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Abstract: Road network extraction is one of the significant assignments for disaster emergency
response, intelligent transportation systems, and real-time updating road network. Road extraction
base on high-resolution remote sensing images has become a hot topic. Presently, most of the researches
are based on traditional machine learning algorithms, which are complex and computational because
of impervious surfaces such as roads and buildings that are discernible in the images. Given the
above problems, we propose a new method to extract the road network from remote sensing images
using a DenseUNet model with few parameters and robust characteristics. DenseUNet consists of
dense connection units and skips connections, which strengthens the fusion of different scales by
connections at various network layers. The performance of the advanced method is validated on two
datasets of high-resolution images by comparison with three classical semantic segmentation methods.
The experimental results show that the method can be used for road extraction in complex scenes.

Keywords: high-resolution remote sensing imagery; multi-scale; road extraction; machine
learning; DenseUNet

1. Introduction

The traffic road network is one of the essential geographic element of the urban system,
which has critical applications in many fields, such as intelligent transportation, automobile navigation,
and emergency support [1]. With the development of remote sensing technology and the advancement
of remote sensing data processing methods, high temporal and spatial resolution, remote sensing data
can provide high-precision ground information and permit the large-scale monitoring of roads. Remote
sensing image data has quickly become the primary data source for the automatic extraction of road
networks [2]. Automating road extraction plays a vital role in dynamic spatial development. Extracting
the road in the urban area is a significant concern for the research on transportation, surveying,
and mapping [3]. However, remote sensing images usually have sophisticated heterogeneous
regional features with considerable intra-class distinctions and small inter-class distinctions. It is
very challenging, especially in the urban area, as many buildings and trees exist, leading to shadow
problems and a large number of segmented objects. The shadows of roadside trees or buildings can be
observed from high-resolution images. Consequently, it is challenging to obtain high-precision road
network information in the automatic extraction of road networks from remote sensing images.

There are many image segmentation methods for these problems by such conventional methods or
machine learning algorithms. These methods are mainly divided into two categories: road centerline
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extraction and road area extraction. This paper focuses on extracting road areas from high-resolution
remote sensing images. The road centerline is a linear element, and the spatial geometry is a line
formed by a series of ordered nodes, which is an essential characteristic line of the road. The road
centerline is generally obtained from the segmented image of road binary map through morphology
or Medial Axis Transform (MAT) [4]. The road area is a kind of surface element. The road area is
generated by image segmentation. The different spatial shape structure of boundary lines forms
a variety of shape structures of surface elements [5]. Road centerline extraction [6,7] is used to
detect the skeleton of the road, while road area extraction [8–13] generates the pixel-level label of the
road, and there are some methods to extract the road area [14] while obtaining the road centerline.
Huang et al. [8] try to extract road networks from the Ranging (LiDAR) data and light detection.
Mnih et al. [9] used the Deep Belief Network (DBN) model to identify road targets in airborne images.
Unsalan et al. [10] integrated three modules of road shape extraction module, road center probability
detection module, and graphics-based module to extract road network from high-resolution satellite
images. Cheng et al. [11] automatically extracted the road network information from complex remote
sensing images based on the probability propagation method of graph cut. Saito et al. [12], based on the
output of the channel function is put forward a new method of CNN’s tabbed semantic segmentation.
Alshehhi et al. [13] proposed an unsupervised road segmentation method based on the hierarchical
graph. Road area extraction can be divided into pixel-level classification or image segmentation
problems. Song et al. [15] proposed a method of road area detection based on the shape indexing
feature of the support vector machine (SVM). Wang et al. [16] present a road detection method based
on salient features and gradient vector flow (GVF) Snake. Rianto et al. [17] proposed a method to
detect main roads from SPOT satellite images. The traditional road extraction method depends on
the selected features. Zhang et al. [18] selected the seed points on the road, determined the direction,
width, and starting point of the road in this section with a radial wheel algorithm, and proposed a
semi-automatic method for road network tracking in remote sensing images. Movaghati et al. [19]
proposed a new road network extraction framework by combining an extended Kalman filter (EKF)
and a special particle filter (PF) to recover road tracks on obstructed obstacles. Gamba et al. [20] used
adaptive filtering steps to extract the main road direction, and then proposed a road extraction method
based on the prior information of road direction distribution. Li et al. [21] gradually extracted the road
from the binary segmentation tree by determining the region of interest of the high-resolution remote
sensing image and representing it as a binary segmentation tree.

However, the manually selected set of features is affected by many threshold parameters, such as
lighting and atmospheric conditions. This empirical design method only deals with specific data,
which limits its application in large-scale datasets. Deep learning is a representation learning method
with multiple levels of representation, which is obtained by combining nonlinear but straightforward
modules, each module representing a level of representation to a higher, slightly more abstract level.
It allows raw data to be supplied to the machine and representations to be automatically discovered.
In recent years, the deep convolutional network has been widely used in solving quite complex
classification tasks, such as classification [22,23], semantic segmentation [24,25], and natural language
processing [26,27].

Most importantly, these methods have proven to be profoundly robust to the appearance of different
images, which prompted us to apply them to fully automated road segmentation in high-resolution
remote sensing images. Long promoted the fully-convolutional network (FCN) and applied it to the
field of semantic segmentation. Likewise, new segmentation methods based on deep neural networks
and FCN were developed to extract roads from high-resolution remote sensing images. Mnih [28] put
forward a method that combined the context information to detect road areas in aerial images.

He et al. [29] improves the performance of road extraction networks by integrating the spatial
pyramid pool (ASPP) with the Encoder–Decoder network to enhance the ability to extract detailed
features of the road. Zhang et al. [30] enhanced the propagation efficiency of information flow by fusing
dense connections with convolutional layers of various scales. Aiming at the rich details of remote
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sensing images, Li et al. [31] proposed a Y-type convolutional neural network for road segmentation of
high-resolution visible remote sensing images. The proposed network not only avoids background
interference but also makes full use of complex details and semantic features to segment multi-scale
roads. RSRCNN [32] extracts roads based on geometric features and spatial correlation of roads.
Su et al. [33] enhanced the U-Net network model based on available problems. According to the
characteristics of a small sample of aerial images, Zhang et al. [34] proposed an improved network-based
road extraction design framework. By refining the CNN architecture, Gao et al. [35] proposed the
refined deep residual convolutional neural network (RDRCNN) to enable it to detect the road area
more accurately. To solve the problems of noise, occlusion, and complex background, Yang et al. [36]
successfully designed an RCNN unit and integrated it into the U-Net architecture. The significant
advantage of this unit is that it retains detailed low-level spatial characteristics. Zhang et al. [37]
proposed the ResU-Net to extract road information by combining the advantages of a residual unit
and U-Net. According to the characteristics of the narrow, connected, complex road, Zhou et al. [38]
proposed the D-LinkNet model while maintaining the road information, integration of the multi-scale
characteristics of the high-resolution satellite images. Based on the iterative search process guided by
the decision function of CNN, Bastani [39] proposed RoadTracer, which can automatically construct
accurate road network maps directly from aerial images. For irregular footprint problems between road
area and image, Li et al. [40] proposed a combining GANs and multi-scale context polymerization of
semantic segmentation method, used for road extraction of UAV remote sensing images. Xu et al. [41]
put forward a kind of road extraction method based on local and global information, to effectively
extract the road information in remote sensing images.

Inspired by the Densely Connected Convolutional Networks and U-Net, we propose the
DenseUNet, an architecture that takes advantage of Densely Connected Convolutional Networks
and U-Net architecture. The proposed deep convolutional neural network is based on the U-Net
architecture. There are three differences between our deep DenseUNet and U-Net.

First, the model used dense units rather than ordinary neural units as the basic building blocks.
Second, the proportion of road and non-road in remote sensing images is seriously unbalanced. Thus,
this paper tries to analyze and propose ideas in terms of this issue. Finally, the performance of the
proposed method is validated by comparison with three classical semantic segmentation methods.

2. Methods

2.1. Encoder–Decoder Architecture

State-of-the-art semantic image segmentation methods are mostly based on Encoder–Decoder
architecture such as FCN [42], U-Net [43], SegNet [44]. An end-to-end trainable neural network
recognizes the road in images and accurately segmented at the pixel level. Encoders usually use
pre-trained models (such as VGG, Inception and ResNet), and each encoding layer includes the
convolution, batch normalization (BN), the ReLU function and max pool layer. Each convolutional
layer extracts features from all the maps in the previous layer, which has characteristics of simple
structure and strong adaptability. Batch normalization [45] normalizes the input of each layer to
reduce the internal-covariate-shift problem. It accelerates training and acts as a regularizer. The result
shows that estimators based on a connected deep neural network with ReLU activation function and
correctly selected the network. Pooling layer aims to compress the input feature map, which reduces
the number of parameters in the training process and the degree of overfitting of the model. The main
task of the Decoder is to map the distinguishable features to the pixel space for dense classification.
Road network density refers to the ratio of the total mileage of the road network to the space of a
given areaFor the extraction of relatively dense urban roads (in the same area, there are more roads),
especially from high-resolution images, significant obstacles are leading to unreliable extraction results:
complex image scenes and road models, as well as occlusion caused by high buildings and their
shadows. Because of the above problems, this paper proposes DenseUNet, which is also based on



Remote Sens. 2019, 11, 2499 4 of 18

Encoder–Decoder architectures and designs a more dense connection mechanism for the Encoder layer.
Because of the complexity of road scenes, U-Net cannot identify road features at a deeper level, and the
generalization ability of multi-scale information is limited, which cannot adequately convey scale
information. DenseUNet is a network architecture in which each layer feeds forward (within each
dense block) directly to each of the other layers. For each layer, the feature map for all other layers is
treated as a separate input, and its feature map is passed as input to all subsequent layers. Additionally,
our approach has far fewer parameters due to the intelligent construction of the model. This kind of
network design method not only extracts low-level features such as road edges and textures but also
identifies the deep contour and location information of the road.

2.2. Backpropagation to Train Multilayer Architectures

Multilayer architectures can be trained by stochastic gradient descent. If only the input function
and internal weight of the module are relatively smooth, the gradient can be computed by using the
backpropagation process. The backpropagation process used to compute the gradient of the objective
function about the weight of stacked multilayer modules is only the practical application of chain
rules of derivatives. The significant idea is that the derivative (or gradient) of the module input can be
computed by working backward from the gradient of the module output [46].

Figure 1 shows that the input space becomes iteratively warped until the data points become
distinguishable through the data flow at various layers of the system. In this way, it can learn highly
complex functions. Deep learning is a form of presentation learning—providing the machine with
the raw data and developing the representations needed for its pattern recognition—that consists of
multiple representation layers. These layers are usually arranged sequentially and consist of a large
number of original nonlinear operations, where the representation of such a layer (the original data
input) is fed into the next layer and converted to a more abstract representation [47]. The output layer
uses softmax activation function to classify the image in one of the classes, and we can use fine-tuned
CNNs as feature extractors to achieve better results.
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Figure 1. When data flows from one layer to another of the neural network, they are linearly separated by
iteratively distorting the data. The final output layer outputs the probabilities of any class. This example
illustrates the basic concepts of large-scale network usage.

2.3. DenseUNet

2.3.1. Network Architecture

We chose U-Net as the primary network architecture. In semantic segmentation, in order to
achieve better results, it is essential to retain low-level details while acquiring high-level semantic
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information. The low-level features can be copied to the corresponding high-level to create information
transmission paths, allowing signals to propagate naturally between the lower and higher levels, which
not only helps the backpropagation in the training process but also compensates for the low-level
and details of the high-level semantic features. We show that making use of dense units instead of
ugly units can further improve the performance of U-Net. In this paper, the dense block is used as
sub-module for feature extraction. By design, DenseUNet allows the layer to access all of its previous
feature maps. DenseUNet takes advantage of the potential of the network to efficient compression
models through feature reuse. It encourages reuse of features throughout the network and leads to a
more compact model.

To restore the spatial resolution, FCN introduces an up-sampling path that includes convolution,
up-sampling operations (transpose convolution or linear interpolation), and skip connections.
In DenseUNet, we replace the convolution operation with up-sampling operations and transform
it. The transition up module consists of a transposed convolution, which upsamples the previous
feature mapping. Then the up-sampling feature map is connected to the input from the encoder skip
connection to form a new input. We utilize an 11-level deep neural network architecture to extract
road areas, as shown in Figure 2.
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potential of the network to efficient compression models through feature reuse.

2.3.2. Dense Block

Deep neural networks extract multi-level features of remote sensing images from low to high
by convolution and pooling operations. The first few layers of convolution neural networks mainly
extract low-level features such as road edges and textures, while deep-level networks extract features
more complete, including road contours and location information. It can improve the performance of
multi-layer neural networks and extract higher-level semantic information; however, it may hinder
training and cause degradation problems. This is a problem with backpropagation [48]. He et al. [49]
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proposed residual neural networks to speed up training and solve degradation problems. The residual
neural network consists of a series of residual units. Each unit can be represented in the following form:

Zl = Hl(Zl−1) + Zl−1 (1)

Among them, Zl−1 and Zl are the input and output of the lth residual unit, and Hl(·) is the residual
function. Therefore, for ResNet model, the output of the lth layer is the composition of the l−1th

identity mapping and the l−1th nonlinear transformation. The connection between the low-level and
the high-level of the network will facilitate the dissemination of information without degradation.
However, this kind of integration destroys the information flow between the layers of the network
to a certain extent [50]. Here, we present the DenseUNet, a semantic segmentation neural network
that combines the advantages of a densely concatenated convolutional network and U-Net. This
architecture can be considered an extension of ResNet, which iteratively sums up the previous feature
mappings. However, this small change has some exciting implications: (1) feature reuse, all layers can
easily access the previous layer, so that the information in previously computed feature map can be
easily reused; (2) parameter efficiency, DenseUNet is more effective in parameter usage; (3) implicit
in-depth supervision, because of the short-path of all feature graphs in the architecture, DenseUNet
provides deep supervision. Figure 3 is the basic dense network unit in this paper.
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Figure 3. Dense network unit. Fractal structures have statistical or similar self-similar forms.

Dense network elements are fractal architectures. Dense block layers are connected to each
other so that each layer in the network accepts the characteristics of all its previous layers as input.
Left: simple extended rules generate fractal architectures with l intertwined columns. Basically, H1(Z)
has a single layer of the selected type (e.g., convolution) between input and output. The connection
layers compute the average value of element-wise. Right: Deep convolution neural network reduces
spatial resolution periodically by pooling. A fractal version uses H1(Z) as the building block between
pooling layers. A block such as Stack B produces a network whose total depth (measured as a
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convolutional layer) is B × 2C−1. Dense units consist of three parts: dense connection, growth rate,
and bottleneck layers.

Dense connections. In order to further enhance the transmission of information among network
layers, this paper constructs a different connection mode: by introducing direct connections from any
layer to all subsequent layers. Figure 3 shows the layout of DenseUNet. Consequently, the Zl layer
receives the feature-maps of all other layers. Z0, Z1, · · · , Zl−1, as input:

Zl = Hl([Z0, Z1, · · · , Zl−1]) (2)

Among them [Z0, Z1, · · · , Zl−1] refers to the series of features generated in layer 0, . . . , l − 1.
To promote implementation, the multiple inputs of Hl(·) in Equation (2) are concatenated into a single
tensor. We define Hl(·) as a composite function of three continuous operations: batch normalization,
followed by a 3 × 3 convolution and a rectified linear unit.

Growth rate. Hl generates G feature-maps, and then the lth layer has G0 + G·(l− 1) input feature
maps, where G0 is the number of channels in the input layer. The difference between DenseUNet and
existing network architectures is that DenseUNet can have skinny layers. The hyper-parameter G is
called the growth rate of the network.

Bottleneck layers. Although each layer generates only G output element mappings, it usually
has more inputs. Literature [51] has noticed that before each 3 × 3 convolution, 1 × 1 convolution
can be introduced as the bottleneck layer to reduce the number of input feature maps and improve
the computational efficiency. We utilize such a bottleneck layer to refer to our network, i.e., the
BN-Conv-ReLU version for Hl. Figure 4 shows the operation of dense block layers, transition down
and transition up.
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Figure 4. Basic layers of dense block, Transition Down, and Transition Up. (a) The dense block
layer consists of BN, followed by ReLU and dropout; (b) Transition Down consists of BN followed
by ReLU, dropout and a max-pooling of size 2 × 2; (c) Transition Up consists of a convolution,
using nearest-neighbor interpolation to compensate for the loss of pooling process spatial information.

In our experiments on Conghua roads dataset and Massachusetts roads dataset, we used
DenseUNet structure with five dense blocks on 256 × 256 input images. The number of feature maps in
other layers also follows the setting G. In the present study, and we used Adam optimizer to minimize
the classification cross-entropy. Let Y be a reference foreground segmentation with values yi, and X
be a prediction probability map of the foreground markers on the N image elements xi, where the
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probability of background class is 1− xi. The cross-entropy represents the dissimilarity between the
approximate output distribution and the real distribution of the labels. The cross-entropy describes the
difference between the true distribution of the input data and the distribution of the model obtained
through training. The binary cross-entropy loss function is defined as:

loss = −
1
N

N∑
i

(yi·logxi + (1− yi)·log(1− xi)) (3)

The reasonable ratio of positive and negative samples is about 1:1 for feature selection in binary
classification tasks. However, we find that the serious class imbalance between foreground and
background is the central cause of high-resolution remote sensing images in the training process of
semantic segmentation.

When the loss function gives equal weight to positive and negative samples, the category with
large sample dominates the training process, and the training model is inclined to the category with a
large sample, which reduces generalization ability of the model. We suggest reshaping the standard
cross-entropy loss to solve the class imbalance problem in order to reduce the loss assigned to large
samples. The weighted cross-entropy form of two-class can be expressed as:

loss = −
1
N

N∑
i

(θ1·yi·logxi + (1− yi)·log(1− xi)) (4)

where θ1 is attributed to the weight of the foreground class, here defined as:

θ1 =
N −
∑N

i xi∑N
i xi

(5)

By appropriately increasing the loss caused by the fault positive samples, the problem of the vast
difference between the positive and negative samples is solved to some extent.

3. Experiments

3.1. Model Preprocessing

3.1.1. Software and Hardware Environment

In order to examine the proposed method, we construct a system platform, which is mainly
composed of two parts: the software and hardware environment. The training and testing of deep
neural networks require high-performance machines, which consumes a lot of video memory during
training. TensorFlow is provided with the advantages of high efficiency, strong expansibility, and
high flexibility design, and with the support of TensorFlow researchers, the efficiency of TensorFlow is
improved. Based on the above reasons, this paper selects TensorFlow framework for network training.
The basic configuration is shown in Table 1:

Table 1. Platform configuration.

Hardware Software

memory hard disk CPU GPU OS CUDA TensorFlow python

16GB 1TB Core-i7-
8700K GTX1080Ti Ubuntu16.04 9.0 1.5 2.7.12
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3.1.2. Data Augmentation

The deep learning model is trained with sufficient data, with the increase of the input size of the
deep neural network, the training parameters after convolution operation also increase. In order to
make use of the video memory and increased training efficiency, we utilize a 256 × 256 window to crop
image blocks. One of the main problems in such models and signature verification systems is the low
number of samples for training the model. Although transfer learning is effective in other domains,
the remote sensing images are essentially different from traditional images by rich spectral setting,
a wide range of image values, and different color and texture distributions. The image enhancement
method is introduced to improve the generalization ability of the model. The deep learning method
uses the method to add more data to the training dataset, which is called data augmentation. Data
augmentation has already proved to bring many benefits to convolutional neural networks (CNNs) [52].
For example, as a regularizer, it is used to prevent overfitting in neural networks [53] and to improve
the performance of unbalanced class problems [54]. As shown in Figure 5, the training set is expanded
by six times.
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Figure 5. Data augmentation. The method mainly includes rotation, flipping (horizontally and
vertically), and cropping operations.

3.1.3. Hyper-Parameters Selection

The process of searching optimal models requires parallel training of multiple models. The selection
of learning batch size, learning rate, and optimization algorithm makes the model unique and different
from other models. The process of selecting the best model requires the hyper-parameters to
be optimized. We use TensorFlow to perform parallel data training with many models. Three
hyper-parameters batch size (batch size, learning rate, and epochs) allow parallel training of multiple
models, and the accuracy of test datasets determines the best model. We have studied various methods
to enable deep learning models to be learned from the training dataset. We studied various methods
to learn deep learning models from training data sets. Hyper-parameters can be used to activate the
training process. Adam is an adaptive learning method that requires less tuning, is computationally
efficient, and is superior to other stochastic optimization methods. The network hyper-parameter
settings are shown in Table 2. We chose Adam as the optimization method, and it represents faster
convergence than the standard stochastic gradient with momentum. We fix the parameters of Adam as
recommended in Reference [55]: β1 = 0.9 and β2 = 0.999.

Table 2. Hyper-parameters.

Hyper-Parameter Grid Search

batch size (2, 4, 8, 16)
epochs (50, 100, 150, 200)

learning rates (1 × 10−9, 1 × 10−5, 1 × 10−3, 1 × 10−1)
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Compared with the classical U-Net, SegNet, GL-Dense-U-Net, and FRRN-B network, we evaluated
the proposed method on two urban scenario datasets: Conghua road dataset, and Massachusetts road
dataset. For the sake of quantitatively estimate the performance of the semantic segmentation method,
we show the precision, recall, F1-Score, intersection over union (IoU) and kappa as different metrics
for performance. The recall rate is defined as the ratio of the correct detection category to the correct
detection category and the sum of a false negative, which will be used to assessments of the road
integrity. The precision rate is the proportion of successes made by a classifier over the whole instance
set, which reflects on the correctness of the road. The F1-score is the harmonic average of precision
and recall, computed based on the number of errors detected by computers and manual evaluators.
The Intersection over Union (IoU) is only the ratio of the overlap area between the truth and predicted
regions of interest on the ground to the area surrounded by them. The kappa coefficient is a statistic
which measures inter-rater agreement for specific items, and it is generally used to assess the accuracy
of remote sensing image classifications.

3.2. Massachusetts Dataset

The Massachusetts dataset [56] has an image resolution of 1 m, and each image contains
3 × 1500 × 1500 pixels. The open road dataset contains 1711 aerial images with a total area of more
than 2600 square kilometers. The dataset is divided into 1108 training images, 14 validation images,
and 49 test images. Figure 6 shows that U-Net, SegNet, and FRRN-B models can correctly identify most
of the roads. Although these models eliminate the effects of shadows and buildings to a certain extent,
the extraction results show that the correctness of intensive road is lower than in other regions. The
results of these models are poorly continuous, and the edge of the road is not distinct enough. U-Net
and SegNet performed poorly and lack of the necessary connectivity in the intensive road. From the
sixth and seventh columns, the performance ability of GL-Dense-U-Net is equal to that of DenseUNet.
Both models show good results in both single lane and dual lanes
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Figure 6. Images of the original actual color composite image are displayed and classified in three
regions using deep learning methods. True positive (TP), false negative (FN) and false positive (FP)
were marked as green, blue, and red, respectively.

3.3. Conghua Dataset

The image resolution of Conghua dataset is 0.2 m, which consists of three bands: Red, Green,
and Blue (RGB). There are 47 aerial images in this dataset, and each image consists of 3 × 6000 × 6000
pixels. Among these, 80% of the data is used for training, and the remaining 20% data is used for
model validation. Figure 7 shows that the white dotted line area is covered with thick trees, especially
in urban environments, where model performance is more challenging than other areas, and the road
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occlusion is more frequent due to trees. The method we propose is hardly affected by shadow occlusion,
and the average performance is better than the other three classical semantic segmentation algorithms
based on convolution neural network. The performance of the GL-Dense-U-Net model on this data set
is comparable to that of DenseUNet, and the extracted road edge information is relatively complete,
which maintains functional connectivity. We can extract the local feature information of the image
accurately and effectively. Figure 8 shows the details of the shaded area.Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 18 
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Figure 7. Images of the original actual color composite image are displayed and classified in three
regions using deep learning methods. True positive (TP), false negative (FN) and false positive (FP)
were marked as green, blue, and red, respectively. The white dotted line in the images is enlarged for
close-up inspection in Figure 7.
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Figure 8. A close-up view of the original true-color composite image and classification results is
displayed across three regions using the deep learning method. The images are the subset from the
white dotted line marked in Figure 7. True positive (TP), false negative (FN) and false positive (FP)
were marked as green, blue, and red, respectively.

3.4. Accuracy Evaluation

Table 3 shows a comparison of the accuracy of automatic classification. We find that the proposed
method achieves the highest accuracy, and both F1-score and kappa are significantly higher than three
classical semantic segmentation methods on both datasets. The kappa metrics for the classification
results were 0.703 and 0.801, respectively. The proposed method provides the most important value
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for the F1-score, which involves recall and accurate metrics. The experimental results show that the
average performance of the method in recall rate, accuracy, and F1-score is better than the other three
classical semantics segmentation methods. In addition, it was found that the method can produce the
relatively high average performance of IoU, and kappa over all the images in the test set, which is
consistent with the predicted results of Figures 6 and 8.

Table 3. The experimental results of road extraction.

Model M-Dataset C-Dataset

P (%) R (%) F1 (%) IoU
(%) Kappa P (%) R (%) F1 (%) IoU

(%) Kappa

U-Net 58.92% 70.81% 60.78% 70.91% 63.65% 84.29% 75.23% 71.83% 77.35% 77.43%
SegNet 61.35% 71.33% 62.64% 71.91% 65.41% 85.03% 77.04% 73.94% 78.83% 78.52%
FRRN-B 76.51% 64.87% 66.71% 74.22% 67.70% 83.92% 77.22% 73.62% 78.72% 78.16%

GL- Dense-
U-Net 78.48% 70.09% 73.98% 72.73% 70.19% 85.33% 79.07% 76.41% 80.67% 80.35%

DenseUNet 78.25% 70.41% 74.07% 74.47% 70.32% 85.55% 78.51% 76.25% 80.89% 80.11%

Figures 6 and 8 illustrate three example results of U-Net, SegNet, FRRN-B, GL-Dense-U-Net,
and the proposed DenseUNet. The results show that compared with the other four methods, our
method has the advantages of high accuracy and low noise. Especially in the case of dense roads and
shadows, our method can divide each lane with high reliability and get prominent shadows, as shown
in the third row of Figures 6 and 8.

3.5. Model Analysis

Road background information is essential when analyzing complex structured objects.
Our network takes into account the information around the road to facilitate the distinction between
roads and similar objects, such as building roofs and dense trees. The context information is robust
when the road is occluded. From the first row of Figure 7, some of the roads in the circle are covered by
trees. Three classical semantics segmentation methods cannot detect the road under the tree; however,
our method has successfully marked them to some extent. A case of failure is shown in the gold
dotted line of Figure 8; the proposed method has a distinct error detection rate in impervious surface.
It is mainly because most of the roads in the urban impervious surface are not labeled. Therefore,
considering that our network regards them as contextual information of the foreground, these roads
share the same characteristics as normal roads. We provide a better insight into the performance
of the proposed method. In Figure 9, we show the loss and performance curves during system
training. The loss of the four models slowly decreases as the training time increases and eventually
stabilizes. Although the U-Net model showed large changes in the initial stage of the model training,
it finally reached a convergence state. It can be seen that the improved model ultimately achieves
good convergence. The connections in dense units and skipping connections between the lower and
higher levels of the network help to spread information without degradation, so that a neural network
with fewer parameters can be designed; however, better comparability can be achieved in semantic
segmentation performance.
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Figure 9. Loss of training. (a) The five curves of blue, yellow, green, red and purple represent the losses
of U-Net, SegNet, FRRN-B, GL-Dense-U-Net, and DenseUNet; (b) The four curves represent models
with different growth rates and modified weights

DenseUNet extracts multi-level features from different stages of the dense block, which strengthens
the fusion of different scales. We train DenseUNet with different growth rates, G. The main results on
two sets of data dataset are shown in Table 4. It can be seen from the accuracy that the model has the best
performance (when the parameter G is equal to 24). Besides, Table 4 shows that relatively small growth
rates are sufficient to achieve excellent results on the test datasets. The growth rate defines the amount
of new information provided by each layer for the global state. It can be accessed from anywhere in
the network and does not need to be replicated between layers in traditional network architecture.

Table 4. Results of different growth factors.

G M-Dataset C-Dataset

OA (%) IoU (%) Kappa (%) OA (%) IoU (%) Kappa (%)

12 92.22% 73.24% 69.55% 94.18% 73.24% 69.55%
18 93.13% 74.04% 70.11% 94.87% 74.04% 70.11%
24 93.93% 74.47% 70.32% 95.02% 80.89% 70.32%

4. Discussion

Table 5 shows the statistics of the deep learning model and the variations of DenseUNet.
The average running time was calculated by iterating 50 times. U-Net adopts a shallow
Encoder–Decoder structure, which requires less computational resources and less reasoning time than
other models. However, the road integrity extracted from two sets of data is sparse. DenseUNet adopts
a custom encoder–decoder architecture, so it maintains a balance between computing resources and
reasoning time. It consumes less computing resources and reasoning time than other models.

Table 5. Compare the network efficiency between the tested deep learning model and DenseUNet.

Model Inference (ms) Model Size (MB) FPS

U-Net 340 106 32
SegNet 204 419 33
FRRN-B 338 297 20

GL-Dense-U-Net 1152 1690 22
DenseUNet-G-12 316 118 23
DenseUNet-G-18 450 279 17
DenseUNet-G-24 472 514 15
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GL-Dense-U-Net is equivalent to DenseUNet in terms of various indicators. GL-Dense-U-Net
consists of Local Attention Units (LAU) and Global Attention Units (GAU). The 1 × 1, 3 × 3, 5 × 5,
7 × 7 kernels are respectively used for convolution operation by LAU, and finally integrated step by
step from the bottom to the top. GAU introduces global average pool (GAP) into the unit to extract
comprehensive road information. However, since the GL-Dense-U-Net encoding and decoding layers
are composed of dense unit blocks provided by DenseNet, and LAU unit (the feature graph of different
scale is fused to realize the attention of pixel-level information) is added in the encoding stage while
GAU unit (feature maps from low and high levels are considered, and global information is provided
to restore features) is connected later in the decoding stage, the GL-Dense-U-Net model is the largest
and the inference time is the longest. DenseUnet adopts dense unit modules in the coding stage,
while the sampling stage in the decoding layer adopts the skip connection characteristic of U-Net.
Therefore, DenseUNet requires less inference time of 316 ms and a smaller model size of 118 MB
than other models. In general, DenseNet is more effective than most models. On the other hand, G
feature maps are output after the convolution of all layers in the dense block. The model sets a small
growth rate (G = 12) to get good results, as shown in Table 4. The overall accuracy and the mIoU of
DenseUNet-G-12 in Massachusetts datasets reached 92.22% and 73.24% respectively

In order to further verify the reliability of the proposed model, two groups of remote sensing image
data with different resolutions were selected to compare four classical image segmentation models.
In Massachusetts datasets, the overall accuracy and the mIoU of DenseUNet in the Massachusetts
dataset achieved 93.93% and 74.47%, respectively. The Conghua dataset achieved 95.02% and
80.89%, respectively. In particular, the classification result of Massachusetts is better than that of
GL-Dense-U-Net [41]. In general, DenseUNet performs better than Massachusetts datasets in Conghua
datasets, which may be a higher data resolution from the dataset.

The developed DenseUNet has excellent potential for improvement. First, the smoothness of road
contour is a key factor that affects the accuracy of road extraction. In the two sets of prediction datasets,
we found that compared with the ground truth value, the predicted result road had information loss
of edge and contour. Obtaining accurate road profile information is still a challenging task. Second,
different network models are suitable for different scenarios, such as PSPNet [57], DeepLabv3+ [58],
and BiSeNet [59], etc., which are suitable for real-time segmentation of street view. It is usually
necessary to design the network according to specific tasks to obtain the best performance. Neural
Architecture Search (NAS) is a kind of automated neural network design technology, which can
automatically design high-performance network structure according to the sample set through the
algorithm. This architecture can effectively reduce the use and implementation cost of the neural
network. Third, we only focused on the performance of different deep learning models during the
experiment. Traditional methods, such as threshold-based methods and object-based methods [60],
have not been compared, and a more comprehensive comparison of these methods is needed in
the future.

5. Conclusions

We propose an efficient road extraction method based on a convolution neural network for
high-resolution remote sensing images. The model combines the virtue of dense connection mode
and U-Net and solves the problem of tree and shadow occlusion to a certain extent, which we call
DenseUNet. In particular, we use a U-Net architecture combined with a suitable weighted loss
function to place more emphasis on foreground pixels. Following simple connection rules (fractal
extensions), DenseUNet naturally integrates deep supervision, the properties of identity mappings,
and diversified depth attributes. The dense connections within dense units and the skip connections
between the encoding and decoding paths of the network will help to transfer information and
accelerate computation, so they can learn more compactly and get more accurate models.
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Although deep neural networks have acquired remarkable success in many fields, there are no
sophisticated theories yet. However, one of the critical disadvantages of deep learning models is their
limited interpretability, and often these models are described as “black boxes” that do not provide
insight into their inner workings. On the other hand, it will be challenging to create a general model
through theoretical guidance. Hence, the results obtained from such specific planning problem are
difficult to apply to other problems in the same field. We plan to use the trained DenseUNet model to
transfer knowledge to improve new tasks in future work.
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