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Abstract: Global gridded precipitations have been extensively considered as the input of hydrological
models for runoff simulations around the world. However, the limitations of hydrologic models and
the inaccuracies of the precipitation datasets could result in large uncertainty in hydrological forecasts
and water resource estimations. Therefore, it is of great importance to investigate the hydrological
value of a weighted combination of hydrological models driven by different precipitation datasets.
In addition, due to the diversities of combination members and climate conditions, hydrological
simulation for watersheds under different climate conditions may show various sensitivities to the
weighted combinations. This study undertakes a comprehensive analysis of various multimodel
averaging methods and schemes (i.e., the combination of the members in averaging) to identify the
most skillful and reliable multimodel averaging application. To achieve this, four hydrological models
driven by six precipitation datasets were used as averaging members. The behaviors of 9 averaging
methods and 11 averaging schemes in hydrological simulations were tested over 2277 watersheds
distributed in different climate regions in the world. The results show the following: (1) The
multi-input averaging schemes (i.e., members consist of one model driven by multiple precipitation
datasets) generally perform better than the multimodel averaging schemes (i.e., members consist of
multiple models driven by the same precipitation dataset) for each averaging method; (2) The use of
multiple members can improve the averaging performances. Six averaging members are found to be
necessary and advisable, since using more than six members only imrpoves the estimation results
slightly, as compared with using all 24 members; (3) The advantage of using averaging methods for
hydrological modeling is region dependent. The averaging methods, in general, produced the best
results in the warm temperate region, followed by the snow and equatorial regions, while a large
difference among various averaging methods is found in arid and arctic regions. This is mainly due to
the different averaging methods being affected to a different extent by the poorly performed members
in the arid and arctic regions; (4) the multimodel superensemble method (MMSE) is recommended
for its robust and outstanding performance among various climatic regions.

Keywords: multimodel averaging methods; precipitation datasets; hydrological models; global;
climate regions

1. Introduction

The intelligent management of water resources plays a critical role in promoting
social and economic development, which needs to be established on the basis of a full
understanding of the spatial and temporal distribution of water resources [1,2]. Hydro-
logical models are useful tools to provide hydrological information for water resource
management [3]. In the past few decades, numerous hydrological models, from lumped
empirical to fully distributed physically based models, have been developed [4]. However,
the best-performed models were not consistent under different basin characteristics and
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various climatologies [5,6]. Multimodel averaging methods, defined as using the outputs
from multiple models to obtain one output, are proved to be more efficient in hydrological
modeling than their individual members, by numerous studies [7–9]. Since the early paper
of Cavadias and Morin [10] introduced the concept of weighted averaging for streamflow
simulation, various multimodel averaging approaches have been proposed to find the
optimal weights for each member, to minimize the error between the combined and the
observed streamflow time series [7,11].

Numerous studies have been conducted to compare various averaging methods in
different regions [5,7,12–14]. For example, Diks and Vrugt [5] compared seven averag-
ing methods by using eight conceptual watershed models, and found that the Granger–
Ramanathan averaging (GRA) method is superior to other methods. Arsenault et al. [7]
compared 9 averaging methods over 429 catchments in the United States, and concluded
that the Granger–Ramanathan averaging (GRA, GRB, GRC) methods perform better than
any individual member. These studies contributed much to the research in multimodel
averaging. However, most of them used a limited number of catchments for a specific
region, which did not consider the merits and shortcomings of different averaging methods
from a global perspective. Furthermore, the effect on the performance of different averaging
methods, caused by various climate conditions and basin attributes, also cannot be revealed.

In addition, with the development of multimodel averaging, many attempts have
been made to find the best average scheme. For example, Clark et al. [15] concluded
that the outputs from one model, calibrated with different objective functions, could be
considered as different models and be used to improve the performance of averaging
methods. Arsenault et al. [8] found that promising model averaging results could be
achieved by using the outputs from one model, driven by different climate datasets. In
recent years, precipitation has been considered as one of the major sources of uncertainty
in water resource estimates and may significantly impact the performance of hydrological
models in runoff simulations [16–22]. Gauged observations are usually considered as
the most accurate estimation for precipitation. However, there are plenty of places with
sparsely distributed rain gauges that lack accurate precipitation data for hydrological
modeling [23–25]. Therefore, various global-scale gridded precipitation datasets have
been developed in the past few decades, to provide precipitation with high temporal and
spatial resolution across the world, especially for the ungauged regions [26–31]. However,
compared to the real historic precipitation, the gridded precipitation datasets suffered
from errors [32–34]. Therefore, compared to the use of a single precipitation dataset, the
use of hydrological model outputs, driven by various precipitation datasets as ensemble
members, can add the diversity of ensembles and may create a more precise combination
for data-sparse regions [8,35,36].

Hydrological model outputs driven by various precipitation datasets are commonly
used for uncertainty analysis or climate change impacts in previous studies [3,35,37].
There is limited research on the application of multi-input averaging in the hydrological
continuous streamflow simulation [8]. Najafi and Moradkhani [36] used the Bayesian model
averaging (BMA) method to estimate runoff extremes, using a single hydrologic model and
multiple regional climate model outputs as forcing data, and concluded that the merged
signal generally outperforms the best individual signal. Arsenault et al. [8] compared the
performance of multimodel and multi-input over the continental United States by using the
Granger–Ramanathan C (GRC) method. They found that multi-input averaging provides
higher skill than multimodel averaging. Sun et al. [35] used the BMA method to merge
streamflows from three global precipitation datasets. They concluded that the hydrologic
ensemble using multiple global precipitation products can provide a promising streamflow
prediction. However, only one averaging method has been used in the above studies, and
whether the improvement in the hydrological runoff simulation of multi-input averaging
is independent of averaging methods was not considered. In addition, the number of
members used in the multi-input averaging and multimodel averaging was not consistent,
which may affect the performance of the averaging methods [8,35].
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Accordingly, the first objective of this study is to evaluate and compare the perfor-
mance of different averaging schemes, i.e., multimodel, multi-input and multi-input model
(i.e., members consist of multiple models driven by multiple precipitation datasets). The
second objective is to quantify the performances of various averaging methods under
different climate regions, to find the optimal averaging methods for global hydrological
streamflow simulation. Specifically, four hydrological models, driven by six gridded pre-
cipitation datasets (24 combination members) and nine averaging methods, were used
to evaluate the performance of different averaging schemes. In addition, the impact of
climate conditions on the performance of the averaging methods is investigated by us-
ing 2277 watersheds distributed in different climate regions. The large sample size will
allow a better understanding of the usage of averaging methods, and thus improving the
performance of hydrological runoff simulations, especially for data-sparse regions.

2. Materials and Methods
2.1. Meteorological Data

Various precipitation datasets have been developed in the past few decades. However,
some datasets are limited in spatial and temporal coverages. Given the necessity for
precipitation data with high resolution, long time period (more than 30 years) and at the
global scale, 6 most commonly used gridded precipitation datasets (Table 1) were selected
in this study for runoff simulation. The Climate Precipitation Center dataset (CPC) was
used [38], which is constructed from global station data and is available from 1979 to
present. The Global Precipitation Climatology Center dataset (GPCC) [27] is constructed
from global station data and is available from 1981 to 2016. The multi-source weighted-
ensemble precipitation V1 (MSWEP) [33] was used, which is based on weighted averaging
of several satellites, gauge, and reanalysis products and includes several corrections to
improve data quality. This product is available from 1979 to present. The Japanese 55 year
ReAnalysis (JRA55) [39] was generated by the Japan Meteorological Agency (JMA) for the
period from 1958 to present. The European Centre for Medium-Range Weather Forecast
Reanalysis 5 (ERA5) is a reanalysis product and available from 1979 to present. In addition,
WATCH forcing data methodology was applied to ERA-Interim dataset (WFDEI) [28],
which is available from 1979 to 2016. Thus, these datasets were classified as gauged
observation (i.e., CPC and GPCC), satellite-gauge reanalysis (i.e., MSWEP) and reanalysis
(i.e., JRA55, ERA5 and WFDEI).

Table 1. Overview of six precipitation datasets.

Dataset Data Source Spatial Resolution Period

CPC Gauged-based 0.25◦ × 0.25◦ 1979–present
GPCC Gauged-based 0.5◦ × 0.5◦ 1981–2016

MSWEP Satellite-gauge reanalysis 0.25◦ × 0.25◦ 1979–present
JRA55 Reanalysis 1.25◦ × 1.25◦ 1958–present
ERA5 Reanalysis 0.5◦ × 0.5◦ 1979–present

WFDEI Reanalysis 0.5◦ × 0.5◦ 1979–2016

Except for the precipitation datasets, the 0.25◦ global land evaporation Amsterdam
model (GLEAM v3) potential evaporation dataset (1980–2015) was also used for running
hydrological models. The potential evaporation of GLEAM v3 is calculated by using the
Priestley and Taylor equation [40]. Those datasets with spatial resolutions < 0.5◦ were
resampled to 0.5◦ using bilinear averaging. The dataset with spatial resolutions > 0.5◦ was
interpolated to 0.5◦ using the inverse distance weighting method.

2.2. Observed Streamflow Data

The observed daily streamflow data of 2277 watersheds used in this study originate
from the Global Runoff Data Centre (GRDC; http://www.bafg.de/GRDC/ (accessed on
28 June 2021)), the Canadian model parameter experiment (CANOPEX) [41] database

http://www.bafg.de/GRDC/
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and some watersheds of China. The size of those watersheds ranges from 2500 km2 to
50,000 km2. The streamflow dataset covers the 1982–2015 period, but some of these years
are incomplete. All available data were used for each of the watersheds. Figure 1 shows
the distribution of these watersheds.

Remote Sens. 2021, 13, x FOR PEER REVIEW 4 of 23 
 

 

2.2. Observed Streamflow Data 
The observed daily streamflow data of 2277 watersheds used in this study originate 

from the Global Runoff Data Centre (GRDC; http://www.bafg.de/GRDC/, accessed on 28 
June 2021), the Canadian model parameter experiment (CANOPEX) [41] database and 
some watersheds of China. The size of those watersheds ranges from 2500 km2 to 50,000 
km2. The streamflow dataset covers the 1982–2015 period, but some of these years are 
incomplete. All available data were used for each of the watersheds. Figure 1 shows the 
distribution of these watersheds. 

 
Figure 1. Köppen–Geiger climate classification of the watersheds used in this study. Each point 
represents the outlet of the watershed. 

2.3. Hydrological Models 
Four conceptual hydrological models were used to simulate runoff at daily time steps 

in the present study, as follows: the Génie Rural à 4 paramètres Journalier model (GR4J) 
[42], the simple lumped conceptual daily rainfall–runoff model (SIMHYD) [43,44], the 
Xinanjiang model (XAJ) [45,46] and the hydrological model of École de technologie supé-
rieure model (HMETS) [3,47]. These hydrological models were chosen because of the 
proven effectiveness around the world [37,48,49]. The model structures of these hydro-
logical models differ from each other and the number of the model parameters varies from 
6 to 21. Table 2 summarizes the most important information of those 4 hydrological mod-
els, e.g., hydrological components, and the number of calibration parameters. 

For each watershed, the record of observed streamflow data was split into calibration 
and validation periods. The first 70% of the record was used for model calibration and the 
remaining 30% of the record was used for validation. The shuffled complex evolution 
method optimization algorithm (SCE-UA) [50,51] was used to optimize the hydrological 
model parameters with the use of the Kling–Gupta efficiency (KGE) [52] as an objective 
function for calibration. In addition, the 4 conceptual models were calibrated against the 
observed daily streamflow using each daily precipitation time series as an input. There-
fore, there were a total of 54,648 model calibrations (2277 watersheds ×4 hydrological 
models ×6 precipitation datasets). 

  

Figure 1. Köppen–Geiger climate classification of the watersheds used in this study. Each point represents the outlet of the watershed.

2.3. Hydrological Models

Four conceptual hydrological models were used to simulate runoff at daily time
steps in the present study, as follows: the Génie Rural à 4 paramètres Journalier model
(GR4J) [42], the simple lumped conceptual daily rainfall–runoff model (SIMHYD) [43,44],
the Xinanjiang model (XAJ) [45,46] and the hydrological model of École de technologie
supérieure model (HMETS) [3,47]. These hydrological models were chosen because of the
proven effectiveness around the world [37,48,49]. The model structures of these hydrologi-
cal models differ from each other and the number of the model parameters varies from 6 to
21. Table 2 summarizes the most important information of those 4 hydrological models,
e.g., hydrological components, and the number of calibration parameters.

Table 2. Overview of the four hydrological models.

Model Snow Module Calibration Parameters Characteristics of the Model

GR4J CemaNeige 6
A nonlinear production reservoir with

two-unit hydrographs
A routing reservoir

SIMHYD CemaNeige 11

Precipitation loss calculation
Surface runoff calculation

Two linear reservoirs for the calculation of interflow and
base flow

XAJ CemaNeige 17

Three-layer evapotranspiration system
Linear reservoirs for surface flow routing

Two recession coefficients for interflow and groundwater
flow routing

HMETS HMETS 21

Generation of surface runoff and delayed runoff after
evapotranspiration and infiltration

Generation of hypodermic flow and groundwater flow
with two reservoirs
A routing module
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For each watershed, the record of observed streamflow data was split into calibration
and validation periods. The first 70% of the record was used for model calibration and
the remaining 30% of the record was used for validation. The shuffled complex evolution
method optimization algorithm (SCE-UA) [50,51] was used to optimize the hydrological
model parameters with the use of the Kling–Gupta efficiency (KGE) [52] as an objective
function for calibration. In addition, the 4 conceptual models were calibrated against the
observed daily streamflow using each daily precipitation time series as an input. Therefore,
there were a total of 54,648 model calibrations (2277 watersheds ×4 hydrological models
×6 precipitation datasets).

2.4. Multimodel Averaging Methods

Nine most commonly used averaging methods were used in this study. They include
equal weights averaging (EWA), Bates and Granger averaging (BGA), akaike informa-
tion criterion averaging (AICA), Bayes information criterion averaging (BICA), Granger–
Ramanathan average variant A, B and C (GRA, GRB and GRC), Bayesian model averaging
(BMA) and multimodel superensemble (MMSE). These methods are chosen because of
the great performance in averaging members [7,9,35,53]. The 9 methods are practical and
have different mechanisms in terms of calculating the weight of each member [7,35,53–56].
A summary of these methods is shown in Table 3.

Table 3. Summary of the model averaging methods used in this study.

Name Method Description Citation Sums to Unity Negative Weights
Possible Bias Correction

EWA Equal weighted – Yes No No

BGA Minimizing the root mean
square error Bates and Granger [57] Yes No No

AICA

Mean of the logarithm of the
member variances added a

penalty equalling to double the
number of calibrated parameters

Akaike [58] Yes No No

BICA

Mean of the logarithm of the
member variances added a

penalty equalling to the number
of calibrated parameters times the

logarithm of the number of
time steps

Schwarz [56] Yes No No

GRA Based on the ordinary least
squares (OLS) algorithm

Granger and
Ramanathan [59]

No Yes No

GRB Based on the OLS algorithm and
constrained the weights Yes Yes No

GRC Based on the OLS algorithm and
bias-corrected the results No Yes Yes

BMA Based on the members’
probability distribution functions Neuman [60] Yes No Yes

MMSE

Based on the OLS algorithm and
using the logic of bias reduction

with respect to individual
member models along with

variance reduction in simulation

Vapnik [61],
Sivapragasam et al. [62] No Yes Yes

2.5. Multimodel Averaging Schemes

Four hydrological models were driven by 6 precipitation datasets for each watershed,
thereby generating 24 hydrological simulations for both calibration and validation periods.
The descriptions of different schemes are shown in Table 4 (a total of 11 schemes). Then,
the 9 averaging methods were used to generate the weights based on the simulated daily
hydrographs of each scheme and observed counterpart for the calibration period. Based
on the weights calculated in the calibration period, different members were weighted to
generate a single hydrograph for the validation period.
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Table 4. Summary of the model averaging schemes used in this study.

Name Schemes Members Declaration

Multi-input

GR4J-COMBINE GR4J-CPC, GR4J-GPCC, GR4J-MSWEP,
GR4J-JRA55, GR4J-ERA5, GR4J-WFDEI

Each scheme runs 15 times
based on the combination of 4

out of 6 available members

SIMHYD-COMBINE
SIMHYD-CPC, SIMHYD-GPCC,

SIMHYD-MSWEP, SIMHYD-JRA55,
SIMHYD-ERA5, SIMHYD-WFDEI

XAJ-COMBINE XAJ-CPC, XAJ-GPCC, XAJ-MSWEP,
XAJ-JRA55, XAJ-ERA5, XAJ-WFDEI

HMETS-COMBINE
HMETS-CPC, HMETS-GPCC,

HMETS-MSWEP, HMETS-JRA55,
HMETS-ERA5, HMETS-WFDEI

Multimodel

CPC-COMBINE GR4J-CPC, SIMHYD-CPC, XAJ-CPC,
HMETS-CPC

GPCC-COMBINE GR4J-GPCC, SIMHYD-GPCC, XAJ-GPCC,
HMETS-GPCC

MSWEP-COMBINE GR4J-MSWEP, SIMHYD-MSWEP,
XAJ-MSWEP, HMETS-MSWEP

JRA55-COMBINE GR4J-JRA55, SIMHYD-JRA55, XAJ-JRA55,
HMETS-JRA55

ERA5-COMBINE GR4J-ERA5, SIMHYD-ERA5, XAJ-ERA5,
HMETS-ERA5

WFDEI-COMBINE GR4J-WFDEI, SIMHYD-WFDEI,
XAJ-WFDEI, HMETS-WFDEI

Multi-input model ALL All 24 members

In total, there are 4 members for multimodel schemes and 6 members for multi-input
schemes. To reduce the effects of the different number of ensemble members between
multi-input and multimodel schemes, each of the multi-input schemes runs 15 times based
on the combination of 4 out of 6 available members for each watershed (Table 4). The
average of the 15 combinations represents the final result of the multi-input schemes.

2.6. Statistical Analysis Methods

To evaluate the performance of averaging methods in representing watershed runoff,
three statistical indices are utilized, i.e., KGE, Nash–Sutcliffe efficiency (NSE) and accuracy
of volume estimates (AVE) [63]. These evaluation criteria were selected for their efficiency
to obtain reliable parameter estimation with reasonable performance regarding different
parts of the hydrograph [4]. The value of these indices ranges from −∞ to 1, with index
value = 1 indicating a perfect fit between the observed and simulated series. The KGE, NSE
and AVE are defined as follows:

KGE = 1−

√√√√(R− 1)2 +

(
Qsim

Qobs
− 1

)2

+

(
CVsim

CVobs
− 1
)2

(1)

NSE = 1− ∑(Qsim −Qobs)
2

∑
(
Qobs −Qobs

)2 (2)

AVE = 1−VE = 1− |∑(Qobs −Qsim)|
∑(Qobs)

(3)

where Qobs is the observed runoff and Qsim is the simulated runoff. Qobs is the mean
observed runoff and Qsim is the mean simulated runoff. R is the Pearson correlation
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between observed and simulated runoff. CVsim represents the standard deviation of
observed and CVobs represents the standard deviation of simulated discharges.

3. Results
3.1. Performance of Ensemble Members

Figure 2 shows the box plot of the KGE, NSE and AVE values of the hydrological
models driven by six precipitation datasets. In the calibration period, the models driven by
MSWEP outperform others, and the models driven by JRA55 and CPC perform worse than
other precipitation datasets. The performances of ERA5, GPCC and WFDEI are similar,
at a median level. Similar results are also observed for the validation period. As for the
hydrological models, SIMHYD ranks first, in terms of its good and stable performance in
terms of the evaluation criteria for all precipitation datasets. The performances of XAJ and
GR4J are similar, at a median level, followed by HMETS.
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Table 5 shows the median KGE values of the hydrological models driven by different
precipitation datasets over 2277 watersheds. The median KGE values range from 0.672
to 0.833 among 24 members in the calibration period, and 0.506 to 0.703 in the validation
period. This means that the performance differences of these 24 members are large in
both the calibration (median KGE of 0.16) and validation periods (median KGE of 0.20).
More specifically, a given model driven by different precipitation datasets performs quite
differently, with SIMHYD-MSWEP having a median KGE that is approximately 0.12 greater
than that of SIMHYD-JRA55. However, the variability due to the hydrological models is
much lower for a given precipitation, with SIMHYD-ERA5 having a median KGE that is
approximately 0.06 greater than that of GR4J-ERA5. This indicates that the impact of the
predictive skill of streamflow from the usage of different precipitations is larger than that
from the usage of different hydrological models in this study.
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Table 5. Median KGE values of hydrological models driven by different precipitation datasets over
2277 watersheds.

Calibration GR4J SIMHYD XAJ HMETS Difference 3

CPC 0.727 0.738 0.743 0.748 0.021
GPCC 0.748 0.774 0.766 0.750 0.026

MSWEP 0.804 0.833 0.816 0.804 0.029
JRA55 0.672 0.714 0.680 0.659 0.054
ERA5 0.727 0.782 0.741 0.750 0.055

WFDEI 0.735 0.777 0.758 0.759 0.042
Difference 1 0.132 0.119 0.136 0.145

Validation GR4J SIMHYD XAJ HMETS Difference 4

CPC 0.506 0.541 0.544 0.533 0.037
GPCC 0.632 0.644 0.641 0.617 0.027

MSWEP 0.679 0.703 0.679 0.661 0.042
JRA55 0.559 0.590 0.570 0.535 0.055
ERA5 0.635 0.680 0.640 0.619 0.060

WFDEI 0.597 0.617 0.608 0.597 0.020
Difference 2 0.173 0.162 0.135 0.128

To further evaluate the effectiveness of the 24 members, in terms of climate regions,
Figure 3 summarizes the median KGE, NSE and AVE values for 2277 watersheds, in terms
of the five Köppen–Geiger climate types. Generally, hydrological models perform much
worse in arid climate regions than in the other four climate types, for all precipitation
datasets. The complicated hydrological behavior (extreme floods and droughts) and
the high hydroclimatic variability cause some challenges in hydrological modeling for
this region [64–66]. In addition, compared to other climate regions, the differences in
performance among the 24 members are larger in the arctic region. In general, the MSWEP
outperforms other precipitation datasets in all climate types. The performance of the
MSWEP in different climate types is relatively stable (except for arid regions). JRA55
performs worse than other precipitation datasets in equatorial, arid and warm-temperate
regions. However, in the other two climate types, the performance of JRA55 is comparable
to that of the other five precipitation datasets. In general, SIMHYD driven by MSWEP
(SIMHYD-MSWEP) shows the best performance in most regions (except for the arctic
region), and XAJ driven by MSWEP (XAJ-MSWEP) shows the best performance in the
arctic region.

3.2. Performance of Multimodel Averaging Schemes

The observed streamflow values in the calibration period and the streamflow series
from different averaging schemes (Table 4) for the same period were used to calculate the
optimal weights for each method. The optimized weights were then used in the validation
period, to calculate the averaged flows. Figure 4 shows the KGE values of each scheme and
the best individual member (SIMHYD-MSWEP) in the validation period (if not specified,
the period in the following figures represents the validation period). The NSE and AVE
values are shown in Figure A1.

The following results can be observed: (1) The best- and worst-performing averaging
schemes are consistent among the averaging methods and evaluation criteria. For example,
in terms of KGE, NSE, and AVE, the best- and worst-performing schemes for all of the
methods are ALL and CPC-COMBINE, respectively. (2) The differences in performance
among the schemes are various for different methods. For example, the performance
difference of AICA is larger than the other methods. (3) Compared to the KGE value, the
numbers of schemes that improved the performance of the averaging methods are larger
for AVE and NSE. For example, the performances of HMETS-COMBIN are worse than
the best single member (SIMHYD-MSWEP) in terms of KGE. However, in terms of NSE
and AVE, HMETS-COMBIN performs better than SIMHYD-MSWEP for most averaging
methods (except for AICA and BICA). (4) The MMSE method obviously outperforms the
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others in terms of AVE for each averaging scheme. As depicted in Table 3, MMSE uses
bias correction and variance reduction in the simulation, to further improve the averaging
quality. The AVE value is one minus the volume error, which is partially corrected by this
method [67,68]. Therefore, the MMSE method shows great performance in terms of AVE.
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Figure 4. Box plots of KGE valuesof different averaging schemes for each averaging method (a–i).

The graphic demonstration of the comparison results of various averaging schemes
is shown in Figure 5. In general, the multi-input averaging schemes perform better than
the multimodel averaging schemes, especially for AICA and BICA. Table 6 further shows
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the median values of KGE, NSE, and AVE over nine averaging methods for different
averaging schemes. The median KGE values across 2277 watersheds and nine averaging
methods (2277 × 9) are 0.68 for GR4J-COMBIN, 0.71 for SIMHYD-COMBIN, 0.70 for XAJ-
COMBIN, and 0.66 for HMETS-COMBIN. Only one multimodel averaging scheme (i.e.,
MSWEP-COMBIN) performs better than HMETS-COMBIN (the worst-performed multi-
input averaging scheme). Overall, the multi-input model averaging scheme (ALL) shows
the best performance for different averaging methods and evaluation criteria. As shown in
other studies, using more members can increase the averaging performance [7–9,69].
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Table 6. The median value of three criteria over 2277 watersheds and 9 averaging methods for different averaging schemes.

Averaging
Schems

SIMHYD-
MSWEP ALL GR4J-

COMBINE
SIMHYD-

COMBINE
XAJ-

COMBINE
HMETS-

COMBINE

KGE 0.70 0.73 0.68 0.71 0.70 0.66
NSE 0.56 0.66 0.57 0.60 0.58 0.55
AVE 0.90 0.91 0.89 0.90 0.90 0.90

Averaging
Schems

CPC-
COMBINE

GPCC-
COMBINE

MSWEP-
COMBINE

JRA55-
COMBINE

ERA5-
COMBINE

WFDEI-
COMBINE

KGE 0.59 0.67 0.73 0.61 0.66 0.64
NSE 0.45 0.56 0.63 0.44 0.58 0.50
AVE 0.83 0.89 0.90 0.86 0.90 0.88

3.3. Impacts of Averaging Size on Performances of Multimodel Averaging Methods

Based on the comparison of different averaging schemes, the multi-input model aver-
aging scheme (ALL), which includes the largest number of members (24 members), shows
the best performance (largest median KGE, NSE and AVE). This is in line with the previous
studies, which concluded that a large number of members leads to an improvement in
hydrological simulating abilities [8,37,70]. However, how the number of members used
in the averaging influences the performance of the averaging methods deserves further
investigation. Figure 6 shows the KGE values of averaging members, ranging from 2 to 24
for different averaging methods. The members of different averaging numbers are gener-
ated by resampling all of the available members (24 in total) 100 times for 2277 watersheds.
The 10th and 25th percentiles represent poor simulation performances, while the 75th
and 90th quantiles represent good simulation performances. The average performance is
represented by the 50th quantile [37].
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Generally, the median value of KGE is improved from two to multiple averaging
members for all of the averaging methods. In particular, the improvement is very significant
when the number of members increases from two to six. However, when the number of
averaging members is larger than six, the improvement tends to be minimal. For example,
the difference in the median KGE value is no more than 0.05 between the use of 6 members
and all 24 members. Taking into account how time-consuming using all of the available
observations is, we recommend using 6 to 10 members for each averaging method. The
same conclusions can be held with the other percentiles, except the 10th percentiles. For the
10th percentiles, the optimal number of averaging members varies greatly for the different
averaging methods. Thus, a consistent conclusion cannot be drawn on the optimal number
of members for this percentile. The same conclusions can be drawn for NSE and AVE (see
Figure A2).

3.4. Comparison of Multimodel Averaging Methods
3.4.1. Performance of Multimodel Averaging Methods over Global

To further evaluate the performance of different averaging methods, Figure 7 shows
the comparison of the best individual member (SIMHYD-MSWEP) and different averaging
methods under the multi-input model averaging scheme. This averaging scheme was
chosen because of its appreciable performance over different methods (Figures 4 and 5).
More than half of the watersheds show that the averaging methods outperform the indi-
vidual members, in terms of KGE. The same conclusions can be drawn for NSE and AVE
(Figure A3). Overall, the MMSE and the Granger–Ramanathan average group (GRA, GRB
and GRC) are more efficient than the other methods. Figure 8 shows the geographical
information of each averaging method. The points in blue represent the watersheds that
obtained improved hydrological performance by using the averaging methods. The results
show that the KGE values increase for most of the watersheds in Northeast America,
Southern China, and along the Atlantic coast of Europe, when using averaging methods.
However, these methods perform inadequately for watersheds in the American tropics,
Northwestern America and the Middle East. Considering the high variety in the perfor-
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mances of the averaging methods around the world, it is worth investigating whether the
well-performed averaging methods are climate dependent and how the performances of
the averaging methods vary with watersheds under different climate conditions.
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Figure 7. Comparison of nine multimodel averaging methods (a–i) and the best-performing model (SIMHYD-MSWEP) for
each of the watersheds in this study. Model averaging that produced results better than the best member will generate
markers under (or to the right of) the 45-degree line. The number in the upper left corner represents the percent of
watersheds that, using the multimodel averaging method, perform worse than the best-performing model. The number in
the lower right corner represents the percent of watersheds that, using the multimodel averaging method, perform better
than the best-performing model.

3.4.2. Performance of Multimodel Averaging Methods in Multiple Climatic Regions

To better understand the impact of climate conditions on the performance of averaging
methods, Figure 9 shows the KGE, NSE and AVE values for each averaging method, and
the best individual member (SIMHYD-MSWEP) under different climate regions. The
averaging methods perform much worse in the arid region than in the other four climate
regions, which is consistent with the performance of single hydrological models. The
nine averaging methods all perform better than, or are comparable to, the best individual
member for most of the climate regions, except for the arid and arctic regions. For the
arid region, the GRA, GRB and GRC consistently perform worse than the best individual
member for different criteria. Generally, the Granger–Ramanathan average group are
approximately equal under different climate regions and criteria. For the arctic region,
EWA, BGA and BMA perform worse than the best individual member, in terms of KGE
and AVE. In terms of NSE, the performance of the averaging methods is better than the
other criteria in this region.
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Figure 8. The spatial distribution of watersheds for which the averaging methods (a–i) performed better than the best single
model (blue) and the watersheds for which the averaging methods were not as good as the best single model (red).
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Figure 9. Box plots of KGE (a–f), NSE (g–l) and AVE (m–r) values of different averaging methods in
different climate regions.

The performance of the averaging methods is different among the five climate regions.
According to both the KGE and NSE results, it is apparent that the MMSE and BMA
methods outperform others in the equatorial and arid regions. The performances of the
averaging methods are very similar in warm-temperate and snow regions. The MMSE
method marginally performs better than the others in these regions. In the arctic region,



Remote Sens. 2021, 13, 2574 14 of 22

the Granger–Ramanathan group performs better than the other methods. The AICA and
BICA methods are approximately equal and their performances are lower than others in
equatorial, warm-temperate and snow regions. It is the same in terms of AVE, except for
the MMSE method, which is the best averaging method in all of the climate regions. The
reason for the MMSE method being outstanding in terms of AVE is the bias correction and
variance reduction used in this method, as mentioned in Section 3.2.

Table 7 shows the frequency of watersheds where the KGE value of the different
averaging methods is larger than the best-performing individual model (SIMHYD-HMETS)
in different climate regions. It can be seen that the outperformance of the different averaging
methods exceeds 50% of the watersheds for most of the climate regions, except AICA and
BICA in the equatorial region, EWA and BMA in the arctic region, and seven out of nine
methods in the arid region. In general, the improvements in hydrological simulation,
caused by the different averaging methods, are the largest in the warm-temperate region,
followed by the snow and equatorial regions. The differences in the averaging method
performances in arid and arctic regions are more significant than those in equatorial, warm-
temperate and snow regions. This indicates that more consideration should be given to the
selection of the averaging method used in these two regions.

Table 7. The percentage of watersheds where the KGE value of different averaging methods is bigger than the best-
performing individual model (SIMHYD-HMETS) in different climate regions.

Climate Reions (Number of Cathments) EWA BGA AICA BICA GRA GRB GRC BMA MMSE

All (n = 2277) 52.7 59.0 53.3 53.1 65.5 66.9 65.5 54.5 67.1
A:equatorial (n = 293) 56.0 65.5 47.4 46.4 55.6 57.7 55.6 61.1 58.7

B:arid (n = 247) 48.6 54.7 48.2 47.8 45.3 47.0 45.3 44.5 56.7
C:warm temperate (n = 717) 56.5 62.3 56.9 56.9 73.5 74.5 73.5 58.3 72.8

D:snow (n = 970) 50.3 55.8 53.6 53.5 67.3 69.1 67.3 52.6 68.2
E:arctic (n = 50) 44.0 58.0 56.0 58.0 72.0 70.0 74.0 46.0 64.0

4. Discussion

This study used 6 global gridded precipitation datasets to drive 4 hydrological models
for streamflow simulations over 2277 watersheds around the world, and took each of the
outputs as a member for model averaging. To find the best combination of different mem-
bers and improve the predictive skill in hydrological runoff modeling, eleven averaging
schemes classified as multi-input, multimodel and multi-input model, and nine averaging
methods were considered for streamflow averaging. The results show that the combination
of different members may largely impact the performance of the averaging methods. The
performance of multimodel averaging schemes largely depends on the input data. In
general, the multi-input averaging schemes perform better than multimodel averaging
schemes. Global gridded precipitation datasets are laden with intrinsic and structural
errors, due to the different interpolation schemes, and they are likely all different from the
real climate data [32,33]. Therefore, a given model driven by different precipitation datasets
performs quite differently (Table 5). For example, the median KGE value of SIMHYD-
MSWEP is approximately 0.12 greater than that of SIMHYD-JRA55. The improvement in
the multi-input schemes may be partly because of the reduction in the uncertainties caused
by the inputs between the simulated and observed hydrograph [7,35]. Theoretically, using
real climate data may reduce the advantage of the multi-input schemes. However, real
precipitation varies greatly in time and space, and therefore is extremely challenging to
observe and estimate [32]. Therefore, multi-input averaging schemes can be a powerful tool
for hydrograph simulations, and can provide an advantageous way to support reasonable
runoff prediction and water management, especially in ungauged basins [35].

Equifinality is defined as a hydrological model having multiple sets of parameters
that lead to equally acceptable model performance, which is considered to be one of the
uncertainties in hydrological modeling [71,72]. Theoretically, using the outputs from equi-
final parameter sets as averaging members may improve the performance of averaging
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methods, by reducing the errors caused by the parameter set uncertainty. The performance
of averaging methods, by combining the outputs of 10 equifinal parameter sets, was tested.
Four models driven by MSWEP were calibrated ten times by the shuffled complex evolu-
tion method (SCE-UA), with different initial random seeds. The results show that using the
outputs of 10 equifinal parameter sets, calibrated from a hydrological model driven by spe-
cific precipitation as averaging members, cannot improve the performance of the averaging
methods (Figure 10). This conclusion is consistent with that in Arsenault et al. [8].
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Figure 10. Box plots of KGE values of different averaging methods calculated by the combination of 10 equifinal parameter
sets of four hydrological models (a–d).

The KGE was used to calibrate the models. The KGE metric is one of the most common
metrics used in hydrological modeling. It puts more emphasis on the simulation of flow
variability and correlation [73,74]. Compared to the best single model (SIMHYD-MSWEP),
the KGE values improved for each averaging method for most schemes. When it comes
to NSE and AVE, the improvement in the averaging methods is more obvious (Figure 4,
Figure A1, and Figure 9). The NSE metric focuses more on the peak flows and less on the
low flows [73]. Therefore, most aspects of the hydrograph simulated by averaging methods
are improved compared to the specific hydrograph simulated by one objective function. In
addition, previous studies indicated that using the outputs from one model, calibrated with
different objective functions as averaging members, can improve the performance of the
averaging methods [15]. Therefore, a more comprehensive study is needed to investigate
how a large ensemble containing multiple model structures, each with multiple objective
functions and driving datasets, impacts the performance of averaging methods.

When compared to the best individual member, even though the simplest equal
weights averaging methods (EWA) can improve the simulation performance for more than
40% of the watersheds. However, the performance of different methods is not consistent
among climate regions. The AICA, BICA and Granger–Ramanathan group are in the
lead group in the arctic region; however, they show poor performance in other climate
regions, especially in the equatorial and arid regions. In fact, AICA and BICA tend to put
more weight on the best individual member and neglect others [5]. Therefore, the high
performance of AICA and BICA in the arctic region could be due to the large differences in
performance among 24 members in this region. It is the same for the Granger–Ramanathan
group. The Granger–Ramanathan group allows negative weights; therefore, these methods
are able to hedge against the use of a bad model [5,54]. The BGA and EWA methods are in
the middle level compared with other averaging methods for most regions. In addition,
they are more robust than the AICA and BICA methods. The stable performance of these
two methods may be due to the fact that these methods distribute the weights fairly. The
BMA method is amongst the best methods for most climate regions (except the arctic
region). The fact that the performance of BMA would be affected by the poorly performed
members may be the reason for the relatively poor performance in the arctic region [36].
In addition, the BMA method is the longest to execute among these averaging methods,
because of its iterative nature [5,7]. Therefore, the MMSE averaging method is recommended
for its speed of execution, simplicity and stable performance among climate regions.
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5. Conclusions

Nine multimodel averaging methods and 11 averaging schemes have been compared,
using the simulations of 4 hydrological models driven by 6 precipitation datasets, to find
the most suitable multimodel averaging application under different climate regions. The
study was conducted over 2277 watersheds around the globe, covering 5 main climatic
groups, according to the Köppen–Geiger classification. The following paragraphs outline
the results.

The performances of multimodel averaging schemes are closely related to the pre-
cipitation used in the hydrological simulation, with a 0.14 difference of the median KGE
values between the worst (CPC-COMBINE) and the best (MSWEP-COMBINE) multimodel
averaging schemes. Using models driven by different gridded precipitation datasets as
ensemble members allows for improving the performance of different averaging methods
compared to the multimodel averaging schemes.

Merging multiple members can lead to a significant improvement in hydrological
simulations for up to six members. The use of more than 6 members only improves the
estimation results slightly, as compared with using all 24 members.

Clear differences in the performance of averaging methods were displayed for differ-
ent climatic regions. The warm-temperate climatic regions provided the best performance
for the averaging methods, with at least 61% of the watersheds having experienced im-
provements in runoff prediction skills compared to the best single member. Equatorial
and snow regions follow closely behind. Moreover, the differences in hydrological model
performance among the various averaging methods in arid and arctic regions are more
significant than the others.

The best-performing averaging method was different among different climate regions.
The MMSE method shows the best performance in most climate regions, except for the arctic
region. It is the Granger–Ramanathan average group that outperforms others in the arctic
region. In general, the MMSE averaging method shows more advantages over other averaging
methods because it is simple to implement, and is always amongst the leading groups.
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