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Abstract: Mental stress is one of the serious factors that lead to many health problems. Scientists and
physicians have developed various tools to assess the level of mental stress in its early stages. Several
neuroimaging tools have been proposed in the literature to assess mental stress in the workplace.
Electroencephalogram (EEG) signal is one important candidate because it contains rich information
about mental states and condition. In this paper, we review the existing EEG signal analysis methods
on the assessment of mental stress. The review highlights the critical differences between the research
findings and argues that variations of the data analysis methods contribute to several contradictory
results. The variations in results could be due to various factors including lack of standardized
protocol, the brain region of interest, stressor type, experiment duration, proper EEG processing,
feature extraction mechanism, and type of classifier. Therefore, the significant part related to mental
stress recognition is choosing the most appropriate features. In particular, a complex and diverse
range of EEG features, including time-varying, functional, and dynamic brain connections, requires
integration of various methods to understand their associations with mental stress. Accordingly, the
review suggests fusing the cortical activations with the connectivity network measures and deep
learning approaches to improve the accuracy of mental stress level assessment.

Keywords: mental stress; EEG; data analysis; connectivity network; machine Learning

1. Introduction

Mental stress is one of the contributing factors to health problems. It is defined as
the human body’s response, controlled by the sympathetic nervous system (SNS) and
hypothalamus–pituitary–adrenocortical axis (HPA axis), to mental, physical and emotional
stimuli [1]. This expression can be used with regard to internal (personality structure) or
external (dealing with problems) matters triggering various physiological and negative
emotional changes [2]. Literature defined three types of stress; acute stress, episodic
stress, and chronic stress [3]. Acute stress is related to short-lasting exposure and is
not harmful. Episodic stress happens when the stimulus is more frequent for a limited
time [4]. Meanwhile, chronic stress is the most damaging, resulting from permanent and
long-standing stressors [5]. Several studies have reported that mental stress has direct
physiological effects leading to several diseases including stroke, cardiovascular disease,
cognitive problems, speech distinctiveness and depression [6,7]. Moreover, stress affects the
human body indirectly at different levels varying between skin conditions, eating habits,
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inadequate sleeping and decision-making [8–10]. Thus, researchers have developed various
methods to assess the stress level in its early stages to avoid the negative consequences on
health and performance.

Assessment of mental stress is challenging because each individual experiences stress
differently [11]. Besides, the reliability of evaluating mental stress depends on the method
of assessment and analysis. Traditionally, stress is assessed using subjective methods. The
most commonly used method is the self-report questionnaires [12] such as the perceived
stress scale [13,14]. Many studies have established the questionnaire score and self-report
rating or interview as ground truth to estimate the mental stress level. However, ques-
tionnaires are subjective and require the user’s full attention. As a result, individuals are
not always aware of their genuine stress levels. Hence, the procedures, such as self-report
questionnaires, may result in an inaccurate stress level measurement. Furthermore, they
seem to be less informative than physiological measures. Researchers have identified sev-
eral physiological measurements as stress indicators such as heart rate variability (HRV),
electrodermal activity (EDA), electromyogram (EMG), blood pressure, pupil diameter,
salivary cortisol and salivary alpha amylase [2]. Nevertheless, physiological markers can
be influenced by many factors including mental stress. Cortisol level has been reported to
be affected by circadian rhythm (i.e., its concentration changes throughout the day) [15,16].
In addition, a subject’s physical activity affects salivary alpha amylase level [17,18], and
EDA is sensitive to skin disease and humidity [19].

Various neuroimaging techniques have been used to assess mental stress by directly or
indirectly measuring the brain activity. These include functional near-infrared spectroscopy
(fNIRS), electroencephalography (EEG) [20], positron emission tomography (PET) [21]
and functional magnetic resonance imaging (fMRI) [22]. The EEG modality has some
advantages such as high temporal resolution, low cost, and ease of use. Hence, it is the
most used technique to analyze mental states including stress [23,24]. A typical EEG stress
assessment method consists of two major parts: feature extraction and stress classifica-
tion. There are three categories of EEG features: time-domain, frequency-domain, and
synchronicity-domain features [25–27]. The time-domain features capture the temporal
information using amplitude related to energy, variability, coefficient of variation, Hjorth
feature, fractal dimension feature and higher-order crossing feature. On the other hand, the
most used frequency-domain features are obtained from the EEG signal clinical frequency
bands, delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (14–30 Hz) and gamma
(30–50 Hz) [28]. These brain rhythms contain relevant information related to mental stress
and other psychological disorders. The commonly used spectral EEG features include
the power spectral density (PSD), differential asymmetry features, phase synchroniza-
tion, phase lag index, directed transfer function and entropies [29–32]. In addition, the
time-frequency features are obtained through the short-time Fourier transform (STFT),
or discrete wavelet transform (DWT) [33–35]. The findings of subsequent studies on the
usefulness of EEG signal analysis methods for the assessment of mental stress have been
conflicting and impeding the development of further research. To resolve these difficulties,
this work aims at conducting a comprehensive review of the state-of-art of the published
EEG analysis methods on mental stress and to propose potential future research directions.

The rest of the paper is organized as follows. The materials and methods are described
in Section 2, where the explanation of inclusion and exclusion strategy in addition to the
variables of interest are reported. EEG pre-processing and the data analysis methods are
presented in Section 3. Section 4 reviews the most common classifiers that have been used
in quantifying stress levels. Section 5 shows the review results, including the relationship
between EEG analysis methods and type of classifier and the variables can be considered in
assessing mental stress. The discussion of the findings on the reviewed papers is described
in Section 6. Finally, Sections 7 and 8 summarize the main challenges and conclusion of the
research in stress estimation-based EEG signal.
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2. Materials and Methods
2.1. Search Strategy

The Preferred Reporting Items for Systemic Reviews and Analysis (PRISMA) was used
to conduct this review [36]. The following databases were searched for study publications,
namely Google Scholar, PubMed, Science Direct, IEEE Xplore, and PsycINFO. The used
search terms were the single terms of mental stress and EEG. This was combined with
at least one of the following terms: connectivity, power spectral, coherence, entropy
and classification. In addition to searching databases, the reference list for all selected
articles was checked to specify any additional relevant studies that might have been
overlooked during the primary search. Figure 1 shows the search strategy and identification
of relevant studies.
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Figure 1. Flow chart of search strategy and identification of relevant studies.

2.2. Inclusion and Exclusion Strategy

Manuscripts in English and EEG experimental studies were considered in this re-
view. In contrast, those involving animals were excluded to avoid any possible effect of
cognitive impairments.

2.3. Variables of Interest

The main variables detected in each paper were (i) type of stressor, (ii) experiment
duration, (iii) number of subjects who participated in the experiment, (iv) number of
EEG electrodes, (v) EEG frequency bands, (vi) type of features, (vii) type of classifier,
(viii) classification performance, (ix) summary of results compared before and after the
stress task, and (x) comments on the findings.

3. EEG Analysis Methods

The EEG signal goes through extensive preprocessing steps to remove artifacts and
noise before applying data analysis methods. Data preprocessing plays a major role in
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getting meaningful information about the signal. Thus, comprehensive knowledge about
the types of artifacts is required. According to Jiang et al. [37], physiological artifacts
are the most common artifacts that affect EEG signal. In addition, artifacts represent
another vital source of biased information. The digitized EEG signal can be segmented
into epochs (e.g., 2 s) for visually identifying and rejecting visible artifacts. To remove the
noise and artifacts from EEG signals, researchers have utilized a variety of methods such as
regression techniques, blind source separation (BSS), empirical-mode decomposition (EMD)
and wavelet transform algorithms. This is in addition to Adaptive and Wiener filtering,
high pass, band pass, notch filters, and independent component analysis (ICA) [38]. In fact,
we still have a lack of standardization related to EEG pre-processing that can be used by all
research studies.

In stress studies, the process of reviewing, cleansing, transforming, and modelling EEG
signals with the aim of finding useful knowledge, informing conclusions, and assisting
decision-making is known as data analysis. Several data analysis methods have been
reported in the literature to analyze mental stress based on EEG signals. However, selecting
an appropriate analysis method is very important to minimize the data processing cost,
storage size and dimensional space. The following sub-section provides a comprehensive
review of the EEG analysis methods on mental stress.

3.1. Connectivity Methods

The primary objective of EEG research is to link diverse measures of neural rhythms
to functional brain states reflecting cognition, behavior, or neuropathology [39]. Each
EEG signal is produced by the superposition of several brain current sources [40]. The
involvement of each source varies depending on the location and orientation of the source
and measuring electrodes. Several researchers have shown interest in functional or effective
connectivity. However, the various forms of data used to assess functional connectivity
differ in many ways, involving temporal and spatial information, as well as whether the
data reflect electrical neuron activities, neuronal ensemble activities, or hemodynamics of
macroscopic brain areas. Furthermore, the exact computational techniques employed to
find these values vary amongst researchers, even when dealing with the same data type.

The issue is considerably more complex in the case of EEG, where numerous aspects
of the signals might be linked. The information in an EEG signal comes from a complex
and dense network of interconnected neurons. Hence, studying brain connectivity may
provide us with a more exact model of the brain and how its various areas interact with
each other. There are two types of brain connectivity: functional connectivity and effective
connectivity [41]. The functional connectivity reflects the relationships between different
brain regions as reflected on the temporal coherence between the networks. The vari-
ous methods for determining functional connectivity may result in different conclusions
depending on factors such as the strength of the interaction between neural units, type
of stressor and number and location of electrodes. This can even be true for data from
the same modality and even data obtained using the same task. Employing multiple
interpretations of what defines functional connectivity might also lead to conflicting find-
ings [41]. Effective connectivity, on the other hand, is the simplest circuit that describes
the experimentally achieved relationship between two neurons. It explains how the neural
system affects the others [42]. Effective connectivity, in contrast to the non-directional
and correlative functional connectivity, assesses the directional influences between distinct
brain regions [43]. As such, functional and effective connectivity measures are important
in trying to understand the brain behavior under stress and non-stress conditions. There
are numerous features utilized to detect this connectivity measurement, and the following
is a quick description of them.

Coherence analysis aims to identify the functional connectivity and synchronization
between different brain regions (several electrode sites). These mutual relations can be
found by analyzing the amplitude and the phase of signal within the used EEG elec-
trodes [44,45]. Xia et al. [44] examined coherence using multilevel stress assessment and
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found a significant increase for all frequency bands (except beta) at frontoparietal lobe. In
addition, strong coherency for delta wave was detected in prefrontal and temporal regions
at higher stress level. Meanwhile, study in [46] has shown an increased brain connectivity
between interhemispheric locations in delta and theta bands, whereas the alpha and beta
coherence connectivity networks spread all over the scalp. In particular, this increase in
coherence level under stress in the article [46] was regarded as the brain attempting to attain
redundant communication between its different regions in order to quickly process the
cognitive load of the applied stressor. The full mathematical expressions of the coherence
measures can be found in a previous study [47].

Magnitude Square Coherence (MSC) is another measure of functional connectivity in
stress studies. A study in [48] found significant reduction in the functional connectivity
from control to the stress situation in intra-hemispheric and inter-hemispheric prefrontal
cortex (PFC). Meanwhile, when applying sleep deprivation as a stressor, the EEG con-
nectivity maps show a decreased MSC for alpha band in the anterior region of scalp and
increased beta coherence spread all over the scalp [49]. However, this behavior was not
reproduced when dealing with Stroop color word task (SCWT) where there was only
elevated beta coherence for sagittal middle regions. Darzi et al. [50] have proved that
extracting MSC features with a length of 56 s achieved the highest accuracy by applying
support vector machines (SVM) as a classifier compared to the directed transfer function
(DTF), phase–slope Index (PSI), canonical correlation (CC), and power spectral density
(PSD) techniques. Likewise, Khosrowabadi et al. [51], reported that MSC accuracy, sen-
sitivity and specificity were greater than those obtained by Gaussian mixture models
(GMM) and fractal dimension (FD) features using K-nearest neighbors (KNN) or SVM
classifiers. Consequently, the most useful advantage about using coherence in analyzing
EEG to quantify stress is that it cannot be affected by the amplitude oscillations for the
different brain locations. However, the main drawback for coherence analysis is the high
sensitivity to phase coupling and power changes [46,52]. The mathematical formulations
of the employed MSC can be found in [53].

Pearson’s correlation-based captures linear, time-domain dependencies among EEG
signals. It could be found over a single epoch or over several epochs, and it is calculated
using the Pearson’s correlation coefficient, cross-covariance, and auto-covariance of EEG
signals [54]. Therefore, increasing the value for the Pearson correlation coefficient from (−1)
to (1) indicates intense connections between brain regions. In particular, this technique has
been used by study [54] to reduce feature vectors and computational time, and to improve
accuracy of SVM classifiers in detecting human stress. The main interest of such features
is the high performance while reducing dimensionality of the EEG data set [55]. On the
other hand, canonical correlation analysis (CCA) is useful to get information from the cross-
covariance matrices in order to estimate the effect of mental stress. This is done by detecting
the linear combination that achieves maximum correlation between two vectors [56]. The
main advantage of using CCA is its applicability to be used with multimodal data that
has different modal dimensionalities [57]. The mathematical expressions of the correlation
analysis can be found in previous study [58].

Amplitude asymmetry refers to the difference in absolute amplitude that exists be-
tween the homologous electrodes positioned on the hemispheres when a stressor is applied.
It is used to find the difference in the relative stimulation between brain locations [59]. De-
spite its high performance in estimating acute stress levels [44], this technique is influenced
by HRV biofeedback [60]. The study in [61] describes the math of the asymmetry method.

Mutual information (MI) is used to detect dynamic concatenate and similarity of joint
probability distribution function between two EEG signals [50,62]. Therefore, MI aims to
find the statistical dependency between signals and analyze EEG with different spectral
bands [63]. The MI during stress is represented by EEG connectivity maps. According
to the study in [49], mutual information did not achieve significant increase in the EEG
map when using Stroop task, whereas the sleep deprivation physical stressor showed
widespread decreases of linear area comparing to a significant increase of nonlinear area in
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the anterior, central, and temporoparietal regions of head. Meanwhile, Pernice et al. [64]
reported that the shared information between brain locations during relaxing state was low,
whereas a significant MI increase was noted for alpha, theta and delta bands in the frontal
region during mental arithmetic task. On the other hand, comparing to other connectivity
measures, this technique has a short time processing and it is not restricted to real-valued
variable; therefore, it could be used on several kinds of variables [65]. The mathematical
formulations that describe MI can be found in [66].

Phase lag is used to detect the lag or delay between two EEG signals related to different
brain regions. Xia et al. [44], has detected a significant role for the phase lag technique
in discrimination between stress and control conditions for different levels. However,
a study in [45] has found low accuracy for this feature compared to the other used methods
such as coherence, absolute power and amplitude asymmetry. The main limitation of this
technique is that it does not provide the directionality of connectivity and the volume
conduction problem [67]. The mathematical expressions of the phase lag analysis can be
found in previous study [68].

Phase–slope index (PSI) is a measure of phase synchronization that is not sensitive to
volume conduction or common reference effects. Studies in [50] found several patterns of
brain locations connectivity during the perception of external stimuli that chronic stress
can change them, whereas the synchronization between left parietal and right temporal
showed a decrease of 55% in the stressful subjects. Darzi et al. [50] have shown a high
performance when using PSI features, whereas the results of Khosrowabadi et al. [69]
achieved low accuracy for PSI comparing to DTF and PDC features. The main advantages
of using PSI are overcoming the independent background activity generated between
two electrodes and the ability to give meaningful information even though the nonlinear
phase spectrum [69]. However, PSI may fail to correctly describe the directionality of
EEG [70]. The mathematical formulations of the PSI method can be found in [71].

Partial directed coherence (PDC) is a measure used to detect the direction and weight
of information flow in the frequency domain between multivariate data. Specifically,
multivariate analysis will represent the stress phenomenon without loss of information
of data with several variables. In particular, two directed coherences (feed-forward and
feedback aspects) can be predicted from the classical coherence function using PDC. There-
fore, directional flow between two channels within specific frequency involves several
calculated factors such as Akaike information criterion and Granger causality [72]. Studies
in [72,73] have found that when fatigue level increases due to stress, the functional coupling
decreases over parietal-frontal regions while using theta, alpha and beta frequency bands.
A significant form of PDC to get functional connectivity measurement is the Generalized
Partial Directed Coherence (GPDC), which is used to control negative causality of the
EEG multichannel analysis. Khosrowabadi et al. [69] has used GPDC features in detecting
stress/non-stress cases, and they found medium and low accuracy compared to PSI and
DTF features. The full mathematical expressions of the PDC measures can be found in
a previous study [74].

Directed transfer function (DTF) is an effective connectivity technique used to detect
the interaction patterns between neurons. Yu et al. [75] found that DTF has increased values
(enhanced EEG coupling) at alpha and beta bands after applying a mental arithmetic stress
task. In particular, these results lead to enhancing the flow of information from the central
regions (the source of information outflow) to parietal and occipital areas for alpha and beta.
According to a study [69] in quantifying stress, DTF shows the highest accuracy comparing
to PSI and GPDC. However, DTF does not differentiate between directed influence of
one signal to another [76], but it shows a higher performance than CCA, PSI, MSC and
PSD [50]. Meanwhile, the main limitation for using DTF is its sensitivity to cortico-cortical
and brain to heart functional coupling [75]. DTF mathematical expressions can be found
in articles [77].
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3.2. Power Spectral (Frequency Domain)

Spectral features are the characteristics obtained from the EEG signal in frequency
domain. In order to get meaningful information about the EEG, it is important to check the
segmentation process of EEG to get stationary signal. Thus, some of the more widely used
spectral features and processing techniques are described below.

Power spectral density (PSD) pursues to find power distribution for time-domain
EEG signal over frequency range and this provides significant information about cortical
activation. In particular, PSD is useful in describing stochastic process of the signal and
evaluating short data records [78]. There are several methods applied to estimating the
PSD, for example, fast Fourier transform (FFT), Welch, Burg, Yule walker, welch method
and periodogram [54]. Several studies have demonstrated the effectiveness of using PSD
to estimate the level of stress. For example, study in [79], reported that mental stress
decreased the EEG power spectral density in the alpha band. Likewise, the study in [20]
found a significant decrease in alpha rhythm when increasing the level of stress from
level 1 to level 2 (based on increasing the complexity/difficulty of the math task), and
then increasing from levels 2 to level 3. In particular, the difficulty of the math task was
increased from level 1 up to 3 by increasing the integer numbers and operands that were
used in the math operation. Meanwhile, according to [20], the most dominant cortical
structure that is involved in stress detection is the right prefrontal cortex. For detailed
mathematical formulations of the PSD method, refer to [80].

Other studies utilized absolute power (AP) as an indicator of stress. The AP at
a particular band is calculated by dividing the absolute value of fast Fourier transform of
the EEG signal by the signal’s length [81]. Meanwhile, studies in [59,82] used the relative
power (RP) to check the rhythm of EEG signal by finding the ratio between the power
of each band and the power of the total bands. Subhani et al. [45] and Arsalan et al. [83]
found that applying AP on stress/non-stress detection shows a significant difference
regarding theta EEG band (4–7 Hz) compared to other bands, whereas in the case of RP,
they reported that when stress levels increased, the RP decreased [45]. Consequently, RP
showed a better performance compared to the AP in spite of its sensitivity to the noise
and memory recall [81]. The detailed math expressions for the AP and RP methods are
identified by study [45].

Studies in [26,79] utilized powers from the wavelet transform (WT) coefficients to
extract features that are highly correlated with mental stress. They found that the mean
alpha rhythm power has significantly decreased from one stress level to the next higher
one. Moreover, WT is an appropriate method for multi-resolution time-frequency analysis.
This is done by decomposing the EEG signal into its frequency bands retaining information
in both: frequency and time domain. Then, from wavelet coefficients, the average power
and energy can be estimated. Even though the Fourier transform (FT) provides a frequency
domain representation of the signal, the wavelet transform creates a time and frequency
domain representation, providing a quick access to the localized information of the signal.
In particular, since EEG signals are nonstationary, using the FT may result in tiny changes
in the spectrum, and the analysis may alter depending on the duration of data. Thus,
WT is preferable to FT [84]. The mathematical formulations of the employed WT can be
found in [85].

Other studies used Gaussian mixtures of EEG spectrogram to detect stress by analyz-
ing the changing of spectral density of the EEG signal related to time domain. Moreover,
this data analysis method involves short-time Fourier transform (STFT) to calculate the
spectrogram of the time signal. After computing spectrogram, Gaussian mixture model
(GMM), which is a linear combination of Gaussian pdfs, can be estimated to find the
density [51]. The obvious role of this model is extracting the symmetric and asymmetric
EEG signal; however, some drawbacks of considering infinite range and symmetric nature
are reported [86]. Khosrowabadi et al. [51,87] have used this technique to quantify chronic
mental stress. They found that GMM has a lower accuracy than MSC, but higher than



Sensors 2021, 21, 5043 8 of 26

FD features when using SVM classifier. The detailed math expressions for the Gaussian
method are identified by studies [87].

The study in [88] quantified mental stress by using spectral moments (SM). SM was
processed to detect three power spectral moments from each EEG segment, that are related
to different root square moments with orders of zero, two and four. These moments are
found depending on the phase excluded power spectrum and the EEG length. Attallah
in [88] verified the effectiveness of spectral moment in differentiating stress/non-stress
cases and between several stress levels and reported high accuracy for SM with a linear
discriminant analysis (LDA) classifier. The full mathematical expressions of the SM method
can be found in [89].

3.3. Time Domain Techniques

The most widely used temporal features in quantifying mental stress are reviewed below:
Hjorth parameters are statistical parameters used to describe the EEG signal in the

time domain. The Hjorth parameters are also known as normalized slope descriptors
(NSDs). They consist of activity, mobility, and complexity descriptors. Activity parameter
demonstrates the signal power leading to denoting the surface of the power spectrum in
the frequency domain. The mobility approximates the mean frequency, and complexity
approximates the bandwidth of the signal [90,91]. These parameters depend on the time
domain, but they provide information about the frequency spectrum of the EEG [92].
However, theses parameters are sensitive to noise. Besides, the Hjorth parameters need
shorter computation time in getting frequency information in addition to forming a good
alternative for short time Fourier transform (STFT). Oh et al. [93] found that combining
Hjorth parameter with band pass filtering has a higher classification performance than
the general Hjorth parameter. The mathematical formulation of the employed Hjorth
parameter can be found in [94].

Other methods to estimate the complexity of EEG signals in the time domain are the
entropies. For example, Shannon entropy (SE) is used to estimate EEG signal irregularity
and to quantify energy distribution of power spectrum by analyzing the EEG time series.
This leads us to know brain behavior during a variety of states to detect mental stress [95].
Therefore, the study in [95] found the group that had the highest stress index (high mental
stress) tend to have the lowest alpha-band-entropy. Zhu et al. [96] used VR-based relaxation
therapy to relieve stress by evaluating the changes in Shannon entropy. They reported
that SE had an increased trend in the alpha band, before and after watching VR. Another
type of entropy is the Approximate Entropy (ApEn), which is used with time series data
to know the fluctuations unpredictability and the amount of the regularity. According to
Wang et al. [97], the complexity of the system is responsible for determining data length
when estimating the value of ApEn. Meanwhile, the study in [97] showed that mental
arithmetic task induced a significant increase of ApEn at the anterior cingulate and insular
cortex. The main advantage for ApEn is its ability to deal with noise and possibility to
be used with stochastic and deterministic chaotic signals. Moreover, the wavelet sum of
entropy was utilized by Hasan et al. [90] as a separate feature to identify the signs of stress
from EEG recordings. It represents the summation of the entropy after being calculated
for each wavelet band. These wavelet bands can be found as a result of dividing EEG
signal onto distinct frequency bands (generally five bands) and applying discrete wavelet
transform (DWPT) [90]. Finally, self-entropy (SE) is used to detect information processing
within the physiological network by estimating dynamical activity of the EEG signal [19,62].
Studies [96] include the mathematical expression for all entropy kinds.

Higuchi’s fractal dimension (FD) is the estimation of irregularity, complexity, and
nonlinear properties of the EEG signal where high and low values of FD are related to
irregular and regular waveforms, respectively [11]. Higuchi FD provides a significant
analysis for stress phases by computing fractal dimension, which is useful in real-time
testing for brain chaotic behavior during chronic mental stress [51]. Studies in [11,98] have
shown that combining FD with statistical features outperforms spectral power features.
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The recorded EEG complexity in frontal lobe has high values when using mental arithmetic
stressor [98]. On the other hand, Khosrowabadi et al. [51] detected a low accuracy for
Higuchi’s FD comparing to GMM and MSC features for SVM and KNN classifiers. The
main interest about FD is its independency of signal nature and high efficiency, but it is
sensitive to noise and frequency bands and its performance will be low when it is used
alone [99]. The mathematical formulations of the employed FD can be found in [100].

3.4. Statistical Features

This type of features can be found by applying standard statistical operations on the
EEG signal within the time domain to quantify stress levels. Thus, statistical techniques are
simple, easy to use and often complement each other [101]. Meanwhile, the most common
features for EEG data analysis are the mean, skewness, kurtosis, standard deviation, shape
factor, first and second difference, root mean square, and impulse factor [88,90,92,102].
Hou et al. [11] found that combining statistical features with fractal dimension and power
features improved the classification accuracy of stress. Moreover, study in [103] found that
the variance values are higher in rest than stress levels, whereas kurtosis showed increased
values in stress conditions when moving from delta to gamma bands. On the other hand,
the main drawback is related to using all these features in stress estimation, which leads to
longer time processing. Furthermore, some studies utilized principal component analysis
(PCA) as a conventional and statistical method for detecting samples in the EEG data of
high dimension. According to Deshmukh et al. [104], the main purpose of using PCA was
to reduce the dimension of the stress features before feeding into the classifier. This is done
by applying features Eigen vectors on features dimensionality to get the lowest orthogonal
dimensions [44]. Moreover, PCA provides information about how the investigated groups,
related to stress/non-stress conditions, could be separated into principal components
(PCs) space [105]. Shon et al. [92] analyzed mental stress and demonstrated that PCA
has a lower accuracy (65.30%) in the process of features selection than genetic algorithm
(71.76%). However, PCA limitation is the probability to fail in processing data when dealing
with complicated manifold [104].

4. Classification

Stress studies have examined various types of classifiers to assess the level of men-
tal stress. The most common and significant classifiers are SVM, LR, NB, KNN, LDA,
multi-layer perceptron (MLP), convolutional neural network (CNN) and long short-term
memory (LSTM). The following sections describe the implementation of the aforemen-
tioned classifiers on EEG stress studies. Table 1 summarizes the main findings of previous
EEG stress studies.

SVM is a binary classification model built in feature vector to discover the hyperplane
that optimizes the margin between input data classifications. Several studies used SVM
to discriminate between stress levels. For example, the studies in [51,106] applied SVM to
quantify two levels of stress and achieved accuracy levels of 75% and 90%, respectively.
On the other hand, studies in [107] have utilized SVM to classify three levels of stress.
Meanwhile, [26] combined SVM with an error-correcting output code and reported that the
average classification accuracy of these mental stress levels showed a drop in value from
97.61 to 95.37 and to 91.40 with the increased stress level. Besides, Gaikwad et al. [107]
had an accuracy of 72.30% in the real time by using a trained algorithm as a reference.
According to Hou et al. [11], increasing the number of stress levels (from two levels up to
four) declined the SVM accuracy.

Furthermore, studies in [19] have utilized LR to differentiate between stress levels.
LR is a statistical model that utilizes a logistic function to represent a binary dependent
variable in its most basic form, however many more advanced extensions exist. It is
used to investigate the relationship between one dichotomous dependent variable and
one (categorical or continuous) independent variable. Zanetti et al. [19] analyzed three
mental states and the recorded accuracy by LR was 84.30%, but even though LR had some
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errors in detecting resting states. Meanwhile, the achieved accuracy by LR was as high
as SVM and random forest classifiers when it was used with several stress states induced
by arithmetic stress task [45]. Saeed et al. [108] showed that logistic regression provides
a significant performance with 85.15% accuracy in stress quantification (specifically with
alpha asymmetry feature) comparing to other classification techniques such as KNN, NB
and MLP.

Some studies employed NB to classify stress levels. NB is a simple and fast prob-
abilistic classifier that is used when input dimensionality is large. It is based on Bayes’
theorem, which assumes that extracted features are independent to each other. Subhani
et al. [45] reported that NB achieved the highest accuracy in quantifying four levels of stress
with a recorded accuracy of 94.0%, 94.6%, and 91.7% for levels 1, 2, and 3, respectively.
Darzi et al. [50] detected two levels of stress using NB and found that SVM has a better
performance than NB even though the running time of NB is about five times shorter
than SVM, therefore NB is more suitable for online tasks. Thus, NB provides fast stress
quantification because no complex optimization parameters are required. Meanwhile, NB
had a low accuracy in Arsalan et al. [83] when dealing with theta band of two stress levels
(75%) and three stress levels (50%). Moreover, Saeed et al. [108] recorded an accuracy of
80.79% for quantifying stress by NB, whereas in [109] they showed that using low beta
waves as a feature vector will reduce NB performance to get an accuracy equal to 71.4%.

Furthermore, the non-parametric learning algorithm K-NN can be involved in quanti-
fying mental stress. The mechanism of K-NN depends on estimating the distance between
neighbors and choosing the K closest neighbors. Thus, two of the critical factors to be
identified are the optimal value of K and neighbors distance D [90,108]. Saeed et al. [108]
used K-NN with alpha asymmetry, beta, and gamma waves as features to quantify long-
term stress. They found that K-NN has an accuracy of (65.96%) when these features are
combined with each other. Meanwhile, the study in [50] found that K-NN has achieved an
accuracy of (90.0%) comparing to the SVM and Bayesian classifiers. The main advantage of
K-NN is the low computational complexity in quantifying stress/non-stress phases when
dealing with small-sized data [50,90]. However, K-NN has a drawback, which is the high
sensitivity to data local structure (dimensions).

On the other hand, some studies applied LDA as a machine learning method to classify
stress by finding the linear combination between EEG features. Therefore, it is difficult to
apply LDA on nonlinear EEG data due to LDA’s linear nature [110]. LDA was applied by
Minguillon et al. [111] to quantify three levels of stress using the average relative gamma
as a feature and found that, increasing the number of stress markers will enhance the value
of the recorded accuracy (50.0%). Meanwhile, Vanitha et al. [112] found that LDA has the
lowest accuracy (70.166%) comparing to the SVM (89.07%) and K-NN (72.67%) classifiers
when detecting stress levels for students. Consequently, the main drawback of LDA is
the assumptions and restrictions (linear decision boundaries) that are needed to establish
this classifier [111].

Besides, MLP is a non-linear artificial neural network model that is used to map
the input data into output data. It consists of multiple layers (at least three) that vary
between input, output and one or more hidden layers. Since MLPs are fully connected,
each layer is connected to the next one and each node will be as a neuron that uses non-
linear activation function. Several studies have employed MLP to quantify mental stress.
Saeed et al. [108] reported that, integrating alpha, beta and gamma features with MLP
provides the highest accuracy (85.13%) compared to the one that can be achieved using
a single feature. Meanwhile, Arsalan et al. [83] found that MLP outperforms both SVM and
NB classifiers and gives the highest accuracy for both two-and three-class quantification
of mental stress. Even though, the main drawback of MLP is the formation of over-fitting
because of excessive or insufficient neurons [108].

Another example for deep networks is that of deep CNN, which is considered as
a regulated MLP. It provides an alternative form to mimic the brain functionality in quan-
tifying mental stress [23]. Comparing to the other classification algorithms, CNN needs
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a little pre-processing, can be used for large size nonlinear data and it provides a significant
feature discrimination [113]. The main advantage of using CNN is the independence
from human effort and prior knowledge. Several studies utilized CNN to analyze mental
stress. For example, Jebelli et al. [114] quantified three levels of workers’ stress where
CNN yielded an accuracy of 79.26% that outperforms SVM’s accuracy (79.12%), whereas
in the study [115], CNN’s accuracy was equal to 86.62%. Meanwhile, they found that the
optimum network configuration to quantify workers’ stress level needs two hidden layers
with 83 and 23 neurons in the first and second hidden layers, respectively. Therefore, CNN
facilitates the need for EEG feature extraction, which consumes time in the supervised
learning algorithms [115].

5. Results

Most of the reviewed studies have reported high alpha activity during relaxation
states compared to the stressful conditions. In particular, a significant increase in the
spectral power is more apparent after applying stimulus. EEG gamma activity showed
a varied response, but generally a relatively decreased gamma activity can be observed
with both relaxed and stressful situations. Hence, gamma oscillations may not be sensitive
to stress level variations. Regarding fast beta band, it has a significant positive interaction
indicating stronger increase in stress phases. Furthermore, central, and parieto-temporal
areas are the most affected cortical regions with alpha and slow beta. Inspection of these
variations related to different frequency bands were sided by the result of having stronger
interaction effects in the right hemisphere comparing to the left one. Figure 2 summarizes
the classification accuracy for each of the five different frequency bands extracted from the
reviewed studies.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 27 
 

 

highest accuracy (85.13%) compared to the one that can be achieved using a single feature. 
Meanwhile, Arsalan et al. [83] found that MLP outperforms both SVM and NB classifiers 
and gives the highest accuracy for both two-and three-class quantification of mental 
stress. Even though, the main drawback of MLP is the formation of over-fitting because 
of excessive or insufficient neurons [108]. 

Another example for deep networks is that of deep CNN, which is considered as a 
regulated MLP. It provides an alternative form to mimic the brain functionality in quan-
tifying mental stress [23]. Comparing to the other classification algorithms, CNN needs a 
little pre-processing, can be used for large size nonlinear data and it provides a significant 
feature discrimination [113]. The main advantage of using CNN is the independence from 
human effort and prior knowledge. Several studies utilized CNN to analyze mental stress. 
For example, Jebelli et al. [114] quantified three levels of workers’ stress where CNN 
yielded an accuracy of 79.26% that outperforms SVM’s accuracy (79.12%), whereas in the 
study [115], CNN’s accuracy was equal to 86.62%. Meanwhile, they found that the opti-
mum network configuration to quantify workers’ stress level needs two hidden layers 
with 83 and 23 neurons in the first and second hidden layers, respectively. Therefore, 
CNN facilitates the need for EEG feature extraction, which consumes time in the super-
vised learning algorithms [115]. 

5. Results 
Most of the reviewed studies have reported high alpha activity during relaxation 

states compared to the stressful conditions. In particular, a significant increase in the spec-
tral power is more apparent after applying stimulus. EEG gamma activity showed a var-
ied response, but generally a relatively decreased gamma activity can be observed with 
both relaxed and stressful situations. Hence, gamma oscillations may not be sensitive to 
stress level variations. Regarding fast beta band, it has a significant positive interaction 
indicating stronger increase in stress phases. Furthermore, central, and parieto-temporal 
areas are the most affected cortical regions with alpha and slow beta. Inspection of these 
variations related to different frequency bands were sided by the result of having stronger 
interaction effects in the right hemisphere comparing to the left one. Figure 2 summarizes 
the classification accuracy for each of the five different frequency bands extracted from 
the reviewed studies. 

 
Figure 2. Classification accuracy based on EEG frequency bands. 

In general, accuracy refers to the percentage of accurate predictions. A value close to 
100 indicates that the classification model is performing well. As a result, features are cho-
sen from those EEG frequency bands that improve classification accuracy. To choose the 
best frequency band, all possible combinations (from five frequency bands) were used. 

Ac
cu

ra
cy

 (%
)

Figure 2. Classification accuracy based on EEG frequency bands.

In general, accuracy refers to the percentage of accurate predictions. A value close
to 100 indicates that the classification model is performing well. As a result, features are
chosen from those EEG frequency bands that improve classification accuracy. To choose
the best frequency band, all possible combinations (from five frequency bands) were used.
According to the discussed sections, different classifiers were used to quantify mental
stress using EEG. In order to get the proper performance, there are three parameters that
will be needed: accuracy, sensitivity and specificity. They have been used to identify
the classifier ability in correctly distinguish between positive and negative results and
to measure each one of them properly. This performance is influenced by the quality of
EEG signal, processing power and the EEG feature components that are used as an input
to the classifier [83,116]. Arsalan et al. [83] found that, combining MLP classifier with
PSD, correlation and rational asymmetry features outperforms SVM and NB in classifying
two/three levels of stress. Furthermore, combining several results for multiple sensors may
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provide a better classification accuracy [117]. In particular, specific features and classifiers
have reached high levels of accuracy such as PSD and SVM. Meanwhile, all references
that have used Montreal Imaging Stress Task (MIST) as a stressor, rely on SVM classifier
except Minguillon et al. [111], which has LDA instead. Despite the achieved low accuracy
(50.00%) by the article [111], EEG measurements provided shorter response time, significant
cognitive information and low sensitivity to physical activity. Thus, combining EEG with
physiological signals elevates the LDA accuracy up to 86.00%. On the other hand, Xia
et al. [44] got an accuracy equal to 79.45% when using ECG and EEG measurements with
SVM classifier in addition to high number of participants and EEG electrodes. Therefore,
the selected EEG features (relative power, power ratios, amplitude asymmetry, coherence,
and phase lag) have shown promising and robust results when employed with MIST
stressor and SVM classifier in quantifying mental stress. Furthermore, using NB classifier
and the increased number of frequency bands were the main reason of getting high accuracy
by Subhani et al. [45] comparing to Xia et al. [44] that have used the same criteria.

Different stressors can be employed to generate mental stress, resulting in a variety
of impacted brain regions. Students’ examination periods can be used to develop long-
term psychological mental stressors. According to Darzi et al. [50] long-term stress affects
the functional connectivity of the temporal-parietal and the left central and temporal
regions. Furthermore, for music and videos stressors, pre-frontal region of the brain
has shown increased activities when using two EEG electrodes to get differences between
two frontal regions [92]. Lotfan et al. [118] utilized the Trier Social Stress Test (TSST), which
includes free speech and mental arithmetic task in front of an audience, to induce moderate
psychosocial stress. The brain connectivity measures revealed that the two situations,
including before and 20 min after the TSST exposure, produced the same levels of stress.
This indicates that the persistence of stress after 20 min fades and the brain network mimics
the condition before stress. Al-Shargie et al. [119] used MIST, which increased beta rhythm
power and decreased alpha rhythm power in the right pre-frontal cortex (sensitive to
mental stress) and this is what was estimated by fMRI studies [120,121]. Likewise, using
MIST task, the ventrolateral prefrontal area (VLPFC) achieved a higher accuracy than
other PFC subregions [56]. Stroop color word task affects the temporal and spatiotemporal
regions where several stress levels are induced individually to each subject [11]. For
Maastricht Acute Stress Test (MAST), its protocol induces a realistic stress reaction in the
subjects, which leads to variation of several salient physiological features [105]. Finally,
driving task shows increased cortical activities for low level of stress, but it decreases
with elevated stress level and time. Hence, this test makes a drop in alpha rhythm power
when moving from rest to the stress state [122]. Figures 3 and 4 compare the resulted
classification accuracy of different types of EEG data analysis methods using MIST and
SCWT stressors, respectively.
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Figure 4. Classification accuracy with SCWT stressor.

Some experiments of stress detection combined more than one stressor such as arith-
metic task with either Stroop test [102,123] or relaxing videos [19] and mental workload
with public speaking [124]. Moreover, as discussed by studies in [19,124], employing
normal four frequency bands showed accuracy levels of 83.33% and 84.30% using NB and
RF classification methods, respectively. However, Ahn et al. [123] derived two frequency
fields (low and high bands) and reached 77.90% accuracy by SVM whereas the accuracy
of Jun et al. [102] was about 96% by three different bands (theta, alpha, and beta) with
SVM classifier.

For studies that are interested in analyzing stress in normal daily life (psychological
labelling), no stressors were introduced to the subjects. They used the same procedure
in labelling participants and acquiring EEG data. There was an obvious variation in
the treated frequency ranges. Thus, the highest accuracy was acquired when dealing
with seven bands where they got 85.20% for SVM [108] comparing with the three bands
78.57% [54] and four bands 83.33% [106] that have used same classifier. Besides, the lowest
performance was related to two frequency fields with 71.4% accuracy with NB classifier.

There are significant accuracies that have been achieved related to variety of stressor
types. Studies in [118,124,125] used four bands but different classifiers and stimuli; for
example, Lotfan et al. [118] obtained an accuracy of 92.31% with SVM and TSST stressor
and noted increasing levels for another physiological measurement, which was cortisol
level, whereas Masood et al. [125] detected 87.50% performance when applying CNN
classifier and cognitive tasks, but Secerbegovic et al. [124] got a low value of 77.08% for
SVM and mental workload test despite detecting a critical positive effect for applying EDA
and ECG with the used EEG.

Another set of studies examined the temporal lobe when having stressors as a form of
odor and traffic noise. They found a positive correlation between mental stress and EEG
beta power rhythms [126–128]. Table 1 summarizes previous studies related to mental
stress classification using EEG signal. The summary focuses on the type of techniques that
are used to quantify mental stress taking into consideration the number of subjects, number
of EEG channels, type of stressor, duration of the experiment, the analyzed frequency band,
the extracted features, type of classifier, and the achieved performance. The summary in
Table 1 orders the reviewed studies based on the type of stressor.
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Table 1. Previous studies related to mental stress classification using EEG signal.
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[129] 2020 25 4 MIST Relax–Stress PFC 24 min 4–13 Hz
8–12 Hz

13–30 Hz
25–45 Hz

Frontal asymmetry
alpha, Beta and
Gamma power

LDA Acc: 85.6% Quantifying two levels of
stress had a better accuracy
than three levels (85.6%
vs. 58.4%).

[111] 2018 10 4 MIST Relax–Stress–
Neutral

PFC 30 min Theta, alpha, gamma Average relative
gamma

LDA Acc: 50.00% Considering heart rate, skin
resistance and trapezius
activity features with EEG
increased accuracy
to 86.00%.

[44] 2018 22 128 MIST Rest–Three
stress levels

PFC 80 min Delta, theta, alpha,
beta, gamma

AP, RP, PL, coherence,
relative power ratio,

amplitude asymmetry

SVM Acc: 79.54%
Sen: 81.00%

Spec: 78.00%

The existence of machine
learning techniques
provided automatic
diagnosis for stress phase.

[56] 2017 25 7 MIST Control–Stress PFC 10 min Delta, theta,
alpha, beta

CCA SVM Acc: 89.80%
Sen: 87.50%

Spec: 92.00%

Mental stress was specific
and localized to the right
ventrolateral PFC.

[45] 2017 22 128 MIST Control–Stress Whole scalp 80 min Delta, theta, alpha1,
alpha2, beta1, beta2,

beta3, gamma1,
gamma2, gamma3

AP, RP, coherence, PL,
Amplitude asymmetry

NB

SVM

Acc: 94.6%
Sen: 98.3%
Spec: 93.3%

Acc: 93.9%
Sen: 96.7%

Spec: 92.5%

Using ICA was not
recommended with
coherence and PL.

[119] 2016 22 7 MIST Control–Stress PFC 25 min Delta, theta,
alpha, beta

Mean powers SVM Acc: 91.7%
Sen: 90.4%

Spec: 93.4%

- PFC region was sensitive
to mental stress.
- Adding fNIRS to EEG
improved the accuracy
to 95.1%.

[20] 2015 12 8 MIST Rest–Three
stress levels

PFC 60 min Delta, Theta, Alpha,
Beta, Noisy gamma,

Noisy signal
(64–128Hz)

PSD, energy,
average power

SVM Acc: 94.00% Increasing difficulty level
reduced subject
engagement with the
stress task.
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[79] 2015 5 7 MIST Control–Stress PFC 17 min Alpha Alpha PSD SVM Acc: 95.00% Alpha rhythm and
oxygenated haemoglobin
had negative correlation
under stress.

[130] 2021 25 7 Mental
arithmetic

Control–Stress PFC 15 min Alpha PSD, coherence - - EEG alpha rhythmic
demonstrated significant
decrease in brain
functional connectivity.

[88] 2020 66 19 Mental
arithmetic

Relax–Stress Temporal,
Frontal,
Central,

Occipital,
Parietal

4 min Beta, Alpha,
Theta, Delta

MDF, MFMD, SM,
RMS, AR

linear SVM
Cubic SVM

KNN
LDA

Acc: 99.70%

Acc: 99.75%

Acc: 99.93%
Acc: 99.94%

Highest accuracy achieved
using only two frontal
brain electrodes.

[62] 2018 1 14 Mental
arithmetic

Rest–Stress Frontal lobe 31 min Delta (0.5–3Hz),
Theta (3–8Hz),

Alpha (8–12Hz),
Beta (12–25Hz)

Self-Entropy, MI,
Conditional MI

RF Acc: 97.50% Combining EEG
connectivity with
cardiorespiratory features
offered high accuracy.

[112] 2016 6 14 Mental
arithmetic

Neutral–Three
stress levels

Prefrontal,
Frontal lobes

20 min Delta, theta, alpha,
beta, gamma

IMF, instantaneous
frequency (using HHT)

SVM
KNN
LDA

Acc: 89.07%
Acc: 72.67%
Acc: 70.17%

The highest classification
accuracy was detected in
alpha band.

[23] 2011 5 19 Mental
arithmetic

Relax–Stress Whole scalp 11 min Delta, theta,
alpha, beta

Welch, Yule walker,
Burg methods

ANN 91.17% Maximum classification
accuracy achieved when
using burg
extraction method.

[123] 2019 14 3 Mental
arithmetic,

SCWT

Relax–Stress Left, right
hemisphere

34 min Low (0.04–0.15Hz)
High (0.15–0.4Hz)

Normalized band power,
Power asymmetry

SVM Acc: 77.90%
Spec: 72.00%
Sen: 84.60%

Combining HRV with EEG
increased accuracy up
to 87.50%.
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[19] 2019 17 14 Mental
arithmetic,

videos,
playing
games

Relax–Two
stress levels

Frontal,
Occipital

lobes

31 min Delta, theta,
alpha, beta

Shannon entropy,
mutual information,
covariance, precision

RF
LR

Acc: 84.30%
Acc: 84.30%

Adding HRM and EDA to
EEG measurements
achieved better accuracy.

[102] 2016 10 14 Mental
arithmetic,

SCWT

Rest–Two
stress levels

Frontal,
Occipital

lobes

18 min Theta, alpha, beta PSD, relative difference
of alpha and beta power

SVM Acc: 96.00% Providing temporal sliding
window with different
overlapping increased
the accuracy.

[131] 2020 227 62 Psychological
labelling

Relax–Stress PFC 16 min 2.5–3 Hz
24–24.5 Hz
24.5–25 Hz
26–26.5 Hz

PSD RF Acc: 81.33%
Spec: 80.33%
Sen: 82.33%

People who are more
stressed, had higher
spectral capacity in the left
prefrontal cortex.

[108] 2020 33 5 Psychological
labelling

Rest–Stress Frontal,
Temporal

lobes

39–58 min Delta, theta, alpha,
beta, gamma, slow
(4–13Hz), low beta

(13–17Hz)

Neural oscillatory
features, alpha and

beta asymmetry.

SVM
NB

KNN
LR

MLP

Acc: 85.20%
Acc: 80.79%
Acc: 65.96%
Acc: 85.15%
Acc: 85.13%

- SVM was best in detecting
long-term stress when used
with alpha
asymmetry feature.

[54] 2018 28 1 Psychological
labelling

Rest–Stress Frontal lobe 3 min Low beta, high beta,
low gamma

Neural oscillatory
features

SVM Acc: 78.57% Using correlation-based
feature subset selection
method with SVM gave
higher accuracy.

[109] 2017 28 1 Psychological
labelling

Rest–Stress Frontal lobe 3 min Low beta (13–17Hz)
High beta (18–30Hz)

Low beta waves,
linear regression

NB Acc: 71.4% - NB took less
computational time
comparing to SVM
and MLP.
- Low beta can be used as
feature to quantify stress.



Sensors 2021, 21, 5043 17 of 26

Table 1. Cont.

R
eference

N
um

ber

Year

N
um

ber
of

Subjects

N
um

ber
of

C
hannels

Type
of

Stressor

C
ondition

Types

B
rain

R
egions

D
uration

Experim
ent

Frequency
B

ands

Features

C
lassifier

Sen:Sensitivity
Spec:Specificity
A

cc:A
ccuracy

Perform
ance

N
otes

[90] 2019 32 32 Music videos Relax–Stress Frontal lobe - Delta, theta, alpha,
beta, gamma

Nine statistical features,
Hjorth parameters,
energy, standard

deviation, wavelet sum
of entropy, PSD.

KNN Acc: 73.38% - Using appropriate
processing techniques
enhances performance.
- Final performance can be
affected by comparative
analysis of scalp sources.

[92] 2018 32 32 Music videos Relax–Stress Frontal lobe 40 min Delta, theta, alpha,
beta, gamma

Six statistical features,
PSD, HOC, Hjorth

parameters, Frontal
Asymmetry Alpha.

KNN Acc: 67.08% GA-based method
outperformed PCA in stress
detection and gave better
classification accuracy using
KNN classifier.

[69] 2018 26 9 Audio-visual
stimuli

Relax–Stress PFC 10 min Theta, alpha,
beta(1,2,3,4,5)

PSI, DTF, GPDC KNN + SVM Acc: 90.62% The effect of stress on brain
regions connectivity
depends on the subject.

[51] 2011 26 8 Exam stress Relax–Stress Whole scalp 6.30 min 2–32 Hz Higuchi’s fractal
dimension, Gaussian

mixtures of EEG
spectrogram, MSCE.

KNN
SVM

Acc: 90.00%
Acc: 90.00%

MSCE provided a
promising inter-subject
validation accuracy (90%) in
classifying the EEG.

[132] 2018 11 14 Working
hazards and

tiredness

Low stress–
High stress

Frontal,
Occipital

lobes

Several
hours

Delta, theta, alpha,
low beta, beta, high

beta, gamma

Seven frequency
features, 17 time
domain features

KNN
GDA
SVM

Acc: 65.80%
Acc: 74.92%
Acc: 75.90%

- KNN showed low
accuracy because of
inductive bias of
KNN method.

[118] 2018 23 30 TSST Relax–Stress Frontal,
Parietal,

Temporal
lobes

13 min Delta, theta,
alpha, beta

Transitivity, modularity,
path length, efficiency

SVM (beta
wave)

Eyes-opened
Acc: 92.31%
Eyes-closed
Acc: 93.62%

- Salivary cortisol level
increased during TSST.
- Classifier accuracy arised
from alpha and beta
bandwidths of EEG.

[11] 2015 9 14 SCWT Low stress–
High stress

Frontal,
Occipital

lobes

12 min Theta, alpha, beta PSD, FD, Six
statistical features.

SVM
KNN

Acc: 85.17%
Acc: 76.72%

The followed methodology
provided real-time
EEG-base stress recognition.
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Table 1. Cont.

R
eference

N
um

ber

Year

N
um

ber
of

Subjects

N
um

ber
of

C
hannels

Type
of

Stressor

C
ondition

Types

B
rain

R
egions

D
uration

Experim
ent

Frequency
B

ands

Features

C
lassifier

Sen:Sensitivity
Spec:Specificity
A

cc:A
ccuracy

Perform
ance

N
otes

[125] 2019 24 2 SCWT Relax–Stress Frontal lobe 11 min Theta, delta,
alpha, beta

PSD CNN Acc: 87.50%
Sen: 87.50%

Spec: 84.00%

Adding HRM, RESP and
EDA to EEG will increase
stress detection accuracy.

[133] 2020 20 14 Cognitive
task

Low stress–
High stress

Frontal,
Occipital

lobes

30 min Alpha Discrete wavelet
transform

CNN Acc: 93.00%
Sen: 0.923%

Spec: 0.934%

-

[105] 2017 15 1 MAST Relax–Stress Forehead
position

65 min Alpha1 (8–9Hz),
alpha2 (10–12Hz),
Beta1 (13–17Hz),
Beta2 (18–30Hz)

Attention, Meditation,
PSD

SVM Acc: 86.00%
Sen: 84.00%

Spec: 90.00%

Changes in the
physiological features were
correlated with the trend of
salivary alpha amylase.

[124] 2017 9 1 Mental
workload +

public
speaking

Three stress
levels

Forehead
position

- Delta, theta,
alpha, beta

Energy, mean amplitude,
RMS, maximum

amplitude, weighted
mean frequency

SVM
NB

Acc: 77.08
Acc: 83.33%

Adding ECG and EDA
features to EEG features
would improve accuracy.

[50] 2019 26 9 Long-term
psychological

task

Relax–Stress Whole scalp 8 min Theta, alpha1, alph2,
beta1, beta2,

beta3, gamma1

PSD, LI, CC, CCA, PSI,
GC, DTF, MI, MSCE

SVM
KNN
NB

94.00%
92.00%
90.00%

Using MI and DTF
provided the highest
accuracy for
stress detection.

[122] 2020 86 16 Driving task Relax–Stress Frontal,
Occipital

lobes

45 min Theta, alpha, low
beta, high

beta, gamma

Six time-domain
features, three

frequency-domain
features (PSD)

SVM
NN
RF

Acc: 90.55%
Acc: 87.70%
Acc: 85.00%

- Adding feature selection
technique (MI, PCA,
RSFS) improved
classifier accuracy.
- Combining SVM with MI
achieved best accuracy.

Note: SCWT: Stroop Color-Word Task; MIST: Montreal Imagining Stress Task; SMO: Sequential Minimum Optimization; PL: Phase Lag; Acc: Accuracy; Sen: Sensitivity; Spec: specificity; fNIRS: Functional
Near-Infrared Spectroscopy; PFC: Prefrontal Cortex; RMS: root mean square; TSST: Trier Social Stress Test; BCI: Brain–computer interface; ECOC: error-correcting output code; FD: fractal dimension; GA:
genetic algorithm; NN: Neural network; RF: Random forest; RSFS: Random subset feature selection; SVC: Support vector classification; EDA: Electrodermal activity; HRM: Heart rate monitor; IMF: Intrinsic
mode function; HHT: Hilbert-Huang Transform; AR: Asymmetry ration; RER: Relative energy ratio; SC: Spectral centroids; SE: Spectral entropy; ESD: Energy spectral density; FCM: Fuzzy C-mean; FKM:
Fuzzy K-means; ESD: Energy spectral density; LI: Laterality index; CC: Correlation coefficient; GC: Granger causality; MAST: Maastricht Acute Stress Test; RMS: Root mean square; AR: Auto regression; EDA:
Electrodermal activity; HRM: Heart rate monitor; ANN: Artificial neural network; GDA: Gaussian discernment analysis; IAPS: International Affective Picture System; ENN: Elman neural network; CNN:
Convolutional Neural Network.
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6. Discussion

Stress has become a growing problem in our daily lives by having a negative impact
on both individuals and society. Different systems of the human body, such as the nervous,
immune, cardiovascular, and gastrointestinal systems, are negatively affected by stress.
This directly influences or transforms the hippocampus, a brain field, regardless of the
nature of the stress. The victim’s memory and decision-making capabilities are harmed as
a result of this brain alteration. It also has a detrimental effect on hormone excretion, which
is important for proper immune system processing. Stress also causes cardiac-arrhythmias
by amplifying or decreasing heartbeats, blood pressure, and creating disturbances in
the cardio-vascular system. Meanwhile, it has negative effects on the gastrointestinal (GI)
system, such as decreased appetite, disruption of normal GI tract activity, and crabby-bowel-
syndrome. Thus, mental stress evaluation and analysis are very important procedures
that can be done to detect stress in order to prevent significant health problems. Despite
the number of studies that covered this phenomenon using EEG signals, there is a lack of
inclusive guidelines about the relevance between EEG feature and its extraction methods.
Here, we conducted a comprehensive review on the methods of analysis of mental stress-
based EEG signals. Specifically, our review focused on the type of the method used for data
analysis and classification model. In particular, we found that selecting the right method
of analysis is challenging because of factors variety that are exercised in the experiments.
These factors include EEG sensor, sample size, stressor type, task duration, time of the
day, proper EEG processing, feature extraction mechanism, number of features and type of
classifier. Therefore, the significant part related to mental stress quantification is choosing
the most appropriate features. Another case of concern is the large discrepancy between
individuals and response to stress. For example, different stress response may be acquired
for a particular subject depending on his psychology, sociality, health, and emotional state.

The methods of quantifying mental stress using EEG varies across the analysis spec-
trum. As previously stated, because the brain acts in networks, descriptors of network
functioning will be required to completely comprehend neural processing. In this work, we
provided a comprehensive review on these analysis methods. Meanwhile, we highlighted
the key differences spotted between the research findings and argued that variations of the
data analysis techniques could be a significant contributing factor towards several contra-
dictory results. Besides, the extracting features that are related to brain connectivity showed
a clear model of the brain and how its different regions are interacting with each other.
Therefore, studying feature extraction techniques related to brain connectivity provides
a clear model of the brain and how its different regions are interacting with each other.

Moreover, there is a variety in the experiment duration between the discussed refer-
ences. Thirty minutes process of the study in [111] involves maximum voluntary contrac-
tion (MVC), resting state (RS), MIST training and task, three questions about self-perceived
level of stress and a relaxation period. Meanwhile, the eighty minutes period of data
acquisition of the studies [44,45] comes from two conditions (stress and control) where
each one consists of 40 min of habituation, rest, four levels main condition, and recovery
periods. In the experiment protocol of Al-Shargie et al. [20], it takes 60 min duration
divided between introduction, training, resting, and the main experiment, which needs
about 40 min using three levels of mental arithmetic task. Besides, the four minutes of
the study in [88] depend on the experiment procedure, which includes 3 min of counting
and 1 min of serial subtraction where EEG data is recorded. They have used 18 min du-
ration in the study that involves a brief introduction, training, data recording for control
and stress conditions. Saeed et al. [108] achieved an increase in beta rhythm power and
a decrease in alpha rhythm power in the pre-frontal cortex with a total duration of 25 min.
Consequently, to avoid the effect of time on subject’s cognitive ability and the influences of
circadian rhythm on stress performance, it is preferred to conduct the EEG experiment on
all participants at the same time of day [44].

The task nature and sample size had a direct influence on classifier accuracy, such as
the restricted duration in doing mental arithmetic tasks, which leads to low performance
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accuracy [45] and the varied results gained with a large number of participants with
the studies in [44,45] compared to [111]. It is worth noting that the majority of studies
have a limited sample size, meaning that the amount of people involved is insufficient to
overcome prejudices caused by individual differences. A larger sample size is needed to
ensure statistical power and to bolster our findings.

On the other hand, decreasing the number of EEG electrodes maintains real time
stress detection, but could increase system mobility and ease. Therefore, using one or two
frontal electrodes might be sufficient to detect stress/control phases, but in order to get
their level it is better to use more electrodes as suggested [88]. As mentioned in the EEG
processing section, the extracted EEG signal undergoes to several denoising processes that
may eliminate the unwanted peaks and artefacts, but small remaining noise could deform
the information of analyzed EEG.

Finally, the used EEG sensor to record data and measure mental stress has a huge
impact on the number of channels available. The number of channels in a typical EEG
system can range from 1 to 256. The 10/20 system, which governs the positioning of
electrodes on the brain, is followed. The benefits of multi-channel EEG systems are that
they do a better job of avoiding data loss, particularly as the sensor network expands to
more channels (caused by when electrode distances grow further apart when fewer are
deployed) as well as in detecting vital clinical signals. This means that medical applications
need higher resolution EEG systems (larger sensor networks) to complete the task.

7. Challenges and Future Work

Most of studies induced stress in controlled environments, whereas the better method
is to develop a protocol that sustains the real scenarios such as virtual reality. Furthermore,
the discussed researches did not correlate the physiological changes, such as cortisol
levels, with the behavioral response. Most of the reviewed studies conducted offline
experiments, but we suggest developing an online system that deals with stress recognition
in the real time. Moreover, one of the critical factors that influences stress assessment
results is the ground truth that is needed to train the classifier by sorting subjects into
stress/non-stress groups. Most of studies established this labelling by questionnaire
score, psychologist interview or both of them. Nevertheless, these two methods cannot
provide a direct judgment on mental stress existence because of the high dependency on
participants themselves (in many cases, they expect a wrong stress situation because of
subconsciousness). Unlike the used simulated experiments, a significant challenge will be
faced when labelling subjects in real world tasks.

As a future work, suggesting EEG feature extraction techniques could be useful in
improving stress detection such as phase synchronization and source localization. Phase
synchronization is used to analyze interdependence between two-time EEG signals re-
gardless of their amplitude. It has high sensitivity that leads to detect dynamical changes
of brain functions during mental stress. While EEG is a powerful tool for measuring
neuronal activity and connectivity, the lack of spatial resolution could be a drawback. EEG
source localization may be used to estimate the locations of electrical activities from the
scalp potential measurements. The information of localization about these active sources
(depending on the recorded potential from the electrodes) provides a good diagnosis for
the mental state and brain abnormalities. This method can be combined with other feature
extraction techniques such as directed connectivity measures.

8. Conclusions

In this paper, we have presented a comprehensive review of EEG signal analysis
methods for the assessment of mental stress. A rigorous procedure was adopted for the
search strategy and identification of relevant studies. The review emphasized the major
discrepancies between the research findings. It also suggests that various data processing
methodologies have contributed to numerous conflicting outcomes. These various can
be attributed to a number of variables, including the lack of a consistent procedure, brain
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regions of interest, type of stressor, duration of experiment, EEG signal processing, feature
extraction technique, and the type of classifiers used. In addition, we have reported
the effect of sample size bias in connectivity estimation. This problem can be solved
by equalizing sample sizes between different conditions or participants, using statistical
methods that explicitly account for sample size bias, or employing connectivity approaches
that are not affected by sample size bias. Moreover, understanding the relationships
between mental stress and the complex and diverse EEG characteristics, such as time-
varying, functional, and dynamic brain connections, necessitates the integration of several
data analysis methods. As a result, we propose combining the network connectivity
measures with deep learning to increase the accuracy of assessing mental stress levels.
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