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Abstract: Data classification has been considered extensively in different fields, such as machine
learning, artificial intelligence, pattern recognition, and data mining, and the expansion of classification
has yielded immense achievements. The automatic classification of maintenance data has been
investigated over the past few decades owing to its usefulness in construction and facility management.
To utilize automated data classification in the maintenance field, a data classification model
is implemented in this study based on the analysis of different mechanical maintenance data.
The developed model involves four main steps: (a) data acquisition, (b) feature extraction, (c) feature
selection, and (d) classification. During data acquisition, four types of dataset are collected from the
benchmark Google datasets. The attributes of each dataset are further processed for classification.
Principal component analysis and first-order and second-order statistical features are computed
during the feature extraction process. To reduce the dimensions of the features for error-free
classification, feature selection was performed. The hybridization of two algorithms, the Whale
Optimization Algorithm (WOA) and Spotted Hyena Optimization (SHO), tends to produce a new
algorithm—i.e., a Spotted Hyena-based Whale Optimization Algorithm (SH-WOA), which is adopted
for performing feature selection. The selected features are subjected to a deep learning algorithm
called Recurrent Neural Network (RNN). To enhance the efficiency of conventional RNNs, the number
of hidden neurons in an RNN is optimized using the developed SH-WOA. Finally, the efficacy of the
proposed model is verified utilizing the entire dataset. Experimental results show that the developed
model can effectively solve uncertain data classification, which minimizes the execution time and
enhances efficiency.

Keywords: data classification; predictive mechanical maintenance; Industry 4.0; principal component
analysis; machine learning; Recurrent Neural Network; Spotted Hyena-based Whale Optimization
Algorithm

1. Introduction

In multiple production areas, mechanical appliances include a wide span of industrial
equipment and are crucial in building applications. Moreover, mechanical flaws might cause
these types of equipment to malfunction or degrade corrupt specific machinery performances,
such as production quality, operation safety, and localization [1]. By assuming the difficulty of the
present industrial applications, degradation analysis in machinery has become challenging [2,3].
Moreover, the unexpected failures that occur in mechanical tools may involve simple substitutes of
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cheap bearings, resulting in significant economic and production losses [4]. Hence, highly complex
computer-based degradations with evaluation models are crucial for enhancing the accuracy of failure
recognition and preventing unexpected accidents.

Several approaches have been introduced for designing panel information in econometric
reviews. Moreover, the cross-lagged structural equation method [5] enables typical associations to be
analyzed between two variables by a regression of the lagged score of both variables consisting of the
random-effects method [6] and the fixed-effects method [7]. The frequentist estimation approaches can
be used to improve the changing of information. Moreover, these techniques typically perform worse
for small-sized information and hence confine the original methods because they are of low order.

Machine learning (ML) is a branch of artificial intelligence which learns from accessible data and
subsequently introduces models for acquiring consistent predictions [8,9]. In particular, ML utilizes
statistics because its core concentration is to create an inference from information for enhancing the
introduced models through earlier experience and detected patterns [10]. This type of information
is generally fed as an input and the respective response variables in ML are termed features and
labels, respectively. Moreover, a structural steel frame has mechanical properties that are classified
into features, in which its final drift is classified as a label. Several techniques have been introduced
in the past few years to be employed in ML [11]. These models can be categorized into two classes:
(i) supervised ML and (ii) unsupervised ML. Supervised ML is generally selected under the ML
predictive class [8,12,13]. Supervised learning requires a dataset to be divided into unique training and
validation subsets. However, in most scenarios the subsystems in a mechanical tool, such as gear and
bearing transmission models, are not sufficiently available or complex for visually examining failures
continuously because of the large size of machines, environmental limitations, or time-consuming
disassemblies [14,15]. Hence, the early prediction, classification, and degradation evaluation of machine
tools are challenging in mechanical maintenance [16,17].

The process of grouping data by relevant categories so that they can be used and protected more
effectively is called data classification. The method of classification makes it easier to find and retrieve
information. This is more important when it comes to risk management, compliance, and data security.
An efficient process for data classification is vital because it can help organizations to decide about the
level of control necessary to secure the privacy and integrity of their data. The use of data classification
allows us to identify data, manage the data better, and employ an appropriate level of security to the
data. Several methods have been introduced for data classification. They include defining the types
of data that are collected and stored in an organization’s owned or controlled information system.
They also include assessing the data’s sensitivity and the effect of the compromise, loss, or misuse of
the data.

With the introduction of Industry 4.0 in the manufacturing domain, there is a huge amount of
data generated and recorded with the help of sensors. The data recorded from the sensors are raw
data, and they need to be processed before being utilized for decision-making. Predictive maintenance
is a cog in the wheel of Industry 4.0, and it requires previously stored data collected from a machine
or equipment to predict the maintenance before the damage will occur [18]. The collected raw data
need to be classified for further processing; therefore, an efficacious method or algorithm is required to
classify the obtained data from sensors in a well-organized manner.

The current bio-inspired ML algorithms are implemented for various applications and offer better
results [19]. A metaheuristic is a problem-independent, high-level algorithm that offers a collection
of guidelines or strategies to create algorithms for heuristic optimization. Meta-heuristic algorithms
are highly efficient in seeking an optimal global solution that motivates us to test the efficacy of the
proposed algorithm to solve the problem of classification. Metaheuristic algorithms are also called
nature-inspired or bio-inspired optimization techniques, as they mimic the inspiration by observing
diverse facets of nature. Most of the familiar techniques gained inspiration from Darwin’s theory
of evolution, which may be stated as “the population with inheritable characteristics well fit to the
environment will endure”. A few such algorithms based on this idea available in the literature are
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genetic algorithms, differential evolutions, and evolutionary strategies. Swarm intelligence is another
type of nature-inspired technique; such algorithms are designed by studying the intelligent behavior
of various species such as birds, ants, gray wolfs, bats, and whales, such as foraging, hunting, eating
food, and reproduction.

One among the meta-heuristic family is the Spotted Hyena Optimizer (SHO). The main advantages
of SHO include its faster convergence rate, its strong global search, being easy to implement, its simplicity,
and its accuracy. The optimization algorithms perform effectively in the exploration phase on
multimodal functions, acquiring a better convergence speed during the entire iteration. SHO is similar
to the Grey Wolf Optimizer (GWO), which can simulate the hunting behavior of spotted hyenas instead
of wolves. The simple SHO algorithm approach focuses on the social and hunting behavior of spotted
hyenas. The best search agent is mathematically aware of the location of the prey. In accordance
with the best search agent, the rest of the search agents make a group of trusted friends, update their
own positions, and save the optimal result so as to achieve an optimal global value by successfully
avoiding local optima traps. However, as it is stuck in local optima stagnation, SHO often struggles
to achieve an optimal value. For preventing such demerits and boosting SHO's efficacy in terms
of exploratory strength, a new Spotted Hyena-based Whale Optimization Algorithm (SH-WOA) is
proposed, as randomization exploration leads the search process to a global peak and faster convergence
rate by successfully avoiding local optima trapping with a wide range of solutions to achieve a better
explorative power. The developed algorithm can produce the optimal centroid by integrating the
combination of SHO in the exploration phase of the WOA. In this paper, the hybridization combines
two techniques—namely, SHO and WOA—for better results. Hybridization adds a condition to update
positions inside the exploitation phase. It is adopted for performing optimal predictive maintenance
planning. This hunting method can find a better solution in a shorter time.

Therefore, the main objectives of this study are as follows:

e  Toaddress the challenges encountered by the machine learning algorithm for the data classification
of mechanical maintenance data effectively and efficiently;

e  To establish an automatic classification system using feature extraction and feature selection using
different types of mechanical maintenance datasets;

e To develop and implement a hybrid meta-heuristic algorithm for the feature selection and
classification of mechanical maintenance data;

e To analyze and validate the performance of the proposed model using diverse performance
measures, demonstrating the reliability and effectiveness of the developed model.

The paper is organized as follows. A comprehensive literature review is provided in Section 2.
Section 3 specifies the developed architecture for the mechanical maintenance data classification.
The different phases to be adopted for data classification in the mechanical maintenance field are shown
in Section 4. Moreover, Section 5 describes the feature selection and deep learning for data classification.
Section 6 presents the contribution of the proposed SH-WOA for feature selection and classification.
The results and discussions are provided in Section 7. Finally, the discussion and conclusions derived
from of the study are presented in Section 8.

2. Literature Review

Lei et al. [13] applied the idea of unsupervised feature learning which used artificial intelligence
methods for learning features from raw data. Machines were detected by two-stage learning algorithms.
Initially, a sparse filtering and unsupervised two-layer neural network (NN) was employed to
automatically learn the features from mechanical vibration signals. Furthermore, soft-max regression
was used for the classification. The suggested technique was validated with a motor bearing dataset
and a locomotive bearing dataset, separately.

Naik and Kiran [20] conducted the mechanical, microstructural, and chemical classification of a
specific type of wheat straw. To determine the mechanical properties, uniaxial tension experiments
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on wheat straws of various gage lengths were performed. Moreover, pH tests and Fourier transform
infrared tests were performed to verify the chemical composition and acidity of wheat straw.
To determine the gage length of wheat straw, a naive Bayes (NB) classifier was trained and employed.
To predict the ultimate tensile strength of wheat straw, the multivariate linear regression technique was
calibrated. By considering the chemical and mechanical properties acquired in the proposed model,
wheat straw was utilized in the real world.

Xiong et al. [21] presented a Bayesian nonparametric regression approach for panel information
to classify sequential patterns. The suggested model provided a viable and economical technique
which permitted both time-independent spatial variables and exogenous variables to be predictors.
The suggested model was evaluated by numerical simulation and then evaluated on an econometric
public dataset.

The TF (term frequency) and term frequency—inverse document frequency (TF-IDF) methodology of
machine learning was implemented for maintenance data classification [22]. Konstantopoulos et al. [23]
applied machine learning for material properties classification and prediction. The K-means algorithm
was used for data categorization and data analysis. The random forest algorithm and stochastic
gradient boosting algorithm were utilized for data classification, and artificial neural networks
were implemented for prediction. Machine learning techniques such as the rain forest algorithm,
gradient-boosted machine, support vector machine, deep neural network, etc., are applied for various
applications such as coal log data [24], diabetic disease data [25], and tool life prediction [26].

Further, Li et al. [27] suggested a deep learning-driven model classify defects and evaluate
degradation, and this was then compared with traditional models. It was demonstrated that the deep
neural network (DNN) learns much more difficult, nonlinear transformations through several hidden
layers that assist in capturing significant differences and obtain discriminative data from industrial
information. Many data-driven models, such as the (SVM), deep belief network, k-nearest neighbors
(KNN), and backpropagation neural network, have been utilized to verify the effectiveness of deep
learning. It has been demonstrated that the suggested model outperformed conventional models in
degradation evaluation for mechanical tools.

Siam et al. [28] introduced a machine learning model that is a class of artificial intelligence
to develop a strong machine learning-based framework to verify the efficiency in classifying and
predicting structural components. A dataset of 97 reinforced masonry shear walls was employed to
show the usage of the suggested model. First, the suggested model was used for exploratory data
evaluation to identify the effects of geometrical and mechanical wall responses. An unsupervised
algorithm was introduced for grouping walls according to their features. Finally, validation and
training were performed for upcoming improvements and a supervised learning model was evaluated
to categorize the walls and predict their lateral drifts for failure modes.

Chen et al. [29] introduced a novel approach for mechanical tool fault diagnosis based on image
quality assessment. First, data acquisition was performed. Next, a leverage image processing approach
was introduced to eliminate noise. Subsequently, a convolutional neural network (CNN)-based
approach for image classification was employed. Finally, various mechanical equipment images
were clustered into various types and defects were detected. The results proved the robustness and
effectiveness of the suggested model.

Mahmodi et al. [30] defined the classification and detection of biodiesel from various sources
using an electronic nose during the implementation of statistical training-based and mathematical
optimization approaches. Data were collected using an electronic nose equipped with eight metal-oxide
semiconductor sensors. The evaluation was performed using various approaches, such as linear
discriminant analysis (LDA), quadratic discriminant analysis (QDA), and the SVM. The results indicated
that the SVM performed well with a high classification ability.

Zhu et al. [31] suggested a CNN that learned features directly from raw data obtained through
supersonic combustion analysis. The feature and raw data were obtained to examine the effects of
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the feature extraction techniques. The outputs showed that the developed CNN can reveal intrinsic
features from raw data.

Akyol, and Alatas [32] proposed a Social Impact Theory-based Optimization (SITO). It is a
current intelligent optimization algorithm, and it is used to solve the problems of sentiment analysis.
It consists of two approaches—namely, shrinkage and helical update. The fitness functions are flexible
to optimize adaptive intelligent algorithms. The output of the system is presented to the user using
visualization tools.

Agrawal et al. [33] proposed a Quantum Whale Optimization Algorithm (QWOA). It enhances
the exploitation power of the classical WOA, and it is used as a variation operator in the quantum bit
representation of people in the population and the quantum rotation gate operator. The algorithm for
optimization is carried out in two steps. With Euclidean distance, the input feature space is reduced in
the first step. The second stage includes a meta-heuristic approach that optimizes the collection of
features while improving the value of fitness.

Devaraj et al. [34] proposed a firefly and improved multi-objective particle swarm optimization
(FIMPSO) for managing the demands for workload or application requirements by sharing resources
between machines, networks, or servers. The outcome of the simulation showed that the proposed
FIMPSO model showed an effective performance relative to other existing methods. Golciik and
Ozsoydan [35] introduced the GWO algorithm, which is a recent swarm intelligence-based metaheuristic
algorithm. The evolutionary and adaptive inheritance mechanisms employed in the GWO algorithm
can operate directly in the binary domain. In this, the noise of the outcomes are not controllable.
Liu et al. [36] developed WOA-LFDE (Levy flight and differential evolution) to solve a job shop
scheduling problem. The Levy flight strengthens WOA’s global search and iteration convergence
capabilities, while the algorithm enhances WOA’s exploitation and local search capabilities and
preserves the variety of solutions to avoid local optima. Dhiman and Kumar [37] suggested the
MOSHO (multi-objective spotted hyena optimizer). Multiple objectives optimization problems can be
solved with it. The roulette wheel system is used to pick appropriate efficient solutions to model the
social and hunting behaviors of spotted hyenas. Local optima prevention and gradient-free mechanism
are the benefits of these methods, making them applicable to real-world issues. Xin-gang et al. [38] used
the Differential Evolution-Crossover Quantum Particle Swarm Optimization (DE-CQPSO) algorithm
to solve the problem of environmental economic dispatch. It is based on the rapid convergence of
algorithms for the differential evolution and particle diversity of genetic algorithm crossover operators.
A parameter adaptive control approach is used to update the crossover probability to achieve better
optimization results, and the problem of multi-objective optimization is solved by a penalty factor.

He et al. [39] developed the Firefly Integrated Optimization Algorithm (FIOA). To ensure
high-accuracy identification with fewer features, a rating likelihood objection function is utilized. It can
subdivide the entire swarm into many sub-swarms automatically, dealing naturally and efficiently
with nonlinear, multimodal optimization problems. However, it does not use the best historical
individual solution, which prevents possible premature convergence disadvantages. Ranjini and
Murugan [40] introduced the Memory-based Hybrid Dragonfly Optimization Algorithm (MHDOA)
for solving numerical optimization problems. It is based on the static and dynamic swarming behavior
of dragonflies. It lacks internal memory, which can contribute to its early convergence to local optima.
Tuba et al. [41] suggested the Brain Storm Optimization Algorithm (BSOA) for feature selection in
medical datasets. It also has broad feature sets where many features are associated with others,
so decreasing the feature set is important. The usage of computers in medicine improves the accuracy
and speeds up data analysis processes. This needs a faster and more accurate system. Orru et al. [42]
implemented ML for predicting faults in centrifugal pumps based on data recorded by sensors mounted
on the machine. Multilayer Perceptron (MLP) and SVM were applied, and the results revealed that
potential faults were successfully predicted and classified by the applied algorithm.

Ghafil and Jarmaia [43] introduced Dynamic Differential Annealed Optimization (DDAO) to solve
a broad range of problems of mathematical optimization where the global minimum or maximum is
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required. Due to their performance, reliability, and relatively low computation time, metaheuristics
have been developed and widely used in various disciplines. More iterations and time are required to
reach a location near the global point in the search space. Mahjoubi and Bao [44] framed a hypotrochoid
spiral optimization algorithm with a groundbreaking bi-objective function and new variables in order
to solve the optimal sensor placement of tri-axial accelerometers for a high-rise construction. It uses a
limited number of sensors to obtain much information about a structure. It is difficult to obtain global
or near-global optima.

Although many approaches are available for classifying mechanical data, several challenges
exist in the existing methodologies; therefore, a new method must be implemented to categorize
data based on their problems. Among them, the DNN [27] is used to analyze the degradation
of load imbalance and exhibits a good performance. However, a significant amount of data is
required to train it. The NB [20] is utilized to determine the gage length and is highly accurate.
However, it poses data scarcity. Machine learning efficiently solves critical issues and has been
employed for classification and prediction [28]. However, it is a time-consuming method. The CNN is
strong and efficient, exhibits a better classification accuracy, afford the best generalization performance,
and is stable [31]. However, it is computationally expensive and must be optimized by adjusting
the network configuration. The Bayesian nonparametric regression approach is flexible and highly
accurate [21]. However, the performance must be improved. Unsupervised two-layer NNs are highly
accurate and increase the number of unlabeled data [13]. However, it must learn the weights of
NNs. The SVM has high discrimination and classification precision, and it operates based on the
linear classification of data [30]. Hence, the challenges specified above should be addressed for better
mechanical data classification. Table 1 shows the features and challenges of some of existing data
classification research.

Table 1. Features and challenges of some existing data classification research.

Author Methodology Features Challenges
It is used to analyze the degradation of A sienificant t of traini
Lietal. [27] DNN load imbalance. significant amount of training
data is required.
Has a better performance.
Naik and Ki It is utilized to determine the
281 and Kiran NB gage length. It poses data scarcity issues.
(201 It offers a high accuracy.
Machi It efficiently solves critical issues.
Siam et al. [28] achune It is employed for classification It is time-consuming.
Learning Lo
and prediction.
Ch ! CNN It is strong and efficient. It is computationally expensi
en et al. [29] It offers a high stability. s computationally expensive.
Bayesian
Xiong etal. [21] nonparametric Itis ﬂexible: Its performance must be improved.
regression It offers a high accuracy.
approach
It off high di i .
. Unsupervised t offers a hig diagnosis accuracy. The weights of NN must
Leietal. [13] It increases the amount of
two-layer NN . . be learned.
un-labelled information.
Its discrimination and classification .
Mahmodi et al recision is high Multiple key parameters must be
ahmodi et al. SVM p g . set correctly to attain the
[30] It performs based on the linear
e best results.
classification of data.
It offers a good classification accuracy. o s
It has to be optimized by adjusting
Zhu et al. [31] CNN It offers' the' best the network configuration.
generalization performance.
It is easy to solve effective and It needs to b
Akj’ (;li 32 SITO large problems. uj rzieaetez goniinuousl
and Alatas [32] It is compatible with other modules. P ¥
Itis easy to run w.1th It is challenging to define the
parallel computation. reliminary design parameters
Agrawal et al. QWOA Has a higher probability and efficiency p y snp '

[33]

in finding the global optima.
It can be efficient for solving problems.

It cannot work out the issues
of scattering.
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In addition, Table 2 shows the features and challenges of an existing meta-heuristic algorithm that
should be taken into consideration when introducing a new algorithm with a high performance.

Table 2. Features and challenges of some existing metaheuristic algorithms.

Author Methodology Features Challenges
The speed of convergence is very high .
Devaraj et al. [34] FIMPSO in the probability of finding the .It ‘h.as some problems with
. initializing the design parameters.
global optimum.
Golcuk and GWO It is efficient for local searches. Higher computational cost.
Ozsoydan [35] Simple and flexible. No guarantee of global optimality.
Liu et al. [36] WOA-LFDE It can increase the population diversity. Sﬁ;gﬁ;ﬁiﬁiﬁlomnon
Dhiman and MOSHO Requires less time. Needs further improvement in
Kumar [37] High accuracy rate. overhead and detection time.
It is very efficient in global
Xin-gang et al. DE-CQPSO search algorithm. Needs memory to update velocity.
[38] - Simple to implement. Slow convergence.
Less parameter tuning required.
The speed of convergence is very high . .
He et al. [39] FIOA in the probability of finding the It dogs not require a good initial
. solution to start its process.
global optimizer.

L High accuracy. .
Ranjini and MHDOA Increasing population diversity. T.he speed of convergence 1s slow:
Murugan [40] Time consuming.

Strong robustness.
It is much harder
Tub. L 141 BSOA Improved accuracy. and time-consuming.
uba etal. [41] Minimal false point samples. It is not suitable for large data sets.
Ghafil, Consumes less energy. o
and Jarmaia [43] DDAO Less delay. The specificity is very low.
hioubi HprtI_'OChOid It provides fast learning capabilities, has Enhancement is needed in the
MZ %30 u 1:14 };p%ral X a highly generalized performance, machine learning approach.
and Bao [44] optimization and has free parameter tuning. Needs a lot of training data.
algorithm

3. Developed Architecture for Mechanical Maintenance Data Classification

In this section, the architecture for data classification is explained.

3.1. Proposed Architecture

In data research, the term big data analytics is defined as “the process of analyzing and

understanding the characteristics of massive size datasets by extracting useful geometric and statistical
patterns” [45]. Different applications of big data have emerged in the past few years; hence, researchers
from multiple disciplines have become cognizant of the beneficial aspects of information or main
data extraction from various issues. However, the existing learning techniques cannot be directly
applied owing to scalability issues. Hence, deep learning architecture was adopted in the proposed
data classification model. Moreover, the proposed model uses four mechanical datasets for efficient
and reliable data classification which were obtained from Google datasets. Those datasets were
“three-dimensional (3D) printer”, “air pressure system failure in Scania trucks”, “faulty steel plates”,
and “mechanical analysis data”. The architectural representation of the proposed mechanical data
classification model is shown in Figure 1.
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Figure 1. Architecture of the proposed data classification model.

From the datasets, features such as principal component analysis (PCA); first-order statistics such
as the mean, median, maximum value, minimum value, and standard deviation; and second-order
statistics such as the kurtosis, skewness, correlation, and entropy were extracted. Owing to the higher
number of features, a feature selection was performed. The feature selection was performed using the
proposed SH-WOA. Moreover, the extracted features were subjected to a classifier—i.e., the recurrent
neural network (RNN). To enhance the performance of the traditional classifier, the number of hidden
neurons in the RNN was optimized using the proposed SH-WOA algorithm. The main objective of
the proposed big data analytics model is to perform feature selection and classification to obtain the
maximum classification accuracy.

3.2. Objective Model

As mentioned previously, the proposed mechanical classification model optimizes the features to
be selected and the number of hidden neurons in the RNN using the proposed SH-WOA to maximize
the classification accuracy. The mathematical formulation for accuracy is represented in Equation (1),
in which the variables p, g, r, and s specify the true positive, true negative, false positive, and false
negative elements, respectively, during classification.

P+q

p+qtr+s M

obj =

This objective was attained using the proposed SH-WOA for handling the feature selection and
optimized RNN-based classification in the proposed mechanical maintenance data classification model.
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4. Different Phases to Be Adopted for Data Classification in Mechanical Maintenance Field

In this section, various steps involved in data classification are explained.

4.1. Data Acquisition

The proposed model utilizes four datasets, as mentioned previously, for the experiments.
The description of each dataset is provided below.

3D printer: This dataset evaluates new 3D-printing-related models and its application requires the
test information of inputs encountered [46]. A standard dataset must not be obtained from a similar
distribution of printed shape in terms of class, representation type, and complexity. A new dataset of
10,000 methods obtained from an online 3D-printing method sharing dataset was introduced using
both contextual and geometric characteristics analyses. Subsequently, the demonstration of the dataset
revealed more brief explanations of real-world methods employed for 3D-printing over classical
datasets. Furthermore, an online query interface was developed to select the subsets of the dataset for
project-specific features. The dataset and per-model statistical information are publicly accessible.

Air pressure system failure in Scania trucks: This dataset includes the data gathered from certain
Scania trucks daily [47]. The model is focused on an air pressure system (APS) that produces pressurized
air, which is used in different functions in a truck—e.g., gear and braking changes. The dataset’s
positive class includes the failures of the parts to a particular module of the APS model, whereas the
negative class includes the failures of trucks for parts not related to the APS. Moreover, the data
comprises the subset of all accessible information selected by specialists.

Faulty steel plates: This dataset is based on research performed by Semeion [48], which is a
research center of sciences of communication. The main objective of the research was to accurately
categorize the surface fault types in stainless steel plates by six types of possible faults. The input
vector comprised 27 indicators, which describe the geometric shape of the fault and its outline.
Accordingly, Semeion was commissioned by Centro Sviluppo Materiali to perform the above-mentioned
task; hence, details regarding the characteristics of the 27 indicators utilized as i-vectors or the types of
the six fault classes cannot be divulged.

Mechanical analysis pumps dataset: This dataset was provided by the University of California ML
repository [49]. Every instance comprised several components, each of which contained eight attributes.
Various instances in this dataset have a distinct number of components. Moreover, one instance cannot
be maintained on one line.

4.2. Feature Extraction

In this context, three feature extraction sets were considered: (1) PCA, (2) first-order statistics,
and (3) second-order statistics. First-order features such as the mean, median, maximum value,
minimum value, and standard deviation and second-order statistics such as the kurtosis, skewness,
correlation, and entropy features were extracted.

1. PCA: It is used to decrease the dimensionality of a dataset by including more interrelated
variables and preserving the differences present in the dataset simultaneously [50]. The process of
PCA is shown below.

(a) Assume a dataset, B;, wherea=1,2,... ... , Ais the training sample, and each dataset comprises
x rows and y columns. The mean value of the training samples, By = % Zf: 1By, Ba = Bs— By,
was calculated to ensure that the complete mean value of the datasets was equivalent to zero.

(b) The 2D-PCA method was used to compute the feature vectors by all the centralized samples.
Therefore, complete feature vectors were standardized to ensure that the norm of each feature vector
was equivalent to one. The eigenvectors similar to the vast w eigenvalues of the covariance matrix
were the basis of the feature subspace.
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(c) All the centralized samples were projected into the subspace; therefore, each dataset
representation in the subspace was acquired, and each was denoted as a matrix, including x rows and
w columns.

(d) To analyze the sample, Bt = Byst — By was considered and By was projected into the subspace.
In this case, the matrix was acquired, which included x rows and w columns.

(e) Moreover, independent component analysis (ICA) was conducted for all the feature vectors.
Next, a unifix matrix U might be obtained. Hence, a coefficient matrix can be acquired for any dataset
present in the sub-space.

(f) The similarity was calculated for any of the two coefficient matrices, C! = [C%C% e C}U] and
C? = [C%C% . --C%U], using Equation (2):
A Ay 2
c X
Similarity = Z b @)
A e

2. First-order statistics: Five computing features existed in the first-order statistics as follows.
Mean: It can be calculated by summing up and dividing all the numbers in the dataset by the
total number in the dataset [19]. The numerical formula of the arithmetic mean is represented by i,

as shown in Equation (3).
_ 1y
m= - Z my. (©)]

z=1
In Equation (3), the number of values existing in the dataset is denoted as 1, the sum of all the
numbers is denoted by ) 1, and the data are indicated by ..
Median: It is used to calculate the average, meaning the middle number, of a set of numbers [19].
If, in the dataset, there are odd numbers of values, then the median value is defined as in Equation (4).

th
Med = sizeof (#) . 4)

If, in the dataset, there are even numbers of values, then the median value is as shown in
Equation (5).

n—+2 th
=) 5)

Maximum value: It is the maximum value among all the data points, as expressed in Equation (6).

A\t
Med = average of (E) , and(

Maxvalue = Max(my). (6)
Minimum value: It is the minimum value among all the data points, as expressed in Equation (7).
Minvalue = Min(my). (7)

Standard deviation: It calculates the dispersion of a dataset that corresponds to its mean and

measured variance square root [19]. This is denoted by “o”, where m, is the individual value present
in the given dataset, as represented in Equation (8).

o=+ Y (- ®)

3. Higher-order statistics: Four determining features exist in higher-order statistics, as follows:
Kurtosis: It is a statistical measure used for a distribution to be clarified. Inside a tail, it tests
extreme values. High kurtosis distributions show tail data exceeding the tails of a normal distribution.
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Less kurtosis distributions display tail data that is usually less than the tails of a normal distribution [19].
The mathematical equation for kurtosis is given in Equation (9).

_)4 )2
Here, my = M and my, = M; my is the fourth moment and m, is the variance (o).
m
kuy = —. )
1y

Skewness: It is the degree of distortion in a collection of data from a normal distribution. It can be

3
positive, negative, zero, or undefined. It is represented in Equation (10), where m3 = M and
2
My = M ; My is the third-moment dataset.
Sk1 = (10)

N§N\w | <§

Correlation: It is a statistical indicator of the interaction between two factors. It is finely used in
factors which determine the relationship with each other [19]. The computational formula is shown in
Equation (11).

Y (m; — m)(lz - Z)
Cory = —- (11)
VE e =) £ 1. -1

In the equation above, the term m;, represents the values of the variable m in a sample, 1 denotes
the mean values of the variable m, I, represents the values of the variable / in a sample, and I denotes
the mean values of the variable /.

Entropy: It is a statistical measure of uncertainty which provides a good measure of intraset
distribution when a set of patterns is provided. The numerical formula is denoted in Equation (12),
where PR; is the probability value of obtaining the z* value.

n
Entropy = —) " PRlog, PRs. (12)

Hence, the combination of the entire set of features with principal component analysis (PCA),
first-order statistics, and second-order statistics is represented as a feature vector, as shown in
Equation (13).

Fi’k = Fr,Fry, ....., Fer,- (13)

In Equation (13), k=1,2,... ... , Nry, and N, represents the number of all features extracted.
5. Feature Selection and Deep Learning for Data Classification

5.1. Feature Selection

As the extracted features are long, a feature selection must be performed. In the proposed
mechanical maintenance data classification model, the selection of features is performed using the
proposed SH-WOA. After the feature selection, the features are represented based on Equation (14).

FTk* = Fri., Froe, ..., Fer,; (14)
Here, Fry~ refers to the selected features and Nf,+ refers to the total number of selected features.

5.2. RNN-Based Classification

The RNN is a type of NN that generates a direct graph by a data sequence [51]. Moreover, it can
function with time series information effectively; hence, the result appears to be best while the present
and earlier information are determined. Long short-term memory is a new type of RNN that is used
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for resolving the gradient mass and explosions. Moreover, it generally comprises three gate units—
i.e., input, output, and forget gates—as well as memory cell units. Using these three gates, it can
eliminate unnecessary data and extract significant related data. To further improve the performance
of the RNN, a gated recurrent unit (GRU) is used with the RNN. This GRU combines the “forget
and output gates” into a unique update gate up;, where linear interpolation is performed to obtain
the results. Assume e; « Fry« as the d" input feature, and Hy; denotes the previous hidden state.
Equation (15) denotes the result of the update gate up,, while Equation (16) represents the reset gate rs;.

upy = acv(WFe”ped + WEHup Hd_l), (15)

rsq = acv(WF”sed + WFH“Hd_l). (16)

In the equation above, the activation function is denoted by acv, which is a logistic sigmoid
function in general. The weight function is denoted by WE? = (WFewr, WEHuP | WEers, WFHS) which has
to be tuned appropriately by the training algorithm to minimize the error difference between the
predicted and original outputs. Moreover, the candidate state of the hidden unit is expressed as in
Equation (17).

Hy = tan(WFe; + WF™ (Hy_ ®7s;)). (17)

In the equation above, element-wise multiplication is denoted as ®. The linear interpolation
among candidate state H; and H;.; as well as the d"-term hidden activation function is denoted as the
Hj of the GRU, as shown in Equation (18).

Hy = (1-upg)®Hy +ups®Hy1Hy = (1-upg) ® Hy + upg ® Hy_1. (18)

As an improvement to the conventional RNN, the optimized RNN in the proposed model
optimizes the number of hidden neurons by the SH-WOA to maximize the classification accuracy.

6. Proposed Spotted Hyena-Based Whale Optimization Algorithm for Optimal Feature Selection
and Classification

6.1. Flow Diagram of Feature Selection and Classification

The flow diagram of the feature selection and classification is shown in Figure 2.
Here, the developed SH-WOA is used to enhance the performance of the proposed mechanical
data classification model. The trial and error method has been employed in this work to tune
the parameters and is a primitive technique of problem solving. It is characterized by frequent,
diverse attempts which persist until success is achieved.
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Datasets

3D Printer Air pressure system failure
in scania trucks

Faulty steel plates Mechanical
analysis
PCA First order Higher order
statistics statistics
- /N -
Fr, Fr, Fr,

Input layer
M Hidden layer

Hidden layer % 7y - - —» optimization by

v SH-WOA

Output layer

Classified
Output

Figure 2. Feature selection and classification by the proposed SH-WOA for mechanical
data classification.

6.2. Solution Encoding

The proposed SH-WOA is adopted for both feature selection and classification. Figure 3 shows a
diagrammatic representation of the solution encoding for feature selection and classification.

Feature selection

- N\
Fr, Fr,

Fr,

Fr

Figure 3. Solution encoding for feature selection and classification for the proposed mechanical
data classification.

In Figure 3, Fry refers to the features to be selected, from which features such as Fry+ are obtained.
The minimum and maximum bounding limits of the features are 0 and 1, of which 0 indicates the
features that are not selected and the selected features are represented by 1. Moreover, the minimum
and maximum bounding limits in the RNN-based classification are 5 and 35, respectively.
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6.3. Conventional Whale Optimization Algorithm

The traditional WOA [52] is inspired by the hunting mechanism of humpback whales, which are
the largest whales of the Baleen whale family. An interesting characteristic of humpback whales is
their specific hunting mechanism. These whales can recognize prey and encircle them. Equations (19)
and (20) express the encircling behavior.

D = |E.pv*(it)—pv(it)

, (19)

po(it+1) = pv'(it) - G.D. (20)

In the equations above, the coefficient vectors are denoted as E and G, the current iteration is
denoted as it, and the position vector of the acquired best outcome is denoted as pv*. The position

vector is denoted by pv, the absolute value by ||, and the element-by-element multiplication by “.”.
The coefficient vectors are represented by Equations (21) and (22), respectively.

E = 2.rnv, (21)

G = 2jrnv —j. (22)

In Equations (21) and (22), the random vector between 0 and 1 is denoted by rnv; furthermore,
the term j decreases from 2 to 0 during the entire iteration. To mathematically denote the bubble net
method of humpback whales, two approaches can be used: the shrinking encircling and spiral updating
position methods. In the former method, the term j is reduced, as shown in Equation (23). In the latter
method, the distance between the whale’s position (X, Y) and the prey’s position (X*, Y*) is analyzed.
Hence, the spiral equation is defined between the whale and prey’s position for impersonating a
helix-shaped group of humpback whales, as expressed in Equation (23).

po(it+1) = D’.e°8.cos(2ng) + pv*(it). (23)

In Equation (23), the term D = |E.pv*(it) - pv(it)| indicates the distance between a whale and
prey, in which the random number ranges from —1 to 1 and is denoted as g, and the constant term is
denoted as 0. To update the solution based on the shrinking encircling mechanism, a mathematical
equation is established, as shown in Equation (24).

pv*(it) — G.D if h<05

N : (24)
D’.e%8.cos(2ng) + pv*(it) if h>05

po(it+1) = {

In this equation, the random number h ranges from 0 to 1. Moreover, the position vector pv

is used to search the prey vector. The position vector contains random values between —1 and 1,

such that the search agent avoids the reference whale. The mathematical formula is expressed in

Equations (25) and (26). Here, the random position vector considered from the previous solutions is
denoted as pv,,4.

D = )E‘pvrtmd —PY, (25)

po(it+1) = pvyus — G.D. (26)
The pseudocode of the traditional WOA is shown in Algorithm 1.
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Algorithm 1. Pseudo code of Conventional Whale Optimization Algorithm [52].

1: Conduct the population initialization as pv;, wherei = 1,2, --- , ne.
2: Evaluate the fitness value of every search agent.

3: pv* is the best search agent.

4. itmay indicates maximum number of iterations.

5: while (it < ityax)

6: for each search agent

7: Update |, E, G, g, and h

8: ifl (h <0.5)

9: if2 (|G| < 1)

10: Update the solution using Equation (20).
11: else if2 (|G| > 1)

12: Select a random agent (pvy,,4)

13: Update the solution by Equation (26).
14: end if2

15: else if1 (h > 0.5)

16: Update the solution by Equation (23).

17: end ifl

18: end for

19: Make sure if any search agent is going afar from the search space and rectify it
20: Evaluate the fitness value of each search agent.
21: Update pv* if a better solution obtained.

22: it=it+1

23: end while

24: return pov*

6.4. Conventional Spotted Hyena Optimization

The conventional SHO [53] is inspired by the hunting behaviors of spotted hyenas. The relationship
between these hyenas is dynamic. The three fundamental steps of the classical SHO are to search,
encircle, and attack the prey.

To mathematically represent the social behavior of these hyenas, the present best solution is
considered as the target, which is extremely near to the optimum search space. The remaining search
agents will attempt to update their respective solutions once the best search candidate solution is
determined. The mathematical equation is shown in Equation (27), in which the distance between
the prey and the spotted hyena is denoted as Dsty,, the coefficient vectors are denoted as K and L,
the position vector of the spotted hyena is indicated by pv, and the position vector of the prey is denoted
as pupr. The numerical equation of the position vector of the spotted hyena is shown in Equation (28).

Dsty, = IK.pvpr(it) —po(it)|, (27)

po(it+1) = pop(it) — L.Dsty,,. (28)

Moreover, the coefficient vectors K and L are expressed in Equation (29) and Equation (30),
respectively. The term r is denoted in Equation (31).

K = 2.rny, (29)

L = 2rmy—r, (30)

r=>5-— (iter*( > )) (31)
MmaXiter

In the equations above, the term r is diminished from 5 to 0 for the maximum number of iterations.
The random vectors are denoted as 11 and rnp, which lie in [0, 1]. Using Equations (25) and (26),
the position of the spotted hyena is updated randomly near to the prey. Equations (32)—(34) indicate
the hunting behavior of spotted hyenas.
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Dsty, = |E.pvhy — PUot|, (32)
pvot = pupy — L - Dstyy, (33)
Clyy = pvot + pUot+1 + -+ + PUot+N- (34)

In the above equations, the location of the first best-spotted hyena is denoted as puy,,,, and the
locations of the remaining spotted hyenas are denoted as pv,r. The term Cly, denotes the cluster
of N solutions, and the total number of spotted hyenas is indicated by N, which is represented in
Equation (35). Here, the number of solutions is denoted as nos, and all the candidate solutions are
counted. The random vector of range [0.5, 1] is denoted by rv.

N = Coms(pvhy,pvhyﬂ,m ,(pvhy + rv)). (35)

The value of the vector r is diminished to mathematically represent the attack of the prey.
The difference in vector L is reduced to alter the value in vector 7, which can decrease from 5 to 0
over a period of iterations. Equation (36) denotes the attacking of the prey, where pv(it + 1) saves the
best solution and updates the position of other search agents accordingly for the location of the best
search agent.
Clyy
N~

The prey is primarily searched according to the position of the group of spotted hyenas that reside
in vector Cly,,. Moreover, the hyenas move away from each other to search for the prey and attack it.
The pseudocode of the conventional SHO algorithm is shown in Algorithm 2.

po(it+1) = (36)

Algorithm 2. Pseudocode of Conventional Spotted Hyena Optimization [53].

1: Input: Perform population initialization as pv;, wherei =1,2,--- , ne.
2: Output: The best search agent.

3: Perform parameter initialization 7, K, L, N.

4: Evaluate the objective function.

5: puny is the best solution or the best search agent.

6: Clyy indicates the group of all far optimal solutions.

7 while (it < ityy)

8: for each search agent

9: Update the solution by Equation (36).

10: end for

11: The variables 7, K, L, N are updated.

12: Check if any solution goes beyond the given search space and manage it if it happens.
13: Evaluate the fitness value of each search agent.

14: Update puy, if a better solution occurs than the previous one.
15: Update the group Clj,,, with respect to poy,,.

16: it=it+1

17: end while

18: return puy,

6.5. Proposed SH-WOA

The feature selection and RNN-based classification in the proposed mechanical maintenance data
classification were performed using the proposed SH-WOA, which is a combination of the WOA and
SHO. Both the conventional SHO and WOA have similar procedures. First, they will search for the prey,
encircle them, and later attack them. Moreover, traditional optimization algorithms have enhanced
exploitation performance during the testing of unimodal functions. However, the convergence speed
is extremely low, and these algorithms are not suitable for solving all optimization issues. The use
of optimization techniques is crucial in research studies. These algorithms have undergone more
improvements and changes for solving compound functions [54,55]. Moreover, metaheuristic search



Mathematics 2020, 8, 2008 17 of 33

models appear to be accurate and appropriate for several applications. In many engineering problems,
these optimization algorithms are employed rapidly. Based on optimization principles, excellent
decision-making systems have been introduced. Currently, both the prediction and classification
performance are dependent on optimization algorithms.

Previously, hybrid optimization algorithms have been reported to be best for certain search
problems. Moreover, they employ the advantages of discrete optimization algorithms to converge
rapidly. The convergence behavior of hybrid algorithms has been reported to yield better performances
than traditional algorithms [56]. To perform an efficient feature selection and classification, the concept
of SHO was adopted in the WOA. In the proposed SH-WOA, for the condition (i > 0.5) the solution
is updated by Equation (36) based on SHO instead of Equation (23) in the conventional WOA.
Subsequently, the other procedures are performed based on the existing WOA. The flowchart of the
proposed SH-WOA is shown in Figure 4.

Population
Initialization

]

Evaluate

fitness
v

while (it < it

max )

For each
search agent

!

Update
J,E,G,g ,and

No
Update solution
by Eq. SH-WOA
Yes
Select random search
agent and update
No solution by Eq. (26)
Yes

Update solution
by Eq. (20)

Make sure if any search
agent is going afar from
the search space and
rectify it

3

Evaluate Update pv " if . .
fitness " it =it +1

better occurs

Return pv

Figure 4. Flow chart of the proposed SH-WOA for mechanical data classification.
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7. Results and Discussion

7.1. Experimental Procedure

The proposed mechanical data classification model was implemented using MATLAB 2018a,
and the performance analysis was performed. To evaluate the performance of the proposed model,
the four aforementioned datasets were considered. The population size and the maximum number of
iterations considered for the experiment were 10 and 25, respectively. The performance of the improved
SH-WOA-RNN was compared over those of the firefly algorithm (FF)-RNN [57], grey wolf optimization
(GWO)-RNN [58], WOA-RNN [52], and SHO-RNN [53]. Moreover, the classification analysis was
compared over those of the NN [59], SVM [60], KNN (k-nearest neighbors) [61], and RNN [29] by
analyzing the accuracy, sensitivity, specificity, precision, false-positive rate (FPR), false-negative rate
(FENR), negative predictive value (NPV), false discover rate (FDR), F1-score, and Matthew’s correlation
coefficient (MCC).

7.2. Performance Metrics

Ten performance measures were considered for the proposed mechanical data classification.

(a) Accuracy: It is a ratio of the exact prediction observation to the entire observation [19].
The corresponding equation is shown in Equation (20).

(b) Sensitivity: It measures the number of true positives, which is identified accurately [19].

(37)

(c) Specificity: It calculates the number of true negatives, which is recognized precisely [19].

trn
Spe = —. (38)
P Fap
(d) Precision: It is the proportion of positive observations that are exactly predicted to the total
number of positively predicted observations [19].
tr,
Pre = —P (39)
trp + fap
(e) FPR: It is calculated as the proportion of the number of false positive predictions to the total
number of negative predictions [19].

PR = L% (40)
fap +trn
(f) ENR: With the test, it is the ratio of positives that produce negative test results [19].
p P 8
ENR = LT 41)
fan +trp

(g) NPV: It is the probability that subjects of a negative screening test do not have a disease [19].

fan
NPV = ———. (42)
fan+trn
(h) FDR: In all of the rejected hypotheses, this is the number of false positives [19].
FDR = 1% (43)
fap + trp
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(i) F1-score: The harmonic mean between precision and sensitivity is known as the F1-score [19].

Sen X Pre
F1 = — 44
score Pre + Sen (44)

(j) MCC: It is a coefficient of correlation calculated using four values [19].

McC — (trp x trn) — (fap X fan) . (45)

\(trp + fap)(trp + fan)(trn + fap) (trn + fan)

7.3. Performance Analysis in Terms of Accuracy

The performance analysis of the proposed and the conventional heuristic-based RNN with respect
to the learning percentages for different datasets is shown in Figure 5. In Figure 5a, the accuracy of
the improved SH-WOA-RNN is correctly defined for all the learning percentages. At 35% learning,
the accuracy of the introduced SH-WOA-RNN is 15.2%, 19.5%, 25.6%, and 28.9% better than that
of the WOA-RNN, GWO-RNN, FF-RNN, and SHO-RNN for the “3D-printer” dataset, respectively.
Additionally, the accuracy of the improved SH-WOA-RNN from Figure 5c for the “faulty steel plates”
dataset is 3.9%, 5.4%, and 5.6% better than that of the SHO-RNN, WOA-RNN, and GWO-RNN,
respectively. The analysis of accuracy for the proposed SH-WOA-RNN and the existing machine
learning algorithms is shown in Figure 6. The accuracy of the suggested SH-WOA-RNN for the
“3D-printer” dataset is 10.11%, 11.3%, 22.5%, and 51% better than that of the SVM, NN, and KNN at 35%
learning, respectively, as shown in Figure 6a. Moreover, in Figure 6¢, the accuracy of the recommended
SHO-WOA-RNN for the “faulty steel plates” dataset at 35% learning is 2%, 8.8%, and 30.6% better than
that of the RNN, NN, and KNN, respectively. Therefore, the proposed SHO-WOA-RNN outperformed
the conventional algorithms for mechanical data classification.

100 —— FF-RNNI57] 100 —l— FF-RNN[57]
—- GWO-RNNISS] - GWO-RNNIS8]
—- WOA-RNNIs2] 98 —C WOA-RNNI52]

—l- SHO-RNNI53]

. 801 - —l- SHO-RNNI53]
S —O SH-WOA-RNN e 96! —[— SH-WOA-RNN
> | > 04!
@ 60| 3
B B 92
g Q
40 <C 90}
88
20 86! . i
40 60 80 40 60 80
Learning Percentage Learning Percentage
@) (b)
100 B FFRNNIST) el —— FF-RNNIST]
= GWO-RNNIS8] —— GWO-RNNI58]
98! =0~ WOA-RNNI52] 95 —{J— WOA-RNNI52)
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© (d)

Figure 5. Accuracy analysis of proposed and conventional heuristic-based RNN for mechanical data
classification using four datasets: (a) 3D printer, (b) air pressure system failure in scania trucks, (c) faulty
steel plates, and (d) mechanical analysis data.
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Figure 6. Accuracy analysis of the proposed and conventional machine learning algorithm for
mechanical data classification using four datasets: (a) 3D printer, (b) air pressure system failure in
scania trucks, (c) faulty steel plates, and (d) mechanical analysis data.

7.4. Performance Analysis in Terms of Precision

Figure 7 shows the performance analysis of the developed and the existing heuristic-based RNN
with respect to the learning percentage in terms of precision. As shown in Figure 7b, the precision of
the improved SH-WOA-RNN for the “air pressure system failure in the Scania trucks” dataset is 21.4%,
70%, and 50% better than that of the WOA, SHO, and GWO-RNN at 85% learning. When 35% learning
is considered for the dataset mechanical data analysis, the precision of the implemented SH-WOA-RNN
is 6.3%, 7.5%, and 8.6% better than that of the FF-RNN, WOA-RNN, and SHO-RNN, respectively,
as shown in Figure 7d. Moreover, for all the learning percentages, the proposed SH-WOA-RNN
performed well for data classification. The classification analysis using the proposed and conventional
machine learning algorithms in terms of the precision based on different learning percentages is shown
in Figure 8. The precision of the developed SH-WOA-RNN for the “air pressure system failure in
the Scania trucks” dataset is 41.6%, 70%, 82.3%, and 88.2% better than that of the NNN, RNN, SVM,
and KNN at 85% learning, as shown in Figure 8b. In terms of precision, as shown in Figure 8d,
the suggested SH-WOA-RNN for dataset mechanical data analysis is 11.1%, 12.3%, 25%, and 68%
better than that of the RNN, NN, SVM, and KNN at 35% learning. Finally, it is concluded that the
developed SH-WOA-RNN is suitable for classifying all types of mechanical data.
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Figure 7. Precision analysis of proposed and conventional heuristic-based RNN for mechanical data

classification using four datasets: (a) 3D printer, (b) air pressure system failure in scania trucks, (c) faulty
steel plates, and (d) mechanical analysis data.
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Figure 8. Precision analysis of proposed and conventional machine learning algorithm for mechanical
data classification using four datasets: (a) 3D printer, (b) air pressure system failure in scania trucks,
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7.5. Performance Analysis in Terms of FNR

The performance analysis of the improved SH-WOA-RNN and other metaheuristic-based RNN
in terms of the FINR with respect to the learning percentage is shown in Figure 9. At 35% learning,
the FNR of the improved SH-WOA-RNN for the “3D- printer” dataset is 100% better than that of
the WOA-RNN, FF-RNN, GWO-RNN, and SHO-RNN, as shown in Figure 9a. Similarly, for all
the remaining learning percentages for the “3D-printer” dataset, the performance of the introduced
SH-WOA-RNN is extremely high. The FNR of the suggested SH-WOA-RNN at 35% learning for the
“all pressure system failure in Scania trucks” dataset is 100% better than that of the WOA-RNN and
SHO-RNN, as shown in Figure 9b. In Figure 10, the classification performance in terms of the FNR for
the proposed and the existing models is depicted. As shown in Figure 10a, the FNR of the developed
SH-WOA-RNN at 35% learning for the “3D-printer” dataset is 100% better than that of the NN, KNN,
RNN, and SVM. At all the learning percentages, the proposed SH-WOA-RNN performed well in terms
of the FNR. At 85% learning. as shown in Figure 10b, for the “air pressure system failure in the Scania
trucks” dataset the FNR of the improved SH-WOA-RNN is 100% better than that of the NN and RNN.
Hence, the suggested SH-WOA-RNN is superior to conventional algorithms and performs well in
categorizing mechanical data.
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Figure 9. FNR analysis of the proposed and conventional heuristic-based RNN for mechanical data
classification using four datasets: (a) 3D printer, (b) air pressure system failure in scania trucks, (c) faulty
steel plates, and (d) mechanical analysis data.
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Figure 10. FNR analysis of the proposed and conventional machine learning algorithm for mechanical
data classification using four datasets: (a) 3D printer, (b) air pressure system failure in scania trucks,

(c) faulty steel plates, and (d) mechanical analysis data.

7.6. Performance Analysis in Terms of F1-Score

In Figure 11, the performance evaluation in terms of the F1-score by the improved SH-WOA-RNN
and the existing methods with respect to the learning percentage is shown. The F1-score of the modified
SH-WOA-RNN for the “faulty steel plates” dataset is 4.3%, 5.5%, and 6.7% better than those of the
WOA-RNN, GWO, and SHO-RNN at 35% learning, respectively, as shown in Figure 11c. At 35%
learning for the “mechanical analysis data” dataset, the F1-score of the improved SH-WOA-RNN
is 2.6% and 3.7% better than that of the SHO-RNN and GWO, respectively, as shown in Figure 11d.
The Fl-score of the developed SH-WOA-RNN and the other machine learning algorithms is shown in
Figure 12. As shown in Figure 12a, the F1-score of the recommended SH-WOA-RNN for the “faulty
steel plates” dataset is 23%, 33.3%, 65%, and 100% better than that of the SVM, RNN, KNN, and NN
at 85% learning. At 50% learning, the F1-score of the modified SH-WOA-RNN for the “mechanical
analysis” dataset is 5.5%, 10.4%, and 63% better than that of the RNN, NN, and KNN, as shown in
Figure 12d. Finally, the suggested SH-WOA-RNN is superior to conventional methods and performs
well in categorizing mechanical data.
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Figure 11. Fl-score analysis of the proposed and conventional heuristic-based RNN for mechanical
data classification using four datasets: (a) 3D printer, (b) Air pressure system failure in scania trucks,
(c) faulty steel plates, and (d) mechanical analysis data.
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Figure 12. Fl-score analysis of the proposed and conventional machine learning algorithm for
mechanical data classification using four datasets: (a) 3D printer, (b) air pressure system failure in
scania trucks, (c) faulty steel plates, and (d) mechanical analysis data.
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7.7. Overall Performance Analysis

The overall performance analysis of the proposed algorithm and conventional algorithms is shown
in Tables 3, 5, 7 and 9 for the “3D-printer”, “air pressure system failure in Scania trucks”, “faulty steel
plates”, and “mechanical analysis data” datasets, respectively. Moreover, the classification analysis of
the developed SH-WOA-RNN and the conventional classifiers for the four abovementioned datasets are
tabulated in Tables 4, 6, 8 and 10, correspondingly. As shown in Table 3, the accuracy of the improved
SH-WOA-RNN is 1.8%, 14.5%, and 30.9% better than that of the FF-RNN, GWO and SHO-RNN,
and WOA-RNN, respectively. The overall classification analysis of the improved SH-WOA-RNN
in terms of accuracy, as shown in Table 4, is 10%, 57.1%, and 14.5% better than that of the NN and
SVM, KNN, and RNN, respectively. Similarly, as shown in Table 5, the accuracy of the proposed
SH-WOA-RNN is 0.8%, 2%, and 1.6% better than that of the FF-RNN and SHO-RNN, GWO-RNN,
and WOA-RNN, respectively. As shown in Table 6, the accuracy of the recommended SH-WOA-RNN
is 0.4%, 17.7%, 21.2%, and 1.6% better than that of the NN, SVM, KNN, and RNN, respectively.
Moreover, the accuracy of the developed SH-WOA-RNN as shown in Table 7 is 1.8%, 2.5%, 3.7%,
and 3.3% better than that of the FF-RNN, GWO-RNN, WOA-RNN, and SHO-RNN, respectively.
The accuracy of the proposed SH-WOA-RNN is 8.7%, 4.6%, 37.9%, and 1.7% upgraded compared that
of the NN, SVM, KNN, and RNN, respectively, as shown in Table 8. In terms of the accuracy, as shown
in Table 9, the performance of the proposed SH-WOA-RNN is 6.4%, 4.9%, 8.9%, and 3.1% better than
that of the FF-RNN, GWO-RNN, WOA-RNN, and SHO-RNN, respectively. Moreover, as shown in
Table 10, the accuracy of the improved SH-WOA-RNN is 5.4, 3.5%, 74.4, and 4.9% better than that of
the NN, SVM, KNN, and RNN, respectively. Finally, it is confirmed that the suggested SH-WOA-RNN
outperformed the conventional algorithms for mechanical data classification.

Table 3. Overall performance analysis of the proposed and conventional heuristic-based RNN for
mechanical data classification using the “3d Printer” dataset.

Pe;f/["ert‘:;::“’ FE-RNN [57] GWO-RNN [58] WOA-RNN[52] SHO-RNN[53] SH-WOA-RNN
Accuracy 0.9 0.8 0.7 0.8 0.91667
Sensitivity 0.8 0.6 0.4 0.6 1
Specificity 1 1 1 1 0.8
Precision 1 1 1 1 0.875
FPR 0 0 0 0 0.2
FNR 0.2 0.4 0.6 0.4 0
NPV 1 1 1 1 0.8
FDR 0 0 0 0 0.125
F1-Score 0.88889 0.75 0.57143 0.75 0.93333
MCC 0.8165 0.65465 0.5 0.65465 0.83666

Table 4. Overall performance analysis of the proposed and conventional machine learning algorithms

for mechanical data classification using the “3d Printer” dataset.

Performance

. NN [59] SVM [60] KNN [61] RNN [29] SH-WOA-RNN
Metrics
Accuracy 0.83333 0.83333 0.58333 0.8 0.91667
Sensitivity 0.71429 1 0.57143 0.6 1
Specificity 1 0.6 0.6 1 0.8
Precision 1 0.77778 0.66667 1 0.875
FPR 0 04 0.4 0 0.2
FNR 0.28571 0 0.42857 04 0
NPV 1 0.6 0.6 1 0.8
FDR 0 0.22222 0.33333 0 0.125
F1-Score 0.83333 0.875 0.61538 0.75 0.93333
MCC 0.71429 0.68313 0.16903 0.65465 0.83666
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Table 5. Overall performance analysis of the proposed and conventional heuristic-based RNN for
mechanical data classification using the “Air Pressure System Failure in Scania Trucks” dataset.

Pe;\f,[":t‘:i‘:;“e FF-RNN [57] GWO-RNN [58] WOA-RNN [52] SHO-RNN[53] SH-WOA-RNN
Accuracy 0.972 0.96 0.964 0.972 0.98
Sensitivity 03 0.7 0.2 0.4 0.6
Specificity 1 0.97083 0.99583 0.99583 0.99583
Precision 1 05 0.66667 08 0.85714

FPR 0 0.029167 0.004167 0.004167 0.004167
FNR 0.7 03 08 06 0.4
NPV 1 0.97083 0.99583 0.99583 0.99583
FDR 0 05 0.33333 02 0.14286
F1-Score 0.46154 0.58333 0.30769 0.53333 0.70588
MCC 0.53991 0.57174 0.35244 0.55405 0.70775

Table 6. Overall performance analysis of the proposed and conventional machine learning algorithms
for mechanical data classification using the “Air Pressure System Failure in Scania Trucks” dataset.

Perforn}ance NN [59] SVM [60] KNN [61] RNN [29] SH-WOA-RNN
Metrics
Accuracy 0.976 0.832 0.808 0.964 0.98
Sensitivity 0.6 1 0.6 0.3 0.6
Specificity 0.99167 0.825 0.81667 0.99167 0.99583
Precision 0.75 0.19231 0.12 0.6 0.85714
FPR 0.008333 0.175 0.18333 0.008333 0.004167
FNR 0.4 0 0.4 0.7 0.4
NPV 0.99167 0.825 0.81667 0.99167 0.99583
FDR 0.25 0.80769 0.88 0.4 0.14286
F1-Score 0.66667 0.32258 0.2 0.4 0.70588
MCC 0.65876 0.39831 0.20412 0.40825 0.70775

Table 7. Overall performance analysis of the proposed and conventional heuristic-based RNN for
mechanical data classification using the “Faulty Steel Plates” dataset.

Pe;f,[";‘:i‘:;“e FF-RNN [57] GWO-RNN [58] WOA-RNN [52] SHO-RNN[53] SH-WOA-RNN

Accuracy 0.93533 0.92933 0.91867 0.922 0.95267
Sensitivity 0.752 0.76 0.728 0.74 0.856
Specificity 0.972 0.9632 0.9568 0.9584 0.972
Precision 0.84305 0.80508 0.77119 0.78059 0.85944

FPR 0.028 0.0368 0.0432 0.0416 0.028

FNR 0.248 0.24 0.272 0.26 0.144

NPV 0.972 0.9632 0.9568 0.9584 0.972

FDR 0.15695 0.19492 0.22881 0.21941 0.14056
F1-Score 0.79493 0.78189 0.74897 0.75975 0.85772

MCC 0.75843 0.74021 0.70091 0.7136 0.82933
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Table 8. Overall performance analysis of the proposed and conventional machine learning algorithms
for mechanical data classification using the “Faulty Steel Plates” dataset.

Performance

. NN [59] SVM [60] KNN [61] RNN [29] SH-WOA-RNN
Metrics
Accuracy 0.876 0.91067 0.69067 0.93667 0.95267
Sensitivity 0 0.88 0.432 0.788 0.856
Specificity 0.97333 0.9168 0.7424 0.9664 0.972
Precision 0 0.67901 0.25116 0.82427 0.85944
FPR 0.026667 0.0832 0.2576 0.0336 0.028
FNR 1 0.12 0.568 0.212 0.144
NPV 0.97333 0.9168 0.7424 0.9664 0.972
FDR 1 0.32099 0.74884 0.17573 0.14056
F1-Score 0 0.76655 0.31765 0.80573 0.85772
MCC —0.05227 0.7216 0.14373 0.76819 0.82933

Table 9. Overall performance analysis of the proposed and conventional machine learning algorithms
for mechanical data classification using the “Mechanical Data Analysis” dataset.

Pe;\f,[";‘:i‘:;“e FF-RNN [57] GWO-RNN [58] WOA-RNN [52] SHO-RNN[53] SH-WOA-RNN
Accuracy 0.872 0.884 0.852 09 0.928
Sensitivity 0.83 0.88 0.88 0.85 0.88
Specificity 0.9 0.88667 0.83333 0.93333 0.96
Precision 0.84694 0.8381 0.77876 0.89474 0.93617

FPR 0.1 0.11333 0.16667 0.066667 0.04
FNR 0.17 0.12 0.12 0.15 0.12
NPV 0.9 0.88667 0.83333 0.93333 0.96
FDR 0.15306 0.1619 0.22124 0.10526 0.06383
F1-Score 0.83838 0.85854 0.82629 0.87179 0.90722
MCC 0.73254 0.76098 0.70216 0.79061 0.84957

Table 10. Overall performance analysis of the proposed and conventional machine learning algorithms
for mechanical data classification using the “Mechanical Data Analysis” dataset.

Perforn}ance NN [59] SVM [60] KNN [61] RNN [29] SH-WOA-RNN
Metrics
Accuracy 0.88 0.896 0.532 0.884 0.928
Sensitivity 0.78 0.74 0.36 0.84 0.88
Specificity 0.94667 1 0.64667 0.91333 0.96
Precision 0.90698 1 0.40449 0.86598 0.93617
FPR 0.053333 0 0.35333 0.086667 0.04
FNR 0.22 0.26 0.64 0.16 0.12
NPV 0.94667 1 0.64667 0.91333 0.96
FDR 0.093023 0 0.59551 0.13402 0.06383
F1-Score 0.83871 0.85057 0.38095 0.85279 0.90722
MCC 0.74939 0.79415 0.006821 0.75736 0.84957

7.8. Analysis Based on Computational Time

The measurement time of the proposed method and the current methods is evaluated and
presented in Table 11.
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Table 11. The computational time of the proposed and existing methods.

Computational Time (sec.)

Methods Three-Dimensional Air Pressure System Faulty Steel Mechanical
(3D) Printer (Test Failure in Scania Plates (Test Analysis Data

Case 1) Trucks (Test Case 2) Case 3) (Test Case 4)
FF [57] 237.41 188.09 191.17 163.55
GWO [58] 169.58 118.5 131.27 102.56
WOA [52] 180.47 95.481 149.66 102.83
SHO [53] 393.53 302.82 303.94 320.8
SH-WOA 88.596 163.4 127.2 168.76

The proposed algorithm is better than the current techniques when considering the calculation
time, such as FF, GWO, WOA, and SHO. For Testcase_1, the computational time of the proposed
SH-WOA is 62.68% better than FF, 47.75% better than GWO, 50.90% better than WOA, and 77.48%
better than SHO. For Testcase_2, the computational time of the proposed SH-WOA is 13.12% better than
FFE, 37.89% better than GWO, 71.13% better than WOA, and 46.04% better than SHO. For Testcase_3,
the computational time of the proposed SH-WOA is 33.46% better than FF, 3.10% better than GWO,
15% better than WOA, and 58.14% better than SHO. Similarly, for Testcase_4, the computational time
of the proposed SH-WOA is 3.18% better than FF, 64.54% better than GWO, 64.11% better than WOA,
and 47.39% better than SHO, respectively.

Complexity of time of the proposed technique using big O notation:

The most famous metric for the measurement of time complexity is the Big O notation. Big O
defines the worst-case scenario explicitly and can be used to define the execution time needed or the
space an algorithm requires. The time complexity of the proposed SH-WOA is O (itmax * nez), where ne
is the population size and ity is the maximum number of iterations.

8. Discussion and Conclusions

In this paper, the performance of the proposed method has been evaluated by metrics such
as accuracy, precision, FNR, Fl-score, and time complexity. Moreover, the efficacy of the proposed
technique was compared with that of the current methods, such as NN, SVM, KNN, and RNN. All the
mentioned algorithms were coded by us and the same problem was fed to each of them on the same
computer to gain unbiased results in terms of the performance measures. The study showed that
the proposed approach provides a better performance relative to the other comparative methods.
The possible reasons behind the high performance of the proposed method can be attributed to
the hybridization.

The proposed SH-WOA is the integration of WOA and SHO. The advantages of SHO include its
faster convergence rate, being easy to implement, its strong global search, its simplicity, and its accuracy.
The benefits of WOA include its low complexity, high speed, robustness, increased machine efficiency,
improved product quality, increased system reliability, advantages in solving clustering problems,
limited number of parameters, and lack of a local optima trap. The advantages of RNN include that it
can process any length of input and it is popular and successful for variable length representation such
as sequences and images. Therefore, the amalgamation of these techniques resulted in an efficient and
efficacious algorithm for data classification.

In this research work, a new model has been developed for implementing in a data classification
problem. The datasets are based on various mechanical maintenance data. The introduced method
comprised four phases: data acquisition, feature extraction, feature selection, and classification.
For data acquisition, four datasets—i.e., “3D printer”, “air pressure system failure in Scania trucks”,
“faulty steel plates”, and “mechanical data analysis”—were gathered from popular data repositories.
To categorize the datasets, the attributes of each dataset were considered for further processing. In the
feature extraction phase, PCA, as well as the first- and higher-order statistical features, were extracted.
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Moreover, feature selection was performed to reduce the dimensions of the features for an error-free
classification. To perform a feature selection, a new model called the SH-WOA was employed.
The selected features were subjected to a deep learning model—i.e., the RNN. The number of hidden
neurons in the RNN was optimized to enhance the performance of the RNN using the introduced
SH-WOA. Hence, the performance of the suggested model was evaluated and validated using all the
datasets. The results indicated that the accuracy of the improved SH-WOA-RNN was 1.8%, 14.5%,
and 30.9% better than that of the FF-RNN, SH-WOA-RNN, and WOA-RNN for the “air pressure
system failure in Scania trucks” dataset, respectively. Hence, it is concluded that the suggested
SH-WOA is suitable and effective for the data classification of mechanical systems maintenance.
The proposed SH-WOA has not been tested much for solving other complex problems in the literature
yet. The advantages of the proposed method include its low complexity, high speed, robustness,
increased machine efficiency, improved product quality, increased system reliability, and improved
rate of production. The drawbacks consist of a high initial set up cost, poor performance in exploring
the search space, and more complicated system. Therefore, in the future we will develop a multiple
input multiple output (MIMO)-based module for the better performance of the system and will try
to mitigate the disadvantages and limitations. Moreover, the developed system will be tested with
Dejong’s functions.
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Abbreviations

PCA Principal Component Analysis
WOA Whale Optimization Algorithm
SHO Spotted Hyena Optimization
SH-WOA Spotted Hyena-based Whale Optimization Algorithm
RNN Recurrent Neural Network
DNN Deep Neural Network

SVM Support Vector Machine

KNN K-Nearest Neighbour

NB Naive Bayes

CNN Convolutional Neural Network
LDA Linear Discriminant Analysis
QDA Quadratic Discriminant Analysis
APS Air Pressure System

ICA Independent Component Analysis
NN Neural Network

GRU Gated Recurrent Unit

FPR False Positive Rate

FF FireFly algorithm

FNR False Negative Rate

GWO Grey Wolf Optimization

NPV Negative Predictive Value
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FDR False Discovery Rate

MCC Matthew’s Correlation Coefficient

ML Machine Learning

TF-IDF Term Frequency-Inverse Document Frequency

SITO Social Impact Theory-based Optimization

QWOA Quantum Whale Optimization Algorithm

WOA-LFDE Whale Optimization Algorithm-Levy Flight and Differential Evolution
MOSHO Multi-Objective Spotted Hyena Optimizer

DE-CQPSO Differential Evolution-Crossover Quantum Particle Swarm Optimization
FIOA Firefly Integrated Optimization Algorithm

MHDOA Memory based Hybrid Dragonfly Optimization Algorithm

BSOA Brain Storm Optimization Algorithm

MLP Multilayer Perceptron

DDAO Dynamic Differential Annealed Optimization

FIMPSO Firefly and Improved Multi-objective Particle Swarm Optimization
MIMO Multiple Input Multiple Output
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