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Abstract: The aim of this paper is to provide an extended analysis of the outlier detection, using
probabilistic and AI techniques, applied in a demo pilot demand response in blocks of buildings
project, based on real experiments and energy data collection with detected anomalies. A numerical
algorithm was created to differentiate between natural energy peaks and outliers, so as to first apply
a data cleaning. Then, a calculation of the impact in the energy baseline for the demand response
computation was implemented, with improved precision, as related to other referenced methods and
to the original data processing. For the demo pilot project implemented in the Technical University
of Cluj-Napoca block of buildings, without the energy baseline data cleaning, in some cases it was
impossible to compute the established key performance indicators (peak power reduction, energy
savings, cost savings, CO2 emissions reduction) or the resulted values were far much higher (>50%)
and not realistic. Therefore, in real case business models, it is crucial to use outlier’s removal. In
the past years, both companies and academic communities pulled their efforts in generating input
that consist in new abstractions, interfaces, approaches for scalability, and crowdsourcing techniques.
Quantitative and qualitative methods were created with the scope of error reduction and were
covered in multiple surveys and overviews to cope with outlier detection.

Keywords: data cleaning; demand response; baseline electricity consumption; outliers; local outlier
factor (LOF); interquartile range (IQR); density-based spatial clustering of applications with noise
(DBSCAN); public buildings

1. Introduction

Demand response applied in aggregation of block of buildings can provide significant
benefits, on one hand to the consumers and prosumers and on the other hand to decrease
pressure on the transmission and distribution system operators and share the responsibility
and benefits of the generators with the rest of the power chain [1].

A demand response in blocks of buildings demo pilot project had been implemented
during the period of 2016–2019 in 12 public buildings of the Technical University of Cluj-
Napoca (TUCN), consisting in the effective testing of four different demand response
automated and/or manual scenarios. The demand response in blocks of buildings (DR-
BoB) project started with selecting the public buildings from four different campus locations
of the university, having different power signature profiles and different HVAC (heating,
ventilation, and air conditioning) systems. Then, in order to effectively implement the
demand response (DR) scenarios, a building energy management system (BEMS) was
installed at the blocks of buildings (BoBs) technical site, for an online visualization of
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the energy data and to record a baseline in the energy use and local renewable energy
sources (RES) generation. During the following one-year period (12 months) demand
response (DR) testing scenarios were implemented in different time schedules, for different
combination of the blocks of buildings (BoBs) involved, using automated or manual control,
including voluntary involvement of students, academic and administrative staff [2]. Thus,
when evaluation of the achieved results followed, the baseline generation issue was the
most significant to be properly solved. The paper focuses on this topic, with detailed key
approaches regarding outlier detection, recorded data cleaning and baseline construction.
Replication of the proposed approach and methodology can be considered, at least for
the demand response effectiveness evaluation, to all range of consumers or prosumers,
as the key performance indicators: 1—peak power reduction; 2—energy saving; 3—CO2
reduction; 4—cost savings, etc. are easy to be applied on a clearly established baseline [3].
Demand response projects can be a great opportunity in local communities not only for the
residential energy users, but also for the large pools of public buildings, belonging to the
local authorities (schools), utility companies, chain of commercial buildings [4]. Collecting
clean electrical energy data from this type of ‘end users’ is a must in order to achieve
efficient results.

Regarding outlier’s detection, from all the data science extensive literature some
definitions can be summarized for the ‘most common’ data issues. One definition that
stands out is given by Barnett and Lewis [5], defining an outlier as an observation or a
set of observations that are inconsistent with the rest of the data. According to Edwin
de Jonge and Mark van der Loo, “Outliers do not equal errors. They should be detected,
but not necessarily removed. Their inclusion in the analysis is a statistical decision” [6].
It is important to mention, that after a significant understanding of the data, it can be
concluded that not all the detected outliers should necessarily to be removed or replaced,
they can be a meaningful observation on a long term; as a response for this, many distinct
outlier detection methods were developed in the literature [7,8]. More than that, in the
process of detecting the anomalous values there is only a snowball’s chance in hell to be
able to detect multiple outliers given the masking effect that can occur when the outlier
cannot be detected due to the presence of the others [9]. This issue was addressed by
using sequentially correction of the anomalies or using to reduce the masking effect [10,11].
In [12] the outlier detection techniques were presented as probabilistic models with para-
metric and nonparametric approaches, statistical models, and machine learning algorithms
with clustering-based and classification-based techniques. In the probabilistic model’s
probability distribution functions were proposed to detect anomalous data as the values
which have the highest probability to go outside a given threshold. There are two types
of probabilistic approaches: (a) parametric, where the data is analyzed with an already
known distribution function; and (b) nonparametric, where the data is measured based
on a density or distance function, the data set which doesn’t behave like the majority of
tested population, is considered outlier [13,14]. In most of the parametric and probabilistic
outlier detection methods Gaussian distribution functions and median absolute deviation
are used [15]. Parametric models are prone to fail because most of the distributions are
univariate and the primary distributions of the observations need to be noticed in ad-
vanced. Even if the median and mean methods are calculating the central tendency, they
are insensitive to the presence of abnormal values. The median method together with
median absolute deviation represent the statistical dispersion of the data set and they are
more robust than the mean and standard deviation methods. The “breakdown point” [16]
is one of the methods used to determine the insensitivity of median method, this indicator
represents the maximum number of affected data that can be in the tested data without
changing the final results. There is only one problem to address for the median method and
that is when more than half of the parameters are of infinite values [17,18]. Non-parametric
methods were used on multidimensional data sets using different clustering techniques
as k-nearest neighbor [19] and Parzen window [20–22]. In addition to the most common
nonparametric methods, the following were applied: ranking or scoring data, based on
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differences and similarities [23], Gaussian mixture models [24], and probabilistic ensemble
models using the density based local outlier factor (LOF) with distance based as k-nearest
neighbor [25]. Even if the probabilistic models are often used, there is a possibility that the
probabilities can be unavailable or limited due to low correlations in the data, which is
why the qualitative cleaning methods can achieve better results in detecting the correct
tuples to clean and to reduce the information loss [26].

Statistical methods like auto regressive moving averages [27–30] and Linear regression
models were proposed in [31] and used for outlier detection even if it is hard to detect
polynomial functions in real time [32,33]. In general, most of the statistical methods are
based on historical data and used for offline anomaly detection even if some of them were
described as heavy online anomaly detection techniques [34,35]. Supervised (classification
based) and unsupervised learning (clustering based) machine learning methods were used
to identify outliers in fraud, health care, image processing, and networks intrusions [36–39].
One of the most feasible machine learning methods for detecting outliers in an unsuper-
vised environment are the clustering-based methods such as k-means [40] or density-based
spatial clustering of applications with noise (DBSCAN) [41]. DBSCAN presents some
advantages over k-nearest neighbors’ method like automatically adjusting the number of
clusters to be computed and the ability to isolate the outliers in individual clusters. Neural
networks [42–44] and support vector machines [45] were also used for anomalous data
detection. Functional dependency thresholding with Bayesian optimization for functional
dependencies data cleaning purpose was successfully tested on synthetic and real data [46],
relaxed functional dependencies were also detected using an improved discovery algorithm
relying on a lattice structured search space with new pruning strategy [47].

There has always been a debate on universality in numerical computation, [48] thus
providing an opportunity for the authors to test some of the most common techniques from
literature [12] in the context of energy consumption. Still, all the data sets may have their
own ‘personal character’ or bias. In [49], a preliminary outlier detection empirical testing
was conducted by the authors using probabilistic and statistical and machine learning
techniques over the Technical University of Cluj-Napoca’s swimming complex. The study
highlighted the possibility that some outlier detection techniques would not be able to
differentiate between the natural energy peaks (the custom bias or particularity of data)
and abnormal data without an additional support function. Therefore, a more detailed
investigation has been carried out for all four of the TUCN’s DR-BoB pilot site locations
that present different energy consumption patterns with focus on the proper tuning of
the implemented/tested outlier detection techniques and evaluation of their effect on
baseline construction.

After a short summary of the demand response in blocks of buildings (DR-BoB) project,
implemented at the Technical University of Cluj-Napoca (TUCN), creating the research
context of this paper and a detailed state of the art regarding outlier detection techniques
is made, the second section of the paper presents a brief description of the TUCN pilot
locations and the DR-BoB implemented system architecture with its components. The third
section introduces the applied baseline evaluation approach, showcasing the implemented
outlier detection techniques with a special highlight on the proper tuning parameter values
to be applied for each investigated outlier detection technique in case of hourly energy
consumption data. Additionally, to test and validate the detected outlier data points, an
integrated custom scoring method is presented in section three of this paper. Obtained
results after the outlier detection and removal processes was applied are highlighted in
section four, along with the baseline consumption curves constructed on the original and
the cleared data sets. Final conclusions and comments are outlined in the last section of
the article.

2. Overview of the Implemented Demand Response System

Regarding the implemented demand response pilot project, the following clarifications
have to be made regarding the existing monitoring system:
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1. The only form of energy involved in the demand response pilot process is electricity.
2. When the project started, there was only one system for measuring and settling elec-

tricity consumption, the one installed by the electricity distribution system operator
(DSO). It was combined by three-phase electronic meters, mounted in a semi-direct
current and voltage measurement scheme, for currents featuring current reducers
and for voltages directly connected to the grid. The meters in each location have
the possibility of remote data transmission, but the direct beneficiary of this data
is the local electricity distribution system operator (DSO). The technical university
came into possession of the measurements by directly requesting this data from the
beneficiary. The measured data had a sampling frequency of 1 h.

3. One of the main objectives of the demand response pilot project was to implement a
system for monitoring and remote management of electricity consumption in each
involved group of buildings. The monitoring [50] and remote management system
has a relatively simple architecture, monitoring only a small number of consumers in
each location, therefore the equipment is considered to have a proportional impact on
the project. This objective could be achieved only after identifying all the electricity
consumers, the operating regimes and establishing their importance according to
their energy consumption.

4. It is also specified that within the technical university there is only one type of
monitoring systems, the one described at point 2, which are also settlement systems in
the relation with the local electricity distribution system operator (DSO) and further
with the electricity supplier. The only exceptions are the four groups of buildings
involved in the demand response pilot project.

The monitoring system of the energy consumption in the pilot buildings for the
demand response project has the following structure:

• Semi-direct mounted meters, with intermediate measurement (current reducers) for
current and direct measurement for voltage;

• Communication module between meters and PLC or data totalizer;
• Communication module between the PLC or data totalizer and the computer on which

the application is running, the graphical interface;
• Local data server—dashboard, for storing measured data;
• The computer on which the application runs with the graphical interface;
• Monitors mounted in the main access ways in buildings, on which the monitoring

system is displayed and where certain elements can be viewed by the occupants of the
building. The following print-screen highlights the structure of the implemented mon-
itoring system in each pilot location, with the corresponding real-time consumption:

Figure 1 shows the general view/graphical interface of the monitoring systems that
was implemented at four pilot site locations. The related daily consumptions in (kWh)
and the absorbed power in (kW) are presented. Also, the total or aggregate electricity
consumption is presented [51] for the four pilot groups of buildings:

• The block of buildings from the Faculty of Electrical Engineering;
• The block of buildings from the MarastiStudents Campus;
• The Faculty of Building Services;
• The swimming pool complex.

Through the monitoring system, the four groups of Technical University of Cluj-
Napoca (TUCN) pilot buildings were interconnected with other pilot sites in Europe, in
this way the demand response events were tested on a complex platform, with a series
of integrated utilities and functionalities. The role of this platform was to manage and
aggregate all the factors that influence the development of demand response events and all
the participating pilot sites in a centralized process of reaching consumption and energy
cost reduction targets, power peaks, CO2 emissions, etc.
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1. Market emulation (ME) unifies information from the energy market (from electricity
distribution system operator (DSO), electricity transmission system operator (TSO),
energy suppliers, aggregators, etc.) and from regional meteorological operators
about the factors that are influencing energy consumption and production. It receives
notifications and forwards them to the pilot sites for demand response (DR) events and
communicates with the local energy manager (LEM) to provide relevant information
on weather conditions.

2. Local energy manager (LEM) [53] may take over a range of information (energy
consumption, energy production, energy storage) directly from energy consumers
or, indirectly through monitoring systems or building management system/building
energy management system (BMS/BEMS) implemented at each pilot site. Local
energy manager (LEM) has also the role of performing the necessary calculations
in order to quantify the results obtained by implementing demand response events,
through base line forecasting algorithms and key performance indicators (KPIs)
calculation. At the same time, it conveys the obtained results further to demand
response management system (DRMS).

3. Demand response management system (DRMS) is an intermediary between local
energy manager (LEM) and the market emulator, it facilitates the exchange of infor-
mation to achieve the predicted events in high performance conditions. Also, through
another functionality system called consumer portal (CP), it transmits information
regarding the development of events: market notifications, implementation period,
equipment that should be involved and obtained results quantified by local energy
manager (LEM), involving the Technical University of Cluj-Napoca (TUCN) staff,
students, or other stakeholders.

4. Consumer portal (CP) makes all the relevant information about demand response
events available to building owners, administrators, and occupants. In short, the
consumer portal (CP) is the interface between all market participants in demand
response and system functionalities.

5. The electricity network has the role of supplying electricity to the consumers in each
building or group of buildings, respectively, it is the element through which the
electricity produced and/or stored locally at each location, is injected in the network.

By using the above-presented various interconnected technologies with clear and
specific functionalities, the possibility of interaction between energy consumers and facility
management teams responsible for demand response programs is created. In addition,
the use of advanced predictive control and forecasts—which can provide an accurate and
highly detailed view of the operation of the building group and their consumers, in terms
of energy consumption and production—influence the various types of behaviors.

3. Applied Methods
3.1. Baseline Determination

The biggest challenge in evaluating the effectiveness of a demand response (DR)
event is to properly determine what would be the real energy consumption in the absence
of the event. Hence, to calculate the key performance indicators (KPI’s) [54] for DR
events taking place within the four Technical University of Cluj-Napoca (TUCN) blocks
of buildings, it was impetuously necessary to identify a baseline consumption level for
each day when demand response events took place. The starting point in determining the
baseline reference consumption was a database composed of hourly electricity consumption
values, starting 2014 until fall of 2019 for each block of buildings within TUCN, included
in the pilot project.

The electricity consumption data at hourly level were taken from two main sources,
namely: the local electricity distribution system operator (DSO), as settlement meter records
for each analyzed block of buildings (for the historical energy consumption between 2014
and 2018) and the energy monitoring system, presented in the previous section (Section 2)
and implemented within the demand response pilot project (for the energy consumption
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data starting from 2018 onwards). Given the different nature of energy consumption
in the analyzed buildings at different times of the year, an energy profiling action had
to be applied for each block of building separately. The applied energy profiling action
determined the average daily consumption schedules (baseline consumptions) for each
day of the week separately and for similar days, as occupants’ activity like weekdays
and weekends, respectively looking also for activity patterns. Taking into consideration
that the analyzed blocks of buildings belong to the Technical University of Cluj-Napoca,
their activity patterns mostly correlate to the academic year schedule: teaching semesters,
examination periods and student vacations, in other words, there is a link between energy
consumption and the social system of the tested buildings [55]. An exception is made in
the case of the swimming pool complex, where the activity pattern is correlated to weather
conditions (an additional outdoor pool is operated during summer periods) and special
sporting events.

To obtain the proper average daily schedule (baseline consumption) for each analyzed
block of buildings, a first selection (correction) of the used energy consumption data was
made by identification of atypical activity patterns at day level and extracting from the
process of baseline consumption curve evaluation. For these corrections we listed the
days considered atypical: the beginning of the calendar year, when it is a national holiday,
the holiday at the end of the first semester session, the Easter holiday, on the first day
of May, the holiday at the end of the second semester session, respectively the summer
vacation, when the hourly consumption profile is very different from the days when
current activities are carried out, depending on the specifics of each group of buildings.
The second correction consisted in eliminating from the baseline evaluation for each day
of the week, the energy consumption data related to the demand response (DR) events
that were carried out. Especially during the events, but also 2 h before and 2 h after
the event, the consumption profile underwent changes, so that they would have had a
negative impact in generating the baseline reference level. With all these assumptions
taken into consideration the generated baseline consumption curves would be as good
as the input energy consumption data used for the study. Consequently, a data cleaning
process, applied with outlier detection and data correction, is presented in the next section.

3.2. Data Cleaning

The proposed outlier detection techniques for the analysis are: interquartile range
(IQR) [56], median absolute deviation (MAD) [57,58], local outlier factor (LOF), and density-
based spatial clustering of applications with noise (DBSCAN).

To test the universal data approach of the methods the authors applied the most
common input threshold/parameters values from literature. The Interquartile range
(IQR) method helps not only in outlier detection but also in predicting the spread [56] of
energy consumption, yet it is tight to its mathematical limitation of identifying only the
values which are between the tested threshold value. The same can be observed in the
mathematical model of the median absolute deviation (MAD) [57,58] where the limitations
are given by the threshold values from the median value. The threshold value chosen for
Interquartile range (IQR) method testing is 1.5 [59] and for median is 3. The advantage of
using the IQR and median absolute deviation (MAD) models is more related with ‘tracking’
and maintaining a permeant control spread that will identify the extreme values for most
of the cases. A confirmation of an outlier from both methods should always be taken into
consideration for future investigations.

The local outlier factor (LOF) method [60] can achieve good results when the outliers
are located in dense region of normal data which means that the accuracy of this method
can be reduced when it is exposed to a high volatility data set. In the performed analysis
values of k equal with 2, 3, 4, 5, 25, and 50 were used. It was determined that the most
suitable k values for hourly energy consumption data sets would be the 2 and 3 which are
the most common in the literature [61], and also the value of 25, which was empirically
tested with a good accuracy, compared with the other values. For the density-based spatial
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clustering of applications with noise (DBSCAN) method, [62,63] the authors used as input
parameter 0.5 for epsilon (ε) as a default value, and the minimum number of points equal
to 5. For these values, the highest silhouette score [64] was obtained following various
testing scenarios, where the authors applied different epsilon (ε) values (from 0.1 to 0.9)
and used various minim number of points (5, 10, 20, and 50).

3.3. Outlier Verification and Validation

Due to a need of outlier validation, the support function or the “Custom Scoring
Method” (CSM) was designed to analyze the output from any outlier detection method
and to decide in the context of electrical energy consumption, if the detected anomalous
value is a natural energy peak, or abnormal data. The method compares the input (detected
outlier values) with the average energy consumption of four data clusters for the same
interval of time and similar days (workdays or weekends).

An overview of the applied outlier verification methodology is presented in Figure 3.
The data is collected in the local server and then it is analyzed using interquartile range
method, median absolute deviation, and density-based spatial clustering of applications
with noise, with the parameters presented in the previous section.
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To verify and validate the outliers identified by the above presented outlier detection
techniques, an outlier ranking system has been developed and implemented. As a first
step for each identified outlier data point, four data clusters have been selected from the
available historical data sets, consisting of similar energy consumption values for the same
hour of the day, as follows:
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Cluster A—energy consumption data from the same location for similar days: week-
day (Monday to Friday) or weekends (Saturday and Sunday), from the same year, as the
analyzed outlier data point (national holidays not included).

Cluster B—energy consumption data from the same location for similar days: weekday
(Monday to Friday) or weekends (Saturday and Sunday), same period of the year (2 month
period starting from 15th of the previous month to 15th of the next month), the same year
as the analyzed outlier data point (national holidays not included).

Cluster C—energy consumption data for similar days: weekdays (Monday to Friday)
or weekends (Saturday and Sunday), from the entire available historical data sets, for the
same location as the analyzed outlier data point (all years, national holidays not included).

Cluster D—energy consumption data for similar days: weekdays (Monday to Friday)
or weekends (Saturday and Sunday), same period of the year (2 month period starting
from 15th of the previous month to 15th of the next month) from each year within the entire
available historical data sets, for the same location as the analyzed outlier data point (all
years, national holidays not included).

The above-mentioned data clusters were selected in order to accurately identify
general daily energy consumption patterns (Clusters A and C), specific to each pilot
location, respectively each day type and to catch seasonal energy consumption pattern
changes (Cluster B and D), but agreeing to not be influenced by changes in buildings
infrastructure (replacement of old equipment or acquisition of new equipment, that could
significantly change the average energy consumption from one year to another) (Cluster A
and B).

As a second step, a score (from 0 to 5) is given for the analyzed outlier data point,
according to each of the above presented data clusters, based on how close the corre-
sponding hourly energy consumption value of the outlier is to the central/average energy
consumption of the data cluster. For this the average, the minimum and the maximum
energy consumption over the closed P% of the data points from a data cluster is evaluated
according to Equation (1), where P could be 75%, 90%, or 60% of all the data points from
a cluster:

avgWP% = 1
NP%
·

NP%
∑

i = 1
Wi, minWP% = min{Wi}, maxWP% = max{Wi}, i = 1, NP% (1)

with: avgWP%—the average hourly energy consumption; minWP%—the minimum hourly
energy consumption; maxWP%—the maximum hourly energy consumption over the closed
P% of the data points from a cluster; NP%—the number of data points from the closed P%
range; and Wi—a hourly energy consumption data value from the specified data range
within a cluster.

The applied scoring algorithm is mathematically described through (2) to (6) and
graphically represented in Figure 4. Namely if the hourly energy consumption correspond-
ing to the analyzed outlier is between the closed 75% range of a specific data cluster then
the analyzed data point is not a real outlier and therefor the Score is set to 0, see (2). If
the analyzed outlier data point is between the 75% range limit and a restrictive 90% data
range limit, then there is a mild outlier and the score is set to 1, see (3). If the outlier hourly
energy consumption value exceeds the restrictive 90% data range limit, then we have a real
outlier data point and the score is set to 2, see (4). If the outlier data value not only exceeds
the restrictive 90% data range limit, but is more than 25% higher or smaller then a high
outlier is found and the score is increased to 3, see (5), while if it is more than 50% higher
or smaller, an extreme outlier is detected and the score is increased to 5, see (6).

IF Outj ⊂ [minW75%, maxW75%] THEN Score = 0 (2)

IF Outj ⊂ [MinA, minW75%) ∪ (maxW75%, MaxA] THEN Score = 1 (3)

IF Outj ⊂ [0.75·MinA, MinA) ∪ (MaxA, 1.25·MaxA] THEN Score = 2 (4)



Sensors 2021, 21, 2946 10 of 27

IF Outj ⊂ [0.50·MinA, 0.75·MinA) ∪ (1.25·MaxA, 1.50·MaxA] THEN Score = 3 (5)

IF Outj ⊂ (−∞, 0.50·MinA) ∪ (1.50·MaxA,+∞) THEN Score = 5 (6)

with Outj—the hourly energy consumption value of the jth analyzed outlier data point and

minA = max
{

minW90%, minW75% + (minW75% −minW60%), minW75%·
minW60%

minW75%

}
(7)

maxA = min
{

maxW90%, maxW75% + (maxW75% −maxW60%), maxW75%·maxW75%
maxW60%

}
(8)
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Based on the scores obtained for data clusters A and B, a first mark is evaluated for
each analyzed outlier data point as a weighted average value of the two scores, according
to Equation (9), while a second mark is computed as a weighted average value of the scores
obtained for data clusters C and D, according to Equation (10)

Mark1 =
ScoreA + 1.5·ScoreB

2
(9)

Mark2 =
1.5·ScoreC + 2·ScoreD

2
(10)

Rank = Mark1 + Mark2 (11)
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The final rank is obtained as the sum of the two marks computed for the analyzed
outlier data point, see Equation (11). If the final rank is lower than 3, then the data point is
not considered a valid outlier. The adjustment of the valid outliers was conducted using one
of the most popular outlier detection techniques in literature, that is the shape-preserving
piecewise cubic spline interpolation [65].

4. Results and Observations
4.1. Data Cleaning

The need for interconnectivity and balance between production and consumption
of electrical energy is an “impetuous agreement” of clean data [49]. Any forecasting
process [66,67], or statistical model can be jeopardized by the absence of a cleaned data set.

4.1.1. Swimming Pool Complex

It has been observed that from a common ground of 413 outliers, only 322 were
validated through the system. The same process was conducted over the combined data of
DBSCAN results and 95.2% of the observation were validated as real outliers. Because the
LOF method had a larger number of detected issues, it was decided to run the k = 2 and k = 3
detected outliers independently. For both of the local outlier factor (LOF) computations,
the results lacked accuracy, having only 755 valid outliers out of 3512 detected for k = 2
and only 292 outliers out of 1628 for k = 3, as shown in Table 1.

Table 1. Number of valid/invalid outliers detected using the implemented scoring method for
swimming pool complex.

Applied
Method

Total
Outliers

Valid
Data Points % Invalid

Data Points %

IQR/Median 413 322 78 91 22
DBSCAN 728 693 95.2 35 4.8
LOF K2 3512 755 21.5 2757 78.5
LOF K3 1628 292 17.9 1336 82.1

After the scoring process, the valid outputs were analyzed in one database. It turned
out that from all the methods available, there is a total of 1468 unique valid outliers. Some of
the methods validated the same data point as an anomaly. All methods detected 23 common
data points, 63 were detected by three of them, and 416 by any two methods that had a
common value (see Table 2). Thus, a total of 502 common outliers were identified. Despite
that, due to the low percentage of the already filtered outliers through the implemented
scoring method, compared with all the data set, it was decided to adjust all the 1468 unique
outliers (see Figure 5).

Table 2. Methods overlap.

Method Unique Overlap Common Outliers

IQR/Median 72 4 Methods 23
DB SCAN 393 3 Methods 63

LOF K2 458 2 Methods 416
LOF K3 43 Total 1468
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Figure 5. Original and cleaned data for swimming pool complex location.

4.1.2. Faculty of Electrical Engineering

To confirm and to conclude the previous observations, the data collected from Faculty
of Electrical Engineering, Faculty of Building Services and Marasti Students Campus were
analyzed using the proposed methodology. In the first iteration, the data from the Faculty
of Electrical Engineering block of buildings was first analyzed using interquartile range
(IQR) and median absolute deviation (MAD) algorithms on each year, to extract yearly
outliers for each year individually and then the same process was executed on all the data
set. There are multiple ways data can be analyzed, because the authors wanted to highlight
the most obvious outliers, the intersection of the two processes had been made, the result
being represented by the interquartile range (IQR)/comb and median absolute deviation
(MAD)/comb. It was concluded that the interquartile range (IQR) method detected that
1.4% of all data is represented by outliers and for median absolute deviation (MAD) 3.7%.
The process was also conducted on all the data and the same outlier percentage were
obtained for k = 2 and k = 3, and less than 1% for k = 25. In the case of the density-
based spatial clustering of applications with noise (DBSCAN) process, the intersection
between two different density-based processes had been made: one was based on the
energy consumption value and hour (DBSCAN 1) and the second one was based on the
energy consumption value and the day of the week (DBSCAN 2). The testing was also
conducted on yearly data and on the entire data set, respectively. Given that no intersection
elements were found between the two processes, the combination (reunion) of the results
obtained with these two approaches has been applied. The data in Table 3 shows that in
total, the DBSCAN method detected 2.2% of the data to be an outlier. With the aim of
understanding the validity of the tested methods the implemented scoring method was
compiled over the outlier outputs. Given that the interquartile range (IQR) and median
absolute deviation (MAD) are both ‘spread control’ based methods, the intersection of these
two was used as input for the outlier scoring/validation. Based on this process, 966 unique
outliers were adjusted from the data set (see Figure 6).
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Table 3. Number of valid/invalid outliers detected using the implemented scoring method for
Faculty of Electrical Engineering location.

Method Total Outliers Valid (%) Invalid (%)

IQR/MAD 249 46.18 53.81
LOF K = 2 2608 22.17 77.82
LOF K = 3 1412 21.33 78.66

LOF K = 25 18 0 100
DBSCAN 149 17.67 82.32
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Figure 6. Original and cleaned data for Faculty of Electrical Engineering location.

4.1.3. Faculty of Building Services

For the data collected from Faculty of Building Services the same test was applied
using interquartile range (IQR) and median absolute deviation (MAD) process. It was
observed that from all the data, IQR detected 2% of the data as outliers and 3% for MAD
(see Table 4). In the case of the local outlier factor (LOF) process, 2.2% of the data were
outliers for k = 2, 0.8% for k = 3, and 0.09% for k = 25 respectively for yearly data. For
all the process, all the data was tested and we obtain 6.8% of the data as outlier based on
k = 2 and 0.8% for the k = 3, the algorithm found only one outlier. Compared with other
methods for the density-based spatial clustering of applications with noise (DBSCAN) only
0.4% of the data were marked as outlier. Even if the total number of anomalous data is low,
the method indicated a silhouette score equal with 0.99 for both DBSCAN 1 and DBSCAN
2. The implemented scoring method was used to validate the results from Table 4 and
Figure 7.

Table 4. Number of valid/invalid outliers detected using the implemented scoring method for
Faculty of Building Services location.

Method Total Outliers Valid (%) Invalid (%)

IQR/MAD 227 50.2 49.7
LOF K = 2 3513 20.67 79.3
LOF K = 3 424 17.49 82.5

LOF K = 25 1 0 100
DBSCAN 35 28.57 71.42
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Figure 7. Original and cleaned data for the Faculty of Building Services location.

4.1.4. Marasti Students Campus

Regarding Marasti Students Campus data, abnormal behaviors were observed in the
interquartile range (IQR) and median absolute deviation (MAD) algorithms. For both
methods and approaches zero outliers were detected for most of the tested years even
if a visual data interpretation suggests otherwise. Continuing the analysis on the local
outlier factor (LOF) process, 5% of the data was detected as outliers for k = 2, 1.5% for
k = 3, and 0.8% for k = 25 respectively. Running the same exercise for the entire historical
energy consumption data set, the same proportions of outliers were found k = 2 and k = 3,
while for k = 25 only 0.02% of the data was detected as outliers (see Table 5). In case of the
density-based spatial clustering of applications with noise (DBSCAN), when the energy
consumption and hour values were used for the clustering process (DBSCAN 1), an average
of 52% of the data was marked as outlier, but no intersection between the yearly data sets
and the entire data sets results was found. In the second part of the analysis, the opposite
was observed for DBSCAN 2 (when the energy consumption and the day of the week were
considered for the clustering process), only 2.2% of the data were marked as outliers (see
Table 5 and Figure 8). It is worth mentioning that for this experiment, there were also no
outlier intersection between the yearly data and total data approach. Moreover, the same
could be noticed between DBSCAN 1 and DBSCAN 2 results. Therefore, to understand the
huge consistency gap that occurred between IQR, MAD, LOF, and DBSCAN processes for
this data set, the standard deviation (SD) of all the data sets/pilot locations were calculated
and compared.

Table 5. Number of valid/invalid outliers detected using the implemented scoring method for
Marasti Students Campus location.

Method Total Outliers Valid (%) Invalid (%)

IQR/MAD 2885 20.24 79.75
LOF K = 2 2558 17.87 82.12
LOF K = 3 743 20.62 79.38

LOF K = 25 9 0 100
DBSCAN - - -
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The evaluation of the data sets standard deviation (SD) has revealed much higher SD
values for Marasti Students Campus and Faculty of Electrical Engineering locations (38.98
and 22.74 respectively) with respect to the Swimming Complex and Faculty of Building
Services locations (10.35 and 6.44 respectively). The SD value from Marasti Students
Campus data set indicates a random behavior in energy consumption, which is almost
double compared to the Faculty of Electrical Engineering data and significantly higher
compared to the other locations.

4.2. Impact on Baseline Construction

Given that the efficiency of the load reduction (demand response effect) can be quan-
tified only from the baseline curve, [68] an investigation of the impact of the cleaning
methods over this methodology is mandatory. The aim of this study is to understand if
integration of cleaning methods algorithms in a complex demand response automated
platform can improve the baseline accuracy.

Due the fact that all of the tested locations are defined by different social-energetic be-
havior [60], the baseline analysis was conducted independently for each of the investigated
location, in accordance to their specific energy profile.

4.2.1. Swimming Pool Complex

For the swimming pool complex location where throughout the summer period
(June 1–August 31) an additional open air swimming pool is open for public usage, the
consumption baseline investigation was considered using data collected throughout the
full year, the summer period, and the rest of the year energy consumption data. Based on
the results obtained from the full year energy consumption baseline analysis, it has been
concluded that after the cleaning process, the yearly standard deviation of the baseline was
reduced on average with 0.52% for all days from the data set, for weekdays with 0.43% and
for weekends with 0.75% (see Table 6, Figures 9 and 10).

For the summer period consumption, a reduction of the standard deviation (SD) of
0.36% for all the data, 0.41% for weekdays data, and 0.23% for weekends, was obtained (see
Table 7). For the rest of the year data, an increase to 0.63% of the SD reduction was observed
for all the data, 0.41% for weekdays data and 1.2% for weekend data (see Table 8). In order
to provide better understanding of the impact of the data cleaning over the consumption
profile, a plot was created for both weekdays and weekends, for both original and cleared
full year data sets (see Figure 11).
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Table 6. Full year baseline for original and cleared data.

Day Type Total Data Sets Affected Data Sets Avg. Std. Dev.
Reduction

Max Std. Dev.
Reduction

Std. Dev.
Original Data

Std. Dev.
Cleared Data

Monday 282 62 0.63833339 4.57329690 32.5654024 27.9921055
Tuesday 291 83 0.21108976 2.53577735 30.6688720 28.1330946

Wednesday 291 48 0.26101710 1.88609507 24.5919967 22.7059016
Thursday 287 31 0.47489543 9.81717526 20.8840831 11.0669078

Friday 291 20 0.57262822 6.99005974 33.6994119 26.7093521
Saturday 292 13 1.11490524 8.73879107 12.7415075 4.00271646
Sunday 285 244 0.39262403 9.81717526 20.8840831 11.0669078

Sensors 2021, 21, x FOR PEER REVIEW 18 of 30 
 

 

 
Figure 9. Energy consumption variation range compared to hourly average weekdays consumption for original and 
cleared data sets. 

 
Figure 10. Energy consumption variation range compared to hourly average weekends consumption for original and 
cleared data sets. 

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

0 2 4 6 8 10 12 14 16 18 20 22 24

Co
nu

m
pt

io
n 

Va
ria

tio
n 

Ra
ng

e

Hour

WeekDays Original weekDays Cleared

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Co
nu

m
pt

io
n 

Va
ria

tio
n 

Ra
ng

e

Hour

WeekEnds Original WeekEndss Cleared

Figure 9. Energy consumption variation range compared to hourly average weekdays consumption
for original and cleared data sets.
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Figure 10. Energy consumption variation range compared to hourly average weekends consumption
for original and cleared data sets.
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Table 7. Summer baseline for original and cleared data.

Day Type Total Data Sets Affected Data Sets Avg. Std. Dev.
Reduction

Max Std. Dev.
Reduction

Std. Dev.
Original Data

Std. Dev.
Cleared Data

Monday 90 14 0.25722712 1.38143413 22.2708947 20.8894606
Tuesday 92 14 0.15995801 0.72414204 21.4514956 20.7273536

Wednesday 92 10 0.31845359 1.14025074 24.9902879 23.8500372
Thursday 88 12 1.07113351 9.81717526 20.8840831 11.0669078

Friday 92 7 0.26361354 0.85073642 22.0690205 21.2182840
Saturday 92 6 0.05318119 0.09530513 9.24769849 9.15239336
Sunday 91 57 0.41621096 9.81717526 20.8840831 11.0669078

Table 8. Rest of the year baseline for original and cleared data.

Day Type Total Data Sets Affected Data Sets Avg. Std. Dev.
Reduction

Max Std. Dev.
Reduction

Std. Dev.
Original Data

Std. Dev.
Cleared Data

Monday 192 48 0.74948938 4.57329690 32.5654024 27.9921055
Tuesday 199 69 0.22146432 2.53577735 30.6688720 28.1330946

Wednesday 199 38 0.24590224 1.88609507 24.5919967 22.7059016
Thursday 199 19 0.09832402 0.33991601 24.1315461 23.7916301

Friday 199 13 0.73902074 6.99005974 33.6994119 26.7093521
Saturday 200 7 2.02495443 8.73879107 12.7415075 4.00271646
Sunday 194 187 0.38543444 6.99005974 33.6994119 26.7093521
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Friday 152 10 0.92944792 6.99005974 33.6994119 26.7093521 
Saturday 148 5 2.82392383 8.73879107 12.7415075 4.00271646 
Sunday 154 161 0.42223725 6.99005974 33.6994119 26.7093521 
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Figure 11. Daily consumption baseline for the original and cleared data sets.

4.2.2. Faculty of Electrical Engineering

The energy profile of the Faculty of Electrical Engineering is more dynamic during the
semesters; therefore the analysis was conducted for full year data, 1st semester and 2nd
semester data, separately. The same approach was applied both for the Faculty of Building
Services as for Marasti Students Campus locations.

The results showcased that for the baseline curve of the full year data set, an average
standard deviation (SD) reduction of 0.79% is obtained for all days, 0.45% for weekdays,
and 1.6% for weekends (see Table 9, Figures 12 and 13). The consumption baseline for
original and cleared data sets are presented in Figure 14. For the 1st semester (see Table 10)
an average SD reduction of 1.09% for all days is recorded, 0.51% for weekdays and 2.57% for
weekends, while for the 2nd semester (see Table 11) 0.24% for all days, 0.26% for weekdays
and 0.19% for weekend days.
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Table 9. Full year baseline for original and cleared data sets.

Day Type Total Data Sets Affected Data Sets Avg. Std. Dev.
Reduction

Max Std. Dev.
Reduction

Std. Dev.
Original Data

Std. Dev.
Cleared Data

Monday 155 45 0.80005163 4.57329690 32.5654024 27.9921055
Tuesday 159 57 0.24138839 2.53577735 30.6688720 28.1330946

Wednesday 154 32 0.22393069 1.88609507 24.5919967 22.7059016
Thursday 153 17 0.10343966 0.33991601 24.1315461 23.7916301

Friday 152 10 0.92944792 6.99005974 33.6994119 26.7093521
Saturday 148 5 2.82392383 8.73879107 12.7415075 4.00271646
Sunday 154 161 0.42223725 6.99005974 33.6994119 26.7093521
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Figure 12. Energy consumption variation range compared to hourly average weekdays consumption
for original and cleared data sets.

Sensors 2021, 21, x FOR PEER REVIEW 21 of 30 
 

 

 
Figure 13. Energy consumption variation range compared to hourly average weekends consumption for original and 
cleared data sets. 

 
Figure 14. Daily consumption baseline for the original and cleared data sets. 

4.2.3. Faculty of Building Services 
At the Faculty of Building Services location, the results showcased that due to the 

data cleaning process, a standard deviation (SD) reduction of 0.22% for all days, 0.24% for 
weekdays and 0.17% for weekend was recorded over the entire historical data sets (see 
Table 12, Figures 15 and 16). 

  

0.00%
5.00%

10.00%
15.00%
20.00%
25.00%
30.00%
35.00%
40.00%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24Co
ns

um
pt

io
n 

Va
ria

tio
n 

Ra
ng

e

Hour

WeekEnds Original WeekEndss Cleared

80.00

90.00

100.00

110.00

120.00

130.00

140.00

150.00

0 2 4 6 8 10 12 14 16 18 20 22 24

Co
ns

um
pt

io
n 

[k
W

h]

Hour

WeekDays Original WeekDays Cleared

WeekEnds Original WeekEnds Cleared

Figure 13. Energy consumption variation range compared to hourly average weekends consumption
for original and cleared data sets.



Sensors 2021, 21, 2946 19 of 27

Sensors 2021, 21, x FOR PEER REVIEW 21 of 30 
 

 

 
Figure 13. Energy consumption variation range compared to hourly average weekends consumption for original and 
cleared data sets. 

 
Figure 14. Daily consumption baseline for the original and cleared data sets. 

4.2.3. Faculty of Building Services 
At the Faculty of Building Services location, the results showcased that due to the 

data cleaning process, a standard deviation (SD) reduction of 0.22% for all days, 0.24% for 
weekdays and 0.17% for weekend was recorded over the entire historical data sets (see 
Table 12, Figures 15 and 16). 

  

0.00%
5.00%

10.00%
15.00%
20.00%
25.00%
30.00%
35.00%
40.00%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24Co
ns

um
pt

io
n 

Va
ria

tio
n 

Ra
ng

e

Hour

WeekEnds Original WeekEndss Cleared

80.00

90.00

100.00

110.00

120.00

130.00

140.00

150.00

0 2 4 6 8 10 12 14 16 18 20 22 24

Co
ns

um
pt

io
n 

[k
W

h]

Hour

WeekDays Original WeekDays Cleared

WeekEnds Original WeekEnds Cleared

Figure 14. Daily consumption baseline for the original and cleared data sets.

Table 10. Semester I baseline for original and cleared data sets.

Day Type Total Data Sets Affected Data Sets Avg. Std. Dev.
Reduction

Max Std. Dev.
Reduction

Std. Dev.
Original Data

Std. Dev.
Cleared Data

Monday 76 29 0.93424518 4.57329690 32.5654024 27.9921055
Tuesday 75 36 0.23101876 2.53577735 30.6688720 28.1330946

Wednesday 72 18 0.11072513 0.75340086 25.6966698 24.9432689
Thursday 71 8 0.13420857 0.33991601 24.1315461 23.7916301

Friday 70 8 1.14611244 6.99005974 33.6994119 26.7093521
Saturday 67 3 4.65951546 8.73879107 12.7415075 4.00271646
Sunday 75 99 0.48126673 6.99005974 33.6994119 26.7093521

Table 11. Semester II baseline for original and cleared data sets.

Day Type Total Data Sets Affected Data Sets Avg. Std. Dev.
Reduction

Max Std. Dev.
Reduction

Std. Dev.
Original Data

Std. Dev.
Cleared Data

Monday 79 16 0.55682583 3.56489776 30.7131421 27.1482444
Tuesday 84 21 0.25916489 1.41308048 30.9749782 29.5618977

Wednesday 82 14 0.36948069 1.88609507 24.5919967 22.7059016
Thursday 82 9 0.07608952 0.17423679 19.6080710 19.4338342

Friday 82 2 0.06278983 0.08220021 20.8347101 20.7525098
Saturday 81 2 0.07053638 0.07194907 7.53926917 7.46732010
Sunday 79 62 0.32798050 3.56489776 30.7131421 27.1482444

4.2.3. Faculty of Building Services

At the Faculty of Building Services location, the results showcased that due to the
data cleaning process, a standard deviation (SD) reduction of 0.22% for all days, 0.24% for
weekdays and 0.17% for weekend was recorded over the entire historical data sets (see
Table 12, Figures 15 and 16).
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Table 12. Full year baseline for original and cleared data sets.

Day Type Total Data Sets Affected Data Sets Avg. Std. Dev.
Reduction

Max Std. Dev.
Reduction

Std. Dev.
Original Data

Std. Dev.
Cleared Data

Monday 155 39 0.39033099 2.44632664 8.89512160 6.44879496
Tuesday 159 47 0.13894226 0.67964205 6.57178863 5.89214657

Wednesday 154 33 0.38874836 2.68175466 7.56888654 4.88713187
Thursday 153 35 0.22721360 1.71052435 4.26287478 2.55235043

Friday 152 29 0.09221256 0.78275816 6.27567191 5.49291374
Saturday 148 12 0.09477804 0.18552878 4.61860603 4.43307725
Sunday 154 183 0.24704115 2.68175466 7.56888654 4.88713187
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Figure 15. Energy consumption variation range compared to hourly average weekdays consumption
for original and cleared data sets.
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Figure 16. Energy consumption variation range compared to hourly average weekends consumption
for original and cleared data sets.

It had been observed that for the 1st semester, the standard deviation (SD) reduction
increased to 0.31% for weekdays, 0.27% for all the data, and 0.18% for weekends (see
Table 13). For the 2nd semester, a 0.16% average SD reduction for all the days, 0.17%
for weekdays and 0.13% for the weekend days was noticed (see Table 14). The daily
consumption baseline for original and cleared data sets are showcased in Figure 17.



Sensors 2021, 21, 2946 21 of 27

Table 13. Semester I baseline for original and cleared data sets.

Day Type Total Data Sets Affected Data Sets Avg. Std. Dev.
Reduction

Max Std. Dev.
Reduction

Std. Dev.
Original Data

Std. Dev.
Cleared Data

Monday 76 25 0.42311530 2.44632664 8.89512160 6.44879496
Tuesday 75 31 0.15084977 0.67964205 6.57178863 5.89214657

Wednesday 72 17 0.57812764 2.68175466 7.56888654 4.88713187
Thursday 71 18 0.29103627 1.71052435 4.26287478 2.55235043

Friday 70 14 0.12518671 0.78275816 6.27567191 5.49291374
Saturday 67 3 0.07011142 0.08360126 4.54904831 4.46544705
Sunday 75 105 0.30546345 2.68175466 7.56888654 4.88713187

Table 14. Semester II baseline for original and cleared data sets.

Day Type Total Data Sets Affected Data Sets Avg. Std. Dev.
Reduction

Max Std. Dev.
Reduction

Std. Dev.
Original Data

Std. Dev.
Cleared Data

Monday 79 14 0.33178759 1.81944735 7.27264081 5.45319345
Tuesday 84 16 0.11587146 0.48155030 8.68271229 8.20116198

Wednesday 82 16 0.18753288 1.00132027 5.54020221 4.53888194
Thursday 82 17 0.15963666 0.88795918 5.34040518 4.45244599

Friday 82 15 0.06143669 0.20928486 1.49394914 1.28466428
Saturday 81 9 0.10300024 0.18552878 4.61860603 4.43307725
Sunday 79 78 0.16839576 1.81944735 7.27264081 5.45319345
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Figure 17. Daily consumption baseline for the original and cleared data sets.

4.2.4. Marasti Students Campus

Even if the Marasti Students Campus data is the most volatile set and there were
issues encountered for the DBSCAN algorithm during the outlier detection process, after
the adjustment of those detected and validated, an average reduction of standard deviation
for the full year data of 0.66% for all days, 0.61% for weekdays, and 0.78% for the weekend
days was recorded (see Table 15, Figures 18 and 19).
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Table 15. Full year baseline for original and cleared data sets.

Day Type Total Data Sets Affected Data Sets Avg. Std. Dev.
Reduction

Max Std. Dev.
Reduction

Std. Dev.
Original Data

>Std. Dev.
Cleared Data

Monday 155 25 0.74834470 4.47590704 33.5377788 29.0618717
Tuesday 159 29 0.68563156 3.28522062 8.52096731 5.23574669

Wednesday 154 25 0.61135013 2.17225386 41.1817287 39.0094748
Thursday 153 25 0.40902660 1.66545057 17.0837133 15.4182627

Friday 152 33 0.62982026 3.23430881 31.4490328 28.2147240
Saturday 148 16 0.41804507 0.86318795 9.60826938 8.74508143
Sunday 154 25 1.14515467 5.19967463 33.1356456 27.9359710
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Figure 18. Energy consumption variation range compared to hourly average weekdays consumption
for original and cleared data sets.
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Figure 19. Energy consumption variation range compared to hourly average weekend consumption
for original and cleared data sets.

For the 1st semester, an average standard deviation (SD) reduction of 0.65% for all the
data, 0.74% for weekdays, and 0.44% for the weekend days respectively was noticed (see
Table 16). In the 2nd semester, a SD decrease of 0.67% for all days, 0.59% for weekdays, and
0.87% for weekend days was computed (see Table 17). The daily consumption baseline for
original and cleared data is highlighted in Figure 20.



Sensors 2021, 21, 2946 23 of 27

Table 16. Semester I baseline for original and cleared data sets.

Day Type Total Data Sets Affected Data
Sets

Avg. Std. Dev.
Reduction

Max Std. Dev.
Reduction

Std. Dev.
Original Data

Std. Dev.
Cleared Data

Monday 76 4 0.71235655 1.26626377 41.2124005 39.9461367
Tuesday 75 3 0.98377012 1.96320590 17.2800882 15.3168823

Wednesday 72 3 0.75784598 1.22024600 43.4315845 42.2113385
Thursday 71 5 0.55739444 1.66545057 17.0837133 15.4182627

Friday 70 8 0.69355372 3.23430881 31.4490328 28.2147240
Saturday 67 6 0.50194908 0.86318795 9.60826938 8.74508143
Sunday 75 6 0.38892542 0.92951641 26.9161001 25.9865837

Table 17. Semester II baseline for original and cleared data sets.

Day Type Total Data Sets Affected Data Sets Avg. Std. Dev.
Reduction

Max Std. Dev.
Reduction

Std. Dev.
Original Data

Std. Dev.
Cleared Data

Monday 79 21 0.75519958 4.47590704 33.5377788 29.0618717
Tuesday 84 26 0.65123095 3.28522062 8.52096731 5.23574669

Wednesday 82 22 0.59137342 2.17225386 41.1817287 39.0094748
Thursday 82 20 0.37193464 1.36790660 13.4076957 12.0397891

Friday 82 25 0.60942555 1.62250577 17.023428 15.4009222
Saturday 81 10 0.36770266 0.71869533 2.71869533 2
Sunday 79 19 1.38396391 5.19967463 33.1356456 27.9359710
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Figure 20. Daily consumption baseline for the original and cleared data sets.

5. Conclusions

During the DR-BOB “Demand Response in Blocks of Buildings” project, the energy
demand from 12 buildings at four different locations was monitored, 36 Demand Response
events were successfully implemented during an evaluation period of one year. In order to
improve the quality of baseline data and key performance indicators (KPI) evaluation, a
data cleaning process was proposed (interquartile range, median absolute deviation, local
outlier factor, density-based spatial clustering of applications with noise, intelligent scoring
method). The numerical results showcased that even in case of different energy profiles,
the cleaned data was reduced in all the cases, the standard deviation of the baseline with
an average of 0.41%, which means that the nature of the data is not affected by the removal
of outliers and we also gain more accuracy in baseline. More than that, this highlights the
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fact that a cleaning process in data energy, before any qualitative or quantitative process,
can significantly improve the quality of the results. It is also important to mention that in
addition to the proposed outlier detection techniques a custom integrated function was
created in order to differentiate between natural energy peaks and real outliers.

For the demand response project implemented at the level of the Technical University
of Cluj-Napoca’s block of buildings, in some cases, it was impossible to compute the
required KPIs (power reduction, energy savings, cost savings, CO2 emissions reduction)
without the data cleaning process or the resulted values which were far higher (>50%)
and not realistic. This is why, in real case business models, in order to rely upon the
demand response in blocks of buildings (DR-BoB) demo pilot, it is crucial to use outlier
removal techniques. The presented improved baseline data cleaning process will facilitate
benchmarking and validating the integration of new incorporated RES technologies [69]
and their associated established KPIs in the RE-COGNITION “REnewable COGeneration
and storage techNologies IntegraTIon for energy autONomous buildings” project.
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