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Abstract: This work presents the results of research toward designing an instruction set extension
dedicated to Global Navigation Satellite System (GNSS) baseband processing. The paper describes the
state-of-the-art techniques of GNSS receiver implementation. Their advantages and disadvantages
are discussed. Against this background, a new versatile instruction set extension for GNSS baseband
processing is presented. The authors introduce improved mechanisms for instruction set generation
focused on multi-channel processing. The analytical approach used by the authors leads to the
introduction of a GNSS-instruction set extension (ISE) for GNSS baseband processing. The developed
GNSS-ISE is simulated extensively using PC software and field-programmable gate array (FPGA)
emulation. Finally, the developed GNSS-ISE is incorporated into the first-in-the-world, according to
the authors’ best knowledge, integrated, multi-frequency, and multi-constellation microcontroller with
embedded flash memory. Additionally, this microcontroller may serve as an application processor,
which is a unique feature. The presented results show the feasibility of implementing the GNSS-ISE
into an embedded microprocessor system and its capability of performing baseband processing.
The developed GNSS-ISE can be implemented in a wide range of applications including smart
IoT (internet of things) devices or remote sensors, fostering the adaptation of multi-frequency and
multi-constellation GNSS receivers to the low-cost consumer mass-market.

Keywords: instruction set extension; ISE; multi-frequency; multi-constellation; GNSS receiver;
software defined radio; SDR

1. Introduction

The global GNSS (Global Navigation Satellite System) market has been growing over the
recent years [1,2]. Location-based services (LBS) utilizing GNSS positioning have become a part
of everyday life. Nowadays, the LBS consumer market is dominated by single-frequency GPS (US
global positioning system) C/A (coarse acquisition signal) only and low-cost, highly integrated GNSS
receivers [3–9]. However, low precision and low reliability are their main limitations. What is more,
insufficient positioning in challenging environments, susceptibility to multipath interference, jamming,
and spoofing further decrease the LBS segment coverage by such GNSS receivers. Such inconveniences
are typically overcome by employing multi-constellation, multi-frequency receivers and by using
additional complementary positioning technologies (i.e., inertial measurement unit—IMU) when
necessary [10].

With the new GNSS signals transmitted at frequencies such as L2, E6, or L5/E5, analogue-receiving
circuits capable of simultaneous reception of many navigational systems began to appear [11–15].
This fact increased the demand for flexible computing platforms capable of processing the received
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signals. Purely software-based solutions can easily keep up with the new reception algorithms and
are able to handle multiple standards at once. On the other hand, the wide processing bandwidth,
and, therefore, the high sampling rates, is a major challenge in the case of direct processing in a DSP
(digital signal processing) processor, especially in the case of the low-budget mass market. Dedicated
hardware units for GNSS baseband processing, therefore, seem indispensable. One such solution is the
example of using an expansion card for a laptop [16]. It contains a programmable analogue front-end
and a set of digital correlators capable of receiving both GPS, GLONASS (GLObal NAvigation Satellite
System of Russian government), and GALILEO (European global satellite navigation system) signals.
Digital signal processing is carried out using PC software. High efficiency and program flexibility are
the biggest advantages of this solution, whereas the very low scale of integration is a disadvantage.
Subsequent work transfers the correlator layer to the form of a dedicated peripheral module located
on the internal microprocessor bus. The AGGA-4 (Advanced GPS/GLONASS Application-specific
integrated circuit (ASIC)) receiver [14] is a dedicated GNSS receiver in the form of a system-on-module
(SoM) for the space segment. The authors of the NAPA (NAvigation chip for Pedestrian navigation
and higher-precision Applications) system approached the topic in a similar way [15]. The solution
presented in [17] utilizes the system-on-chip (SoC) technique. In addition to the obvious advantages,
the implementation of the GNSS block as a peripheral on the microprocessor bus is associated with
limited bandwidth, as well as limited flexibility. There is also no possibility of adapting to new
modulation techniques or advanced tracking algorithms such as ASPeCT (Autocorrelation Side-Peak
Cancellation Technique) [18] or the TM61 technique [19]. The next step in the evolution of GNSS
receivers was the adoption of the ASIP (application-specific instruction set processor) technique. It
consists of a specialized processor adapted to the needs of a particular class of tasks. One of the
examples of an ASIP system is a reconfigurable block supporting the calculation of position, velocity,
and time—PVT [20]. As a result, the CORDIC (COordinate Rotation DIgital Computer) processor [21]
for trigonometric calculations was developed. However, in this example, the ASIP technique has
not been used to improve the time-critical blocks of correlators. They have been implemented in the
form of a set of fixed, unconfigurable blocks. Focusing on the PVT computation places these works
as a complementary to that presented in this paper, i.e., low-level baseband processing rather than
competitive. On the other hand, the authors presented only simulation and field-programmable gate
array (FPGA) results, while this work presents a GNSS-instruction set extension (ISE) implemented
in the fully integrated multi-constellation and multi-frequency single-chip GNSS receiver ASIC
(application-specific integrated circuit). The only attempt the authors of this publication are aware
about to improve low-level GNSS processing using an instruction set extension was presented in [22].
However, in that publication, only correlation operations were taken into account. In addition, the
author did not provide any results regarding the real impact of implemented instructions on the GNSS
software receiver performance.

The goal of this work was to present a new and innovative approach to the topic of GNSS processor
design. It involves the ASIP technique to develop a flexible GNSS baseband processing instruction set
extension (ISE). This extension, applied to a general-purpose microprocessor system, defines a new,
versatile GNSS processor architecture.

2. Instruction Set Extensions

The need to develop new instruction set architectures (ISAs), modify existing ones, as well as
create ISA extensions, results from the need to perform a certain group of tasks more quickly and
without limiting the flexibility gained through the programmability. Although, for a long time, the task
of identifying the potential candidates for new instructions rested with the system designers, in recent
years, a number of methods for the automatic generation of instruction set extensions have been
developed. They most commonly use compilers to transform an application written in a high-level
language, such as C/C++, into the intermediate representation (IR) form, independent of the target
processor’s ISA. The most common representation of the IR form is the control flow graph (CFG) [23].
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Figure 1 shows the CFG of a sample application. Each node of the CFG graph represents the basic
block of the application, while the edges represent the flow of control between the blocks.
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The basic blocks are sets of successive basic operations (such as addition, subtraction, multiplication,
shifting, etc.) that do not contain the dependencies regarding the control flow. The individual basic
blocks can be represented as acyclic directed graphs (DAG)—G

(
Vb ∪Vin

b , Eb ∪ Ein
b

)
, in which the

vertices (denoted as Vb) represent basic operations, while the edges (denoted as Eb) are data relations
between them (see Figure 2). The Vin

b vertices are basic block inputs, while the edges Ein
b join the input

data with the Vb operations. Vertices denoted as Vout
b ⊆ Vb represent outputs from the basic block. The

task of the new instruction template is to unify a number of basic operations within a single functional
block. The potential candidate for the new instruction is graph T

(
Vt ∪Vin

t , Et ∪ Ein
t

)
, i.e., a sub-graph of

the DAG graph G. Vt vertices represent the basic operations contained in the new instruction template,
while the Et edges are the data relationships between them. The Vin

t vertices are the inputs of the basic
block. They may be the vertices of the G graph, or they may result from basic operations not included
in the T template: Vin

t ⊆ Vin
b ∪ (Vb/Vt).
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Figure 2. Basic block acyclic directed graph (DAG) example.

Graph convexity is an important concept in instruction set generation theory. The template T is
convex if there is no path in graph G from node u ∈ Vt to node w ∈ Vt running through node v < Vt.
The convexity of the graph T ensures that the graph G’ created after replacing the G template with
a new custom operation (see Figure 3a) is acyclic. This is a condition that allows the basic block to
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be executed in the processor. Figure 3b shows the attempt to include V2 and V6 nodes into a new
instruction template. This would cause the mutual dependence of unified nodes V2 and V6 on node
V4, making the entire operation not feasible in the sequential execution of operations.
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Methods of automatic generation of an instruction set extension have been studied extensively in
recent years. Many algorithms have been developed, such as the MISO (multiple-input single-output)
method or its extended MaxMISO version, which are based on partitioning the DAG graph into
sub-graphs with the maximum number of inputs and one output [24]. Branch-and-bound optimization
algorithms have been developed [25] that consist of the decomposition and controlled search of a set of
acceptable solutions of a given problem. Paper [26] presents a solution based on the representation of
the task of the automatic generation of instructions as an integer linear programming (ILP) problem.
Subsequent work also addresses the accompanying problems, such as a limited number of input ports
and the output file of the processor registers. Paper [27] proposed a method of serial access to inputs
and outputs during the implementation of multi-cycle instructions. It has been shown, however,
that additional input data can be obtained by redirecting from successive pipeline stages [28]. The
solution used in the Tensilica Xtensa processor seems to be particularly interesting in this matter [29].
In order to increase the number of input and output operands, it uses an additional custom register file
and instructions for transferring data between this file and the regular register file and memory. In
almost all papers related to the subject matter, the results of the proposed algorithms are evaluated
based on a narrow and repeatable set of input programs. These include, among others, cryptographic
functions such as AES (advanced encryption standard), DES (data encryption standard), SHA (secure
hash algorithms), and programs from the sets such as MiBench [30] and MediaBench [31]. Each of
the mentioned algorithms also defines a measure of the quality of the proposed instructions and
the objective function that forms a stop condition. The input arguments of the quality function are
usually the parameters such as execution time reduction, reduction of power consumption, or increase
in processor area, obtained from a comparison of the original solution and the application of the
proposed instruction. It is worth noting here that a significant part of these parameters requires a
precise definition of the applied semiconductor technology and the architecture of the tested system,
which largely limits the universality of the obtained result. One of the measures of the evaluation of the
generated candidates for instructions is also the comparison of results with templates obtained using
the human designer analysis of optimized algorithms. It is worth mentioning that the results obtained
by these methods are most often close to or identical to the commonly known solutions presented
by human designers. This fact raises the question about the reason for such extensive research into
the automatic synthesis of the list of orders. The most frequently mentioned explanations are the
rapidly growing complexity of integrated circuits and their ever-shorter time to market. Automatic
methods are used to significantly accelerate the design process of the system, as well as make the
results independent of the experience of the designer. It cannot be overlooked, however, that they
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depend on the chosen method. In addition, the full context of application is not always known, e.g., in
a general-purpose processor where the end-user decides how to use the hardware. The presence of
an experienced designer, therefore, seems essential, making the described methods a valuable tool
supporting the design process.

3. GNSS-ISE Development Method

The purpose of this work was to develop a universal GNSS instruction set extension. Universality
is understood here in the functional and implementation scope. First, it is assumed that a purely
software-based solution is a reference point, because it potentially enables the servicing of all current
and future satellite navigation systems in any configuration, using any algorithms. In this respect,
the functional versatility of the proposed instruction extension should avoid introducing restrictions
on the selection of a supported navigation system and enable adaptation to new methods of its
reception. Secondly, the universal instruction set extension should be independent of the processor
architecture. In particular, despite the use of the same GNSS-ISE, the hardware implementation of the
system supporting only a few L1 GPS channels will be different than a multi-frequency processor that
simultaneously receives signals from GPS, GALILEO, GLONASS, etc.

In order to make the proposed extension independent of the processor architecture, the format
of the instructions used in the currently most widespread RISC (reduced instruction set computing)
processor architecture has been used. It operates with two input and one output values. On the
other hand, the much older CISC (complex instruction set computing) architecture in today’s modern
implementations is still implemented internally, mostly in the form of RISC-type micro-operation
streams [32]. Parallel architectures such as VLIW (very long instruction word) or EPIC (explicitly parallel
instruction computing) adopt RISC instructions without major modifications. In turn, more exotic
architectures, such as the stack-based MISC (minimal instruction set computer) architecture, will require
a greater involvement of the compiler or hardware units responsible for translating the developed
instructions into their internal format. Furthermore, the functional versatility of the instruction set
extension required the development of a new method, in which the previously described methods of
automatic synthesis may or may not be used. The developed four-step method is described in the
following sections.

3.1. Separation of Operations

A high-level CFG graph of the analyzed application is the input data to the proposed algorithm.
For the purpose of this work, the authors would like to define the basic block as a sequence of
high-level operations: Bi =

{
ai

0, ai
1, . . . , ai

k

}
. Next, each of the basic block operations is a sequence of the

basic operations: ai
k =

{
ai

k0
, ai

k1
, . . . , ai

kn

}
. Defining high-level operations (e.g., phase-locked loop—PLL

and delayed-locked loop—DLL, discriminator or loop filter in GNSS tracking loop) facilitates the
understanding of the authors’ intentions while presenting this method. The first step of the proposed
method is to identify the sub-sequences within individual operations in basic blocks that violate the
functional versatility condition. For the purpose of this work, the authors formulated a Ruse(B, ak)

relation expressing the statement that the ak operation is contained in the basic block B instruction
template. Consequently, the authors could propose the following relationship of the functional
versatility, also called the condition of functional versatility:

Runiv(B, ak) = @{akm }({akm } ∈ ak ∧ ak ∈ B∧ {akm } < ak)

(Ruse(B, ak)⇒ ¬Ruse(B′, ak)).
(1)

It means that the condition of functional universality is violated if there is a sequence of basic
operations

{
akm , akm+1 , . . . , akl

}
, being a sub-sequence of the operation ak and, in particular, not an ak

operation, which, due to the fact that the operation ak is contained in the basic block B, operation ak
cannot be contained in basic block B’, created by changing the parameters of the analyzed problem,
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e.g., due to appearance of a new GNSS system or improved tracking algorithm. In this case, the ak
operation should be broken up so that the identified sub-sequences

{
ai

km

}
become a new operation in

the basic block.

3.2. Prevention of Operations Merging

In the second step, similar to the previous one, all the ak operations that violate the Runiv relation
should be identified. The condition of functional universality is met by all the operations identified
as

{
ai

km

}
sub-sequences in the previous step. The CFG graph of a GNSS receiver should include

a frequency-locked loop—FLL, PLL/DLL discriminators and filters, as well as code generators, as
separate basic blocks and prevent them from merging. This will ensure receiver implementation
flexibility in terms of tracking loop architecture, filter structure, and external aiding.

3.3. Merging of Operations

The third step of the proposed method is the process of merging operations in the basic blocks.
The automatic, as well as manual, instruction set generation algorithms’ task is to propose a new
instruction template out of the basic block represented in the form of a DAG graph. The aim of this
step is to obtain the DAG graphs with a large number of vertices. This will expand the search space,
but, on the other hand, increase the probability of getting the highest-quality instruction template in
terms of execution time reduction, reduction in power consumption, or increase in processor area.
As in the previous steps, the merging process should take the Runiv relation into account to maintain
the developed instruction set extension flexibility.

3.4. Identification of Register Window

One of the most important problems while identifying new instruction templates is the large
number of input and output vertices in DAG graphs. On the other hand, in many cases, input and
output data of individual operations have local character. This means that the data are used only within
these operations or in a predefined manner. Despite this, DAG graphs of such operations include
them as full-fledged input and output nodes, significantly expanding the search space of automatic
generation methods and limiting the quality of the obtained results. There are automatic methods
of instruction generation, e.g., [33], which are able to extract nodes that can be realized as memory
components visible from the perspective of the execution unit. The method proposed by the authors
extends this solution to multi-channel applications. This method consists of the early identification of
nodes having local character, their integration within a single register file, and their duplication to the
form of windows, one per processed channel. At the time, only one window remains active, and its
registers are permanently assigned as input and output nodes of individual execution units. As a result,
one obtains execution units capable of holding their internal states (state-holding accelerator functional
unit, AFU) [34] and able to switch between processed channels. In addition, this solution increases
the number of available input and output operands of execution units and reduces the number of
necessary memory references. Permanent assignation of individual registers to particular execution
units reduces the complexity of the additional register file and, unlike its classic implementation, does
not require additional address fields in the instructions format. Consequently, there is no need to
modify the compiler.

3.5. Developed Method Algorithm

The algorithm of the proposed method is presented below (see Algorithm 1). It was used by the
authors to develop a universal, multi-channel instruction set extension for GNSS baseband processing.
The detailed description of the proposed instruction set is presented in the following sections.
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Algorithm 1. GNSS-ISE development algorithm.

1: Input: G, simplified application CFG graph
2: for B in G do
3: for ak in B do
4: while ¬Runiv(B, ak) do
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S1. Separation of Operations
5: Separate a′k =

{
akm

}
from ak

6: Add a′k to set {marked}
7: end while
8: if ¬Ruse(B′, ak) then
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ak, . . . , ak+l

}
; an < {marked} in B do

Sensors 2019, 19, x FOR PEER REVIEW 7 of 21 

 

Algorithm 1 GNSS-ISE development algorithm. 

1: Input: ܩ, simplified application CFG graph  

2: for ܤ in ܩ do  

3: for ܽ௞ in ܤ do  

4: while ¬ܴ௨௡௜௩(ܤ, ܽ௞) do  S1. Separation of Operations 

5: Separate ܽ௞ᇱ = {ܽ௞೘} from ܽ௞  

6: Add ܽ௞ᇱ  to set {݉ܽ݀݁݇ݎ}  

7: end while  

8: if ¬ܴ௨௦௘(ܤᇱ, ܽ௞) then  S2. Prevention of Operations Merging 

9: Add ܽ௞ to set {݉ܽ݀݁݇ݎ}  

10: end if  

11: end for  

12: for {ܽ௞, … , ܽ௞ା௟}; ܽ௡ ∉  do  S3. Merging of Operations ܤ in {݀݁݇ݎܽ݉}

13: if ܴ௨௡௜௩(ܤ, {ܽ௞௜ , … , ܽ௞ା௟௜ }) then  

14: Merge operations  

15: end if  

16: end for  

17: for ܽ௞೘  in ܤ do  S4. Identification of Register Windows 

18: Identify register windows  

19: end for  

20: Generate and evaluate instruction templates  

21: end for  

4. GNSS-ISE Instructions 

The CFG graph of the GNSS multi-channel tracking loop prepared initially was processed 
through the proposed four-step algorithm. As a result, the authors obtained a number of DAG graphs 
that were manually processed, resulting in the GNSS-ISE instruction templates. The description of 
the instruction selection process is described in the following sections. 

4.1. Carrier/Code Removal and Accumulation 

Figure 4 presents the process of identifying the variables that can be realized in form of custom 
register file windows. A DAG graph of the high-speed part of the GNSS tracking loop CFG contains 
carrier removal, spreading sequence removal, and data accumulation in in-phase (I) and quadrature 
(Q) early (IE, QE), and prompt (IP, QP) and late (IL, QL) branches. As many as eleven inputs contain 
the analog-to-digital converter’s sample (ADC), spreading sequence data (pseudo random noise, 
PRN), accumulator data (IE, IP, IL, QE, QP, QL), and PLL control inputs (current PLL phase and 
step). Seven outputs provide new correlators and PLL data. On the other hand, the DAG body 
contains only a few node layers. Using the traditional method of instruction set generation would 
result in many relatively simple instructions that would have questionable performance. One must 
remember that the new instruction template should replace a portion of the DAG that is big enough 
for its performance improvement to overcome the overhead of adding this template to the base 
processor ISA. After identifying the nodes that have local character and can be arranged in custom 
multi-channel register windows, the DAG graph was reduced to only three inputs and one output. 
Such a DAG graph can be easily divided into two new instructions—gnss.carr.rem for carrier removal 
and gnss.accu.add for code removal and accumulation (see Figure 5). For clarity, the gnss.accu.add 
instruction presented in Figure 5 has only three correlation branches – early (E), prompt (P), and late 

S3. Merging of Operations
13: if Runiv(B,

{
ai

k, . . . , ai
k+l
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14: Merge operations
15: end if
16: end for
17: for akm in B do
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4. GNSS-ISE Instructions

The CFG graph of the GNSS multi-channel tracking loop prepared initially was processed through
the proposed four-step algorithm. As a result, the authors obtained a number of DAG graphs that
were manually processed, resulting in the GNSS-ISE instruction templates. The description of the
instruction selection process is described in the following sections.

4.1. Carrier/Code Removal and Accumulation

Figure 4 presents the process of identifying the variables that can be realized in form of custom
register file windows. A DAG graph of the high-speed part of the GNSS tracking loop CFG contains
carrier removal, spreading sequence removal, and data accumulation in in-phase (I) and quadrature
(Q) early (IE, QE), and prompt (IP, QP) and late (IL, QL) branches. As many as eleven inputs contain
the analog-to-digital converter’s sample (ADC), spreading sequence data (pseudo random noise, PRN),
accumulator data (IE, IP, IL, QE, QP, QL), and PLL control inputs (current PLL phase and step). Seven
outputs provide new correlators and PLL data. On the other hand, the DAG body contains only a
few node layers. Using the traditional method of instruction set generation would result in many
relatively simple instructions that would have questionable performance. One must remember that the
new instruction template should replace a portion of the DAG that is big enough for its performance
improvement to overcome the overhead of adding this template to the base processor ISA. After
identifying the nodes that have local character and can be arranged in custom multi-channel register
windows, the DAG graph was reduced to only three inputs and one output. Such a DAG graph can be
easily divided into two new instructions—gnss.carr.rem for carrier removal and gnss.accu.add for code
removal and accumulation (see Figure 5). For clarity, the gnss.accu.add instruction presented in Figure 5
has only three correlation branches—early (E), prompt (P), and late (L). The actual number of branches
is implementation-dependent and can be five or even higher. The additional correlation branches
can be used with methods like bump-jumping [35], and more sophisticated tracking algorithms like
ASPeCT [18] or the TM61 [19] method for tracking the binary offset carrier (BOC) or time-multiplexed
BOC (TMBOC) signals.
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4.2. PLL/FLL/DLL Filter

Another example of using custom register file windows concerns the filter used for the phase-locked
loop (PLL), frequency-locked loop (FLL), or delay-locked loop (DLL). Figure 6 presents a DAG
representation of a third-order PLL filter with second-order FLL aiding from [36]. Nodes Z0 and Z1

present the two internal filter states that serve as inputs and outputs to be stored after the new filter
value calculation. After the identification of local variables, the DAG graph can be reduced to have
only two inputs and one output. This easily fits a single instruction template—gnss.pll.flt.
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4.3. Carrier Discriminator

This and the next subsections present the parts of the GNSS tracking loop blocks and operations that
were separated or prevented from merging based on the Runiv(B, ak) relation. The carrier discriminator
is implementation-dependent. The GNSS carrier tracking loop can be realized as PLL or FLL. On the



Sensors 2020, 20, 465 9 of 20

other hand, there are many implementations of the PLL discriminator itself. Therefore, the authors
introduced the instruction templates—gnss.pll.disc and gnss.pll.cost, without specifying the architecture
or implementation. However, the recommended choice is to use atan2(Q, I) as the PLL discriminator
and atan

(Q
I

)
as the Costas PLL discriminator for their performance [36]. Moreover, the atan2(Q, I)

function can also be used for atan2(cross, dot) calculation, which is an FLL discriminator.

4.4. Code Discriminator

Similar to the carrier discriminator, the code discriminator is implementation-dependent. In the
literature, one can find a large number of DLL discriminator architectures, starting from the

simple coherent IE − IL, through high-performance non-coherent
(I2

E−I2
L)+(Q2

E−Q2
L)

(I2
E+I2

L)+(Q2
E+Q2

L)
, to sophisticated

discriminators utilizing many correlation branches [37]. Therefore, the authors would like to introduce a
single instruction to perform the code discriminator function—gnss.dll.disc. As can be seen, the number
of input parameters used can vary from two to six and more. This can be achieved by defining
gnss.dll.disc as a macro-instruction, as presented in Figure 7. This approach is similar to the one used
by the MULScc instruction in SPARC V8 (Scalable Processor ARChitecture) architecture [38].
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the other hand, there is a precedence of the GALILEO E1 signal, the spreading codes of which are 
memory-based. Therefore, the authors would like to recommend a memory-based PRN code 
generator with one mandatory instruction—gnss.code.get, used to get the next code sample. This 
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parameters. For example, configuration registers would be used to enter primary and secondary PRN 
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4.5. Code Generation

The current GNSS system modulation techniques start from the most simple binary phase-shift
keying (BPSK) modulation in GPS C/A, through more complex quadrature phase-shift keying (QPSK),
many implementations of BOCs, multiplexed BOC (MBOC), composite BOC (CBOC), or TMBOC,
to the most complex alternative BOC (AltBOC) modulation used in the GALILEO E5 band. Therefore,
there is no trivial way to introduce universal hardware for all existing GNSS systems. On the other
hand, there is a precedence of the GALILEO E1 signal, the spreading codes of which are memory-based.
Therefore, the authors would like to recommend a memory-based PRN code generator with one
mandatory instruction—gnss.code.get, used to get the next code sample. This approach allows all
possible modulation techniques to be covered. The drawback is the necessity to implement a number
of custom, additional, and windowed registers to enter the code generator parameters. For example,
configuration registers would be used to enter primary and secondary PRN codes, set the carrier and
code NCOs (numerically controlled oscillators), include BOC modulation, and configure branch spacing.
The hardware complexity of code generation hardware is implementation-dependent. For example,
there is no need to fully support the AltBOC modulation in low-cost GNSS receivers. On the other
hand, the AltBOC modulation can be achieved using the software combination of two BOC streams.

4.6. Supplementary Instructions

As shown in the previous sections, many of the former input and output nodes of the basic
block DAGs were obtained in the form of custom, windowed register files. As each register
window corresponds to one processing channel, the authors introduced instructions manipulating the
channel index (gnss.chann.set, gnss.chann.get, gnss.chann.incr) to switch between the processed channels.
The access to register windows can be easily implemented by adding two instructions, performing read
and write access to the custom register file. For convenience, the register file access instructions were
assigned with separate assembly mnemonics to free the programmer from the obligation to know the
exact location of the interesting configuration register in the register file. As a result, without additional
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hardware, we obtained instructions capable of entering the numerically controlled oscillator (NCO)
frequency (gnss.carr.freq, gnss.code.nco.freq, etc.), controlling loop filters (gnss.pll.flt.rst, gnss.pll.flt.coef,
etc.), obtaining pseudo-range data—gnss.code.rng, or another macro-instruction for accumulator data
readout (see Figure 8).
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4.7. Special Instructions

The proposed GNSS-ISE was implemented and tested using simulations and FPGA
implementations in [39]. The next verification step was to prepare the ASIC implementation of
the multi-frequency GNSS receiver under the NaviSoC project [40]. During the design of the GNSS-ISE,
the authors suspected that, despite the performance gain over the purely software-based solution,
the GNSS receiver utilizing the introduced extension would still require a processor (CPU) with high
computational power, similar to other existing software-defined radio (SDR) solutions. This is due to
the fact that the processor is still involved in processing every ADC sample. With low-cost technology
process nodes (~100 nm), it is hard to achieve a processor operation frequency significantly above
100 MHz. Consequently, with a high ADC sampling rate (~40 MHz), there is no time left to perform
a pure SDR implementation. This motivated the authors to introduce new high-level GNSS-ISE
instructions that can, besides the full SDR mode, place the GNSS engine in the semi-SDR and highly
autonomous mode.

The gnss.free.accu instruction configures the desired GNSS channel to autonomously perform the
{gnss.carr.rem, gnss.code.get, gnss.accu.add} instructions sequence every time a new ADC sample event
occurs, without additional processor involvement. The CPU is only informed about the elapsing of
the integration period event by means of an interrupt. This significantly relieves the processor as,
now, the CPU reaction is needed every 1 ms for each channel in GPS C/A in bit synchronization mode
or even every 20 ms while integrating over one GPS C/A bit duration. What is worth noting is that
each channel can be configured to work with a different analog front-end, as each resulting channel
processes, in parallel, samples from many ADCs. This is essential to perform multi-frequency and
multi-constellation navigation.

The gnss.free.update instruction is used for further automation of the GNSS tracking loop. Together
with the gnss.free.accu instruction, it performs the instruction sequence {gnss.accu.get, gnss.pll.cost,
gnss.pll.flt, gnss.dll.disc, gnss.dll.flt, gnss.carr.disc, gnss.code.disc} for tracking loop update.

The gnss.track.step instruction is mainly used for testing and debugging the GNSS receiver working
in pure SDR mode, semi-SDR mode, and full-automatic mode. The instruction emulates the ADC
sample event and, consequently, allows for detailed insight into the tracking loop state at any time point.

Each of abovementioned gnss.free.accu, gnss.free.update, and gnss.track.step instructions may seem
to limit the SDR capabilities as data processing is performed, in part, independently to the processor’s
core. On the other hand, each of these modes can be stopped at any time or at any processing step, when
the processor core decides that additional attention to tracking channels is needed. This feature can be
particularly useful in a serial search acquisition algorithm as channels can be quickly reconfigured
to, e.g., different Doppler frequencies, and accumulate data for a desired amount of time. The key
factor to achieve high performance in this matter is to arrange GNSS hardware as a tightly coupled
coprocessor extending the processor’s core base ISA, as presented in this paper. As described in the
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Introduction, GNSS hardware in the form of a peripheral block would face the limited bandwidth,
especially in multicore systems, associated with the connection to a shared common system bus.

4.8. Instructions Summary

Table 1 summarizes the implemented GNSS-ISE instructions. The proposed instruction set
extension was incorporated into the GCC toolchain in the form of a patch to the CC100-C processor [41].

Table 1. Summary of introduced Global Navigation Satellite System-instruction set extension
(GNSS-ISE) instructions.

Instructions Group Mnemonic

Channel Manipulation Instructions
gnss.chann.set
gnss.chann.get
gnss.chann.incr

Carrier Instructions

gnss.carr.freq
gnss.carr.disc
gnss.carr.set
gnss.carr.rem

Accumulation Instructions gnss.accu.add
gnss.accu.get

Phase Lock Loop Instructions

gnss.pll.disc
gnss.pll.costas
gnss.pll.flt.rst
gnss.pll.flt.coef
gnss.pll.flt

Delayed Lock Loop Instructions

gnss.dll.disc
gnss.dll.flt.rst
gnss.dll.flt.coef
gnss.dll.flt

Spreading Sequence Instructions

gnss.pcode.addr.set
gnss.pcode.wr
gnss.pcode.len
gnss.scode.addr.set
gnss.scode.wr
gnss.scode.len
gnss.code.get
gnss.code.nco.freq
gnss.code.epl.freq
gnss.code.disc
gnss.code.rng

Special Instructions

gnss.free.accu.wr
gnss.free.accu.rd
gnss.free.update.wr
gnss.free.update.rd
gnss.track.step

5. GNSS-ISE Synthesis Results

This section presents the synthesis results of the GNSS navigation system containing four core
processor (classic six-stage pipeline RISC architecture) and GNSS tracking channels in total number
starting from zero to forty-eight. For this purpose, the whole GNSS navigation system incorporating
a wide range of peripherals and 512 KiB of embedded memory was configured and synthesized for
100 MHz with the CMOS (complementary metal-oxide semiconductor) 130 nm process [39]. Figure 9
shows the used flow to obtain particular results. The tracking loop algorithms execution time is derived
from the RTL (register-transfer-level) simulation. Gate-level synthesis of the GNSS navigation system
with a different number of tracking channels was used to obtain the area estimation. Finally, gate-level
simulation of the tracking loop algorithms enabled power consumption estimation.
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Figure 10 shows that with the growing number of tracking channels, the cells’ area grows linearly,
but the most area-consuming part of the navigation system is still the large amount of embedded RAM
memories. Figure 11 presents the comparison of the normalized execution time of particular tracking
loop parts and the whole tracking loop. The executed algorithms include the spreading sequence
generation (PRN), carrier removal (CARR), spreading sequence removal and accumulation (ACCU),
PLL discriminator (PLLD), DLL discriminator (DLL), and loop filter (FILT), as well as a complete
tracking loop (ALL). What could be expected is that the hardware implementation of particular GNSS
tasks resulted in a significant execution time reduction. Please note that many of the GNSS-ISE
aspects are implementation-dependent and the presented example shows only one of the possible
implementations. The obtained results can differ among other implementations while the execution
time reduction should still be observed. Figure 12 shows the normalized power consumption during
execution of particular tracking loop parts and the whole tracking loop. What can be seen is that the
power consumption changed insignificantly. Despite the processor core being relieved from processing
GNSS data, the power consumption was caused by the additional hardware that was involved in the
tracking loop execution. Figure 13 shows that with the maintained power consumption, but achieving
significant time reduction, the energy needed for the execution of particular tracking loop parts and
the whole tracking loop was also reduced significantly.
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Figure 10. Normalized standard cells’ area as a function of GNSS tracking channels.
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Figure 11. Normalized execution time of tracking loop tasks with GNSS-ISE and without GNSS-ISE.
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Figure 12. Normalized power consumption during execution of tracking loop tasks with GNSS-ISE
and without GNSS-ISE.Sensors 2019, 19, x FOR PEER REVIEW 14 of 21 

 

 
Figure 13. Normalized energy consumption during execution of tracking loop tasks with GNSS-ISE 
and without GNSS-ISE. 

6. ASIC Hardware Results 

As stated before, ASIC implementation of the GNSS-ISE with the CC100-C [41] processor core 
was performed under the NaviSoC project [40]. Figure 14 presents a microphotograph of a 5.7 mm × 
6.0 mm silicon die of the developed in [40] CCNV1-A1 navigation processor fabricated in the 110 nm 
eFlash process. Figure 15 presents the developed measurement and evaluation board. The chip 
consists of two analog front-ends for the L1/E1 and L5/E5 bands, a three-core microcontroller 
featuring a rich set of peripherals, 512 KiB SRAM (static random access memory), and 768 KiB eFlash. 
The peripherals associated with the GNSS receiver include two FFT-256 cores and a dedicated 
module supporting signal acquisition. The microcontroller peripherals include a number of 
communications interfaces (UARTs, SPIs, I2C, CAN, 1WIRE) and GPIO (general-purpose 
input/output), as well as timers, a watchdog, and a battery backed-up RTC (real-time clock) domain. 
Two out of the three cores support the GNSS-ISE instruction set extension for GNSS baseband 
processing. GNSS-ISE forms two autonomous 16-channel GNSS baseband coprocessors (32 channels 
in total). The third core is intended for user application. 

 
Figure 14. Microphotograph of CCNV1-A1, integrated multi-constellation, and multi-frequency 
GNSS receiver. 

0

0.2

0.4

0.6

0.8

1

PRN CARR ACCU PLLD DLLD FILT ALL

no
rm

al
ize

d 
en

er
gy

SOFT GNSS-ISE

Figure 13. Normalized energy consumption during execution of tracking loop tasks with GNSS-ISE
and without GNSS-ISE.



Sensors 2020, 20, 465 14 of 20

6. ASIC Hardware Results

As stated before, ASIC implementation of the GNSS-ISE with the CC100-C [41] processor core was
performed under the NaviSoC project [40]. Figure 14 presents a microphotograph of a 5.7 mm × 6.0 mm
silicon die of the developed in [40] CCNV1-A1 navigation processor fabricated in the 110 nm eFlash
process. Figure 15 presents the developed measurement and evaluation board. The chip consists of
two analog front-ends for the L1/E1 and L5/E5 bands, a three-core microcontroller featuring a rich set
of peripherals, 512 KiB SRAM (static random access memory), and 768 KiB eFlash. The peripherals
associated with the GNSS receiver include two FFT-256 cores and a dedicated module supporting signal
acquisition. The microcontroller peripherals include a number of communications interfaces (UARTs,
SPIs, I2C, CAN, 1WIRE) and GPIO (general-purpose input/output), as well as timers, a watchdog, and
a battery backed-up RTC (real-time clock) domain. Two out of the three cores support the GNSS-ISE
instruction set extension for GNSS baseband processing. GNSS-ISE forms two autonomous 16-channel
GNSS baseband coprocessors (32 channels in total). The third core is intended for user application.
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Figure 14. Microphotograph of CCNV1-A1, integrated multi-constellation, and multi-frequency
GNSS receiver.

Figures 16 and 17 present the tracking results of the GPS C/A and GALILEO E1B multi-channel
processing of real data using GNSS-ISE. Figure 18 shows the early results of position calculation (see
blue flags) using raw data obtained by the developed GNSS-ISE. The test was performed in stationary
conditions with a GNSS antenna placed near the window edge. The antenna placement is sub-optimal
but was conditioned by the measurement board connected to the measurement equipment. More robust
positioning tests are in progress using stand-alone receivers with the CCNV1-A1 chipset. The purpose
of this test was to prove the feasibility of implementing the GNSS-ISE instruction set extension into an
embedded microprocessor. The other purpose was to prove the GNSS-ISE completeness in terms of
delivering code measurements and carrier phase measurements, allowing effective post-processing.

Most of the works referenced in the introduction are focused only on one particular aspect of GNSS
receiver architecture. Papers [11–13] describe the analog front-end only. In [16], the digital baseband
was designed as an FPGA, while PVT computation was carried out by the PC software. In [20,21], the
ASIP technique was used, but only PVT computation was under research and no real GNSS receiver
results were shown. Work [17] presents the complete but not fully integrated classic architecture
GNSS receiver implemented in a FPGA with an external analog front-end. On the other hand, this
work presents the ASIP technique utilized to design the GNSS-ISE extension dedicated to GNSS
baseband processing. The presented GNSS-ISE implementation result in the form of a fully integrated
multi-constellation and multi-frequency single-chip GNSS receiver ASIC prompted authors of this
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work to provide comparison results only with other available ASIC implementations of GNSS receivers.
There are only two other projects, according to the authors knowledge, that present an attempt to
design a dedicated single-chip, multi-frequency, and multi-constellation ASIC [14,15]. None of them
exploited the instruction set extension for GNSS baseband processing. Both approaches, involving a
dedicated hardware engine on the system bus or presented in this work, GNSS-ISE, resulted in the
implementation of a fully operational GNSS receiver. The authors do believe there are no disadvantages
of using the GNSS-ISE. On the other hand, as stated before, the SDR approach facilitates the adaption
of new modulation techniques or advanced tracking algorithms. Moreover, the tight connection to the
CPU boosts the processing bandwidth, which is especially essential in a multicore system. Table 2
presents the comparison of the achieved parameters, provided in publications, of those two projects
and the CCNV1-A1 chipset utilizing GNSS-ISE. It is worth noting that the presented CCNV1-A1
device is so far only one of the possible designs exploiting the GNSS-ISE. As can be seen, the achieved
parameters are comparable. The die size is larger due to the lower technology node; however, the single
tracking loop channel power consumption is significantly lower. The CCNV1-A1 provided a slightly
lower number of tracking channels and a lower clock frequency due to the technology limitations,
while it is the only one incorporating an embedded flash and additional application processor core.
It is worth noting that the stress in the NaviSoC project was put into implementation of the widely
market-available, low-cost, multi-frequency, and multi-constellation GNSS receiver. On the other hand,
the main purpose of this work was to introduce a GNSS-ISE, a generic instruction set extension aimed
for implementation of multi-frequency and multi-constellation GNSS receivers.Sensors 2019, 19, x FOR PEER REVIEW 15 of 21 
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Sensors 2020, 20, 465 16 of 20Sensors 2019, 19, x FOR PEER REVIEW 16 of 21 

 

 

Figure 16. Prompt in-phase (blue) and quadrature (red) tracking results (for 1 s) of GPS C/A (coarse 
acquisition signal) multi-channel processing of real data using GNSS-ISE (SV12, SV15, SV24, SV32). 
Tracking is performed with 1 ms integration time, 20 ms per GPS C/A. 

 

Figure 17. Prompt in-phase (blue) and quadrature (red) tracking results (for 500 ms) of GALILEO 
(European global satellite navigation system) E1B multi-channel processing of real data using GNSS-
ISE (E02, E03, E05, E08). Tracking is performed with 4 ms integration time, 4 ms per GALILEO E1B 
bit. 

Figure 16. Prompt in-phase (blue) and quadrature (red) tracking results (for 1 s) of GPS C/A (coarse
acquisition signal) multi-channel processing of real data using GNSS-ISE (SV12, SV15, SV24, SV32).
Tracking is performed with 1 ms integration time, 20 ms per GPS C/A.

Sensors 2019, 19, x FOR PEER REVIEW 16 of 21 

 

 

Figure 16. Prompt in-phase (blue) and quadrature (red) tracking results (for 1 s) of GPS C/A (coarse 
acquisition signal) multi-channel processing of real data using GNSS-ISE (SV12, SV15, SV24, SV32). 
Tracking is performed with 1 ms integration time, 20 ms per GPS C/A. 

 

Figure 17. Prompt in-phase (blue) and quadrature (red) tracking results (for 500 ms) of GALILEO 
(European global satellite navigation system) E1B multi-channel processing of real data using GNSS-
ISE (E02, E03, E05, E08). Tracking is performed with 4 ms integration time, 4 ms per GALILEO E1B 
bit. 

Figure 17. Prompt in-phase (blue) and quadrature (red) tracking results (for 500 ms) of GALILEO
(European global satellite navigation system) E1B multi-channel processing of real data using GNSS-ISE
(E02, E03, E05, E08). Tracking is performed with 4 ms integration time, 4 ms per GALILEO E1B bit.
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Table 2. Comparison with published multi-constellation and multi-frequency GNSS receivers.

Parameter
Values

[14] [15] This Work

Process 180 nm 65 nm 110 nm

ASIC size n/a 4.5 × 5.0 mm 5.7 × 6.0 mm

Power n/a 12.7 mW/channel 5 mW/channel

Tracking channels 36 40 32

Processor cores 1 1 3

Application processor no no yes

Processor frequency 90 MHz 150 MHz 80 MHz

GNSS frequency up to 50 MHz up to 75 MHz up to 65 MHz

FFT module 128 points 16k points 2 × 256 points

RF front-end no yes yes

Embedded flash no no 768 KiB

Internal SRAM no 1 MiB 512 KiB

Target market space research only low-cost consumer

7. Conclusions

The authors presented the results of research toward designing the instruction set extension
dedicated to GNSS baseband processing. Improved mechanisms for instruction set generations focused
on multi-channel processing were introduced. The proposed method relies on the early identification
of DAGs and parts of DAGs constituting the application’s CFG that violates the proposed Runiv(B, ak)

relation. As a result, the developed ISE should easily adapt to new requirements. Identification of local
parameters significantly reduces the number of DAG inputs and, consequently, improves the quality of
the obtained results. Formatting the local parameters to custom register file windows ensures efficient
multi-channel processing. The proposed approach can be used to generate instruction set extensions in
other multi-channel-based wired or wireless data communication systems. The described GNSS-ISE
extension was developed using the presented analytical approach for the generation of instruction
set extensions. The ASIC implementation of multi-frequency and multi-constellation GNSS receivers
incorporating the GNSS-ISE was performed. The fabricated CCNV1-A1 navigation processor consists
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of two analog front-ends for L1/E1 and L5/E5 bands, a three-core microcontroller with 32 GNSS-ISE
channels, featuring a rich set of peripherals, 512 KiB SRAM, and 768 KiB eFlash. The presented results
show the feasibility of implementing the GNSS-ISE into the embedded microprocessor system and
its capability of performing baseband processing. Whereas the concept of exploiting a dedicated
instruction set extension for GNSS baseband processing has not been previously presented in the
literature, the presented comparison with state-of-the-art GNSS receivers shows that the GNSS-ISE can
be successfully used to achieve comparable results. By adopting the SDR approach the embedded
firmware gains flexibility in adapting to new modulation techniques and advanced tracking algorithms.
This can be limited or even impossible using the traditional approach of designing GNSS receivers.
The hardware tracking loops tightly coupled with the processor core boost the processing bandwidth
essential in time-critical tasks. On the other hand, tracking loops arranged on the processors’ system bus
have to share resources and access time between other peripherals and processor’ cores. The flexibility
of GNSS-ISE allows a wide range of implementations, especially low-cost mass-market devices for
IoT (internet of things) or smart sensor applications utilizing multi-frequency and multi-constellation
GNSS data processing. According to the authors’ best knowledge, the developed GNSS-ISE has
been incorporated into the first-in-the-world, integrated, multi-frequency, and multi-constellation
microcontroller with embedded flash memory.
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