
remote sensing  

Review

Wetland Monitoring Using SAR Data:
A Meta-Analysis and Comprehensive Review

Sarina Adeli 1, Bahram Salehi 1 , Masoud Mahdianpari 2,* , Lindi J. Quackenbush 1,
Brian Brisco 3, Haifa Tamiminia 1 and Stephen Shaw 1

1 Department of Environmental Resources Engineering, State University of New York College of
Environmental Science and Forestry (ESF), New York, NY 13210, USA; sadeli@esf.edu (S.A.);
bsalehi@esf.edu (B.S.); ljquack@esf.edu (L.J.Q.); htamimin@esf.edu (H.T.); sbshaw@esf.edu (S.S.)

2 C-CORE and Department of Electrical and Computer Engineering, Memorial University of Newfoundland,
St. John’s, NL A1C 5S7, Canada

3 The Canada Centre for Mapping and Earth Observation, Ottawa, ON K1S 5K, Canada;
brian.brisco@canada.ca

* Correspondence: m.mahdianpari@mun.ca; Tel.: +1-709-986-0110

Received: 13 May 2020; Accepted: 6 July 2020; Published: 9 July 2020
����������
�������

Abstract: Despite providing vital ecosystem services, wetlands are increasingly threatened across
the globe by both anthropogenic activities and natural processes. Synthetic aperture radar (SAR)
has emerged as a promising tool for rapid and accurate monitoring of wetland extent and type.
By acquiring information on the roughness and moisture content of the surface, SAR offers unique
potential for wetland monitoring. However, there are still challenges in applying SAR for mapping
complex wetland environments. The backscattering similarity of different wetland classes is one
of the challenges. Choosing the appropriate SAR specifications (incidence angle, frequency and
polarization), based on the wetland type, is also a subject of debate and should be investigated more
thoroughly. The geometric distortion of SAR imagery and loss of coherency are other remaining
challenges in applying SAR and its processing techniques for wetland studies. Hence, this study
provides a systematic meta-analysis based on compilation and analysis of indexed research studies
that used SAR for wetland monitoring. This meta-analysis reviewed 172 papers and documented an
upward trend in usage of SAR data, increasing usage of multi-sensor data, increasing integration of
C- and L- bands over other configurations and higher classification accuracy with multi-frequency
and multi-polarized SAR data. The highest number of wetland research studies using SAR data
came from the USA, Canada and China. This meta-analysis highlighted the current challenges and
solutions for wetland monitoring using SAR sensors.

Keywords: wetland monitoring; synthetic aperture radar; PolSAR; classification; change detection;
meta-analysis; systematic review

1. Introduction

Wetlands are often located adjacent to fresh or salt water and are generally characterized by hydric
soils that experience wet conditions either periodically during the growing season or permanently in
all seasons. The global extent of wetlands is estimated to be around 1.2 million square km, although
this is likely an underestimate [1]. Wetlands play an irreplaceable role in both regional and global scales
due to their controls on biologic, ecological and hydrological processes [2–4]. Costanza et al. (1997)
estimated the dollar value for worldwide wetland services to be $14.9 trillion [5]. From a regional
scale perspective, they purify water resources, control floods, provide critical habitat and support
recreational activities. At a global scale, wetlands play a key role in determining greenhouse gas
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emissions. Wetlands are an integral part of the global carbon cycle and also generate a sizable fraction
of global methane emissions [6,7].

Despite the significance of wetlands, they are currently threatened by intensive water extraction
for irrigation, industrial development, deforestation, reservoir construction, rising sea levels, thawing
of permafrost [8] and changing precipitation patterns [9]. Slight shifts in weather patterns and global
warming affect wetland environments substantially. The United Nations World Water Development
reported that about two-thirds of wetlands have been lost since the beginning of the 20th century [9].
Dahl et al. (1991) reported that an average of 290,000 hectares of wetlands were degraded from 1970 to
the 1980 and interestingly, 87% of the degradation stimulated by agricultural activities. Subsequent
decades continued to show significant wetland loss in the US [10]. Likewise, 54% of the world’s
mangrove forest has been degraded in the past two decades [1]. Due to the dramatic decline in the
extent of wetlands, monitoring their condition is an essential issue in the current era.

Field measurement techniques provide valuable reference data for evaluating wetlands, albeit in
localized scales; however, such techniques are impractical for frequent monitoring of wetlands [11].
Field measurement techniques for wetland mapping are often labor-intensive, time-consuming and
costly given the extent of wetlands. Furthermore, wetlands are often located in inaccessible areas,
making ground surveys impractical. Wetlands are subject to change due to their dynamic nature
annually or interannually in terms of the water area, water level or vegetation presence and growth.
The evaluation and mapping of wetlands demands a reliable tool able to monitor the vast majority of
wetlands even in inaccessible areas.

Remote sensing technology is particular valuable for mapping wetlands where remoteness,
vastness or the highly dynamic nature of wetlands make field measurements impractical [12].
Specifically, airborne or satellite sensors can capture synoptic views of the landscape with a high
temporal resolution and thus are efficient for mapping wetland complexes [13–16]. Optical sensors,
such as the Landsat series, Worldview-2 and Rapid-Eye, are among the more common sensors
for wetland mapping [17–23]. Several studies reported success of wetland mapping using optical
sensors [24]. High spatial and temporal resolution of optical sensors along with their high coverage
provide good estimation of wetland extent in broad scales. Multispectral optical sensors allow for
molecular level information retrieval, yet cloud cover and night conditions limit their data acquisition
capability. Moreover, due to their short wavelength, the ability of optical sensors to penetrate vegetation
is relatively low.

In contrast to optical systems, longer wavelength synthetic aperture radar (SAR) sensors are able to
collect data independent of weather condition and solar illumination, thus making them more suitable
for monitoring wetlands, particularly in the northern latitudes. Compared to optical sensors that
interact with a target at the molecular level, SAR sensors interact with targets at the macroscopic level
and thus collect valuable information from macroscale features such as structure, surface roughness
and moisture content [25]. In particular, SAR systems can provide unique information on surface
hydrology and the geometry of vegetation in herbaceous wetlands [26,27]. SAR signals have a deeper
penetration capability through vegetation canopies, which make them advantageous compared to
optical sensors. Furthermore, advanced SAR missions (e.g., RADARSAT-2, RADARSAT constellation
mission (RCM)) have the ability to transmit linear or circular polarization and receive the horizontal or
vertical polarized wave, which is useful for discrimination of different wetland classes [28].

The application of satellite SAR sensors for monitoring vegetation dates back to 1980 following the
launch of the first SAR spaceborne satellite (L-band Seasat) in 1978 [29]. Investigations in monitoring
coastal and inland wetlands that exploited C and L band data from Shuttle Imaging Radar missions
(SIR-A, SIR-B and SIR-C), ERS-1 [30] and ERS-2, JERS [31–34] and RADARSAT [35–38] expanded
during the next decades. RADARSAT-2, launched in 2007, was the first satellite that carried a full
polarimetric C-band SAR sensor, which is of particular interest for physical characterization of flooded
wetland vegetation [39–42]. Capacity was further expanded by the launches of the TerraSAR-X and
COSMO-SkyMed constellations [43], which offered relatively short revisit cycles and very high
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spatial resolution (up to one meter). These two systems operate in X-band, enabling them to deliver
complementary information for monitoring wetlands [44]. More recently, compact polarimetric SAR
(PolSAR) data have drawn attention among the remote sensing community, given a unique configuration
that is advantageous compared to conventional polarimetric sensors for many applications. For example,
the currently operating RADARSAT constellation mission (RCM) with a wider swath width and
capability to collect a variety of polarimetric configurations offers a significant improvement in terms of
temporal resolution, thus making it superior compared to its predecessor, RADARSAT-2, for operational
remote sensing applications demanding frequent data at a large scale [45–48].

SAR data have shown to be useful for wetland studies in a variety of applications. Wetland
mapping and classification using SAR data have been one of the most investigated application to
date [47,49–65], yet the backscattering similarity of wetland classes presents challenges. Another
application of SAR data for wetland studies is inundation water extraction mapping [66]. Different
backscattering mechanisms from water and flooded vegetation allow the delineation of water from
surrounding vegetation. In addition, spatiotemporal change detection is another application of SAR
wetland monitoring. This is of great value because dynamic nature of wetlands requires techniques
that can track changes [67]. Water level monitoring using Interferometric SAR (InSAR) techniques is
another, less developed technique of wetland monitoring [37,68,69]. Lastly, due to the high contribution
of wetlands in methane emission and consequently the carbon cycle, biomass estimation in wetlands
using SAR data are also becoming increasingly important [70–74].

Despite the increasing use of SAR to monitor wetlands, the backscattering similarity of wetland
classes presents challenges and there has not been a comprehensive assessment that quantifies trends
in SAR usage. There have been several review articles related to SAR [9,26–28], but these focus on
narrow questions. Thus, this study aims to provide a comprehensive statistical meta-analysis focused
on the use of SAR data for monitoring wetlands through investigation of 172 articles. We aim to use
the meta-analysis to present the importance of SAR in wetland monitoring studies, illustrate trends in
wetland monitoring studies and explore challenges, gaps and restrictions in order to reveal effective
techniques for manipulating and analyzing SAR data. This review also aims to illustrate the general
trend of wetland monitoring using SAR data in remote sensing studies, which is followed by an
overview of future trends on wetland monitoring using SAR.

2. Methodology

Bibliographic resources for this review were obtained by a systematic literature search of two
well-known scientific databases: “Web of Science” and “Google Scholar.” We followed preferred
reporting items for systematic reviews and meta-analyses (PRISMA) for selection and documentation of
published peer-reviewed articles [75]. Seven major remote sensing journals were included in the search:
Remote Sensing MDPI, Remote Sensing of Environment, International Society for Photogrammetry and
Remote Sensing (ISPRS) Journal of Photogrammetry and Remote Sensing, Institute of Electrical and
Electronics engineers (IEEE) Transactions on Geoscience and Remote Sensing, International Journal
of Remote Sensing, Canadian Journal of Remote Sensing and Journal of Applied Remote Sensing.
The search focused on articles published from 1991 to 2019 based on English keywords related to
wetland monitoring using SAR data. Figure 1 shows the tag cloud of terms used for wetland monitoring
studies using SAR data; the text size indicates the frequency of term usage. Key terms linked to
wetland SAR monitoring and their synonyms were also included (Figure 2). A search query was
designed that would encompass all the articles with fundamental keywords in wetland studies using
SAR data. This search query involved three separate categories of keywords: wetland types, SAR
sensors and applications (Figure 2). In order to obtain an inclusive collection of related articles, “or”
was set within the keywords from the same category and “and” was set between different categories.
The search on wetland types and SAR sensors was performed based on the article’s topic. The search
on keywords that covered different applications was performed based on the article’s title. Figure 3
depicts the process of selecting relevant application based on PRISMA flow diagram. The initial query
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led to 338 articles. After cataloging the parameters for each study, we screened nominated articles
and adopted an exclusion query to eliminate papers that integrated SAR data with other available
remote sensing datasets (e.g., optical). We omitted the studies that used an integration of SAR and
optical data in order to focus this study on investigating the capability of SAR sensors solely. This led
to 172 publications containing the relevant studies on wetland monitoring using SAR data that were
selected for meta-analysis.
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Figure 3. PRISMA flow diagram for selecting relevant articles. Initially 338 articles were found through
the designed search criteria, with nine duplicates removed. We removed articles that integrated
SAR and optical data, leaving 217 studies. After screening the 217 articles, 172 of them were chosen
for analysis.

Attributes extracted from the research papers are shown in Table 1. These attributes are summarized
in the meta-analysis to provide an overview of how SAR data have been used across studies. One of
the important attributes explored was the sensor type, which directly impacts the SAR specifications of
frequency, incidence angle, polarization and spatial resolution. Frequency encompasses the different
microwave bands used in acquiring SAR data, including P, L, C and X-bands. Depending on the
wavelength, the penetration of signal fluctuates considerably. Moreover, the selection of frequency
bands can directly affect the observed roughness of the target. Another important attribute is the
type of platform: spaceborne or airborne. Airborne platforms, such as UAVSAR, have a lower spatial
coverage compared to spaceborne sensors, making them ideal for close examination of relatively small
study sites, such as oil spill detection in wetlands. Attributes investigated are summarized in Table 1.
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Table 1. Attributes extracted from screened articles in database for systematic meta-analysis. These
attributes were imported into an excel sheet for further analysis.

# Attribute Description

1 Title –

2 Year –

3 Citation –

4 Publisher Journal name

5 Author(s) –

6 Affiliation –

7 Geographic location Countries

8 Study site size Km2

9 Wetland type Marine, estuarine, lacustrine, riverine, palustrine

10 Sensor Available SAR sensors

11 Platform Spaceborne or airborne

12 Single or multi frequency –

13 Used frequency P, C, L, X bands

14 Polarization Single, dual or quad polarization

15 Incident angle Range of incidence angles

16 Usage Intensity, PolSAR, InSAR

17 Spatial resolution Meters

18 Research objective Wetland mapping, classification, change detection, water level
monitoring, biomass estimation, soil moisture

19 Single or multidate Multitemporal or single date

20 Accuracy Assessment In percent

3. Results

3.1. General Characteristics of Wetland Studies Using SAR Data

Figure 4 illustrates the number of published articles in each year, with the total number of studies
published in each journal shown in the last column. Years without any published papers in these
journals were excluded from this figure. Based on our database, the first wetland SAR article was
published in the IEEE journal in 1993. The greatest number of wetland SAR papers were published in
the Remote Sensing MDPI journal (41 studies), followed by Remote Sensing of Environment (32 studies)
and IEEE (31 studies). As illustrated in Figure 4, the number of published articles in Remote Sensing
MDPI journal has increased since 2013, with a single year publication peak in 2016.

Figure 5 illustrates how wetland studies using SAR data have increased over the last three
decades, with an annual trend that is approximately exponential. This upward trend could be due
to an increased availability of SAR sensors in recent years. An increase in wetland loss could also
be an important factor contributing to the increased in the number of publications. Figure 5 also
demonstrates that there has been a growing interest in using multi frequency data since 2012. Notably,
the reason for decreasing trend in the last bar is that it only covers three years period. Of 172 articles,
35 used multi-frequency datasets. It is reasonable to anticipate this trend will continue due to the
anticipated availability of upcoming multi-frequency SAR sensors.
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Applied Remote Sensing (JARS).

Remote Sens. 2020, 12, x FOR PEER REVIEW 7 of 31 

 

172 articles, 35 used multi-frequency datasets. It is reasonable to anticipate this trend will continue 
due to the anticipated availability of upcoming multi-frequency SAR sensors. 

 
Figure 5. Trend of published articles in the past three decades highlighting the number of studies that 
used single and multi-frequency data. Each bar covers a four-year period with the exception of the 
last bar that includes articles covering only three years. 

We tabulated the number of wetland studies that used SAR for each country to illustrate how 
the studies are distributed globally. The collected geographic locations are based on the case studies 
reported in each study (Figure 6). According to Martinez et al. (2007), wetlands cover approximately 
4% of the global land area [76]. Most large wetlands are being assessed and evaluated globally using 
state-of-the-art remote sensing techniques. The greatest number of articles in any country are based 
on the case studies in the USA (41 studies), which are mostly located in southern Florida (18 studies), 
Louisiana (5 studies), Alaska (4 studies), North Carolina (4 studies) and Minnesota (3 studies). 
Canada is home to 25% of wetlands in the world [77], and we identified thirty-three studies including 
those in Newfoundland (11 studies), Ontario (10 studies), Alberta (4 studies) and Quebec (3 studies). 
Fifteen studies were reported in China, which has 10% of global wetlands and 5.58% of its territorial 
area in wetlands. The Ramsar classification system is predominantly used for wetland classification 
in China [9,19,71,73,78–81]. Eleven studies were conducted in the Amazonian flood plain [76,76,82–
87], which extends over 300,000 km2 and mostly consists of flooded vegetation [76]. As shown in 
Figure 6, wetland studies are generally distributed globally, with exceptions in the Middle East and 
some parts of Africa. 

Figure 5. Trend of published articles in the past three decades highlighting the number of studies that
used single and multi-frequency data. Each bar covers a four-year period with the exception of the last
bar that includes articles covering only three years.

We tabulated the number of wetland studies that used SAR for each country to illustrate how
the studies are distributed globally. The collected geographic locations are based on the case studies
reported in each study (Figure 6). According to Martinez et al. (2007), wetlands cover approximately
4% of the global land area [76]. Most large wetlands are being assessed and evaluated globally using
state-of-the-art remote sensing techniques. The greatest number of articles in any country are based on
the case studies in the USA (41 studies), which are mostly located in southern Florida (18 studies),
Louisiana (5 studies), Alaska (4 studies), North Carolina (4 studies) and Minnesota (3 studies). Canada
is home to 25% of wetlands in the world [77], and we identified thirty-three studies including those in
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Newfoundland (11 studies), Ontario (10 studies), Alberta (4 studies) and Quebec (3 studies). Fifteen
studies were reported in China, which has 10% of global wetlands and 5.58% of its territorial area
in wetlands. The Ramsar classification system is predominantly used for wetland classification in
China [9,19,71,73,78–81]. Eleven studies were conducted in the Amazonian flood plain [76,82–87],
which extends over 300,000 km2 and mostly consists of flooded vegetation [76]. As shown in Figure 6,
wetland studies are generally distributed globally, with exceptions in the Middle East and some parts
of Africa.Remote Sens. 2020, 12, x FOR PEER REVIEW 8 of 31 
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3.2. SAR Specifications and Wetland Monitoring

As outlined earlier, incidence angle and spatial resolution are essential SAR specifications for
wetland studies. Following Wohlfart et al. (2018), in this study, we categorized incidence angle in three
different ranges: steep (<28◦), medium (28–38◦) and shallow (>38◦) [17]. As Figure 7 demonstrates,
medium incidence angles are the most used for wetland monitoring (65 studies), but the number
of studies using shallow (56 studies) and steep (51 studies) incidence angles are only slightly less.
Figure 7 also illustrates the number of studies in each of three spatial resolution groups: high (<4 m),
medium (4–30 m) and low (>30 m). As shown in Figure 7, the largest number of studies used medium
(71 studies) or low (69 studies) resolution data whereas studies using high spatial resolution data
reported least (30 studies).
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Figures 9 and 10 demonstrate that C-band is most frequently used (82 studies) in wetland studies,
potentially due to the availability of a greater number of satellites operating at C-band [55,85,88,89].
Moreover, Figure 9 also shows that of these 82 C-band studies, 32 studies applied RADARSAT-2 and 11
used RADARSAT-1 data. Other C-band studies used Envisat-ASAR (16 studies), ERS-1 and 2 (7 studies)
and Sentinel-1 (5 studies) data. The lower usage of the Sentinel-1 (a and b) data are likely related to
the more recent launch date (2014). L-band is the second most used frequency band, with 39 studies
employing L-band in their analysis, which is approximately half the use of the C-band [90]. Among
the current sensors operating in L-band, ALOS-PALSAR (24 studies) and JESR (6 studies) were the
most applied in wetland studies [56,58,70,91–99]. Data from TerraSAR-X was applied in the 11 X-band
studies. Due to low penetration in vegetation, X-band is used less than other frequency bands [100].
However, due to the 11 day revisit cycle and unprecedented resolution (up to 1 m) of TerraSAR-X it
can be a valuable complementary data [17]. As outlined earlier, the trend of using multi frequency
SAR datasets is spiraling upwards. Among them, a combination of L and C bands (19 studies) is
the most common, as this combination provides a well-balanced compromise of penetration and
unambiguous scattering mechanisms. There were five studies in the literature that combined all three
bands (X + L + C) bands. Two studies used the integration of X and C and three studies used the
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integration of X and L bands. Finally, 11 studies used a combination of different C-band SAR sensors,
such as the integration of RADARSAT-2 and Sentinel-1.
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Figure 11 quantitatively illustrates the different information extracted from SAR data, namely
backscattering intensity [101], interferometric phase (InSAR) and PolSAR information. Intensity (in dB)
is the most common measurement directly acquired from the SAR data. A total of 94 studies (55%) used
intensity for their analysis. One of the applications of using intensity is landcover type identification
using a conventional gray level thresholding [102]. The availability of advanced polarimetric SAR
sensors has also led to growing interest in using polarimetric data for wetland mapping [103]. From all
screened studies, 49 articles used single polarization, of which 31 of them were horizontally transmitted
and horizontally received (HH) polarization and 18 were vertically transmitted and vertically received
(VV) polarization. A total of 42 and 73 articles, utilized dual or quad polarizations, respectively.
By narrowing our focus to 52 studies (30%) that used polarimetric information, our analysis showed
that these studies either used quad—(34 studies) or dual—(18 studies) polarization. Twenty-six InSAR
studies applied these data for wetland water level monitoring. Notably, there were only 3 studies that
used the compact polarimetry configuration.
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We divided applications of SAR wetland mapping into six groups (Figure 12). Most studies were
conducted for wetland mapping (84 studies), water level monitoring (27 studies) or change detection
(25 studies). Wetland mapping includes classification and monitoring of wetlands, where the main
goal is to produce a wetland map [91]. The water-level monitoring studies were mostly conducted
in coastal wetlands, where the InSAR technique was particularly used. In change detection studies,
spatiotemporal changes of wetland dynamics can be monitored using annual or seasonal time–series
analysis. We identified 18 studies that used SAR data for inundation mapping (water extraction) within
wetlands, wherein a threshold on radar backscatter was used to extract water bodies [104]. SAR data
were also found to be useful for biomass estimation of wetlands in 12 studies, indicating the sensitivity
of the SAR signal to vegetation canopy biomass. The smallest focus area were studies that used SAR
data for soil moisture within wetland ecosystems (six studies). In these studies, the dielectric properties
of backscatter and polarimetric information are used to estimate water content [105].
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Figure 12. Number of studies for wetland mapping, change detection, water level monitoring,
inundation mapping (water extraction), biomass and soil moisture application are shown.

We summarized overall accuracy for the 42 articles that reported a classification scheme and
investigated SAR specifications pertaining to the collected overall accuracies. In particular, to examine
how the selection of different frequency bands may impact overall accuracy, the box-and-whisker
plots were used to summarize difference in accuracy across different bands (Figure 13). In the single
frequency studies, X-band had the highest overall accuracy. This may be due to the fact that most
X-band sensors have relatively high spatial resolution. Notably, the highest median in the multi
frequency studies was obtained when three SAR frequencies (i.e., X, C and L-bands) were combined.
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Figure 13. Box-and-whisker plots illustrating the effect of frequency bands on overall accuracy.
Box limits show the 25 and 75 percentiles; whiskers demonstrate the maximum and minimum values
(except for outlier dots in C and L bands); red lines within the boxes indicate the median.

The ability of SAR data collected from different sensors to classify wetland complexes is depicted
using box-and-whisker plots in Figure 14. This figure contains the most frequent SAR sensors used for
classifying wetlands and shows that data collected from Radarsat-2 and ERS have the highest and
lowest variability in overall accuracy, respectively. Notably, the median value of the overall accuracy
for TerraSAR-X/Tandem-X and Sentinel-1 is the highest among all sensors, while the median for the
Envisat-ASAR is the lowest.
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Figure 14. Box-and-whisker plots illustrating the overall accuracy of classification result attained based
on the SAR sensors applied. Articles that used multiple SAR sensors are excluded from this analysis.

Figure 15 highlights the effect of the SAR configuration on wetland classification accuracy.
The median overall accuracy value is slightly higher for multi-frequency SAR data compared to single
frequency, but the differences are not large compared to the range in accuracy values. The median
value of the overall accuracy for wetland classification is higher for multitemporal data compared to
single date datasets. The variable incidence angle grouping shows studies with images acquired with
different views from the same site at approximately the same date. As shown, the median value of
the overall accuracy for variable incidence angle is slightly greater than single incidence angle data,
though the range in values remains similar.
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Figure 15. Box-and-whisker plots illustrating the effect of applying different SAR configurations on
overall accuracy.

In Figure 16, we divided resolution into three categories—high, medium and low—to examine the
correlation between resolution and overall accuracy obtained. This figure shows higher median overall
accuracy for high resolution data compared to the other categories. The range of the medium resolution
data are the greatest while the low-resolution has the least variability in overall accuracy. One reason
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for the high range in the medium resolution is likely the wider availability of medium resolution SAR
datasets, which facilitates researchers developing methods with medium resolution data.
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Figure 16. Comparison of used resolution impact on overall accuracies. High resolution refers to
resolution lower than 4 m. Medium resolution corresponds to resolution between 4 and 30 m, and low
resolution is more than 30 m.

For water level monitoring the unit for accuracy assessment is root mean square in cm and
it is different from classification (OA). For this reason, a separate boxplot was generated for this
application (Figure 17). While some configurations did appear to impact accuracy—i.e., multiple vs.
single frequency and multiple vs. single polarization—the use of multiple incidence angles did not
seem to impact accuracy in water level monitoring. Since InSAR techniques do not use polarimetric
information, the applicability of PolSAR data in this application is limited. Most water-level monitoring
studies applied algorithms based on single polarization datasets, which leads to the observation
noted above that single polarized datasets tend to have more accurate results than the less frequently
applied multiple-polarization studies. Likewise, since there is less need for different penetration
depth in monitoring coastal areas, the developed methods are mostly applied in the single frequency
datasets, so multiple frequency studies are less developed. Based on our collected articles, more
investigation is needed to understand the effect of multiple SAR configurations on accuracy of water
level monitoring studies.Remote Sens. 2020, 12, x FOR PEER REVIEW 15 of 31 
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4. Discussion

4.1. SAR Incidence Angle and Wetland Monitoring

Generally, shallow incident angles produce more signal interaction and less penetration [106].
However, steep incidence angles are preferred to maximize penetration [107]. The complexity of the
relationship between incidence angle and environmental conditions is considered a result of a change
in the backscatter mechanism [102]. For mapping water bodies, a shallow incidence angle will better
distinguish specular backscatter from double-bounce and volume scattering mechanisms. However, for
discriminating between non-flooded and flooded vegetation, steep incidence angles are preferred [95].
This is because the interaction between surface water and tree trunks will be augmented due to the
shorter path of radar signal in the steeper incidence angle. However, shallow incidence angles are more
influenced by interaction with a crown layer [41,108]. For monitoring mangrove forests, Henderson
and Lewis (2008) reported that steep incidence angles are more appropriate. For water level monitoring
using InSAR, steep incidence angles are expected to be more applicable [93,109]. As such, depending
on the selected incidence angle, different surface roughness should be expected. A surface can appear
rough in a steep incidence angle and smooth in a shallow incidence angle. As a result, the smoother
the surface the darker it appears in the SAR image. Dabboor and Brisco (2018) pointed out that there is
a direct link between incidence angle and signal attenuation, with more signal attenuation expected
at shallow incidence angles [102]. Moreover, according to Hess et al. (1990), data with multiple
incidence angles can improve the discrimination of forest structure. In tropical forests where specular
reflectors prevail, multiple incidence angles offer unique information for wetland monitoring [35].
Marti-Cardona et al. (2010) investigated the effect of using multi-incidence angle data for monitoring
flood extent using ASAR/Envisat images at different incidence angles. Their results revealed that
the integration of different incidence angles with a short temporal baseline provided optimum flood
mapping [28].

4.2. SAR Wavelength and Wetland Monitoring

Among L, C and X-bands, L-band with the longest wavelength (23.5 cm) has the deepest penetration
depth, enabling it to detect water beneath flooded trees and penetrate dense vegetation [110,111].
Ott et al. (1990) pointed out that L-band data are more sensitive to plant water content and biomass [112].
Although mapping mangrove forests reported to be challenging [92,113], several studies showed
that L-band enhances the accuracy of mangrove forest mapping [13,56]. In addition, the L-band is
able to improve the saturation point in biomass estimation of vegetation [114]. Saturation causes
different levels of distortion in SAR imagery. Notably, due to the deeper penetration of L-band,
the scatter phase centers are more stable, thus, better coherence is obtained [109]. In the study
conducted in southern Florida, L-band data were used to monitor the water level changes. Despite
the low temporal resolution of the dataset, water levels were monitored over a 4 year period
with cm level accuracy [93]. Additionally, although C-band has shorter wavelength (5.66 cm) and
less penetration, numerous studies have demonstrated an increase in backscatter in cases of flooded
vegetation [41,111,115], C-band RADARSAT-2 data have proven to be highly sensitive to plant structural
parameters [38,39,49,91,108,116–118]. In particular, in wetlands where the density of herbaceous
vegetation is low, vertically polarized C-band data achieved good classification accuracy [119]. Notably,
although C-band is less coherent for monitoring water level, it is less impacted by ionospheric effects
and atmospheric artifacts [37]. Brisco et al. (2015) noted that C-band interferometric coherence was
better preserved for images with high spatial resolution and small incidence angle [39]. X-band has
some limitation that has restricted its application. To elaborate, X-band imagery cannot always reach
the water surface in the case of salt marshes or flooded vegetation [120]. This is because X-band often
interacts with the highest part of the vegetation canopy, which is more affected by wind, resulting in
less coherent interferograms.
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The integration of different SAR frequency bands is expected to enhance the accuracy of land
cover classification [91]. According to Figure 10 the combination of L- and C-band had the largest
number of studies [33,95,121]. Plank et al. (2017) fused C- and L-band data for mapping flooded
vegetation [95]. Based on their study, C-band turned out to be better suited for mapping open water
areas, while L-band provided more detailed information on flooded vegetation. In another study,
Kim et al. (2009), integrated C- and L-band data to retrieve the absolute water level in Louisiana,
USA. They integrated InSAR with Envisat altimeter data and validated the result with in situ gauge
observation [37]. Mohammadimanesh et al. (2018) also combined L-, C- and X-bands for statistical
analysis of SAR intensity and coherence variation in Newfoundland, Canada. They showed that
temporal baseline is the most influential factor in maintaining coherence. Moreover, the X-band data
had higher coherence than C-band in interferometric pairs with smaller temporal baselines [122].

4.3. SAR Polarization and Wetland Monitoring

HH polarized imagery is less attenuated by the vertical structure of wetland compared to VV
polarized imagery. Due to the sensitivity of HH polarization to double-bounce scattering, it is
more applicable for forested wetlands. Brisco et al. (2009) found that HH polarization generally
yields the highest contrast between upland and open water [116]. One of the drawback of the VV
polarization is that it may not reach the water surface beneath the vegetation cover because of its
vertical orientation [123,124]. According to Zhang et al. (2016), VV polarization highlights water
surface roughness effects through the interaction of the capillary waves which makes it less favorable
for wetlands studies [119]. However, the full analytical power of SAR imagery is not achievable without
full-polarimetric SAR images [28,45,50,95,125,126]. Full polarimetric SAR data maintains the phase and
enables the detection of different backscattering mechanisms. Decompositions of full polarimetric SAR
imagery divide the backscattered signal into different backscattering mechanisms. The main objective of
polarimetric decomposition is to assign a physical scattering mechanism to each component. Generally,
there are two types of decomposition: coherent and incoherent. The former is based on coherent
decomposition of scattering matrix. Since this type of decomposition is vulnerable to high speckle noise,
it is infrequently applied in wetlands. Incoherent decomposition is more applicable for distributed
targets, such as vegetation in wetlands. There are several incoherent decompositions reported in
the literature with freeman–Durden [127], Claude-Pottier [51], Yamaguchi [50] and Touzi [128,129],
among the more frequently used. In these decompositions, the SAR data are classified in three
classes: surface or Bragg scattering that corresponds to the water or bare surfaces; double bounce that
corresponds to the tree trunk and adjacent water; and volume scattering that corresponds to dense
vegetation such as swamp in wetlands [122]. In a study by Mahdianpari et al. (2017) Cloude–Pottier,
Freeman–Durden and Yamaguchi decompositions were applied to RADARSAT-2 data. The extracted
features from these decompositions were imported to a three-level object-based random forest classifier.
Their results demonstrated that polarimetric features can significantly enhance the overall accuracy of
the classification [96].

4.4. SAR and Wetland Monitoring Applications

Most of the wetland studies used SAR to classify and map wetlands [130]. Classification algorithms
are generally divided into two groups: unsupervised and supervised. ISODATA and K-means [131]
are examples of unsupervised classification methods, while maximum likelihood classification [44,110],
support vector machine [132] and object-based random forest [45,52,96,122,133–135] are supervised
techniques. Unsupervised classification techniques are mostly used for classification of land cover
types using optical imagery [131,136,137]. In wetland studies, supervised classification techniques are
preferred given the high similarity between different wetland’s classes. The availability of machine
learning techniques has enabled analyzing of large-volume earth observation data [138,139]. One of the
advantages of machine learning classifiers is that input data are not limited to a normal distribution [140].
SVM does use a large number of parameters and the appropriate selection of these parameters makes
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SVM more challenging to implement [140]. RF, on the other hand, has less parameters to be set
which makes it more practical. Another advantage of RF is that it is insensitive to noise [96,133].
Deep learning techniques, such as convolutional neural network (CNN) are another example of
supervised classification technique. This technique has the advantage of versatility and adaptability;
deep learning classifiers can use the spectral and spatial information taken directly from an image
as training [141,142]. Furthermore, due to increasing trend in loosing wetlands adopting different
techniques to detect and interpret changes in wetland’s dynamic ecosystems is essential [143–146].
Changes in wetlands alter the surface being illuminated by the SAR signal and consequently change the
image intensity or backscattering mechanism. The final outcome of intensity based change detection
technique is calculated by differencing before and after phenomena image pixels [147]. As mentioned,
a change in the backscattering mechanism can be considered as an indicator of change in the surface
type. As a case in point, when a wet soil turns into an open water body the backscattering mechanism
changes from surface scattering to specular scattering [30]. If the wetland surface is more complex,
polarimetric features can be used as an input to object-based classification [8,111].

Hydrological dynamics refers to all the changes related to water level, soil moisture and above
ground biomass [148]. Lang et al. (2008) used C-band single polarization to investigate the monitoring
levels of inundation and soil moisture in the mid-Atlantic floodplain region. They concluded VV
polarization data are better to use in the leaf-off season and HH is more efficient for forested hydrological
application [41]. Eco-hydrology of inland wetlands in Africa was investigated using L-band SAR data
by Rebelo et al. (2010). They used principal component analysis and decision tree classifier to monitor
the temporal changes of hydrological dynamics. Their results provided some insight on the use of
the high temporal resolution L-band SAR data for monitoring dynamic hydrologic of wetlands [27].
Notably, although wetland InSAR techniques are not limited to water level monitoring, these techniques
are mostly used for this purpose in wetlands studies [149,150]. InSAR is able to measure water level
changes at the cm level [69,109,151,152]. Hong et al. (2010) used L-band SAR data in the Amazon Basin
for water level monitoring [68]. According to this study, due to the incoherent nature of water bodies
the phase coherency cannot be retrieved using interferometric techniques. However, phase coherency is
relatively higher in the inundated shrubs and flooded vegetation due to double bounce scattering [153].
One of the factors that affects the accuracy in water level monitoring is wavelength [37]. Using L-band
SAR data, 3–5 cm accuracy is attainable [93,151]; however, the accuracy with C-band SAR data are
about 6–7 cm. Although InSAR techniques are proven for water level monitoring, independent sources
of auxiliary data are required to validate the InSAR results [151]. RADAR altimetry data are a good
alternative for ground-based water level gauges as auxiliary data [151,154,155]. However, altimetry
data are not always synchronized with the InSAR observations [156].

Biomass estimation can be considered as an excellent indicator of methane emission, biodiversity
and Carbone stock [157,158]. Liao et al. (2013) estimated the biomass of the Poyang Lake using a
neural network technique. They tested the ability of radiative transfer and Michigan Microwave
Canopy Scattering model for estimating biomass [73]. In another study, mangrove biomass was
estimated using a regression model and genetic algorithm [71]. Le et al. (2007) found that the
side-looking geometry and high spatial resolution of RADARSAT-2 led to more accurate mangrove
biomass estimation [71]. In another study, Lee et al. (2015) applied the combination of polarimetric
and interferometric (PolInSAR) techniques to estimate mangrove canopy height using TanDEM-X
data [72]. The inversion results in their study were validated against airborne LiDAR measurements.
Different forms of radiative transfer models were developed to investigate sparse vegetation structure
and canopy composition [159]. These models are initially designed to analyze the SAR backscatter
sensitivity of the tree canopy composition and investigate the temporal variability of backscatter. In the
study of Dobson et al. (1995) changes in the backscattering coefficients in forests were introduced as a
function of structural properties of the canopy [160]. Townsend et al. (2002) used ERS-1, JERS and
RADARSAT for estimating biophysical characteristics of wetlands. They demonstrated that forest
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structure can be more accurately estimated in flooded areas due to less variability of the underlying
surface [121].

Soil moisture estimation is another application of SAR imagery for monitoring wetlands [161].
Water content of a target can be retrieved using SAR data due to the sensitivity of the SAR signal
to dielectric properties of the target. There are three common inversion techniques for soil moisture
estimation in wetland complexes: empirical, semi-empirical and physically based models [125,161].
Millard et al. (2018) developed an empirical model to estimate soil moisture in a peatland [125].
They used C-band SAR imagery along with LiDAR derived vegetation density. The LiDAR vegetation
density explained the high degree of variance in the SAR data. According to Baghdadi et al. (2010, 2012),
X-band data were better able to retrieve soil moisture than C-band in bare vegetated area [162,163].
Dabrowska-Zielinska et al. (2016) developed models for soil moisture assessment under different
vegetation types with VH polarization of Sentinel-1 data [164]. Notably, SAR sensors also demonstrate
potential for surface inundation mapping in different studies [34,165–168].

4.5. SAR Sensors and Wetland Monitoring

Figure 10 shows that TerraSAR-X can be consider as a useful tool for wetland monitoring [44,69,106].
The critical value of TerraSAR-X comes from the fact that this sensor is highly sensitive to soil moisture
and surface roughness. In particular, it is more applicable for monitoring sparse marshes and bare
vegetation [120]. Quad polarization data from this sensor has only recently been released and thus
there has not been an opportunity to see this reported in previous research. Additionally, the high
temporal (5 days revisit-cycle) and spatial resolution (10-m) of C-band Sentinel-1 data from the
Copernicus mission (European Space Agency 2014) make it suitable for frequent monitoring of
wetlands [24,95,133,164,169–174]. DeLancey et al. (2018) used multitemporal Sentinel-1 for surface
inundation mapping and found that Sentinel-1 is an ideal sensor for tracking fluctuations in Alberta
waterbody extent [170]. Moreover, the new compact polarization transmits a circularly polarized wave
and receives on linear horizontal and vertical planes. The Canadian RADARSAT Constellation Mission
(RCM) is equipped with this configuration [46]. Compared to the RADARSAT-2, compact polarimetric
RCM data have a wider coverage, which decreases the revisit time (4 days) [175]. Both RADARSAT-2
and RCM offer a wide range of beam modes, which make them suitable for wetland monitoring [45].
In the study implemented by Mahdianpari et al. (2017) different polarization modes from RADARSAT-2
and simulated RCM were compared to assess their ability for wetland classification. Their results
revealed that full polarimetric SAR data provided better classification accuracy than dual and compact
polarimetry [45].

The recent partnership of National Aeronautics and Space Administration (NASA) and Indian
Space Research Organization (ISRO) has led to the development of a multi-frequency SAR satellite
called NISAR [176–180]. Operating in both L-band (NASA) and S-band (ISRO), NISAR is expected to
provide information for biomass estimation. The L-band sensor with low temporal decorrelation and
foliage penetration is an ideal tool for dense vegetation monitoring in wetlands, while the S-band is
appropriate for sparse vegetation monitoring such as young salt marshes. The revisit-time for this
satellite is 12 days; however, by considering both ascending and descending orbits the revisit-time
reduces to six days.

5. Conclusions

The careful review of 172 indexed research papers published in the last three decades shows
the upward trend of wetland mapping using SAR techniques. This meta-analysis gathered the most
recent studies in wetland mapping to provide a statistical analysis of recent trends in SAR wetland
monitoring. The unique capability and availability of SAR sensors combined with exploitation of
advanced techniques, such as signal processing, advanced the monitoring of wetlands. Based on
our founding, USA, Canada and China are countries with the largest number wetland monitoring
studies using SAR data. In terms of wavelength, most studies have used C-band SAR imagery. Within
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multi-frequency studies, the combination of L- and C-band is most frequently applied, though fusion
of all three bands provides the highest accuracy. From wetland’s application perspective, most of
studies have focused on wetland mapping using SAR imagery. This can be due to the fact that SAR
has promising capability for distinguishing different wetland types.

In the current era with the present of free and open-access SAR imagery, the number of wetlands
studies has consistently increased. Our findings document a big jump in the number of studies between
2012 and 2013, which corresponds to both the availability of SAR datasets as well as the high demand
for wetland evaluation. Additionally, the future availability of SAR imageries, such as multi-frequency
NISAR and RCM data, would further increase the number of wetlands studies using SAR imagery.
Recently, the trend of applying multitemporal, multi-frequency and multi-incidence angle SAR imagery
illustrate a higher overall accuracy in classification compared to single channel configurations.

In near future, an increasing trend in using cloud computing platforms, such as Google Earth
Engine, NASA Earth Exchange and Amazon’s Web Services, is anticipated for monitoring wetlands
at a larger scale. These cloud computing platforms would facilitate analyzing and manipulating
tremendous volume of earth observation data in national and regional scales. Machine-learning and
deep learning techniques have already settled in wetland monitoring studies and may continue to
be more present in the near future given their ability for analyzing diverse and high-dimensional
SAR imagery.
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