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Abstract: After Deep Learning (DL) regained popularity recently, the Artificial Intelligence (AI)
or Machine Learning (ML) field is undergoing rapid growth concerning research and real-world
application development. Deep Learning has generated complexities in algorithms, and researchers
and users have raised concerns regarding the usability and adoptability of Deep Learning systems.
These concerns, coupled with the increasing human-AI interactions, have created the emerging field
that is Human-Centered Machine Learning (HCML). We present this review paper as an overview
and analysis of existing work in HCML related to DL. Firstly, we collaborated with field domain
experts to develop a working definition for HCML. Secondly, through a systematic literature review,
we analyze and classify 162 publications that fall within HCML. Our classification is based on
aspects including contribution type, application area, and focused human categories. Finally, we
analyze the topology of the HCML landscape by identifying research gaps, highlighting conflicting
interpretations, addressing current challenges, and presenting future HCML research opportunities.

Keywords: human-centered machine learning; HCML; HCAI; human-centered artificial intelligence;
Deep Learning

1. Introduction

Artificial Intelligence (AI) represents the broad spectrum of automated decision mak-
ing from conditional logic to Neural Networks. Decisions or predictions made using
data-driven techniques fall into Machine Learning (ML), a subset of AI. The subset of Ma-
chine Learning techniques that use Deep Neural Networks (DNN) is called Deep Learning
(DL) (see Figure 1).

Machine
Learning

Artificial
Intelligence

Deep
Learning

Figure 1. Overview of Artificial Intelligence. In modern-day practice, Deep Learning (DL) and
Machine Learning (ML) are commonly referred to as Artificial Intelligence (AI), even though AI also
includes rule-based simpler techniques. In this paper, the term AI refers to ML and DL.

Over the last two decades, Artificial Intelligence (AI) research publications have grown
to account for 9% of all conference publications and 3% of all journal publications [1]. The
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majority of this AI research typically explores developing algorithms and optimizing tech-
nologies with an emphasis on performant models benchmarked on accuracy. Apart from
academic research, Machine Learning, Artificial Intelligence, and Deep Learning are incred-
ibly pervasive within data-abundant industries. These same industries have built products
and services atop an AI back-end with varying success. As the integration of performant
models within the industry continues, there is an equally increasing requirement to analyze
and improve the translation from the algorithmic model to end-user requirement.

1.1. Rise of Human-Centered Machine Learning (HCML)

HCML terminology has been used in publications over a decade ago. In an assistive
tool [2], Balasubramanian et al. claimed they introduced the term “Human-Centered
Machine Learning Algorithms” through their investigation on human-in-the-loop ML
systems. However, the HCML term started to gain and accelerate popularity in the
mid-2010s after the modern Deep Learning era started. The average user does not yet
understand the capabilities, limitations, and inner workings of AI. Therefore users have
reported concerns [3,4] regarding explainability, user experience (UX) with the interfaces,
user-data privacy, security, reliability, and dependability of AI systems. The need to solve
these issues has evolved into the field of Human-Centered Machine Learning (HCML).
Recognizing that algorithm optimization and innovative neural network architectures
alone do not solve usability and adoptability problems, the HCML field seeks to elevate
ML systems’ user-centered development. Reference to HCML terminology now exists in
formal and informal forums, such as AI publications, workshops, conferences [5], and blog
posts and articles from AI-focused corporations (see Figure 2).

Figure 2. Rise of AI-related publications and Human-Centered Machine Learning (HCML) publica-
tions.

HCML emerged as the research area investigating the methods of aligning machine
learning systems with human goals, context, concerns, and ways of work [5]. Several
different terminology and abbreviations have emerged alongside the many institutions
researching the user experience aspect of artificial intelligence. The widespread use of ML
and AI interchangeably has led institutions to use either of the terms Human-Centered
Machine Learning (HCML) or Human-Centered Artificial Intelligence (HCAI or HAI).
Several researchers have also started labeling this field the UX of AI (see Section 2 for
detailed description). However, all these terms’ underlying principle remains the same,
which is developing usable and adaptable, ‘Human-in-the-Loop’ machine learning systems.
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Some of the most common non-expert-user issues are explainability [6–10], inter-
pretability [11–14], privacy and security [15–20], reliability [21–25], and fairness [26–31].
These categories emerged as contributing research areas of HCML, and each plays a role in
the broader goal of improving the usability and adoptability of AI systems. It is important
to note that these research areas are not new but instead are aligned with the underlying
motivations of HCML. The growing demand to adapt ML systems to real-life use cases
requires timely and in-depth HCML research; however, it is imperative to survey the
landscape of previous works in this emerging field.

1.2. Scope and Contribution

This paper analyzes HCML work related to Deep Learning (as highlighted in Figure 3).
HCML emerged in the mid-2010s with increasing popularity, mainly due to the widespread
adaptation of Deep Learning. The rapid development of hardware to power Deep Learning
algorithms enabled novel neural network architecture research. Deep Learning algorithms’
complex nature was the main reason for the rise of some sub-topics in HCML, such as
explainability and interpretability. The exponential growth of Deep Learning and the
existence of sub research areas within HCML generated diverse research from algorithm
development and optimization to user studies research. The research focus varies, focusing
on the algorithm, user-studies, concepts, or a mixture of these.

Machine
Learning

Deep
Learning

Our
Focus

Human
Centered
Design

HCML

Figure 3. Human-Centered Machine Learning (HCML) is the intersection of Machine Learning
and Human-Centered Design (marked with pink stripes). In this paper, our focus lies in HCML
approaches related to Deep Learning as marked by the green area.

There has been no prior work done to investigate and detail Deep Learning related
prior work within the HCML domain to the best of our knowledge. Therefore, in this work,
we analyze recent approaches in HCML related to Deep Learning. In summary, our key
contributions of this work are:

• Working definition of HCML: Many leading research groups have interpreted HCML
through the lens of their respective institutions. Those interpretations present multiple
perspectives on the totality of HCML. Therefore, we have analyzed these interpreta-
tions and subsequently derived a working definition (see Section 2) that envelopes
the prevailing work in the HCML field. We validated the final definition through
consultation with leading academics and industry experts who are spearheading
HCML research.

• Systematic Literature Review: We employ a Systematic Literature Review (SLR)
technique to filter and select publications, as explained in Section 3. We categorize
and critically analyze 162 publications based on four criteria. Prior work stems from a
range of domains such as medicine and software engineering, and the nature of these
publications takes several forms. Some focus on specific user-concerns while others
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highlight general aspects within HCML. These variations paved the way for us to
build a taxonomy of HCML publications (see Section 4).

• Challenges and opportunities for HCML research: Given the emerging nature of the
HCML field, research conducted in HCML faces challenges from several directions.
Our analysis across the defined scope of HCML reveals opportunities for future
research. We discuss these points in detail in the discussion section (see Section 5).

2. Defining HCML

Human-Centered Machine Learning, also referred to as Human-Centered Artificial
Intelligence (HCAI or HAI), is gaining popularity due to the concerns raised by influential
technology firms and research labs about the human context. A workshop in conjunction
with the Conference on Human Factors in Computing Systems in 2016 [5] explained
that HCML should explicitly recognize the human aspect when developing ML models,
re-frame machine learning workflows based on situated human working practices and
explore the co-adaptation of humans and systems. In early 2018, Google Design (https:
//design.google/library/ux-ai/accessed on 1 April 2021) published an article noting
that HCML is the User Experience (UX) of AI. Referring to a real consumer ML product,
Google highlighted how ML could focus on human needs while solving them in unique
ways that are only possible through ML. Several research projects (https://hcai.mit.
edu/accessed on 1 April 2021) by the Massachusetts Institute of Technology (MIT) on
self-driving technologies called their approach Human-Centered Artificial Intelligence.
The MIT team recognized both the development of AI systems that are continuously
learning from humans and the parallel creation and fulfillment of a human-robot interaction
experience. In 2019, the Stanford Institute for Human-Centered Artificial Intelligence (https:
//hai.stanford.edu/accessed on 1 April 2021) was initiated with the goal of improving AI
research, education, policy, and practice. They recognized the significance of developing
AI technologies and applications that are collaborative, augmentative, and enhance human
productivity and quality of life. A workshop (https://sites.google.com/view/hcml-20
19 accessed on 1 April 2021) held in 2019 with the Conference on Neural Information
Processing Systems for Human-Centered Machine Learning focused on the interpretability,
fairness, privacy, security, transparency, accountability, and multi-disciplinary approach
of AI technologies. Started in 2017, Google People + AI Research initiative (https://pair.
withgoogle.com/accessed on 1 April 2021) published a 2019 book presenting guidelines
for building human-centered ML systems. This team is researching the full spectrum of
human interactions with machine intelligence to build better AI systems with people.

Considering the scope of the HCML/HCAI prior work and publications by leading in-
dustry and academic institutions, we derived a definition for HCML that covers the breadth
of this existing work. We validated the definition using feedback from several researchers
working in the same domain and further validated with some influential researchers in
leading academia and industrial institutions’ Human-Centered AI research teams.

Human-centered Machine Learning (HCML): Developing adaptable and usable Ma-
chine Learning systems for human needs while keeping the human/user at the center of
the entire product/service development cycle.

• “Adaptable" includes adding features such as explainability, interpretability, fairness, privacy,
security, transparency, and accountability.

• “Usable" refers to the UX of AI, including system usability and user burden.
• “Human needs" implies the significance of the problems we are selecting to solve with AI.
• “Entire development cycle" includes all steps from conceptualization to maintenance, which

extends from Human-Centered Design to working systems that are continuously learning.

There is a natural incentive to research all the principles mentioned previously; how-
ever, this is seldom achieved in practice. In individual research, the entire development
life-cycle is only partially detailed, possibly due to emphasis on the focused technicalities
of the research. Therefore, we selected research that demonstrated one or more design
elements matching the above definition of HCML research.

https://design.google/library/ux-ai/
https://design.google/library/ux-ai/
https://hcai.mit.edu/
https://hcai.mit.edu/
https://hai.stanford.edu/
https://hai.stanford.edu/
https://sites.google.com/view/hcml-2019
https://sites.google.com/view/hcml-2019
https://pair.withgoogle.com/
https://pair.withgoogle.com/
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As shown in Figure 4, HCML work lies across many aspects of Machine Learning. We
define algorithmic work related to HCML as Back-End HCML and work with interactions
with humans as Front-End HCML. We excluded algorithm-centric back-end HCML pa-
pers as it would divert our focus away from the baseline HCML concepts. For instance,
analyzing and classifying explainability algorithms is beyond this paper’s scope and may
be reviewed in separate works, such as [32,33]. However, algorithmic contributions with
Front-End HCML practices, such as user evaluations, were included.

Figure 4. Human-Centered Machine Learning (marked with dashed lines) research lays over a broad
spectrum, as shown here. The intersection of Machine Learning Research and Human-Centered
Design is the domain we identify as Human-Centered Machine Learning.

3. Systematic Literature Review Approach

Systematic Literature Review (SLR) is a technique used to provide an extensive
overview of the literature extracted by a repeatable and objective process. Although SLR
was initially used in research within the domain of medicine, it is also gaining popularity
in computer science [34–37]. We chose to follow the SLR approach when selecting literature
on Human-Centered Machine Learning because it reduces the subjective nature of the
process while widening the search area. Following the development and finalization of the
working HCML definition, we conducted a three-phase SLR approach.

Phase 1:

We performed a domain-specific keyword and title search for “Human-Centered
Machine Learning” and “Human-Centered Artificial Intelligence”. We employed Google
Scholar (https://scholar.google.com/accessed on 1 April 2021), ACM Digital Library (
https://dl.acm.org/accessed on 1 April 2021), and IEEE Xplore (https://ieeexplore.ieee.
org/Xplore/home.jsp/accessed on 1 April 2021) to sample a diverse collection of research.
We downloaded 200 papers as the initial step. We went through the titles, keywords, and
abstracts of all papers and selected 85 publications that matched.

Phase 2:

We used a specific selection process based on a set of specific inclusion and exclusion
criteria to select papers. The selection process was to use five independent researchers
working in the field of AI and HCML to vote for publications based on the inclusion and
exclusion criteria, which is as follows:

• Included—Deep Learning papers published from 2016 (when HCML re-emerged)-
May 2020.

https://scholar.google.com/
https://dl.acm.org/
https://dl.acm.org/
https://ieeexplore.ieee.org/Xplore/home.jsp/
https://ieeexplore.ieee.org/Xplore/home.jsp/
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• Included—Traits that matched our HCML definition of usability and adoptability.
• Included—Publications surveys and guidelines that are tagged as Human-Centered

Machine Learning.
• Excluded—Work that did not contain real human/user inputs in one or more stages

of development.

Equally weighted vote distributions from the researchers were used to select papers.
From the initial 85 papers of the initial pool, this selection process picked 31 papers. These
31 papers were used as the basis for expanding the initial search base. We used additional
HCML keywords, extracted from the selected papers, including “Human-AI interaction”,
“user experience”, “user-centered design”, “empirical-study”, “end-user machine learning”
and “machine learning”. Using these targeted keywords, we downloaded an additional
50 publications. After analyzing them, we identified a broad and diverse range of keywords
used in HCML related work.

Phase 3:

In the third stage, in addition to the keyword search using search engines that we used
for the first stage, we expanded our search to proceedings that typically have papers with
Human-Centered Design and Machine Learning Research. This includes, CHI proceedings
(https://sigchi.org/conferences/conference-history/chi/accessed on 1 April 2021), UIST
Proceedings (https://sigchi.org/conferences/conference-history/uist/accessed on 1 April
2021), IUI proceedings (https://sigchi.org/conferences/conference-history/iui/accessed
on 1 April 2021), Neural Information Processing Systems proceedings (https://nips.
cc/accessed on 1 April 2021) and AAAI proceedings (https://www.aaai.org/accessed
on 1 April 2021). Since our focus is on Deep Learning and HCML, we downloaded all the
publications of the conferences and journals mentioned above from 2016. Using python
scripts, we filtered out possible HCML work by looking for keywords. In HCI publications,
we searched for all Deep Learning related terms and filtered all publications with at least
one match. In AI publications, we searched for human-centered design related keywords.
As the final step, we manually went through 320 (including the 50 papers from the search
in phase 2) filtered publications and selected 131 papers using the same selection process
in phase 2. In total, we analyzed 162 publications in this work.

4. Classifying HCML Research

Despite being a nascent field, an attempt to classify HCML related work is beneficial
in defining future HCML research boundaries. Categorizing the work can be done along
multiple axes, given that HCML consists of many different types of contributions focusing
on different domains and different users. While resulting in taxonomy, this also allows
us to find desiderata by looking into the missing pieces from the categorization. In this
section, we classify the work under several criteria, making it easier for researchers to see
the HCML spectrum.

The breadth of our HCML definition also includes work done in areas such as ex-
plainable AI (XAI) and data privacy. Sub-research areas such as these have a number of
researchers creating different research avenues [11,12,15,17,20,26,28,32,38–41]. For instance,
there are works on developing algorithms and novel DL architectures in XAI to add ex-
plainability to the models [42–46]. In comparison, there is also work that considers user
experience and user requirements for XAI [7–10,47], and evaluates algorithms and models
with user studies [48]. However, analyzing and categorizing XAI algorithms is not the
focus of this paper. Our focus concerns the usability and adoptability of ML systems per
the underlying motivation of HCML.

4.1. Contribution Varieties
4.1.1. User Studies

Per the HCML definition, it is desirable always to keep the human at the center when
developing ML systems. This includes understanding the user requirements, the inputs for

https://sigchi.org/conferences/conference-history/chi/
https://sigchi.org/conferences/conference-history/uist/
https://sigchi.org/conferences/conference-history/iui/
https://nips.cc/
https://nips.cc/
https://www.aaai.org/
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the iterative development from a feedback loop, and the evaluation. This can be achieved
through many approaches; however, user studies are among the most frequently used
approaches to infuse user input into the development. Many existing works in literature
have successfully utilized user studies in their development process. Some approaches
conduct evaluations and comparisons between existing systems through user studies;
however, we will explore work that presented these user studies as the main contribution
in this section.

The work of Cai et al. [49] uncovered the requirements of an AI assistant for use in the
medical domain. They conducted a thorough study with 21 pathologists to understand
how non-AI-experts interact with an AI-tool [49]. They kept the pathologists’ involvement
active throughout the AI assistant’s development and presented the findings in a detailed
manner. These efforts can be said to make an excellent contribution to HCML. In contrast,
to engage the human throughout the process, Liebling et al. [50] conducted a study only
to understand the users’ needs for AI language translation applications. Luger et al. [51]
conducted a set of interviews to understand people’s perception of voice assistants from
tech giants. Since they conducted the study in 2016, it may be outdated. Assistants have
evolved significantly over the last four years. In the same area, Candello et al. [52] ran a
study to identify the effects of typefaces when communicating with chatbots. In a case
study, Yang et al. [53] explored ways to sketch Natural Language Processing (NLP) powered
user experiences and presented a wizard-of-oz type NLP rapid prototyping method. Yang
et al. [54] studied the affective aspect of conversational agents. In a comparison study, Diaz
et al. [55] analyzed age-biases in algorithms related to sentiment analysis. Gero et al. [56]
conducted a study to understand mental models people build regarding AI using an
AI-game. Schaekermann et al. [57] conducted a study to compare two AI assistants that
classify medical time series data.

Apart from studies to understand aspects of specific applications, there have been
attempts to understand user concerns, such as explainability and fairness, that later trans-
late into ML models’ features. One comprehensive study [48] has been conducted to
explore current practices of explainable-AI in the industry to understand the desirable
techniques for real-world usage. Another study [58] attempts to identify gaps between
current XAI algorithmic work and practices towards user-centered XAI. In a similar study
using industry personnel [59], Holstein et al. compared AI-fairness practices in literature
and the real world. In a user study [60] conducted with people from the Amazon Mechan-
ical Turk (https://www.mturk.com/accessed on 1 April 2021), the trust of an AI model
based on stated vs. real-world accuracy of the model is explored. Another user study has
been conducted while attempting to find general principles for interpretability [61]. They
specifically investigate the interpretability of human-simulatable machine learning models.
There have been other studies carried out to explore design approaches for interactive ML
tools for non-expert ML engineers to develop models quickly [62]. As opposed to a generic
interactive ML tool, Krening et al. [63,64] conducted a user study to investigate specific
aspects related to interactive reinforcement learning tools for novice ML engineers. In a
completely different attempt to mix a UX team with an AI team, Kayacik et al. [65] present
a study on how the teams from two distinct domains interacted to create an AI-Music
application. Hong et al. [66] investigated how users conceptualize, experience, and reflect
on their engagement in machine teaching.

Beede et al. [67] conducted a real-world study to evaluate a Deep Learning system
deployed to detect diabetic retinopathy. A study conducted by Santhanam et al. [68] in-
vestigated the effects of cognitive biases when evaluating the outputs of conversational
agents. Lin et al. [69] investigated the better approach for collaborative ideation from a
physical robot and a virtual agent. Pfau et al. [70] investigated the appropriateness of using
bots in games when real players drop due to various reasons. Madaio et al. [71] attempted
to understand the role checklists play in AI ethics using 48 practitioners. Xu et al. [72]
attempted to investigate children’s perception of conversational agents available in smart
devices. Smith-Renner et al. [73] studied how automatically generated explanations of ML

https://www.mturk.com/
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models shape users’ perceptions of ML models. Völkel et al. [74] explored how to mislead
chatbots in profiling users. A study conducted by Kaur et al. [75] found out that ML practi-
tioners often over-trust and misuse interpretability tools. Alaqaraawi et al. [76] evaluated
saliency maps, a popular explanation technique for CNN-based classification algorithms,
with a user study. Ishibashi et al. [77] investigated audio visualization techniques for audio
related interactive machine learning applications. Das et al. [78] explored whether humans
can improve performance using explainable AI capabilities with computer techniques that
surpass humans. Drozdal et al. [79] attempted to discover what is vital to ML engineers’
trust in the Auto ML system. Ohn-Bar et al. [80] studied an indoor navigation interface
for blind people. Dodge et al. [81] investigated how explanations impact people’s fairness
judgment. Yang et al. [82] studied how visual explanations affect end-users’ appropriate
trust in ML.

4.1.2. Applications

This section explores the literature that mainly focuses on AI application development
and follows HCML principles at one or more points in the development-life-cycle. For
example, this could be in the form of a user needs survey, interviews, or evaluating user
studies. ‘The Bach Doodle’ is an attempt to develop a web-based music-harmonizing app
for large scale deployment [83] where user feedback was used to evaluate the system and
ensure reliability before public release. Frid et al. [84] developed an AI background music
generation app for video creators where they integrated human input before, during, and
after the development. In the same domain, Louie et al. [85] investigated how to adjust an
AI music generation tool to minimize user burden with user experiments. The HCML ap-
proach has been used in developing assistive technologies. For example, Balasubramanian
et al. [2] carried out user experiments to understand the user perspective to develop an
assistive AI tool for the blind to grasp non-verbal cues. Kacorri et al. [86] also developed
an assistive tool for visually impaired people to get information about visual objects using
Deep Learning techniques. Similarly, Feiz et al. [87] used AI technologies to develop an
application enabling blind people to write on printed forms. Lee et al. [88] attempts to
improve object recognition based applications for blind people by leveraging the hand as a
point to consider when focusing on an object in a frame. Zhao et al. [89] developed a face
recognition tool for visually impaired people to identify their friends.

Fast et al. [90] attempted to create a camera and fiction-text-input based application
to detect human activities. Xu et al. [91] developed and evaluated a new chatbot trained
on Twitter conversations to be deployed on social media for customer service. EgoScan-
ning [92] is an application to fast forward first-person recorded videos by being content-
aware using object detection techniques. Presenting a unique concept, Kimura et al. [93]
developed an application (SottoVoce) to decode speech utterances without voice using
ultrasound and Deep Learning. Aila [94] is an application that acts as a document labeling
assistant and uses attention-based deep neural networks to perform it. Alghofaili et al. [95]
present a Deep Learning based application to pull up navigation aids in Virtual Reality
(VR) environments by using gaze patterns. Wu et al. [96] developed an AI-powered tool
to assist people with dyslexia to write posts on social media. Guo et al. [97] developed an
application to visualize event sequence predictions of multiple records. They used inputs
from machine learning practitioners before development and used eighteen participants to
evaluate the system. Roffo et al. [98] developed a tool to conduct a standard psychiatric
test to assess attachment in children for the first time automatically. VizML [99] is an
application made to visualize recommendations using neural networks. Laput et al. [100]
developed a system to detect hand activities using sensors available in smartwatches
by using a convolutional neural network. SmartEye [101] is an application that assists
smartphone users in taking good photos using a view proposal network. McCormack
et al. [102] developed an AI application that communicated with improvising musicians
in collaborative environments. Swire [103] is an application developed to retrieve user
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interfaces using sketches. Gamut [104] is a design probe to understand how data scientists
understand ML models.

The DeepWriting [105] application used generative neural networks to edit handwrit-
ten text, and the paper also published a dataset. A tone-aware chatbot was created by Hu
et al. [106] for customer care on social media. Kimura et al. [107] developed a system to
augment visual experiences by projecting around the primary display using generative
models. Huber et al. [108] developed an image-grounded conversational agent that uses
visual sentiment cues. Oh et al. [109] developed an application, DuetDraw, to draw in
collaboration with an AI. CheXplain [110] is a tool designed for physicians to understand
AI-based analysis on chest X-ray images. Wu et al. [111] developed a Deep Learning system
to predict and diagnose user engagement with mobile user interfaces. EarBuddy [112] is an
application to control wireless earbuds via interactions on a person’s face. PenSight [113]
is a tool where a camera is attached to a tablet pen to create seamless hand inputs using
both hands. OralCam [114] is a smartphone app for users to self-examine oral health using
Deep Learning. EmoG [115] is a generative tool to support storyboarding by incorporating
emotional expressions. Wu et al. [116] developed a system for acoustic activity recognition
targeting low user burden by using self-supervised learning techniques. ReCog [117] is a
mobile app for blind users to recognize personal objects by letting them train a neural net-
work with their photos. Mirror Ritual [118] is an effective mirror that displays a generated
poem to engage the user while conceptualizing an emotional state.

Iconate [119] is a tool created to generate complex icons based on text queries. Sun
et al. [120] present a system to aid model selection for demand forecasting. Im et al. [121]
attempted to create an application to derive social signals for online social platforms compu-
tationally. Xiao et al. [122] attempted to develop a prototype of an active-listening chatbot
to interview people. WorldGaze [123] tries to leverage the existing cameras of smartphones
to include gaze information to enrich voice assistants. Jensen et al. [124] present a system
to generate feedback for teachers in classrooms automatically. ARMath [125] is a Deep
Learning powered tool for children to discover mathematical concepts with real-life objects
with augmented reality. MaraVis [126] is a Deep Learning powered tool for real-time urban
marathon visualization and coordinated intervention. Silva [127] is a tool to find out poten-
tial sources of unfairness in datasets or ML models. An NLP-powered tool was developed
by Wambsganss et al. [128] for students to develop argumentation quality in writing by
providing feedback. Sterman et al. [129] developed a tool to visualize and model writing
styles using Deep Learning. Opisthenar [130] is a Deep Learning based tool to recognize
head poses and finger tappings. Zhang et al. [131] propose several techniques to correct
errors more efficiently when typing on mobile phone keyboards. Bylinskii et al. [132]
created a tool to predict the relative importance of elements in graphics and visualizations.
Cami et al. [133] introduce a new pen input space using hand postures. Sketchforme [134]
is a tool to generate intricate sketches based on text descriptions.

Lip-Interact [135] is a tool to provide silent voice commands via lip movement. Code-
Mend [136] is a tool to support search and integration of code for programmers. Hair-
Brush [137] is an interactive 3D hair modeling system. LabelAR [138] is an augmented-
reality-based tool to label objects for computer vision in a novel way. ViZig [139] is an
application developed with semi-supervised training to find anchor points in instruc-
tional videos. AlterEgo [140] is a wearable silent speech interface that allows users to
converse silently. Alcove [141] is an assistive comic reading tool for people with low
vision. iSeqL [142] is a tool designed for the rapid construction of customized text min-
ing models. Creative Sketching Partner [143] is a proof-of-concept intelligent interface
to inspire designers while sketching. Scones [144] is a tool that generates and modifies
sketches iteratively according to text descriptions. CQAVis [145] is an application to filter
high-quality comments from online community question answering forums. Zhelezniakov
et al. [146] investigated the requirements for pen-centered mathematical expression recogni-
tion applications. SaIL [147] is an assistive web navigation tool that injects important ARIA
landmarks automatically. Grover et al. [148] designed and evaluated intelligent agents
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to improve productivity and focus at work. Cartograph [149] is a visualization system
that uses knowledge from Wikipedia to create thematic maps. Kulahcioglu et al. [150]
created an affect-aware color palette selection tool for word cloud generation. VASTA [151]
is a vision and language-assisted programming-by-demonstration system for smartphone
task automation. Davis et al. [152] is an intelligent drawing partner that can improvise
and collaborate on abstract sketches. Piano Genie [153] is an intelligent controller for
non-musicians to improvise on the piano. SViM [154] is an adaptive screen-magnifier tool
for people with low vision to watch videos. Lee et al. [155] developed a tool to assess the
quality of rehabilitation exercises. Sun et al. [156] created a tool for developers to learn
about the dataset while labeling. These AI applications have incorporated the human
aspect in ML systems’ development and can thus be classified as HCML research.

4.1.3. Algorithms

Some work [157,158] has been done to improve the interpretability of the Deep Learn-
ing algorithms for general and computer vision purposes by employing user evaluations
to assess intended outcomes. Arendit et al. [159] developed an efficient image labeling
tool with user evaluations to support its intended performance. In a similar tool to effi-
ciently label audio samples, Kim et al. [160] also follow a similar human-centered approach
to evaluate success. Although these can be identified as tools, the key contribution, as
described in the publications, is developing and evaluating the algorithm. We classify
these papers as algorithmic contributions that follow HCML principles. Banovic et al. [161]
developed a new weakly supervised algorithm based on inverse reinforcement learning
to detect and generate human behaviors. Fridman et al. [162] developed an algorithm to
predict the driver’s states using videos of driver glances. Crowdverge [163] is an algorithm
to figure out whether crowds would agree on one answer for visual question answering
tasks. Huang et al. [164] developed an algorithm to augment static panorama images
through a realistic audio assignment. Guzdial et al. [165] developed an algorithm to design
levels in games like Super Mario and investigated the user aspect with level designers.
Kim et al. [166] present a Deep Learning based algorithm to estimate eye-gaze with low
latency. Seemo [167] is a framework developed to map emotions into vector representations
using representation learning techniques.

Ryolai et al. [168] explored ways to assign laughter to tangible objects. Yuan et al. [169]
trained a deep learning model to predict the scannability of webpage content. Cogam [170]
tried to generate explanations for machine learning models by incorporating the desired
cognitive load. Lai et al. [171] created a technique to annotate visualizations according
to text descriptions automatically. Soundr [172] used Deep Learning to figure out the
user’s spatial location and head orientation using voice. Duan et al. [173] developed a
technique to optimize UI interfaces automatically with error correction. Pfau et al. [174]
looked at how Deep Learning techniques can improve dynamic difficulty adjustments
in games. Bassen et al. [175] developed a reinforcement learning algorithm to optimize
educational activities in online courses. Donkers et al. [176] developed a recommendation
and explanation method and evaluated the quality with user studies. Arent et al. [177]
present a technique that generalizes parallel coordinated visualization techniques to se-
quences of learned representations. Eshan et al. [178] created a technique to generate
rationales automatically. Le et al. [179] developed a model to identify fingers in capacitive
touchscreens. CoSummary [180] is a technique to fast-forward surgical videos adaptively.
Micallef et al. [181] created a technique that uses interactive visualization to elicit the need
of domain experts to improve the accuracy of prediction models. Athukorala et al. [182]
created a novel adaptation technique for search engines. Mittal et al. [183] proposed an
architecture to generate emoticons using multi-modal input. Weber et al. [184] present a
combination of manual and automated Deep-Image-Prior-based image restoration tech-
niques. Schlegel et al. [185] illustrate a model-agnostic visual debugging workflow for
multi-target time series classifications.
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4.1.4. Non-AI-Expert Tools

Apart from applications that use AI in the back-end where the users are not exposed
to the underlying technology or AI model, some tools allow users to interface with the
AI algorithms [186–191]. These tools are often referred to as non-AI-expert tools or non-
expert tools in general. For instance, a voice assistant is an AI application for the user to
engage verbally. The user might not even know that AI algorithms run in the back-end.
However, a customized tool designed for a physician to interact with an ML model is a
non-AI-expert tool where the non-AI-expert manipulates AI algorithms without having
AI-specific knowledge. A non-AI-expert’s level of expertise can range from none, such as a
lawyer with no AI background, to a moderate level, such as a novice ML engineer. These
variations in knowledge require designers to determine the correct level of abstraction for
specific user groups. Here, we look at several attempts to develop such non-AI-expert tools
following the HCML approach. SMILY [192,193] is a prime example of a non-AI-expert
tool. It allows pathologists to change parameters of an ML model to search medical images.
The What-If Tool [194] is designed for non-expert ML engineers to carry out interactive
probing across different input variations. They have conducted an evaluation study with
ML students to validate their tool. To make machine learning models accessible to non-AI-
experts, Ramos et al. [195] showed how to leverage intrinsic human capabilities of teaching
to teach machines to do machine learning.

4.1.5. Principles and Guidelines

Among the HCML literature, this category pertains to research that compiles design
guidelines and principles for HCML or provides assistance to build HCML products and
services. These works stem from different intentions, such as guidelines for developing
intelligent user interfaces, visualization, prototyping, and human concerns in general.
Amershi et al. [196] present a set of guidelines resulting from a comprehensive study
conducted with many industry practitioners that worked on 20 popular AI products.
Some approaches have been focused on deriving requirements and guidelines for planned
sandbox visualization tools [197]. One article highlights guidelines related to three areas of
HCML, ethically aligned design, tech that reflect human intelligence, and human factors
design [198]. Browne et al. [199] proposed a wizard of oz approach to bridge designers with
engineers to build a human-considerate machine learning system targeting explainability,
usability, and understandability. Some papers attempt to identify what HCML is [200], and
discuss how AI systems should understand the human and vice versa. Apart from general
perspectives, Chancellor et al. [201] attempted to analyze literature in the mental health-AI
domain to understand which humans are focused on such work and compile guidelines to
maintain humans as a priority. In a slightly different layout, Ehsan et al. [202] attempted
to uncover how to classify human-centered explainable AI in terms of prioritizing the
human. Wang et al. [203] also tried to design theory driven by a user-centered explainable
AI framework and evaluate a tool developed with actual clinicians. Schlesinger et al. [204]
explored ways to build chatbots that can handle ‘race-talk’. Long et al. [205] attempts to
define learner-centered AI and figure out design considerations. Yang et al. [206] explore
insights for designers and researchers to address challenges in human–AI interaction.

4.1.6. Survey Results

Some work has focused on presenting analyzed results of surveys conducted towards
different goals Figure 5, such as understanding human perspectives before developing solu-
tions. For example, Cai et al. [207] present many hurdles software engineers faced working
in the machine learning field through a thorough survey and analysis. Other survey stud-
ies [208] focused on finding out people’s opinions about delegating tasks to AI agents to
help ML engineers and product developers. Dove et al. [209] surveyed to understand how
design innovation is practiced in the ML domain in terms of user experience.
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Figure 5. Classification chart. Each category has a few representative examples.

4.2. The ‘Human’ in HCML

The main component of HCML is the Human and thus elevating the significance of
the human. The ‘Human’ in HCML is defined across varying ML expertise levels, ranging
from no ML background to an expert ML scientist. The Human in HCML can also be
involved in various stages of the ML system development process in different capacities.
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For instance, the focus may be on the end-user, the developer, or the investor. One could
focus on a certain user-aspect when developing a product or service [83,160]; another could
be determining design principles for a particular ML system optimizing usability and
adoptability [48,65,196]. The multidimensionality of what is considered Human within
HCML contributes to the complexities within the field.

Considering the works that focused on the user side, some researchers catered to
general end-users or consumers [83,101,200,210], while others on specific end-users. Exam-
ples for these include people who need assistance [2,80,86–89,96,117,147], medical profes-
sionals [57,67,110,192,193], international travelers [50], Amazon Mechanical Turk [60,99],
drivers [161,162], musicians [102], teachers [124], students [128], children [72,125], UX de-
signers [65,115,206,209], UI designers [103,111,173], data analysts [97], video creators [84],
and game designers [70,165,174,211]. Apart from focusing on a specific user group, some
have tried to understand multiple user-perspectives from ML engineers to the end-user [48].
Some of the prior works that target the developer as the human focus on novice ML engi-
neers to help them develop ML systems faster [62,197]. Notably, the majority of works that
target the developer side focused on ML engineers [59,65,71,75,79,120,156,160,185,195,196,
198,199,201,207].

4.3. Application Domains

Machine Learning works well in many scenarios provided that a relationship exists
between the task at hand and the availability of data. This power of making decisions or
predictions based on data has empowered ML to infiltrate many other domains, such as
medicine, pharmacy, law, business, finance, art, agriculture, photography, sports, education,
media, military, and politics. Given that the majority in those sectors are not AI experts
developing AI systems for them requires us to investigate the human aspect of such systems.
Our analysis shows that application domains have specifically targeted gaming [63,70,165,
174,211], interactive technologies [69,112,113,118,130,131,133–135,137,140,144,152,153,155,
212,213], medicine [49,57,67,110,114,180,192,193,203,214,215], psychiatry [98], music [65,83,
85,102,153], sports [126], dating [60], video production [84], assistive technologies [2,80,
86,88,89,96,117,141,147,154,216], education [124,125,128,175,217], and mainly software and
ML engineering [48,59,62,75,79,111,120,156,159,185,195,197,207,218] based on our selected
literature.

4.4. Features of the Models

Features of AI models addressing the concerns of users to improve the usability and
adoptability of AI systems such as explainability, interpretability, privacy, and fairness
have been the focus of many HCML related work [6,12,20,26,58,73,76,81,104,178,219]. This
is not surprising, given the history of XAI research area dates back to 1980s [220,221]. In
a comprehensive study, Bhatt et al. [48] investigated how explainability is practiced in
real-world industrial AI products and presents how to focus explainability research on the
end-user. Focusing on game designers, Zhu et al. [211] discuss how explainable AI should
work for designers. A study [210] used 1150 online drawing platform users and compared
two explanation approaches to figure out which approach is better. Ashktorab et al. [222]
explored explanations of machine learning algorithms concerning chatbots. Although
explainability is not the main focus, some research [49,199] investigated the explainability
aspect when developing ML systems. Another work [202] tried to investigate who is the
human in the center of human-centered explainable AI. In addition, there exists work that
tried to bring a user-centered approach to XAI research [8,203]. Chexplain [110] worked on
providing an explainable analysis of chest X-rays to physicians. Das et al. [78] attempted to
improve humans’ performance by leveraging XAI techniques.

While explainability tries to untangle what is happening inside the Deep Learning
black boxes, interpretability investigates how to make AI systems predictable. For in-
stance, if a certain neural network classifies an MRI image as cancer, figuring out how the
network makes such a decision falls into explainability research. However, an attempt
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to build a predictable MRI classification network where a change of network’s parame-
ters results in an expected outcome falls into interpretability research. There have been
attempts [157,158,170] to develop novel interpretability algorithms using human studies
to validate if those algorithms achieved the expected results. Isaac et al. [61] studied what
matters to the interpretability of an ML system using a human study. Another study [75]
figured out that ML practitioners often over-trust or misuse interpretability tools.

Apart from these two common DL features, some other work considered the aspects of
fairness [55,59,71,127,200,201,223], understandability [192,197,199,200], and trust [60,79,82,201].
Fairness represents the degree of bias in decisions, such as gender and ethnic skews, that
influence the predictive model. For instance, gender and ethnic biases in the models can
cause serious impacts on certain tasks. Understandability is a slightly different feature
from explainability. While explainability shows how a model makes a certain decision,
understandability tries to show how a neural network works to achieve a task. Trust refers
to a subjective concern where the user’s trust towards the decisions made by a certain
model is studied.

5. Discussion

The breadth and depth of the classification presented in the previous section show that
HCML grows in many branches despite being a relatively new field of research. However,
given the variations in the field, the young age, and the rapid growth of AI, the HCML field
has numerous research gaps, challenges, and confusions that are interesting to be discussed
and analyzed. For example, a standard definition has yet to be agreed upon, resulting in
some liberal interpretations per researchers’ prerogative and the level of abstraction. Here
we provide a discussion (see Figure 6 for a summary of this section) concerning these gaps,
challenges, and confusions under several subtopics. Apart from this, it is also important
to discuss the scope and limitations of current research to identify the opportunities for
future work.

5.1. Human at the Center
5.1.1. Interpretation of ‘Human-Centered’

One of the main confusions we uncovered within HCML literature is identifying who
the ‘human’ is in HCML and how the ‘human’ is involved. As described in Section 4,
‘human’ could be any stakeholder of the work, ranging from the owner of the research
institute to the end-user. However, merely any kind of human involvement will not make
a particular AI research an HCML approach. The HCML approach depends on the phase
in which humans interact with the development life cycle, the purpose of the interaction,
and how they interact. For example, while many agree that HCML exists to create usable
and adaptable systems for users, others [224,225] argue that an ML engineer interfering
with the training loop when adjusting parameters is recognizable as HCML. The latter
perspective may be interpreted as a valid HCML approach assuming that interferences
from ML engineers contribute to improvements in usability and adoptability, apart from
accelerating and optimizing the training process. However, creating a tool centered on ML
engineers’ needs to accelerate the training process differs from claiming HCML is about
the human interfering with the training process.

5.1.2. Explainability Moving from Non-Experts to Experts

A thorough study conducted with leading industry research teams stated that, despite
being created to cater to user needs, ML engineers mainly use explainability research for
debugging purposes in practice [48]. The study investigates how to move the explainability
research to inform end-users rather than focus on implementation improvements for
engineers. These practical issues may already exist in other HCML research areas or
emerge soon if not addressed clearly.
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Figure 6. Summary of the Discussion Section. This figure represents the points discussed, and each
point is followed by the main idea behind it.

5.1.3. Too Much Focus on Software Developers

From automated data labeling tools to interactive machine learning tools, many HCML
related work made ML engineers the ‘human’ at the center. The majority of the work we
analyzed targets software engineers working in the ML domain. The remainder focuses on
an array of different stakeholders and makes software engineers the most focused ‘human’
in HCML research. These findings also further validate the results of Bhatt et al. [48].
Therefore, it is desirable to expand research to other non-AI-experts.

5.2. Challenges to HCML

After analyzing the confusions, problems, and gaps in HCML research, we scaffolded
the underlying challenges that must be addressed in future HCML guided research. These
challenges hinder the rapid and coherent development of HCML research. We discuss
these challenges under the four categories below.

5.2.1. Explicitly Recognizing as HCML Research

In our search for literature and forming the definition, we understood the confusions
that occur when labeling work as HCML. For instance, although XAI (explainable AI) serves
the overall goals of HCML, it is an independent field and is not mainly categorized as
HCML work. In XAI, research is being conducted to add explainability to models; however,
most publications do not follow a human-centered approach. This has reduced the number
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of works in studying the end-user or human aspect of explainable AI algorithms. However,
there are works that attempt to bring an HCML approach into XAI [8,47,58]. Although
XAI is the best example, this problem exists in research on other user-concerns, such as
interpretability, privacy, and fairness. We identified that one major reason for this is the
lack of extension of the HCML practices to small research teams.

5.2.2. Extending HCML to Small Research Groups

The problem of missing end-user involvement in HCML work seems to be in research
interests. Machine Learning researchers are focusing mainly on algorithm development
and optimization while the human-centered approach is practiced mainly by Human–
Computer Interaction (HCI) researchers. Therefore, collaborations between HCI and
ML research produce good HCML outputs. These collaborations and facilitation seem
well-established within large industry and academic research groups, such as Google
Research (https://research.google/accessed on 1 April 2021), Microsoft Research (https:
//www.microsoft.com/en-us/research/accessed on 1 April 2021), MIT (https://www.
mit.edu/accessed on 1 April 2021), and Stanford (https://www.stanford.edu/accessed
on 1 April 2021). Therefore, their efforts have to be appreciated. However, this facilitation
and collaborations are not well-established within small research groups. As a result, it is
not common to see small research groups publish good HCML work. We identified that
extending this HCML vision to smaller research groups will accelerate performant outputs
with the necessary usability and adoptability.

5.2.3. Resources and Administrative Support

The HCML research we analyzed had several possible improvements that could
be observed in terms of the completeness of work. However, achieving this will entail
challenges. For instance, some research uses human inputs to identify user requirements,
whereas other research used human users for evaluations. Apart from a small selection
of works, most of the corpora’s human-centered practice is limited to a particular stage of
the system development life cycle. While understandable that it is desirable to keep the
human at the center throughout the entire development or design cycle, there are many
practical hurdles. Access to a group of specific people, institutional ethics approvals, time
consumption, meeting internal and publication deadlines are some hurdles to overcome
to maximize human involvement throughout the process. These hurdles may result in a
lack of human involvement or motivate conducting a user study for superficial purposes
only. These reduce the quality of outcomes of HCML research, hence decelerating the
development of the field.

5.2.4. Support to Stand on Its Own

Many established research fields have their own high rated conferences and jour-
nals with high impact. For example, AI and ML have many conferences including
NeurIPS (https://nips.cc/accessed on 1 April 2021) and AAAI (https://www.aaai.org/
accessed on 1 April 2021), and HCI has its own conferences, such as CHI (https://dl.
acm.org/conference/chi accessed on 1 April 2021) and IMWUT (https://dl.acm.org/
journal/imwut accessed on 1 April 2021). However, HCML does not have a popular
conference or a journal yet. Although venues like IUI (https://dl.acm.org/conference/
iuiaccessed on 1 April 2021) and TiiS (https://dl.acm.org/journal/tiis accessed on 1
April 2021) include HCML work in their broader scope, those venues are not solely
focused on the HCML field. Having dedicated publication venues (examples include
ASSETS (https://dl.acm.org/conference/assets accessed on 1 April 2021), AHs (https://
augmented-humans.org/ accessed on 1 April 2021) for a field can help streamline the
research, as well as assist and solve many challenges mentioned in this section. We believe
that HCML has a certain maturity to be represented in its own publication venue, despite
being an emerging field.
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https://www.microsoft.com/en-us/research/
https://www.microsoft.com/en-us/research/
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5.3. Opportunities for HCML and the Future
5.3.1. Underrepresented Domains in HCML

At the inception of HCML, the main focus was on the end-user as in Human-Centered
Design. While the ‘human’ now represents a broader definition, there has been a definite
shift in focus to the software or ML engineers. Therefore, it is desirable to see more research
targeted to end-users in other general or specific domains. In analyzing industry-specific
AI trends and the adoption of HCML driven research, there are apparent shortcomings.
AI usage in agriculture is a real need [226]; however, publications related to HCML and
agriculture were scarce. Similarly, in medicine, the HCML aspect of medical AI applications
is rare, as algorithmic development and optimization dominate the field. Given that
medicine is a field filled with non-AI-experts working with critical situations, a human-
centered approach will ensure the novel algorithms can be packaged as applications that
are useful and adaptable, as Cai et al. [192] demonstrated. Other domains such as law,
music, art, chemistry, education, finance, media, politics, photography, and the movie
industry face the same under-representation problem in HCML research.

5.3.2. Improving Human Involvement

Exciting work with AI has been produced in law, such as using ML to help judges
decide bail [227]. However, such work did not fall within our HCML definition scope due
to the lack of investigation on the usability and adoptability of their application. They have
either hypothesized the user needs based on assumed user behavior or failed to present how
they derived the end-user requirements, namely the judges. This problem of researchers
presuming end-user requirements without purposeful investigation is prevalent in many
other works [228,229]. We believe that this practice does not work efficiently toward
developing usable and adaptable AI systems. Therefore, it is imperative that researchers
involve humans in the development process.

5.3.3. Leveraging Existing Work

AI technologies evolve fast and generate usable models and tools in the real-world.
Many of these significant works have not yet been studied in terms of real user aspects.
An opportunity exists to quickly leverage existing AI technologies to design, develop, and
validate real-world AI systems successfully. For instance, it could be investigating models
or even useful tools created by other researchers [187,230].

Going beyond small to medium scale, current trends, and innovations in the broader
field of high-performance AI suggest a rising significance of HCML. For instance, Deep
Learning models are computed at the current technological limitations of available hard-
ware. Models such as GPT-2 [231] have 1.5 billion parameters that give incredibly good
results on Natural Language Processing (NLP) tasks. However, it has recently been out-
performed by GPT-3 [232], a 175 billion parameter network, which is the largest Deep
Learning model to date. These large networks demonstrate that having more parameters
improves the model performance and detracts interest from innovation and optimization
techniques driven improvements. Few institutions, let alone researchers, have access to
the hardware resources to train such monolithic networks. This growing reliance on raw
computational power elevates the need to investigate the real-world application aspect of
existing models over hardware-dependent improvement in benchmarked accuracy. The
arrival of multi-billion parameter networks also brings vast opportunities to HCML, given
the rotation of interest from pure performance towards the human aspect of modern AI.

6. Conclusions

Human-Centered Machine Learning (HCML) is an emerging field of research parallel
to the exponential growth of Deep Learning (DL) research for several reasons. Some
of the reasons are the frequent application of Artificial Intelligence (AI) models in the
real world, an increasing number of interactions between humans and AI, professionals
raising concerns regarding the black-box nature of DL, and questions about the AI models’
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reliability in critical application scenarios. Even though HCML is a nascent field, its origin
dates back decades, and the exact term itself is more than a decade old. However, with
the AI boom in the early 2010s and the adaptation of Deep Learning techniques, HCML re-
emerged with different and modern concerns. Those are mostly usability and adoptability
related concerns such as user experience, explainability, understandability, interpretability,
privacy, security, fairness, and reliability.

Many research groups started working around HCML with different interpretations
of the term. Hence, in this work, we present a working definition for HCML derived from
analyzing those interpretations. We followed a systematic literature review approach to
make the literature search repeatable and expand its search base. We classified 162 HCML
publications we selected in terms of contribution type, application domain, the ‘human’ at
the center, and the models’ features. Our search and the analysis of prior work enabled us
to understand the spectrum of HCML while identifying the confusions, research gaps, and
possible research directions. In conclusion, HCML is an emerging but fast-growing field,
given the foundation field—AI—is snowballing. HCML has sub research fields that stand
independently, hence reducing the focus on core concepts of HCML. Given the early stage
of the field, there are confusions, problems, and opportunities for development, which we
discussed in this work. Deep Learning is approaching the limitation of current hardware’s
abilities while user-aspect investigations are lagging. The field of HCML can bridge the
critical divide between model performance and end-user adoption. We believe that this is
the prime time to research HCML, given the tremendous opportunities.
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