral
surface of u(t, x) meets the hypersurfaces

σk =
{
(t, u) ∈ [0, ∞)×Rm : t = τk(u(t, x))

}
,

the following is true

ui(t−lk , x) = ui(tlk , x), ui(t+lk , x) = ui(tlk , x) + Jilk (ui(tlk , x)), x ∈ Θ, i = 1, 2, . . . , m, k = 1, 2, . . . .

The above points tl1 , tl2 , . . . are the impulsive moments. It is also well known [27,31,49] that,
in general, k 6= lk. In addition, due to the nature of the variable impulsive perturbations, different nodes
ui(t, x), i = 1, 2, . . . , m may have different impulsive moments. In this paper, we will investigate such
nodes the motion along with which is established by a suitable choice of the impulsive forces. That is
why we will assume that, τ0(ui) ≡ t0 = 0 for ui ∈ R, i = 1, 2, . . . , m, all functions τk(ui), i = 1, 2, . . . , m,
k = 1, 2, . . . are continuous and

t0 < τ1(ui) < τ2(ui) < . . . , τk(ui)→ ∞ as k→ ∞

uniformly on ui ∈ R.
Further, we will use the following classes of functions:

(i) The class of all nonnegative continuous functions defined on R+ that are strictly increasing and
are zeros at zero will be denoted by K;

(ii) The class of all functions σ̄ : R×Θ → Rm that are continuous everywhere on their domains
except at points of the type (tlk , x) ∈ R×Θ where σ̄(t−lk , x) and σ̄(t+lk , x) exist and σ̄(t−lk , x) =
σ̄(tlk , x) will be denoted by PC[R×Θ,Rm];

(iii) PC will denote the class of all piecewise continuous functions ϕ = (ϕ1, ϕ2, . . . , ϕm)T ∈ Rm

defined on [−ν, 0]×Θ for which ϕi(s+, x), ϕi(s−, x) exist, ϕi(s−, x) = ϕi(s, x), i = 1, 2 . . . , m,
for all points (s, x) ∈ [−ν, 0]×Θ which must be finite number;

(iv) PCB will denote the class of all functions ϕ ∈ PC that are bounded on [−ν, 0]×Θ.

For t ∈ R+, we also consider the following norm

||u(t, .)||2 =

[ ∫
Ω

m

∑
i=1

u2
i (t, x)dx

]1/2

for u(t, x) = (u1(t, x), u2(t, x), . . . , um(t, x))T ∈ Rm, and the norm ||.||ν defined as

||ϕ||ν = sup
−ν≤s≤0

||ϕ(s, .)||2

for a function ϕ ∈ PC.
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In this paper we will apply the method of integral manifolds for the delayed reaction–diffusion
impulsive CGNN model (1). To this end, we will adopt the following definition for an integral manifold
related to (1) [41–48].

Definition 1. We will say that a manifold M in the extended phase space [−ν, ∞) × Θ × Rm of (1) is an
integral manifold, if (s, x, ϕ0(s, x)) ∈ M, (s, x) ∈ [−ν, 0]×Θ implies (t, x, u(t, x)) ∈ M, (t, x) ∈ R+ ×Θ
for any solution u(t, x) = u(t; x; ϕ0).

For a manifold M ⊂ [−ν, ∞)×Θ×Rm we introduce the following sets and distances:

The set of all u ∈ Rm such that (t, x, u) ∈ M for (t, x) ∈ R+ ×Θ is denoted by M(t, x);
The set of all z ∈ Rm such that (s, x, z) ∈ M for (s, x) ∈ [−ν, 0]×Θ is denoted by M0(s, x);
The distance between u ∈ Rm and M(t, x) is defined as d(u, M(t, x)) = inf

v∈M(t,x)
||u− v||2;

An ε- neighborhood of M(t, x) is denoted by M(t, x, ε) and is defined by

M(t, x, ε) = {u ∈ Rm : d(u, M(t, x)) < ε} (ε > 0);

The distance between a function ϕ ∈ PC and M0(s, x) is defined as

d0(ϕ, M0(s, x)) = sup
s∈[−ν,0]

d(ϕ(s, x), M0(s, x));

An ε- neighborhood of M0(s, x) is denoted by M0(s, x, ε) and is defined by

M0(s, x, ε) = {ϕ ∈ PC : d0(ϕ, M0(s, x)) < ε} .

We will also use the closures

M(t, x, ε) = {u ∈ Rm : d(u, M(t, x)) ≤ ε};
M0(s, x, ε) = {ϕ ∈ PC : d0(ϕ, M0(s, x)) ≤ ε};
Sα = {u ∈ Rm : ||u||2 ≤ α}; Sα(PC) = {ϕ ∈ PC : ||ϕ||ν ≤ α}.

Throughout this paper, we will assume that:

A1. For the nonnegative continuous functions ai there exist constants ai and ai such that

ai ≤ ai(χ) ≤ ai, χ ∈ R,

i = 1, 2, . . . , m.
A2. For the continuous functions bi there exist positive constants Bi with such that

bi(χ1)− bi(χ2)

χ1 − χ2
≥ Bi > 0

for χ1, χ2 ∈ R, χ1 6= χ2, i = 1, 2, . . . , m.
A3. The continuous functions f j and gj are bounded, there exist positive constants Lj, Mj, j =

1, 2, . . . , m, such that
| f j(χ1)− f j(χ2)| ≤ Lj|χ1 − χ2|,

|gj(χ1)− gj(χ2)| ≤ Mj|χ1 − χ2|

for all χ1, χ2 ∈ R, χ1 6= χ2, and f j(0) = gj(0) = 0 for any j = 1, 2, . . . , m.
A4. For the continuous functions Diq there exist constants diq ≥ 0 such that

Diq(t, x) ≥ diq, t > 0, x ∈ Θ,

for any i = 1, 2, . . . , m and q = 1, 2, . . . , n.



Mathematics 2020, 8, 1082 6 of 18

A5. The impulsive functions Jik are continuous and Jik(0) = 0 for all i = 1, 2, . . . , m and k = 1, 2, . . . .
A6. The sets M(t, x) and M0(s, x) are nonempty for (t, x) ∈ R+ × Θ and (s, x) ∈

[−ν, 0) × Θ, respectively.

Next, the following boundedness and stability definitions for an integral manifold M ⊂ [−ν, ∞)×
Θ×Rm are introduced. They generalize and extend the known boundedness and stability definitions
for impulsive delayed CGNNs with reaction–diffusion terms used in [34,35,37,39,40] to the integral
manifolds case.

Definition 2. We will say that an integral manifold M of system (1) is:

(a) equi-bounded, if
(∀η > 0)(∀α > 0)(∃b = b(η, α) > 0)

(∀ϕ0 ∈ Sα(PC) ∩M0(s, x, η))(∀t ≥ 0, ∀x ∈ Θ) : u(t, x; ϕ0) ∈ M(t, x, b);

(b) uniformly bounded, if the number b from (a) is independent of α > 0.

Definition 3. We will say that an integral manifold M of system (1) is said to be:

(a) stable, if
(∀ε > 0)(∀α > 0)(∃δ = δ(α, ε) > 0)

(∀ϕ0 ∈ Sα(PC) ∩M0(s, x, δ))(∀t ≥ 0, ∀x ∈ Θ) : u(t, x; ϕ0) ∈ M(t, x, ε);

(b) uniformly stable, if the number δ from (a) is independent of α > 0;
(c) uniformly globally asymptotically stable, if it is a uniformly stable, uniformly bounded, and

(∀ε > 0)(∀η > 0)(∃T = T(η, ε) > 0)

(∀ϕ0 ∈ PCB)(∀t ≥ T, ∀x ∈ Θ) : u(t, x; ϕ0) ∈ M(t, x, ε);

(d) uniformly globally exponentially stable, if

(∃k > 0)(∃γ ≥ 0)(∀ϕ0 ∈ PCB)(∀t ≥ 0, ∀x ∈ Θ) :

u(t, x; ϕ0) ∈ M
(

t, x, kd0(ϕ0, M0(s, x))e−γt
)

.

It is clear that, in particular cases, Definitions 2 and 3 can be used to investigate the behavior
of single solutions, such as, zero states, equilibria, periodic solutions, etc. In such cases, the integral
manifolds contain only the corresponding solutions. Note that such a generalization of the concepts for
systems with variable impulsive perturbations is not trivial, since for such systems [31,49–52], different
states may have different impulsive moments.

In addition, the introduced definitions extend the opportunities for applications of the integral
manifolds methods [41–48] to specific systems studied in numerous areas of science and technologies,
such as impulsive CGNNs with reaction diffusion terms and time-varying delays.

Next Poincarè-type integral inequality [54] for the set Θ = ∏n
q=1[aq, bq], aq = const ∈ R, bq =

const ∈ R, q = 1, 2, . . . , n will be applied in the proofs of our main results.

Lemma 1. [53,54] For any real-valued function v(x) that belongs to C1(Θ) the following relation is valid

∫
Θ

v2(x)dx ≤ B2

4n

∫
Θ
|∇v(x)|2dx

whenever Θ = ∏n
q=1[aq, bq], aq, bq ∈ R, 0 = (0, 0, . . . , 0)T ∈ Θ and B = max{bq − aq, q = 1, 2, . . . , n}.
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Some generalizations of Lemma 1 also exist in the literature. See, for example, [16].
Finally, some basic notations and results from the method of piecewise continuous Lyapunov-type

functions [6,11,13,15,27,28,31,35] are in order.
Define the sets

Gk = {(t, u) : τk−1(u) < t < τk(u), u ∈ Rm}, k = 1, 2, . . . , G =
∞⋃

k=1

Gk.

We will use Lyapunov-type functions from the class VM = {V : R+ × Rm → R+ : V ∈
C(G), V is locally Lipschitz with respect to its second argument on each of the sets Gk, V(t, u(t, .)) =
0 for (t, x, u) ∈ M, V(t, u(t, .)) > 0 for (t, x, u) ∈ {R+ × Θ × Rm} \ M, for each k =

1, 2, . . . and (t∗0 , u∗0) ∈ σk, V(t∗−0 , u∗0) = V(t∗0 , u∗0) and V(t∗+0 , u∗0) exist}.
Denote by t1, t2 , . . . (0 = t0 < t1 < t2 < . . . ) the impulsive moments of the solution u(t, x; ϕ0) of

the problem (1), (2), (3). In fact, each of the points tk is a solution of some of the equations t = τk(u(t, x)),
t ≥ 0, x ∈ Θ, k = 1, 2, . . . , i.e., tk are the impulsive points at which the integral curve (t, u(t, x; ϕ0)) of
the initial value boundary problem (1), (2) (3) meets each of the hypersurfaces σk, k = 1, 2, . . . .

Now, for a given function V ∈ VM, t ∈ R+, t 6= tk, k = 1, 2, . . . and ϕ̄ ∈ PC define the following
derivative with respect to system (1)

D+V(t, ϕ̄(0, .)) = lim
χ→0+

sup
1
χ

[
V(t + χ, u(t + χ, .; ϕ̄(0, .))−V(t, ϕ̄(0, .))

]
.

We will use the following key lemma.

Lemma 2. [31] Let assumptions A1–A6 hold, and a function V ∈ VM exists such that for t ∈ R+ and ϕ ∈ PC

D+V(t, ϕ(0, .)) ≤ λ1V(t, ϕ(0, .)), t 6= tk, λ1 ∈ R

for
V(t + s, ϕ(s, .)) ≤ V(t, ϕ(0, .)), −ν ≤ s ≤ 0

and
V(t+, ϕ(0, .) + ∆(ϕ, .)) ≤ V(t, ϕ(0, .)), t = tk, k = 1, 2, . . . .

Then
V(t, u(t, .)) ≤ sup

−ν≤s≤0
V(0, ϕ0(s, .))eλ1t, t ≥ 0.

3. Existence and Boundedness Results

In this section, existence and boundedness of an integral manifold with respect to system (1) will
be investigated.

Let aq, bq ∈ R, q = 1, 2, . . . , n, and consider the set Θ of points x, x = (x1, x2, ..., xn)T defined as
aq ≤ xq ≤ bq, i.e., Θ = ∏n

q=1[aq, bq]. Let 0 = (0, 0, . . . , 0)T ∈ Θ.
Denote by B = max{bq − aq}, D = min{diq}, and cij = sup

t∈R+

|cij(t)|, wij = sup
t∈R+

|wij(t)|, i, j =

1, 2, . . . , m, q = 1, 2, . . . , n,
Introduce the following assumption:

A7. The impulsive controllers Jik of system (1) are designed such that

Jik(ui(tk, x)) = −γikui(tk, x), 0 < γik < 2, i = 1, 2, . . . , m, k = 1, 2, . . . .
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Theorem 1. A manifold M in the extended phase space of the system (1) is an integral manifold of (1),
if assumptions A1–A7 hold and the system’s parameters are such that

min
1≤i≤m

[
2

(
4nD
B2 + aiBi

)
− ai

m

∑
j=1

(
Ljcij + Mjwij + Licji

)]
> max

1≤i≤m

(
Mi

m

∑
j=1

ajwji

)
> 0. (4)

Proof. Let x ∈ Θ, ϕ0 ∈ PCB and u(t, x) = u(t, x; ϕ0) = (u1(t, x), u2(t, x), . . . , um(t, x))T be the
solution of the initial value boundary problem (1), (2), (3) defined for t ≥ 0 [34,35,37,39,40].

Assumption A6 guarantees the existence of at least one

v = v(t, x) = (v1(t, x), v2(t, x), . . . , vm(t, x))T ∈ M(t, x),

(t, x) ∈ R+ ×Θ.
We construct a Lyapunov-type function V ∈ VM as follows

V(t, u) =
1
2

d2(u, M(t, x)) =
1
2

inf
v∈M(t,x)

||u(t, .)− v(t, .)||22, (t, u) ∈ R+ ×Rm. (5)

or

V(t, u) =
1
2

inf
v∈M(t,x)

∫
Θ

m

∑
i=1

(
ui(t, x)− vi(t, x)

)2dx, (t, u) ∈ R+ ×Rm.

Since for any t ∈ σk, k = 1, 2, . . . , A7 implies

∫
Θ

m

∑
i=1

(1− γik)
2(ui(t, x)− vi(t, x)

)2dx <
∫

Θ

m

∑
i=1

(
ui(t, x)− vi(t, x)

)2dx,

then, for any ϕ ∈ PC we have

V(t+, ϕ(0, .) + Jk(ϕ, .)) < V(t, ϕ(0, .)), t = tk, k = 1, 2, . . . . (6)

Now, for any t /∈ σk, k = 1, 2, . . . , for the derivative of the function V(t, u(t, .)), we have

dV(t, u(t, .))
dt

≤
m

∑
i=1

∫
Θ

(
ui(t, x)− vi(t, x)

)∂
(
ui(t, x)− vi(t, x)

)
∂t

dx. (7)

Since v ∈ M(t, x), then by A1, we obtain

∂(ui(t, x)− vi(t, x))
∂t

≤
n

∑
q=1

∂

∂xq

(
Diq

∂(ui(t, x)− vi(t, x))
∂xq

)

− ai[bi(ui(t, x))− bi(vi(t, x))] + ai

m

∑
j=1

cij
∣∣ f j
(
uj(t, x)

)
− f j(vj(t, x))

∣∣
+ ai

m

∑
j=1

wij
∣∣gj
(
uj(t− sj(t), x)

)
− gj(vj(t− sj(t), x))

∣∣.
(8)
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From (8), we get

∫
Θ
(ui(t, x)− vi(t, x))

∂(ui(t, x)− vi(t, x))
∂t

≤
∫

Θ

n

∑
q=1

∂

∂xq

(
Diq

∂(ui(t, x)− vi(t, x))
∂xq

)
(ui(t, x)− vi(t, x))dx

−
∫

Θ
ai(ui(t, x)− vi(t, x))[bi(ui(t, x))− bi(vi(t, x))]dx

+ ai

∫
Θ
(ui(t, x)− vi(t, x))

m

∑
j=1

cij
∣∣ f j
(
uj(t, x)

)
− f j(vj(t, x))

∣∣dx

+ ai

∫
Θ
(ui(t, x)− vi(t, x))

m

∑
j=1

wij
∣∣gj(uj(t− sj(t), x))− gj(vj(t− sj(t), x))

∣∣dx.

(9)

Now, we will estimate each term of the right-hand side of (9).
We apply the Green’s theorem, the boundary conditions, A4 and Lemma 1 to obtain

∫
Θ

n

∑
q=1

∂

∂xq

(
Diq

∂(ui(t, x)− vi(t, x))
∂xq

)
(ui(t, x)− vi(t, x))dx

= −
n

∑
q=1

∫
Θ

Diq

(
∂(ui(t, x)− vi(t, x))

∂xq

)2

dx

≤ −
n

∑
q=1

∫
Θ

diq

(
∂(ui(t, x)− vi(t, x))

∂xq

)2

dx ≤ −4nD
B2

∫
Θ
(ui(t, x)− vi(t, x))2dx.

(10)

From A2 and A3, we obtain∫
Θ

ai(ui(t, x)− vi(t, x))[bi(ui(t, x))− bi(vi(t, x))]dx ≥ aiBi

∫
Θ
(ui(t, x)− vi(t, x))2dx, (11)

ai

∫
Θ
(ui(t, x)− vi(t, x))

m

∑
j=1

cij
∣∣ f j
(
uj(t, x)

)
− f j(vj(t, x))

∣∣dx

≤ ai

∫
Θ

m

∑
j=1

cijLj|ui(t, x)− vi(t, x)||uj(t, x)− vj(t, x)|dx

≤ 1
2

ai

m

∑
j=1

∫
Θ

cijLj
[
(ui(t, x)− vi(t, x))2 + (uj(t, x)− vj(t, x))2]dx,

(12)

and

ai

∫
Θ
(ui(t, x)− vi(t, x))

m

∑
j=1

wij
∣∣gj(uj(t− sj(t), x))− gj(vj(t− sj(t), x))

∣∣dx

≤ ai

m

∑
j=1

∫
Θ

wij Mj|ui(t, x)− vi(t, x)|
∣∣uj(t− sj(t), x)− vj(t− sj(t), x)

∣∣dx

≤ 1
2

ai

m

∑
j=1

∫
Θ

wij Mj
[
(ui(t, x)− vi(t, x))2 + (uj(t− sj(t), x)− vj(t− sj(t), x))2]dx.

(13)
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Now, from (7)–(13), we have

dV(t, u(t, .))
dt

≤
m

∑
i=1

[
−
(

4nD
B2 + aiBi

) ∫
Θ
(ui(t, x)− vi(t, x))2dx

+
1
2

ai

m

∑
j=1

∫
Θ

cijLj
[
(ui(t, x)− vi(t, x))2 + (uj(t, x)− vj(t, x))2]dx

+
1
2

ai

m

∑
j=1

∫
Θ

wij Mj
[
(ui(t, x)− vi(t, x))2 + (uj(t− sj(t), x)− vj(t− sj(t), x))2]dx

]

≤ −1
2

m

∑
i=1

[
2

(
4nD
B2 + aiBi

)

− ai

m

∑
j=1

(
Ljcij + Mjwij + Licji

)] ∫
Θ
(ui(t, x)− vi(t, x))2dx

+
1
2

m

∑
i=1

m

∑
j=1

ajwji Mi

∫
Θ

sup
−ν≤s≤0

(uj(s, x)− vj(s, x))2dx

≤ −c1
1
2

m

∑
j=1

∫
Θ
(ui(t, x)− vi(t, x))2dx + c2

1
2

m

∑
j=1

∫
Θ

sup
−ν≤s≤0

(uj(s, x)− vj(s, x))2dx,

(14)

where

c1 = min
1≤i≤m

[
2

(
4nD
B2 + aiBi

)
− ai

m

∑
j=1

(
Ljcij + Mjwij + Licji

)]
,

c2 = max
1≤i≤m

(
Mi

m

∑
j=1

ajwji

)
.

It follows from (4) that
D+V(t, ϕ(0, .)) ≤ 0, t 6= tk (15)

for ϕ ∈ PC when V(t + s, ϕ(s, .)) ≤ V(t, ϕ(0, .)), −ν ≤ s ≤ 0.
According to Lemma 2 for λ1 = 0, by (6) and (15), we obtain

V(t, u(t, .)) ≤ sup
−ν≤s≤0

V(0, ϕ0(s, .)), t ≥ 0. (16)

Now, for the solution u(t, x; ϕ0) of the initial value boundary problem (1), (2), (3) we will prove
that (s, x, ϕ0(s, x)) ∈ M for (s, x) ∈ [−ν, 0]×Θ implies (t, x, u(t, x)) ∈ M, (t, x) ∈ R+ ×Θ.

If the above assumption is not true, then for any x ∈ Θ there exists a t′, t′ > 0 such that
(t, x, u(t, x; ϕ0)) ∈ M for 0 < t ≤ t′ and (t, x, u(t, x; ϕ0)) /∈ M for t > t′.

We consider the following cases:
Case 1. t′ /∈ σk for k = 1, 2, . . . , or t′ 6= τk(u), u ∈ Rm, for k = 1, 2, . . . . In this case, there exists t′′,

τk(u) < t′′ < τk+1(u) such that (t′′, x, u(t′′, x; ϕ0)) 6∈ M and

V(t′′, u(t′′, x; ϕ0)) > 0 (17)

Then, for t = t′′, from (16) since (s, x, ϕ0(s, x)) ∈ M for (s, x) ∈ [−ν, 0] × Θ, we get
V(t′′, u(t′′, .)) ≤ sup−ν≤s≤0 V(0, ϕ0(s, .)) = 0, which contradicts (17).

Case 2. t′ ∈ σk for some k = j, j+ 1, . . . , j ≥ 1 or t′ = τk(u), u ∈ Rm, for some k = j, j+ 1, . . . , j ≥ 1.
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Then, from (6) and the fact that (t′, x, u(t′, x; ϕ0)) ∈ M, we have

0 ≤ V(t′+, u(t′+, .)) < V(t′, u(t′, .)) = 0.

The contradictions obtained in both cases prove that (s, x, ϕ0(s, x)) ∈ M for (s, x) ∈ [−ν, 0]×Θ
implies (t, x, u(t, x)) ∈ M, (t, x) ∈ R+ ×Θ, i.e., the set M is an integral manifold for (1). Theorem 1
is proved.

Next is the boundedness result.

Theorem 2. Under the conditions of Theorem 1 the integral manifold M of model (1) is uniformly bounded.

Proof. For the integral manifold M, consider the Lyapunov-type function (5). We have that V ∈ VM
and there exist v1, v2 ∈ K such that

v1(d(u, M(t, x))) ≤ V(t, u) ≤ v2(d(u, M(t, x))), (t, u) ∈ R+ ×Rm, x ∈ Θ. (18)

Let η > 0 be chosen. It follows from v1, v2 ∈ K that the number b = b(η) > 0 can be chosen so
that v2(η) < v1(b).

Now, we suppose that u(t, x) = u(t, x; ϕ0) is the solution of the problem (1), (2) and (3) with initial
function ϕ0 ∈ Sα(PC0) ∩M0(s, x, η) for α > 0. From (18) and (16), we have

v1(d(u(t, x), M(t, x))) ≤ V(t, u(t, x)) ≤ sup
−ν≤s≤0

V(0, ϕ0(s, x))

≤ v2(d0(ϕ0, M0(s, x))) ≤ v2(η) < v1(b), t ≥ 0.

Therefore, u(t, x; ϕ0) ∈ M(t, x, b) for t ∈ R+ and the proof is completed.

4. Integral Manifolds Stability Analysis

In the next we will use measurable functions of the type λ : R+ → R+. Such functions are
integrally positive if ∫

Ĵ
λ(t)dt = ∞

whenever Ĵ =
∞⋃

k=1

[αk, βk], αk < βk < αk+1, and βk − αk ≥ µ > 0, k = 1, 2, . . . .

Theorem 3. If the conditions of Theorem 1 hold, and in addition, the integrally positive function λ = λ(t) :
R+ → R+ is such that

min
1≤i≤m

[
2

(
4nD
B2 + aiBi

)
− ai

m

∑
j=1

(
Ljcij + Mjwij + Licji

)]
− max

1≤i≤m

(
Mi

m

∑
j=1

ajwji

)
> λ(t) ≥ 0 (19)

for t 6= τk(u), k = 1, 2, . . . , then the integral manifold M of the impulsive reaction–diffusion delayed CGNN (1)
is uniformly globally asymptotically stable.

Proof. The uniform boundedness of the integral manifold M follows from Theorem 2. Now, we will
prove that M is uniformly stable and globally attractive.

Consider the uniform stability. For the function V ∈ VM from Theorem 1, the inequalities (18) are
true for functions v1, v2 ∈ K.

Then, for a given ε > 0 there exists δ = δ(ε) > 0 such that v2(δ) < v1(ε).
Consider a function ϕ0 ∈ Sα(PC) ∩M0(t, x, δ) for α > 0, and let u(t, x; ϕ0) be the solution of the

impulsive reaction–diffusion delayed CGNN (1) through (0, ϕ0).
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By condition (19) following the same steps as in the proof of Theorem 1 for t ≥ 0, t 6= τk(u),
u ∈ Rm, for any function ϕ ∈ PC we get

D+V(t, ϕ(0, .)) ≤ −λ(t)V(t, ϕ(0, .)), t 6= τk(u), t > 0 (20)

for V(t + s, ϕ(s, .)) ≤ V(t, ϕ(0, .)), −ν ≤ s ≤ 0.
Using (6), (18)–(20), by Lemma 2, we get

v1(d(u(t, x; ϕ0), M(t, x))) ≤ V(t, u(t, x)) ≤ v2( sup
−ν≤s≤0

V(0, ϕ0(s, x)))

≤ v2(d(ϕ0, M0(s, x))) < v2(δ) < v1(ε), t ≥ 0,

hence u(t, x; ϕ0) ∈ M(t, x, ε), t ≥ 0, which proves the uniform stability of the integral manifold M of
the model (1).

Finally, we will show that the integral manifold M of model (1) is globally attractive. To this end,
according to Definition 3(c), we will show that for the given η > 0 and ε > 0 we can take a constant
T = T(η, ε) > 0 so that for any x ∈ Θ the following inequality

sup
t∗−ν≤t≤t∗

d(u(t, x), M(t, x)) < δ(ε) (21)

is valid for at least one t∗ ∈ [0, T].
If (21) is not true for at least one t∗ ∈ [0, T], then

d(u(t, x; ϕ0), M(t, x)) ≥ δ(ε) (22)

for any (t, x) ∈ [0, T]×Θ. In this case, by (6), (20) and (22), for any t ∈ [0, T] it follows that

V(t, u(t, .))−V(0, u(0, .)) ≤ −
∫ t

0
λ(ϑ)d(u(ϑ, .), M(ϑ, .))dϑ

≤ V(0, u(0, .))− δ(ε)
∫ t

0
λ(ϑ)dϑ

(23)

Furthermore, from the integral positivity of the function λ(t) we can choose the number T so that

∫ T

0
λ(ϑ)dϑ >

v2(η)

δ(ε)
.

Now, for t = T, from (23) and the uniform boundedness of the integral manifold M, we have

V(T, u(T, x; ϕ0)) ≤ v2(η)− δ(ε)
∫ T

0
λ(ϑ)dϑ < 0,

which is a contradiction. Therefore, there exists a t∗ ∈ [0, T], such that the inequality (21) is satisfied.
Now, (6), (20) and the fact that V is nonincreasing along the solution u(t, x; ϕ)) of (1) imply that

for t ≥ t∗ we have

v1(d(u(t, x; ϕ0), M(t, x))) ≤ V(t, u(t; x, ϕ0)) ≤ v2( sup
t∗−ν≤t≤t∗

V(t∗
+

, u(t, x)))

= v2( sup
t∗−ν≤t≤t∗

d(u(t, x), M(t, x))) < v2(δ) < v1(ε).

The above estimates are true for t ≥ T as well, and hence, u(t, x) ∈ M(t, x, ε), t ≥ T, which shows
that the integral manifold M of (1) is globally attractive.
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Theorem 4. If the conditions of Theorem 3 are met and there exists a constant λ1 such that λ(t) ≥ λ1 > 0,
t ∈ R+, then the integral manifold M of (1) is globally exponentially stable.

Proof. Let ϕ0 ∈ PCB and u(t, x; ϕ0) be the solution of the initial value boundary problem (1), (2), (3).
By Theorem 3, for the Lyapunov function V ∈ VM, we get (6) and (20). Then, by Lemma 2, and λ(t) ≥
λ1 > 0, t ∈ R+, we get

V(t, u(t, .)) ≤ sup
−ν≤s≤0

V(0, ϕ0(s, .))e−λ1t, t ≥ 0. (24)

Next, for the Lyapunov function V ∈ VM defined by (5), we have

V(t, u) < k1d2(u, M(t, x)), (t, u) ∈ R+ ×Rm (25)

for a constant k1 > 1
2 > 0.

Then from the choice of V ∈ VM, conditions of Theorem 4, (24) and (25), we obtain

d(u(t, x; ϕ0), M(t, x)) ≤
(

2V(t, u(t, x))

)1/2

≤
(

2 sup
−ν≤s≤0

V(0, ϕ0(s, .))e−λ1t

)1/2

<
√

2k1d0(ϕ0, M0(s, x))e−
λ1t

2 , t ≥ 0.

Therefore

u(t, x; ϕ0) ∈ M
(

t, x,
√

2k1d0(ϕ0, M0(s, x))e−
λ1t

2

)
, ϕ0 ∈ PCB, x ∈ Θ, t ≥ 0,

which proves the global exponential stability of the integral manifold M.

The results in theorems 3 and 4 extend and generalize the existing stability results for single
solutions for impulsive reaction–diffusion CGNNs [34,35,37–40] to the integral manifolds case. The new
stability results are obtained for the set Θ = ∏n

q=1[aq, bq], where aq, bq ∈ R, 0 ∈ Θ, and can be easily
applied to the most studied particular case, when the set Θ of points x, x = (x1, x2, ..., xn)T is such that
|xq| < lq, lq > 0, q = 1, 2 . . . , n.

5. Examples and Discussions

Example 1. Consider a delayed impulsive reaction–diffusion CGNN model with variable impulsive
perturbations of type (1), for n = m = 2, Θ ⊂ R2, Θ = [0, 1]× [0, 2] given by

∂ui(t, x)
∂t

=
2

∑
q=1

∂

∂xq

(
Diq

∂ui(t, x)
∂xq

)
− ai(ui(t, x))

[
bi(ui(t, x))

−
2

∑
j=1

cij(t) f j
(
uj(t, x)

)

−
2

∑
j=1

wij(t)gj
(
uj(t− sj(t), x)

)]
, t 6= τk(u(t, x)), k = 1, 2, . . . ,

u(t+, x)− u(t, x) =

 1− 1
2k

0

0 1− 1
3k

 u(t, x), t = τk(u(t, x)), k = 1, 2, . . . ,

(26)
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where t > 0, τk(ui) = |ui|+ k, k = 1, 2, . . . , fi(ui) = gi(ui) =
1
2
(|ui + 1| − |ui − 1|), s1(t) = s2(t) =

et/(1 + et), 0 ≤ si(t) ≤ ν (ν = 1), ai(ui) = 1, b1(ui) = 2ui, b2(ui) = ui, i = 1, 2,

(cij)(t) =

(
c11(t) c12(t)
c21(t) c22(t)

)
=

(
0.5− 0.2 cos(t) 0.5− 0.1 sin(t)
0.6− 0.4 sin(t) 0.3− 0.2 cos(t)

)
,

(wij)(t) =

(
w11(t) w12(t)
w21(t) w22(t)

)
=

(
0.1 + 0.3 cos(t) 0.2− 0.3 sin(t)
0.2− 0.1 sin(t) 0.5− 0.1 cos(t)

)
,

(Diq)2×2 =

(
D11 D12

D21 D22

)
=

(
3 + sin t 0
0 2 + cos t

)
.

It is obvious that τk(ui) are continuous on R and for i = 1, 2

τ1(ui) < τ2(ui) < . . . , τk(ui)→ ∞ as k→ ∞.

We can also verify that the assumptions A1–A7 are satisfied for ai = ai = 1, i = 1, 2, B1 = 2, B2 = 1,
L1 = L2 = M1 = M2 = 1 and

(diq)2×2 =

(
d11 d12

d21 d22

)
=

(
2 0
0 1

)
.

In addition, we have that B = 2 and D = 1.
Consider the manifold

M = [−1, ∞)×Θ× {u ∈ R2
+ : u ≤ uC}, (27)

where uC = (uC
1 , uC

2 )
T is a constant solution of the model (26). The existence of an equilibrium uC of the

impulsive delayed reaction–diffusion CGNN model (26) is guaranteed by conditions A1–A7 and the assumptions
on the impulsive functions and hypersurfaces.

Finally, we have that condition (4) of Theorem 1 holds for

c1 = min
1≤i≤2

[
2

(
4nD
B2 + aiBi

)
− ai

2

∑
j=1

(
Ljcij + Mjwij + Licji

)]
= 2.4

and

c2 = max
1≤i≤2

(
Mi

2

∑
j=1

ajwji

)
= 1.1

and
γ1k = 1− 1

2k
, γ2k = 1− 1

3k
, k = 1, 2, . . . .

Therefore, according to Theorem 1, the manifold M defined by (27) is an integral manifold of (26), and by
Theorem 2, we conclude that it is uniformly bounded. The global exponential stability of the integral manifold M
follows from Theorem 4 for λ1 such that 0 < λ1 ≤ 1.3.

In the above example, since

γ1k = 1− 1
2k

, γ2k = 1− 1
3k

, k = 1, 2, . . . ,

by means of the impulsive control the stability properties of the system without impulsive perturbations
are preserved. If the impulsive functions do not satisfy condition A7, then due to the impulsive jumps
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the stable neuronal behavior can be changed momentarily. Thus, our results offer an insight on the
effects of impulsive stability and control strategies on the interactions of neurons.

Example 2. In this Example, we consider the system (26) with m = 2, n = 1, Θ = [−1, 1], a1 = a2 = 1,
b1(ui) = b2(ui) = 5.3ui, D11 = D21 = d11 = d21 = 1, fi(ui) = gi(ui) = tanh(ui), si(t) = et/1 + et,
i = 1, 2,

C = (cij)2×2 =

(
c11 c12

c21 c22

)
=

(
2 −0.1
−5 4.5

)
,

W = (wij)2×2 =

(
w11 w12

w21 w22

)
=

(
−1.5 −0.1
−0.2 −4

)
,

and τk(ui) = |ui|+ k, i = 1, 2, k = 1, 2, . . . , as a control system for the corresponding nonimpulsive system.
Consider the manifold

M = [−1, ∞)×Θ× {u ∈ R2
+ : u = u∗}, (28)

where u∗ = (u∗1 , u∗2)
T = (0.3sin2(πx), 0.6sin2(πx))T [55].

Since conditions of Theorem 1 are satisfied for c1 = 1.9, c2 = 1.7 and conditions of Theorem 4 are satisfied
for 0 < λ1 ≤ 0.2, then the integral manifold M is globally exponentially stable. This means that the master
system (without impulses) and the impulsive response system are globally exponentially synchronized. Therefore,
the proposed stability results can be applied as an impulsive synchronization strategy to many practical problems.

Remark 1. In the last example we extend the image encryption scheme proposed by [55] considering
Cohen–Grossberg type reaction–diffusion delayed neural network and variable impulsive perturbations.
The functions bi play the role of feedback gains~in the synchronization mechanism. Thus we again demonstrate
the great opportunities for applications of our results.

6. Conclusions

In this paper, the integral manifolds technique is applied to propose boundedness and stability
criteria for a class of impulsive delayed reaction–diffusion CGNNs. The proposed results complement
and extend some existing qualitative results for such models [34,35,37–40]. The consideration of
variable impulsive perturbations, as well as, the use of a Poincarè-type integral inequality additionally
increase the degree of generality. Two examples are provided to illustrate the proposed integral
manifold method. The demonstrated integral manifold approach can be extended in the investigation
of different classes of neural network and related systems. Our future studies will be focused on
the consideration of systems with distributed delays and non-instantaneous impulses based on
this study. Considering the case of anti-diffusion is also an important and interesting topic for
future investigations.
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