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Abstract: Simultaneous Localisation And Mapping (SLAM) has long been recognised as a core
problem to be solved within countless emerging mobile applications that require intelligent
interaction or navigation in an environment. Classical solutions to the problem primarily
aim at localisation and reconstruction of a geometric 3D model of the scene. More recently,
the community increasingly investigates the development of Spatial Artificial Intelligence (Spatial
AI), an evolutionary paradigm pursuing a simultaneous recovery of object-level composition
and semantic annotations of the recovered 3D model. Several interesting approaches have already
been presented, producing object-level maps with both geometric and semantic properties rather than
just accurate and robust localisation performance. As such, they require much broader ground truth
information for validation purposes. We discuss the structure of the representations and optimisation
problems involved in Spatial AI, and propose new synthetic datasets that, for the first time,
include accurate ground truth information about the scene composition as well as individual
object shapes and poses. We furthermore propose evaluation metrics for all aspects of such joint
geometric-semantic representations and apply them to a new semantic SLAM framework. It is our
hope that the introduction of these datasets and proper evaluation metrics will be instrumental
in the evaluation of current and future Spatial AI systems and as such contribute substantially to
the overall research progress on this important topic.

Keywords: artificial intelligence; computer vision; SLAM; semantic scene understanding;
visual localisation and mapping; spatial AI

1. Introduction

Research at the intersection of robotics and computer vision currently targets the development of
a handful of important applications in which some form of artificial, intelligent device is employed to
assist humans in the execution of everyday tasks. A few examples are given by:

• Intelligent transportation: whether talking about autonomous vehicles on open roads or
Automatic Guided Vehicles (AGVs) within campuses, office buildings, or factories, transportation
is a time and safety-critical problem that would benefit strongly from either partial or
full automation.

• Domestic robotics: demographic changes are increasingly impacting our availability to do
household management or take care of elderly people. Service robots able to execute complex
tasks such as moving and manipulating arbitrary objects could provide an answer to this problem.
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• Intelligence augmentation: eye-wear such as the Microsoft Hololens is already pointing at
the future form of highly portable, smart devices capable of assisting humans during the execution
of everyday tasks. The potential advancement over current devices such as smartphones
originates from the superior spatial awareness provided by onboard Simultaneous Localisation
And Mapping (SLAM) and Artificial Intelligence (AI) capabilities.

Common to these applications is their mobility and requirement of real-time operation
and interaction with the real world, no matter if active or passive. The last major road-block towards
the achievement of such functionality is believed to be the perception problem. More specifically,
the perception problem asks for a real-time solution enabling an intelligent, embodied device to localise
itself relative to its immediate environment as well as perceive the latter in the sense of generating a
virtual scene representation that is useful towards the execution of a specific task.

In robotics, this problem is traditionally called Simultaneous Localisation And Mapping (SLAM).
A typical realisation of a SLAM system would use either one or several exteroceptive sensors
(e.g., camera, depth camera, Lidar) attached to a moving body (e.g., a human hand, a helmet, a robot)
in combination with interoceptive sensors such as an Inertial Measurement Unit (IMU). The incoming
sensor stream is processed in real-time to incrementally recover the relative displacement of the sensor
as well as a geometric representation of the environment. While there have been many successful
systems presented in the past, the generated model of the environment traditionally only covers
physical boundaries in the form of low-level primitives such as a point-cloud, a mesh, or a binary
occupancy grid. Such representations may be sufficient to solve the problems of path-planning
and obstacle-free navigation for robots but are not yet amenable to the solution of complex tasks
that require understanding the object-level composition of the environment as well as the semantic
meaning of its elements.

Over the past decade, the identification of scene components (i.e., objects) and their semantic
meaning has seen substantial progress through the rise of deep learning based image processing
techniques. In an aim to increase the semantic, object-level understanding reflected by 3D environment
representations, the SLAM community has therefore recently begun to include such algorithms for
object detection and semantic segmentation in the front-end of SLAM systems and reflect the added
information in an object-level partitioning and a semantic annotation of the generated 3D models.
Real-time systems generating such joint geometric-semantic representations from image sequences
represent an evolution of more traditional, visual SLAM into something referred to as Spatial AI
(The term Spatial AI is coined by Andrew Davison in his study Future Mapping: The Computational
Structure of Spatial AI Systems [1]).

In recent years, we have seen a number of exciting advancements in the development of Spatial
AI systems. However, the performance of the latter is thus far mostly evaluated in qualitative terms,
and we currently lack a clear definition of quantitative performance measures and easy ways to
compare relevant frameworks against each other. An automated benchmark as has been introduced
for traditional visual-inertial SLAM frameworks appears as an eminent gap to be filled in order to
warrant research progress on Spatial AI systems. Our contributions are:

• We provide a concise review of currently existing Spatial AI systems along with an exposition of
their most important characteristics.

• We discuss the structure of current and possible future environment representations and its
implications on the structure of their underlying optimisation problems.

• We introduce novel synthetic datasets for Spatial AI with all required ground-truth information
including camera calibration, sensor trajectories, object-level scene composition, as well as all
object attributes such as poses, classes, and shapes readily available.

• We propose a set of clear evaluation metrics that will analyse all aspects of the output of a Spatial
AI system, including localisation accuracy, scene label distributions, the accuracy of the geometry
and positioning of all scene elements, as well as the completeness and compactness of the entire
scene representation.
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Our paper is organised as follows. In Section 2, we provide a review of existing Spatial AI systems.
In Section 3, we introduce possible scene representations produced by a Spatial AI system that would
aim at a general satisfaction of the requirements given by its applications. We also discuss how their
form is reflected and used in the corresponding graphical optimisation problems. Section 4 then
introduces our novel benchmark datasets including their creation, noise addition, and evaluation
metrics. To conclude, Section 5 illustrates an application of the benchmark to an example Spatial AI
system and discusses its performance as a representative of the current state-of-the-art.

2. Review of Current SLAM Systems and Their Evolution into Spatial AI

One of the first occurrences of the SLAM paradigm dates back to 1991, when Leonard
and Durrant-Whyte [2] exploited a Panasonic beacon sensor to perform simultaneous localisation
and mapping with a small ground vehicle robot. Meanwhile, depth measurements in robotics are
generated using much more powerful laser measurement devices. A review of all SLAM solutions
for all kinds of sensors would however go beyond the scope of this paper, and we focus our
discussion on visual-inertial SLAM implementations that solve the problem for regular cameras that are
complemented by an IMU. Our main interest lies in cameras as they deliver appearance information,
a crucial ingredient for the semantic perception of environments. For a more comprehensive, general
review on SLAM, the reader is kindly referred to Cadena et al. [3].

Two landmark contributions on monocular visual SLAM date back to the same year and are given
by Davison’s [4] Extended Kalman Filter based Mono-SLAM algorithm and Klein and Murray’s [5]
keyframe-based PTAM algorithm. The latter work in particular utilises two parallel threads to offload
large-scale batch optimisation into a less time-critical background thread, a strategy that has been
reused in subsequent SLAM implementations such as for example the state-of-the-art open-source
framework ORB-SLAM [6]. The batch optimisation thread essentially performs bundle adjustment [7],
an optimisation problem over camera poses and 3D point coordinates similar to the one solved in
large-scale structure-from-motion pipelines [8–10]. Visual SLAM is often complemented by an Inertial
Measurement Unit to robustify localisation (e.g., Qin et al. [11]).

While the most established representation for real-time SLAM systems is a 3D point cloud,
the community has explored various alternatives. Delaunoy and Pollefeys [12] use a triangular mesh
to directly model the surface of the environment and impose photometric consistency terms between
different views. Newcombe et al. [13] introduced DTAM, a tracking and mapping approach in which
dense depth information is found as a minimal cost surface through a voxel space in which each
cell aggregates photometric errors between a point in a reference view and corresponding points in
neighbouring frames. As demonstrated in works such as Hornung et al. [14] and Vespa et al. [15],
the RGBD-SLAM community has also explored the use of binary occupancy or continuous occupancy
likelihood fields. Voxel-based volumetric discretisation of space has found another application in
the form of implicit, distance-field based mapping. By using RGBD sensors and the early work of
Curless and Levoy [16], Newcombe et al. [17] have shown the seminal KinectFusion framework for
real-time dense tracking and mapping. The technique has inspired many follow-up contributions,
including recent ones that bridge the gap to Euclidean distance fields [18] and fuse multiple subvolumes
for global consistency [19]. Further popular alternatives for structure representation are given by
lines [20,21] or surfels, the latter one being utilised in Whelan et al.’s ElasticFusion algorithm [22].

A commonality to all the above-mentioned algorithms is that they employ either explicit or
implicit low-level primitives for representing the environment (i.e., points, lines, triangles, or grid
cells). Each element is constrained directly by the measurements, and resilience with respect to noise
and missing data may be increased by enforcing local smoothness constraints. However, the mentioned
approaches do not impose less localised constraints given by semantic or other higher-level information
about certain segments of the environment. As a simple example, consider a situation in which we
would know that an entire set of 3D points lies on a plane. We would prefer to model this part of
the environment using a single instance of plane parameters rather than many 3D points. However,
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such strategy assumes the existence of a front-end measurement segmentation module able to detect
meaningful parts of the environment (e.g., planes, objects of a certain class), establish correspondences
between such measurement and scene segments, or even understand certain geometric properties
about them (e.g., 3D object pose). Examples of such front-end modules are given by the Yolo9000
object detection framework [23], the Mask-RCNN framework for instance-level segmentation [24],
Chen et al.’s hybrid task cascade framework for instance-level segmentation [25], or PointRCNN for
3D object pose estimation in 3D point clouds [26], to name just a few.

A system that is able to then incorporate higher-level knowledge such as learned semantic priors
into the 3D representation of a real-time mobile visual perception system is defined in Davison’s
studies FutureMapping 1 & 2 [1,27] as a Spatial AI system. In other words, a Spatial AI system
is characterised by generating a joint geometric-semantic 3D understanding about an environment.
In its most basic form, the extracted semantic front-end information is simply used to perform a
segmentation and labelling of the 3D representation of the environment. Choudhary et al. [28]
and Gálvez-López et al. [29] are among the first to propose a real-time SLAM system that actively
discovers and models objects in the environment. Later, similar object-detector-based systems
have been introduced by Sünderhauf et al. [30] and Nakajima and Saito [31]. Stückler et al. [32],
McCormac et al. [33,34] and Pham et al. [35] in parallel investigated the semantic 3D segmentation
and labelling of dense representations. While initially only at the level of object-classes,
Grinvald et al. [36] and Rosinol et al. [37] have most recently investigated object-instance level 3D
segmentations of the environment.

As also outlined in Davison’s studies [1,27], there are further desired properties of a Spatial
AI system, which are memory efficiency and the imposition of higher-level prior knowledge into
the geometric representation of the environment. While the above-mentioned systems already maintain
a graphical model describing the object-level structure of the scene as well as the observabilities of
objects in frames, complete surface representations still ask for dense, low-level representations to
model the geometry of each individual part of the environment [33,34]. The most straightforward way
to reduce the dimensionality and employ higher-level priors is given by omitting shape optimisation
altogether and employing complete object geometries such as CAD models as known priors. This
strategy is pursued by the seminal work SLAM++ by Salas-Moreno et al. [38], which employs a
graphical model that simply parametrises camera and object poses. A more flexible approach was later
proposed by Ulusoy et al. [39], where the assumption of a known CAD model is relaxed to a fixed set
of possible 3D shapes. Their work focuses on photometric multiview stereo, and the optimisation of
the pose of each object is complemented by a probabilistic, discrete selection of the best element within
the shape set. Gunther et al. [40] propose a similar framework for indoor modelling with a given set
of CAD models of pieces of furniture. Another interesting way of including semantic knowledge is
proposed by Häne et al. [41], who use the semantic information to adapt the smoothness constraint
between neighbouring voxels in a dense representation.

One obvious disadvantage of frameworks such as SLAM++ [38] is that they are limited to
a small set of possible 3D shapes which are given upfront. In other words, they do not employ
a generic class-specific model that would permit the continuous optimisation of a given object
shape. As introduced in [42], low-dimensional shape representations can be obtained using one
of a few approaches of manifold learning (e.g., PCA, kernel-PCA, Isomap, LLE, auto-encoder).
However, unsupervised learning and the resulting optimisability of such representations are far
from trivial, which is why the first lower-dimensional models employed in the literature are explicit.
Güney and Geiger [43] and Chhaya et al. [44] employ class-specific, optimisable meshes or wireframe
structures, respectively. Hosseinzadeh et al. [45] and Gay et al. [46] employ quadrics as shape primitives
to approximate the space occupied by certain objects.

Approaches that finally achieve dense, optimisable environment representations by
low-dimensional graphical models and implicit, class-specific shape representations are given by
Dame et al. [47] and Engelmann et al. [48], who both rely on PCA to learn a manifold for an admittedly
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simple class of shapes: cars. Alismail et al. [49] and Zhu and Lucey [50] later on propose more
advanced frameworks that rely on deep neural networks to generate point clouds or occupancy
grids from the latent low-dimensional representation. Hu et al. [51] finally extend this approach to
a complete SLAM framework that optimises a larger scale graph over many frames and multiple
complex-shaped objects of different classes (e.g., chairs, tables) as well as latent shape representations
for each object instance in parallel. Note that low-dimensional latent representations for modelling
3D geometry have also been utilised by Bloesch et al. [52] and Zhi et al. [53]. More specifically, they
rely on photometric consistency to optimise codes in each keyframe that generate depth maps using a
deconvolutional architecture. The representation however seems suboptimal as it does not respect
object-level partitioning and furthermore leads to redundancy (i.e., one depth map in each keyframe
but a potentially large overlap between neighbouring keyframes).

Spatial AI systems that aim at a real-time understanding of both the geometry and the semantics
of an environment generally contrast with more time consuming offline approaches that start from
known camera poses and known low-level geometry only to infer an object-level representation of
the scene. For example, Gupta et al. [54] and Li et al. [55] make use of a large-scale database of 3D CAD
models to estimate object poses and geometries and replace parts of the 3D geometry. Chen et al. [56]
further rely on contextual relationships learned from the 3D database to constrain the reconstruction.
More recently, Huang et al. [57] propose holistic scene grammars to infer scene layouts from single
images based on analysis by synthesis. The nondifferentiable optimisation space is traversed using
Markov Chain Monte Carlo (MCMC). In contrast, Grabner et al. [58] propose a discriminative approach
to predict an object model and its pose. Although interesting and related, the listed scene layout
estimation frameworks are not designed for high efficiency and rely on large databases of object shapes
rather than compact, optimisable shape representations.

3. What Representations Are Pursued by Spatial AI?

Classical solutions to camera-based SLAM rely on least-squares optimisation objectives that
consist of minimising many localised photometric or geometric residuals over many views.
They depend on an explicitly parametrised, high-dimensional, and low-level representation of
the environment. Examples of the latter are given by geometric primitives such as 3D point clouds,
sets of lines parametrised in 3D, voxel-based occupancy maps or distance fields, or even surface
representations in the form of a triangular mesh. The resulting optimisation problems often have
a graphical representation in which nodes represent optimisation variables (e.g., camera poses,
3D landmark coordinates) and edges represent correspondences between 3D points and frame
observations and thus locations in which the relative positioning between the related variables can
be cross-validated against the actual measurements. As introduced by Dellaert and Kaess [59],
such graphical models are often referred to as factor graphs. A classical example is illustrated
in Figure 1.

Figure 1. Factor graph of a classical visual Simultaneous Localisation And Mapping (SLAM) problem
in which multiple views observe multiple 3D landmarks.
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While possibly giving us accurate information about the physical boundaries of an environment,
such representations generally do not reveal anything about the composition or semantics of a scene.
As the entire modelling process purely relies on the online measurements, the robustness of classical
methods is furthermore easily compromised by unmodelled effects such as occlusions or violations
of assumptions made on surface reflectance properties (e.g., in computer vision, we often assume
Lambertian surfaces such that the coordinates of a light source or the appearance changes under
varying camera inclinations do not have to be taken into account). In the following, we will discuss a
series of forward-looking environment representations, their use within SLAM algorithms, as well as
expected resulting benefits.

3.1. Hybrid Graphical Models

Our first step towards the proposal of a new environment representation employed in future
spatial AI algorithms consists of introducing naturally occurring segmentations. For example, indoor
man-made environments are naturally composed of a background structure filled with objects that have
certain geometric and semantic properties. It makes sense to adopt this partitioning for the internal
environment representation used within a SLAM algorithm for the following reasons:

• It gives us more flexibility in choosing different but more appropriate parametrisations for
the geometry of each segment.

• It gives us a reasonable partitioning according to human standards enabling us to assign a class
or—more generally—semantic attributes to each segment.

Figure 2 indicates a desktop-scale example in which a camera moves in front of a table on
which we have two paper cups and a plant. By using object detections or semantic segmentation
results predicted in each view, we would start by defining the representation of the environment as
the following set of variables:

• Two instances of a thin conical object with location and shape parameters. Due to rotational
symmetry, the pose TWOwould have 5 Degree of Freedom (DoF), and the number of shape
parameters would be 3 (bottom radius r1, top radius r2, and height of the object h).

• One set of 3D points {p1, . . . , pm} to represent the plant. The cardinality of the set is, for
the example, given by the number of sparse, multiview feature correspondences between
the images.

• A plane vector n to represent the background structure.

Figure 2. Visual SLAM scenario in which a camera observes a simple Desktop scene. The environment
is represented as a hybrid composition of objects and primitive geometric elements (e.g., points
and planes).
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Using an algorithm to establish correspondences between views, we can finally define
the graphical structure of this optimisation problem. Figure 3 shows the resulting factor graph in
which each factor represents a residual error of an incidence relationship between measurements and a
combination of camera pose, background structure parameters, sparse 3D point location, or object
pose and shape. Owing to the fact that it involves objects of different classes or levels of abstraction
(i.e., points, planes, shapes), we denote such a type of problem a hybrid graph optimisation problem.

Figure 3. Factor graph corresponding to the example shown in Figure 2. Each factor in the graph
(indicated by a black box) represents a residual error from an incidence relationship between
measurements and a combination of a camera pose and some object or background geometry
related parameters.

3.2. Hierarchical Hybrid Graphical Models

One further aspect that is still missing in the envisaged representations is the naturally occurring
hierarchical nature of man-made structures. We again start from the example of indoor man-made
environments, which have a hierarchical, multiscale subdivision into buildings, floors, and rooms
(cf. Figure 4). Establishing and reconstructing such hierarchies within visual SLAM algorithms may
lead to the following strong benefits:

Figure 4. Example hierarchical, tree-based structure of man-made indoor environments.

• A natural subdivision of the graph into multiple subgraphs, which is a requirement in larger-scale
applications where the complete map can no longer be loaded into memory. The hierarchical,
tree-based structure of the map permits loading submaps of different scales (e.g., entire floors or
just single rooms).

• An agreement between the tree structure of the map and the natural segmentations
and hierarchical subdivisions used by humans, which simplifies man-machine interaction.

• Parent structures appearing as separate nodes in the optimisation graph and enabling
the construction of higher-order residual errors.

To illustrate the latter argument, we again picture a concrete scenario in which a floor cleaning
robot navigates in an office building. Let us imagine that—after traversing the first room—it passes



Sensors 2020, 20, 2572 8 of 29

through a corridor and enters another room to continue its task. Each room has a rectangular
footprint with vertical walls and is furnished with one table and four chairs, the chair shapes being
the same within each room. The resulting graphical model that exploits the hierarchical structure of
the environment is indicated in Figure 5.

Figure 5. Factor graph for a visual SLAM problem in which a robot moves from one room through a
corridor into another room. Both rooms contain 4 chairs of similar shape and one table. The hierarchical
structure of the environment is exploited for the imposition of higher-order constraints. The bottom
level of the environment representation consists of object parametrisations (θ11, . . . , θ14 represent
chairs in room one, θ31, . . . , θ34 chairs in room 3, and θ15 and θ35 tables in room 1 and 3, respectively),
background planes nxy (6 for room 1 and room 3, and 4 for room 2, which is the corridor), and point
clouds for the representation of unstructured segments of the environment. At the centre level,
we have variables rx which parametrise the different rooms in the environment (e.g., parameters
of a rectangular footprint and a room height). The factors between the bottom and the centre
layer enforce the consistency of the room parameters and the individual planes, and thus implicitly
enforce higher-order constraints such as orthogonality of planes. We furthermore have one average
parametrisation θx used to enforce the similarity of all objects of similar shape within each room.
Factors between the centre and the top layer finally constrain the individual room parameters to be
consistent with some floor parameters f (e.g., the vertical coordinate of the floor may be enforced to be
the same in each room).

3.3. Expected Advantages of the Proposed Environment Representations

The envisaged environment representations aim at a radical change in how we represent
and optimise environments in visual SLAM. Inspired by the recent success of deep learning in computer
vision, the hierarchical object-level representations of the environment leverage artificial intelligence
to identify the segmentation and composition of an environment. However, deep learning may not
only be employed for solving front-end tasks such as the segmentation of images and the initialisation
of a graphical model as outlined in Section 3.1. Auto-encoder architectures have successfully been
employed to perform dimensionality reduction on high-dimensional object shape representations,
thus leading to low-dimensional embedding spaces to parametrise and constrain the shape of an object
of a certain class [60].

The expected benefits of the generated representations therefore are:

• Compact map representations: whether talking about a planar surface representing a wall or
a more complex object shape, the object-level partitioning permits the choice of class-specific
implicit low-dimensional representations. While choosing a simple three-vector to parametrise a
plane, more complex objects could be modelled using the above-introduced, artificial intelligence
based low-dimensional shape representations. The compact representations have obvious benefits
in terms of memory efficiency, a critical concern in the further development of next-generation
Spatial AI systems.
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• Low-dimensional representations: by employing class-specific, we implicitly force optimised
shapes to satisfy available priors about their geometry. In contrast to current approaches which
use high-dimensional, semantically unaware representations that only employ low-level priors
such as local smoothness, the (possibly learned) higher-level priors we may employ for certain
objects of known classes are much more powerful and implicitly impose the correct amount
of smoothness for each part of the object. It is conceivable that such techniques will have a
much better ability to deal with measurement disturbances such as missing data or highly
reflective surfaces.

• Current low-level representations enable the automated solution of low-level problems such as
the efficient, collision-free point-to-point navigation in an environment but do not yet enable
the execution of more complex instructions that would require an understanding of semantics
and composition. Hierarchical hybrid graphical models would give machines a much more useful
understanding of man-made environments and notably one that is presumably much closer to
our own, human reasoning.

4. A New Benchmark

We now proceed to the introduction of our new benchmark for Spatial AI systems. After a review
of existing datasets in the literature, we present our new synthetic datasets along with their main
advantages, creation, and evaluation metrics.

4.1. Review of Existing Datasets and Benchmarks

Numerous visual-sensor-based datasets have been publicly released for different purposes
and made great contributions in the SLAM and the deep learning communities. Within the SLAM
community, the TUM-RGBD [61] and the KITTI [62] datasets are noteworthy examples that use custom
camera arrangements for specific scenarios such as indoor SLAM or self-driving cars. The datasets are
fully calibrated, come with ground-truth, and even provide full online benchmarking (i.e., they provide
additional examples for which ground truth is disclosed and for which a server can automatically
evaluate submitted results). Within the learning community, a notable example of a dataset for
semantic image labelling is given by Microsoft’s Coco Dataset [63], the result of an extreme manpower
and time effort to mask semantic ground truth labels of 1.5 million images over 80 object categories.
Similar examples are given by NYU’s Depth Dataset [64], which includes depth images that can be
used to complement the network input. The ADE20K dataset [65,66] contributes further with fully
semantically annotated datasets with detailed attributes such as cropped and occluded situations, yet it
does not provide 3D information. Another interesting work combining 2D and 3D information is given
by the Sun3D dataset [67], which uses weak manual labelling of semantic objects in a subset of frames
and utilises structure from motion to propagate the semantic 2D and 3D labels into neighbouring
frames. The method, however, depends on robust propagation and rich loop closures to ensure
the accuracy of the labelling.

Predictions from 2D images (even if complemented by depth information) easily suffer from
the challenge given by occlusions in the data, which is why the current research trend shifts the focus
from an evaluation over 3D instead of only 2D data. Novel datasets containing ground truth
information about the contained 3D objects along with their semantics, poses, and shapes are
therefore in great demand. A solid starting point in this direction is given by Stanford’s 3D Scene
Datasets [55] and ScanNet [68]. In order to gain object-level ground truth for their datasets, they
retrieve similar 3D models from the online database ShapeNet [69], which are subsequently aligned
with the measurements. While this technique works reasonably well, it suffers from two problems.
First, the alignment is influenced by the quality of the measurements, which poses a challenge in
the presence of noise, outliers, and partial measurements. Second, the models retrieved from ShapeNet
may not have the exact same 3D shape as the real-world models, thus leading to discrepancies in
the ground truth object shape as well. In summary—although these datasets are useful to develop
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novel methods and perform qualitative comparisons—they miss accurate ground truth data that could
be used to perform quantitative comparisons for both object poses and shapes. A partial remedy
to this is given by the synthesised realistic datasets presented by Alhaija et al. [62], who perform
augmented reality to insert virtual models synthesised by a neural network into the original KITTI
image sequences. While this gives us exact ground truth knowledge about the 3D pose and shape
of the contained objects, the approach is still limited in that objects are always generated while fully
visible in the foreground and never have consistent illumination. In other words, the approach does
not realise complex mixed reality scenarios in which an arbitrary number of objects could be inserted
at arbitrary places in the real world, and all resulting occlusions would be perfectly modelled.

Our novel benchmark datasets are motivated by this circumstance and inspired by the ICL-NUIM
datasets [70], which introduce a method to synthesise photo-realistic image sequences from virtual
environments with adequate light tuning and noise addition. Our datasets provide similar synthetic
and photo-realistic image sequences of complex indoor scenarios, along with stereo RGB images,
RGB-D depth images, and 6-axis IMU readings. We furthermore complement the commonly available
ground-truth data of camera trajectories by semantic instance-level labels and full information
about the scene composition along with the ground truth 3D models and poses of semantic
objects. Figure 6 gives an overview of our datasets. The datasets are available on our website
http://mpl.sist.shanghaitech.edu.cn/SSSBenchmark/SSS@MPL.html.

Figure 6. An overview of five provided datasets with RGB images from the sequence at the top,
a top view of the scene in the middle, and a top view of the semantic maps at the bottom.

4.2. Dataset Creation

In recent times, the rapid development of Graphics Processing Unit (GPU) performances
and computer graphics algorithms eases the efficient generation of highly realistic virtual datasets.
The main advantages of synthetic datasets are:

• Rendering engines model the imaging process according to some preset parameters and with
a unified computer clock for each virtual sensor. This effectively saves the effort for intrinsic
and extrinsic calibration of the multisensor system, including the tedious time stamp alignment
between RGB, depth, and semantic images as well as the IMU readings.

• The convenience given by the software-based adjustment and replacement of objects and cameras
vastly increases the efficiency of the entire dataset generation process.

• The diversity of the freely available, virtual 3D object models including the variability of
their texture maps enables the automatic generation of a large number of highly variable
datasets, which improves the generality of the subsequently developed Spatial AI, SLAM,
and deep learning algorithms. If designed well, the dataset properties including the virtual

http://mpl.sist.shanghaitech.edu.cn/SSSBenchmark/SSS@MPL.html
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multisensor setup, the sensor trajectory, the scene layout, and the objects’ composition,
arrangement, and appearance can be steered at the hand of a simple input script.

We use the Eevee renderer in Blender 2.8 to generate our datasets on a workstation with GTX
1050 Ti and i7-7700 CPU. We provide a complete and easy-to-use framework for the generation of
novel datasets and five pregenerated datasets with certain characteristics for the development of future
indoor Spatial AI systems. Table 1 summarises the provided datasets with scale, diversity and classes
of objects, as well as occlusion and camera motion properties.

Table 1. Provided RGB-DS Datasets.

Datasets Duration [s] Semantic Objects Properties

Single Room Datasets

rm1 70 2C1, 1C2, 1T1, 1T2, 1S1, 1TV1
6.4 × 6.5 × 3.1 m

slight shaking
slight occlusion

rm2 60 1C1, 2C2, 2C3, 1C4, 1T1, 1T2
8.0 × 6.0 × 3.2 m

heavy shaking
slight occlusion

rm3 40
8C1, 2C2, 1C3, 1T1, 1T2, 4T3

2T4, 1T5, 4T6, 1S1

10.0 × 14.0 × 2.8 m
slight shaking

heavy occlusion

rm4 16.7 3C1, 2C2, 2C3, 2T1, 1T2, 1T3
12.1 × 12.0 × 3.2 m

no shaking
no occlusion

Multiroom Dataset

rm5 60
2C1, 1C2, 2C3, 1C4, 2C5, 1C6
1T1, 1T2, 1T3, 1T4, 1S1, 1TV1

combo of rm1 and rm2
slight shaking

slight occlusion

In the column “Semantic Objects”, C = Chair, T = Table, S = Sofa, TV = TV. e.g., 2C1 = two chairs of type “1”.
In the column “Properties”, the first set of parameters (e.g., 6.4 × 6.5 × 3.1 m refers the volume of the room);
“shakiness” refers to the jerkiness of the camera motion (no shaking=camera on the gimbal, heavy shaking=hand-held
motion); “occlusions” refer to the semantic objects’ occlusions in the camera views and the overall degree of clutter
in the scene.

4.2.1. RGB Map

To get photo-realistic RGB data, we set up proper irradiation of sun and lamps, map objects with
4K high-quality textures and HDRI from https://www.CC0textures.com/ and https://www.poliigon.
com, and adjust reflection and transparency to guarantee the complexity and authenticity. Our primary
output is stereo RGB sequences for research on stereo SLAM systems. Both cameras have a default
framerate of 30 fps, a baseline of 0.12 m, a CCD sensor size of 35 mm, a configurable horizontal
FOV of 72.7 degrees (24 mm focal length), an F-stop of F22, and SVGA resolution (i.e., 1024 × 768).
The intrinsic parameters are summarised as

K =

702.127 0 512.0
0 702.127 384.0
0 0 1

 . (1)

We furthermore add noise to the rendered datasets to simulate the behaviour of real-world
cameras. Normal DSLR cameras contain three types of noise: photon shot noise (PSN), read noise (RN),
and PRNU (Pixel Response Non-Uniformity) noise. Their relation with the raw image pixel brightness
Braw is given by

Braw = (PSN + PRNU) · EL + RN− µRN , (2)

https://www.CC0textures.com/
https://www.poliigon.com
https://www.poliigon.com
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EL represents the amount of electrons assembled in the optical sensor during a period of exposure
time. µRN is given by the camera’s denoising process encountering the read noise, hence the latter
can be ignored. Photon shot noise follows a Poisson distribution and in most cases, it is close to a
normal distribution. PRNU varies for different photons and can be regarded as a normal distribution.
According to [71], the Camera Response Function (CRF) transfers the linear high dynamic range Braw

to the nonlinear low dynamic range B at the output. We refer to [70] and reformulate (2) into

B = cr f (∑N
i=1 Braw

N
+ N(0, σe

√
∑N

i=1 Braw

N
) + N(0, σp)), (3)

where Braw contains the exposure time ∆t, and N can be calculated from N = f ps ·∆t. We set σe = 0.05
and σp = 0.02 for our case. However, there is no setting for the exposure time ∆t in Blender. We propose
a work-around to calculate the exposure time S from the equation

EV = ISO100 + log2
ISO
100
− log2

A2

S
. (4)

We set ISO100 = 9.67 from the ISO 100 chart and the aperture to A = F/11 for indoor scenarios.
By defining the virtual ISO as 640, the exposure time S can be calculated by setting the EV value
in Blender. We set EV to integer values within the range [−9,−8, ..., 4, 5] (low-exposure images are
calculated due to the fact that dark pixels are more sensitive in terms of their CRF) to render images of
different exposure in a static scene. Through experimentation, we finally choose the best-fitting CRF
conversion curve (cf. Figure 7). We furthermore test the CRF in different scenes to revert RGB to linear
space and compare with EXR data exported from Blender and list the error in Table 2.

Figure 7. The Camera Response Function (CRF) curve calculated with images of different exposure
time in the same static scene.
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Table 2. CRF test in different datasets.

SSIM MSE PSNR SSIM MSE PSNR

rm1 0.9514 71.3171 29.5989 0.9530 23.5196 34.4165
rm2 0.8980 720.4544 19.5547 0.8990 625.2354 20.1704
rm3 0.9258 436.6094 21.7299 0.8677 167.2929 19.2812
rm4 0.9031 327.233 22.4227 0.9593 177.5349 25.6380
rm5 0.9191 230.0157 24.5132 0.9264 35.2029 32.6650

The similarity of CRF recovered raw image and Blender generated raw image, SSIM is structural similarity index,
MSE is the mean-squared error, PSNR is the peak signal-to-noise ratio, the left three columns are errors of facing
sunlight frames, the right three columns are errors of backing sunlight frames.

To add noise to the RGB images, we set ISO and A static, and tune the frames-per-second
and exposure time to get different types of noisy and blurred RGB images (cf. Figure 8).

Figure 8. The left image is generated with f ps = 30 Hz and EV = −3 (exposure time: 0.0029 s).
The result is a noisy, low-intensity image; The right imageis generated with f ps = 120 Hz and EV = 1
(exposure time 0.0464 s). As a result, we obtain significant motion blur and higher intensity.

4.2.2. Depth Map

To support research on RGBD-SLAM systems, we furthermore synthesise depth images from
a depth camera that coincides with the left view of the stereo camera. We scale down linear raw
depth and export images without colour space conversion. This comes at the cost of a slight loss of
depth information beyond 20 m as we use only the 16-bit grayscale format to balance visualisation
and accuracy. A single bit therefore represents 0.305 mm of real distance.

Realistic depth data captured from a real-world camera always contains noise. We break down
depth noise into three parts: lateral noise, disparity noise, and depth axis noise.

For lateral noise, [72] provides a method to generate Kinect-like depth. They first compute
the angle between the camera ray and the surface normal corresponding to each 3D point from
depth image, then use a threshold of angle to constrain the valid depth value. In our case, we adjust
the threshold that any angle larger than 82 degrees is taken as an invalid pixel as the reflection of
the infrared light is considered to be out of the receiver’s range, thus causing a collapse of the measured
depth. We furthermore implement the method from [72] to extract canny edges in the depth image
and disturb the depth value along the gradient direction. The disturbance is sampled from a normal
distribution with mean 1 and standard deviation 1 (in unit pixels), to generate intersected edges
between the background and the objects.

Most depth sensors consist of an emitter and a receiver, accounting for baseline noise.
On the receiver side, the reflection of an infrared ray from the background can be occluded by
objects. Furthermore, empty pixels are caused by missing receptions of reflected rays. We define
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another virtual depth camera with a horizontal baseline of 0.075 m to the left and warp the depth
map using

Zright(x + ∆x, y) = min(Zle f t(x, y), Zle f t(xi, y)), (5)

∆x =
baseline · fp

Z
. (6)

Given that the sensors have an ideal shift along the x-axis, the difference along the y-axis can
be ignored. We use bilinear interpolation to find the nearest pixel coordinates in the right image
and record the smallest Zle f t that project onto that pixel. The nonvisited pixels are labelled as invalid.
A gradient filter along the x-axis is applied to smooth out wrongly labelled invalid pixels from
the coordinate approximation.

For the depth axis noise, we refer to the method in [70], where the background is given high
noise and closer objects are given low noise to guarantee high SNR. We therefore adjust the disparity
equation as in

α · baseline · fp

Znew
=

α · baseline · fp

Zold(x + nx, y + ny)
+ N(0, σ2

d ) + δs. (7)

In our case, (nx, ny) is normally distributed with 0 mean and a standard deviation of 0.5 (σd = 0.5),
and δs = 0.2. baseline = 0.075 is a virtual horizontal baseline between emitter and receiver, fp is
the focal length in pixels, and α is a parameter that tunes the depth noise distance. Figure 9 shows an
example of a noisy depth map.

Figure 9. Comparison of a rendered depth image from Blender and a noise-processed realistic depth
image. The noisy depth image includes disturbances along the edge, depth collapse, and reserved SNR.

4.2.3. Segmentation Map

As the last ingredient, we add high-quality semantic segmentations to assist with the tasks
of finding, implementing, and tuning front-end modules for newly designed Spatial AI systems.
The ground truth semantic segmentations are again generated in camera views that coincide with
the left stereo view. They are generated by replacing the texture maps with uniform RGB colours for
each object instance. The colour is notably fixed by the class label. We furthermore eliminate all light
sources to make sure that no shading on the objects appears. We use 16-bit PNG format to limit each
object’s interior colour variations within one bit. An example set of images for a single time instant in
one of our datasets is illustrated in Figure 10.
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Figure 10. Semantic segmentation image (right) corresponding to an RGB image (left). The black colour
is a random object, and instances with the same class label are marked in the same RGB color.

4.2.4. Camera Trajectories

Next, we discuss the definition of the camera trajectories. Realistic trajectories could be obtained
by running a SLAM algorithm over real image streams captured by a handheld or a robot embedded
camera and using them for the virtual camera in the synthetic scene. However, the sparse and uneven
timestamps between keyframes gained from a SLAM tracker do not serve well for the generation of
IMU data and limit the flexibility in customising the framerate or the actual trajectory of the virtual
camera. We therefore synthesise smooth trajectories emulating handheld camera motion for all
datasets. The camera in Blender follows a convention different from the one used in computer vision
(i.e., z-axis points forward, x-axis points right, and the y-axis points downward), which is why Blender
transformation matrices Tblender need to be rectified following the equation

TgroundTruth = Tblender ·

1 0 0
0 −1 0
0 0 −1

 . (8)

We use Bezier curves to generate smooth trajectories for cameras to follow. The control points
of the poly-Bezier curves also let angular velocity vary smoothly. Keyframes are distributed evenly
along the curves, and linear velocity can be controlled by scaling the keyframe timestamps. In order to
simulate the shakiness of handheld cameras, we furthermore add different F-curve perturbations along
each axis of rotation and translation. By tuning both the phase and frequency of these perturbations,
the camera may be configured to exert motion similar to a real camera.

4.2.5. IMU Data

To obtain reliable IMU data, we increase the timestamp resolution by a factor 10 (i.e., 300 Hz for a
30 fps camera). Simulated IMU accelerations and angular velocities are finally obtained by numerical
differentiation. Accelerations are derived using

a =
pt+1 + pt−1 − 2pt

∆t2 (9)

The effect of gravity is subsequently accounted for by subtracting 9.8 m/s2 along the vertical
direction. To conclude, the readings are transferred from the global to the local camera frame
(i.e., the extrinsic transformations between the camera and the IMU are set to an identity
transformation). Next, we use Rodrigues’ formula to calculate the angular velocity ω

W =
1

2(t1 − t0)

θ

sinθ
(A−AT), (10)
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ω = [−W12, W02,−W01], (11)

where A represents the relative rotation from frame R1 to frame R0, and θ the angle of rotation:

A = R1RT
0 , θ = cos−1(

tr(A)− 1
2

) (12)

To conclude, the angular velocities are again rotated into the respective camera frame.
The ground truth data of the trajectories are recorded line-by-line in a separate file, where each

line contains the pose variables in the order (timestamp, x, y, z, qw, qx, qy, qz).
Furthermore, for IMU data is in the order (timestamp, x, y, z, radx, rady, radz). The unit for

translations is in meters, and the time unit for timestamps is 1
30 s.

4.2.6. Semantic Object Data

Next, we discuss the definition of the environment. An example with individual objects and their
arrangement is illustrated in Figure 11 for dataset rm3. The contained object models range from simple
clean-cut geometries to complex folded cloth meshes. The models are either generated by ourselves
or downloaded from the 3D model website TurboSquid (https://www.turbosquid.com/). We reduce
the face and vertex resolution of each object to minimise physical size without damaging the quality
of the shapes. The transformation matrix (i.e., pose) of each semantic object is stored along with
its class label in an individual file. We also provide one .obj model for each added type of object
and the empty room.

Figure 11. The geometry of rm3 with the placement of semantic objects and room environment as an
illustration of the composition of our dataset. The image below shows calibrated semantic objects in
their initial canonical poses.

4.3. Dataset Toolset

We open-source our scripts for the generation and noise addition of datasets under the link https:
//github.com/CaoYuchen/SSS-dataset. The purpose is to supersede complex manual operations in
Blender and merge our data processing methods with the Blender API and also provide realistic sensor
noise processing for RGB and depth data. The scripts also allow users to simply tune input parameters
for the generation of customised datasets. We expect it can be furthermore used in-the-loop inside
a (non-real-time) Spatial AI system that operates by the analysis-by-synthesis paradigm. Figure 12
explains the entire pipeline of our dataset generation scripts.

https://www.turbosquid.com/
https://github.com/CaoYuchen/SSS-dataset
https://github.com/CaoYuchen/SSS-dataset
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Figure 12. Pipeline for generating datasets. The green boxes represent parameters that can be tuned
for customised dataset generation, the white boxes are core codes to generate results in yellow boxes,
including RGB, depth and semantic maps, camera poses, object poses, object 3D models, IMU data,
and depth and RGB noise.

Table 3 demonstrates the average durations in unit seconds to generate a single image. The last row
demonstrates the RGB and depth noise processing time for each image. The time measurements are
recorded on a Windows 10 system with an eight-core i7-7700 CPU and a GTX 1050Ti.

Table 3. Average durations for single image rendering.

RGB Depth Seg

rm1 5.07 4.75 2.31
rm2 5.07 1.79 1.15
rm3 10.17 8.89 4.72
rm4 7.87 7.19 1.29
rm5 6.57 6.54 2.89

RGB noise 5.02 Depth noise 16.32

4.4. Evaluation Metrics

The proposed metrics for Spatial AI systems evaluate all aspects of the Hybrid Graphical
Representations introduced in Section 3.1. This includes the quality of the poses of the virtual sensor
setup for every image in the sequence, the correctness of a label distribution over the identified objects
in the environment, and the correctness of the class, pose, and shape for every correctly identified object
in the environment. In the following, we will introduce all evaluation aspects along with their metrics.

4.4.1. Evaluation of Sensor Poses

In order to evaluate the localisation accuracy of a Spatial AI system, we reuse two standard
measures which have also been used by the TUM-RGBD benchmarking [61] frameworks:

• Average Trajectory Error (ATE): The Average Trajectory Error directly measures the differences
between corresponding points of the ground truth and the calculated trajectories. The evaluation
is preceded by a spatial alignment of these two trajectories using a Procrustes alignment step.
The latter identifies a Euclidean or similarity transformation that aligns the two trajectories
as good as possible under an L2-error criterion. The residual errors are due to drift or gross
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errors in the sensor motion estimation, which the ATE characterises by either the mean, median,
or standard deviation of the distance between the estimated and the ground truth position:

ATE =


mean

median
std-dev


‖tGT(t0)−Qtest(t0) + µ‖

· · ·
‖tGT(tn)−Qtest(tn) + µ‖

 , (13)

where Q and µ are the trajectory alignment parameters recovered from the Procrustes
alignment step.

• Relative Pose Error (RPE): The ATE is not very robust as a large number of absolute locations
may easily be affected by only few gross estimation errors along the trajectory. The RPE in
turn evaluates relative pose estimates between pairs of frames in the sequence. Particularly if
the chosen pairs of frames are drawn from local windows, the RPE is a good measure of average
local tracking accuracy:

RPEt =


mean

median
std-dev





‖RT
GT [0](tGT [k]− tGT [0])

−RT
est[0](test[k]− test[0])‖

· · ·

‖RT
GT [n− k](tGT [n]− tGT [n− k])

−RT
est[n− k](test[n]− test[n− k])‖


(14)

RPER =


mean

median
std-dev




‖ log
(
RT

GT [0]RGT [k](RT
est[0]Rest[k])T) ‖

· · ·

‖ log
(
RT

GT [n− k]RGT [n](RT
est[n− k]Rest[n])T) ‖,


where log(·) represents the Riemannian logarithmic map.

4.4.2. Scene Label Distribution

In order to evaluate the overall capacity of a Spatial AI algorithm to parse a scene and gain a
correct understanding of the composition and semantics of the individual objects, we propose to
take the Intersection over Union (IoU) between the ground truth and the inferred label distributions.
This measure identifies whether or not certain object classes have been identified, whether all of them
have been identified, or whether some of them have a nonunique representation. Note that all class
labels that are not present in the ground truth set of labels are simply being replaced by the label
“other”. In addition to the overall IoU for the entire label distribution, the analysis is completed by
individual IoUs for each class. An example distribution is indicated in Figure 13. If ci and c′i denote

the ground truth and estimated class label counts, the per-class IoU is given by IoUclass i =
min(ci ,c′i)
max(ci ,c′i)

,

and the overall semantic labelling capability is given by IoU =
∑i min(ci ,c′i)
∑i max(ci ,c′i)

.

Figure 13. Abstract ground truth and estimated class label distributions.
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4.4.3. Object Class, Pose, Shape, and Completeness

The most important part of a modern evaluation of a Spatial AI system consists of assessing
the quality of each individual object inferred in the scene. However, before any of the inferred objects
can be evaluated, we first need to establish correspondences between each inferred object and the best
possible correspondence within the ground truth set of objects. These correspondences are established
as follows:

• For each object, we pick the nearest and the second nearest object judged by their object centers.
• We first ensure that the distance to the best is below a certain threshold.
• We then ensure that the ratio between the distance to the second best and the distance to the best

is below a certain threshold.

For each identified correspondence, we then evaluate the class, pose, shape, and completeness.
The object class is trivial to evaluate as it is simply right or wrong. However, other criteria are more
expensive to evaluate and require prior steps to transform and align the representation of the shapes.
This is due to the fact that the shape and the pose of an object are discerned by the introduction of
an object-specific reference frame, and the location and orientation of this reference frame may vary
depending on the employed object representation (e.g., some CAD models may be registered in a frame
where the z-axis points upward, others where it points forward). More importantly, there may be a
difference between the convention for this reference frame between the ground truth and the estimated
shape representations.

Our shape evaluation procedure starts by transforming the representations into a common
reference frame, making their representations comparable, and performing an alignment.
The alignment is necessary as the magnitude of the aligning transformation can be used to express
the object pose error, and the pose error should be compensated for before we are able to evaluate
the shape error. The detailed steps are as follows:

• First, we need to express the geometries in a common reference frame. We reuse the similarity
transformation given by Q and µ identified by the prealignment step in the trajectory’s ATE
evaluation and combine it with the individual object-to-world transformations to transfer all
shape representations into a common global frame.

• The next step consists of expressing geometries in comparable representations. We choose
point-clouds as there exist many algorithms and techniques to deal with point clouds.
For the ground truth data, we generate point-clouds by simply using the vertices of each CAD
mesh. However, in order to ensure sufficiently dense surface sampling, larger polygons are
recursively subdivided into smaller subtriangles until the surface of each triangle is below a
certain threshold. For the reconstructed model, we also transfer the employed representation into
a point cloud:

– If it is a point cloud already, we leave it unchanged.
– For a polygon mesh, we simply employ the above-outlined strategy to ensure a sufficiently

dense sampling of the surface.
– For binary occupancy grids, we employ the marching cubes algorithm to transfer

the representation into a mesh, and then employ the above-outlined technique to obtain a
sufficiently dense point cloud.

– For a signed distance field, we employ the Poisson surface interpolation method, by which
we again obtain a mesh that is transformed as above.

• Once both the ground truth and the estimated object of each correspondence are expressed as point
clouds in the same global reference frame, we proceed to their alignment. We choose the GoICP
algorithm [73] for their alignment as it enables us to find the globally optimal alignment requiring
neither a prior about the transformation nor correspondences between the two-point sets.

Having completed the alignment of each object’s representation, we may finally complete
the evaluation of all other criteria:
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• Pose: The accuracy of the object pose is simply evaluated by the magnitude of the translation
and the angle of rotation of the aligning transformation identified by GoICP [73].

• Shape: The accuracy of the shape is assessed by first applying the aligning transformation
identified by GoICP and then taking the mean and median of the Euclidean distances between
each point in the estimated point cloud and their nearest neighbour in the ground truth point set.
Further shape accuracy measured such as the standard deviation and the maximum and minimum
of the point-to-point distances are given as well.

• Completeness: We conclude by assessing the model completeness of each object. This is done
by—again—first applying the aligning transformation to the estimated point set. We then mark
each point in the ground truth point set as either observed or not. A point is observed if it is
within a certain threshold distance of one of the inferred points. The final completeness measure
is simply given as

completeness =
#observed GT points

#GT points
(15)

However, this measure obviously depends on a good choice of the threshold distance, which is
why the completeness measure is evaluated for multiple such distances. This leads to a curve
that expresses the quality of the shape as a function of this radius. The final measure to evaluate
the shape completeness or quality is given by taking the area under this curve.

A toy example for the point-to-point distances as well as the ground truth point marking is
illustrated in Figure 14.

Figure 14. Toy example of the proposed shape accuracy and shape completeness measures. Assume that
the estimated (red) and ground truth (blue) points are realigned, the point-to-point distances are given
by—for each point in the possibly lower-dimensional estimated point cloud—finding the distance to
the nearest neighbour in the ground truth point cloud. Completeness is estimated by marking observed
points in the ground truth point cloud as observed if they are within a certain radius of an estimated
point (illustrated in purple).

4.4.4. Background Model

The final geometric element to assess is the structure of the background. We again start by
applying Q and µ to express the background geometry in the ground truth frame. We then remove all
objects from the estimated geometry and transform the remaining representation into a point cloud by
following the same strategy as for the object point clouds. To conclude, we simply take each 3D point
in the estimated point cloud and find its nearest neighbour in the ground truth background model.
The quality of the background geometry estimation is finally expressed by taking the mean or median
of all distances between nearest-neighbour pairs.
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4.4.5. Computational Aspects

As introduced in [1], one of the main requirements of a Spatial AI system is given by
computational efficiency. The algorithm ultimately needs to be able to run and infer even complex
joint semantic-geometric representations on embedded systems. A complete report of the performance
of a Spatial AI system is therefore concluded by indicating the time and memory consumption of
the computation.

5. Application to An Example Spatial AI System

We conclude our exposition by applying our proposed benchmark to two available, state-of-the-art
Spatial AI systems. The first one is given by the Kimera pipeline [37], which performs state-of-the-art
tracking followed by an estimation of surfaces in the form of a triangular mesh and a semantic
labelling of the individual surface elements. The framework does not maintain an object-level
representation nor uses semantic knowledge to select tailored representations for individual objects.
The second framework is given by Deep-SLAM++ [51], which first infers the object-level composition
of the scene and then represents each model by a class-specific low-dimensional latent representation.
While Kimera is a bottom-up framework aiming at high accuracy, Deep-SLAM++ is better at inferring
scene compositions and complete geometries. The frameworks are evaluated over the baseline
experiment given by dataset rm4.

5.1. Application to Kimera

The Kimera pipeline includes a high-performance tracking module that is able to work in either
monocular, monocular-inertial, stereo, stereo-inertial, or RGBD modes. We use the stereo-inertial
mode as it the most stable one. Kimera achieves highly accurate tracking for which even the ATE
measures indicate very low drift errors. The ground truth and the estimated trajectories, as well as
their deviations along the trajectory, are illustrated in Figure 15 and summarised in Table 4.
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Figure 15. Estimated (red) and ground-truth (blue) trajectories (left), as well as errors over time (right).
Dataset: rm4. Unit: [m].

Table 4. Absolute Trajectory Errors (ATE) for Kimera. Dataset: rm4. Unit: [m].

Parameter Value Parameter Value

rmse 0.014061 std.-dev. 0.0088741

mean error 0.010951 min error 0.00018726

median error 0.0071863 max error 0.046873
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While Kimera is able to estimate highly accurate trajectories, the geometry representation remains
primarily a geometrical one. The pipeline relies on a module denoted the mesher to extract dense
surface geometries and furthermore assigns a semantic class for each polygon from the originally
image-based semantic annotations. However, the framework does not employ any prior shape
knowledge, which therefore leads to generally incomplete and inferior object geometries. We therefore
complement the Kimera tracker and the image-based semantic labels by an additional module taken
from the Deep-SLAM++ pipeline [51].

5.2. Application to Deep-SLAM++

In order to overcome the weakness of purely geometric pipelines such as SemanticFusion [33],
Fusion++ [34], and Kimera [37] and incorporate the benefits of imposing higher-order knowledge
about the geometry of classes of objects, we append an additional module from the Deep-SLAM++
pipeline [51] in which the environment representation is changed into an object-level representation,
and object shapes are represented by deeply trained shape auto-encoders. The overall steps of this
pipeline look as follows:

• We run an object detector over the left images of each estimated stereo frame and use both depth
and semantic information in the bounding box to perform a segmentation of each observed object.

• For each detected object, we find all neighbouring frames in which the object is observable, detect
redundancies, and initialise unique object representations with a list of frames in which each
object is observable.

• We use Pix3D [60] to predict complete object geometries from the partial, image-based
observations. For each object, the initialisation is performed by using the centre observing frame.

• We refine the latent code of each object shape representation by minimising depth errors in all
observing frames. This finds a compromise between measurement fidelity and the application of
prior shape knowledge.

• To conclude, the individual object shape optimisations are alternated by object pose optimisations
in which the entire object shape is aligned with their respective observations.

For further details on the approach, the reader is kindly referred to the work of Lan et al. [51].
Figure 16 illustrates a map of the ground truth and the detected object centres, and Figure 17

indicates the ground truth and estimated label distributions. As can be observed, the framework has no
difficulties with the baseline dataset rm4, in which no object occlusions are happening. The framework
identifies the correct label distribution, and all objects are estimated at approximately correct locations.
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Figure 16. Birdeye view onto the environment with estimated (red) and groundtruth (blue) locations
of the objects using the approach of Lan et al. [51]. Dataset: rm4. Unit: [m].
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Figure 17. Ground truth and inferred class label distributions for dataset rm4 using the approach of
Lan et al. [51].

The most interesting part of the evaluation is finally given by evaluating the accuracy of the object
poses and shapes. Note that the accuracy of the object poses is additionally influenced by the slight
drift in the camera pose estimations, and it is hard to discern this influence from actual object pose
inaccuracies. The results are summarised in Table 5. As can be observed, each object class is correctly
identified, and reasonable shapes are estimated as long as the object geometry is sufficiently represented
in the training set for the employed Pix3D network. The detailed shape completeness measures as a
function of the threshold distance for the area-under-curve computation are illustrated in Figure 18.
An exception is given by object instance 7, which is a round table. The network has been trained
only on square tables and is hence unable to represent this shape. Overall, the framework achieves
relatively low pose errors while dmax and the shape completeness measures suggest that there is still
space for improvement on the quality of the object shapes. This is primarily due to the limited output
resolution of the Pix3D network as well as a generally degrading performance on realistic datasets that
contain a domain gap with respect to the training examples.
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Figure 18. Detailed shape completeness measures as a function of the threshold distance.
The area-under-curve serves as a final measure to evaluate the completeness and quality of all 11
object instances.
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Table 5. Analysis of the objects semantically reconstructed on dataset rm4.

Instance GT Model Estimated Model Alignment Errors & Completeness

1
GT:
chair1
Est:
chair

0.5-0.5
-0.4

0-0.2

0

0

0.5

0.2
-0.50.4

terr = 0.041895, Rerr = 0.096319

dmean = 0.025936, dmed = 0.0222

dstd = 0.015678, dmax = 0.095333

dmin = 0.00032615, compl = 0.7659

2
GT:
chair1
Est:
chair

0.2-0.5
0.4 0

0

0.2

0.5

0 -0.2
-0.2

-0.4-0.4

terr = 0.060021, Rerr = 0.056609

dmean = 0.015612, dmed = 0.012115

dstd = 0.012943, dmax = 0.064623

dmin = 0.00032818, compl = 0.8340

3
GT:
chair1
Est:
chair

0.5
-0.5
0.5 0

0

0

0.5

-0.5-0.5

terr = 0.041323, Rerr = 0.052128

dmean = 0.023013, dmed = 0.018508

dstd = 0.017844, dmax = 0.11128

dmin = 0.0004208, compl = 0.8203

4
GT:
table1
Est:
table

terr = 0.13587, Rerr = 0.10133

dmean = 0.024858, dmed = 0.012205

dstd = 0.021418, dmax = 0.10633

dmin = 0.00064865, compl = 0.7059

5
GT:
chair2
Est:
chair

-0.5
0.5

0

0.5

0
0.60.40.20-0.5 -0.2-0.4

terr = 0.071636, Rerr = 0.20242

dmean = 0.025514, dmed = 0.022047

dstd = 0.017295, dmax = 0.089588

dmin = 0.00028348, compl = 0.7519

6
GT:
chair3
Est:
chair

-0.4
0.50.5

-0.2

0

0.2

0.4

00

0.6

-0.5-0.5

terr = 0.046181, Rerr = 0.12623

dmean = 0.025655, dmed = 0.022377

dstd = 0.017597, dmax = 0.10529

dmin = 0.00035565, compl = 0.7665

7
GT:
table3
Est:
table

terr = 0.12321, Rerr = 0.055047

dmean = 0.037219, dmed = 0.030943

dstd = 0.030366, dmax = 0.18215

dmin = 0, compl = 0.4905
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Table 5. Cont.

Instance GT Model Estimated Model Alignment Errors & Completeness

8
GT:
table1
Est:
table

terr = 0.070875, Rerr = 0.031555

dmean = 0.023082, dmed = 0.01876

dstd = 0.016171, dmax = 0.10508

dmin = 0, compl = 0.7708

9
GT:
chair2
Est:
chair

-0.5
0.5

0

0

0.5

0.40.20-0.2-0.5 -0.4-0.6

terr = 0.097072, Rerr = 0.098674

dmean = 0.01585, dmed = 0.011098

dstd = 0.014224, dmax = 0.10307

dmin = 0.00023002, compl = 0.8179

10
GT:
chair3
Est:
chair

0.5

0-0.4

-0.2

0

0.4

0.2

0.2

0.4

0.6

0

0.8

-0.5-0.2 -0.4

terr = 0.052934, Rerr = 0.47158

dmean = 0.038789, dmed = 0.036827

dstd = 0.023687, dmax = 0.18855

dmin = 0, compl = 0.7478

11
GT:
table2
Est:
table

terr = 0.098702, Rerr = 0.075488

dmean = 0.044182, dmed = 0.034869

dstd = 0.037135, dmax = 0.21209

dmin = 0, compl = 0.6275

6. Discussion

Current Spatial AI systems vary strongly in their approach. While some frameworks start from
more traditional SLAM solutions and infer semantics and object-level partitioning in a bottom-up
scheme, others aim at an immediate understanding of the topological, object-level composition
of the environment thus enabling the representation of each individual object using a tailored,
class-specific representation of each object’s pose and shape. The strong variability of these approaches
contrasts with a lack of benchmark datasets for which all information such as semantic class
distributions, object-level composition, as well as object shapes are known. We have introduced
realistic novel synthetic indoor datasets for which such information is readily available. Combined
with the proposed evaluation criteria, we introduce a complete framework for benchmarking Spatial
AI systems assessing semantic, geometric, and topological aspects of the estimation and complete our
toolchain by flexible scripts to create novel datasets.

7. Conclusions

We have combined state-of-the-art solutions and techniques from the communities of
visual-inertial tracking, deep learning, and semantic SLAM to achieve a first genuine Spatial AI result
in which scenes are represented as a composition of objects with poses and shapes. Our conclusion is
that there is still substantial research to be done until both the quality and the computational efficiency
of such frameworks will meet the demands of most real-world applications, and it is our hope that this
work will be helpful in comparing and driving the future development of Spatial AI systems.
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