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Abstract: The two-sided disassembly line is popular for its high-efficiency disassembly of large-
volume end-of-life products. However, in the process of two-sided disassembly, some parts and
components need to be disassembled in parallel, and the uncertainty of disassembly time lacks certain
research. This paper constructs a fuzzy multiobjective two-sided disassembly line balance problem
model based on parallel operation constraint, which aims to reduce the balance loss rate, smoothness
index, and energy consumption of disassembly activities. A multiobjective flatworm algorithm based
on the Pareto-dominance relationship is developed. To increase the diversity of feasible solutions
in the evolution process and accelerate the convergence of Pareto-optimal solutions to prevent the
random search of solution space, growth, splitting and regeneration mechanisms are embedded in
the algorithm. The working mechanism and efficiency of the multiobjective flatworm algorithm are
proved on a series of two-sided disassembly cases, and the excellent performance of the proposed
model and algorithm are demonstrated by an actual automobile two-sided disassembly line.

Keywords: energy-efficient optimization; two-sided disassembly line balance; parallel operation;
uncertain; multiobjective flatworm algorithm

1. Introduction

With the advancement of manufacturing processes, the lifecycle of products is con-
stantly shortened, and more end-of-life (EOL) products are becoming increasingly unavail-
able [1]. The “circular economy” and “remanufacturing” industries are in the ascendant,
the recycling of end-of-life products such as black and white home appliances and auto-
mobiles has received increasing attention. The latest data showed that the number of EOL
automobiles in China was about 2.615 million in 2020, the total weight of EOL vehicles was
nearly 6.267 million tons, and each ton of the resources can recover 72.0% of waste steel,
6.0% of waste nonferrous metals, 6.3% of waste plastics, 4.4% of waste rubber and 1.7% of
waste glass; if they are directly discarded, it will not only waste resources but also pollute
the environment [2]. Disassembly, as an important stage after recycling and before reuse,
plays an important role in the process from waste to available resources [3]. When dealing
with a large number of product disassemblies, the paced disassembly line has a great
advantage of efficiency compared with the fixed disassembly position layout [4]. How to
assign disassembly tasks to reasonable stations in proper order under given constraints,
and achieve the expected objectives, such as reducing the cycle time of disassembly line
and improve the efficiency of comprehensive disassembly, is called the disassembly line
balancing problem [5,6].

The traditional straight one-sided and U-shaped lines are mainly used to dismantle
small-sized and medium-sized EOL products, such as TV sets, microwave ovens and other
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white appliances [7], and tasks can only be carried out in the space on one side of the
disassembly line. Facing a large number of large-volume EOL products to be disassembled,
especially for the EOL automobiles and refrigerators, if these two disassembly lines are
used, more space, more tools and resources will not only be occupied, but will also lead to
a lower disassembly efficiency. Under this situation, the two-sided disassembly line is a
better choice for these large-volume EOL products [8,9], tasks can be performed on the left
and right sides of the two-sided disassembly line at the same time, which can reduce the
length of the disassembly line to reduce plant space occupation; meanwhile, it can realize
the shared use of tooling and fixtures to reduce the number of disassembly equipment and
corresponding energy consumption.

The disassembly line balancing problem (DLBP) has received widespread attention
since it was first proposed [10], and it is considered to be non-deterministic polynomial
complete (NP-complete) [11]. There are roughly three categories of methods to solve
the DLBP: exact methods, heuristic methods and metaheuristic algorithms. In the exact
methods, mixed-integer linear programming [12–16], branch and bound [17,18] are mostly
used to solve DLBP in the linear interactive and general optimizer (LINGO). Aiming at the
low efficiency of solving large-scale DLBP problems, heuristic and metaheuristic algorithms
are proposed. For heuristics, the greedy/2-opt algorithm is mainly applied [11]. For
metaheuristics, such as genetic algorithm [19], ant colony optimization [20], particle swarm
optimization [21], simulated annealing [22], artificial bee colony and variable neighborhood
search [23]. In recent years, the Pareto firefly algorithm [8], flower pollination algorithm [9]
and gravitational search algorithm [24] are also successfully applied in DLBP.

In terms of two-sided disassembly lines suitable for large-volume EOL products,
few kinds of literature are related to relevant research. Kucukkoc described the two-
sided disassembly line balancing problem (TDLBP) and proposed a mixed-integer linear
programming model [25]. Wang proposed the stochastic two-sided partial disassembly
line balancing problem and solved it by the discrete flower pollination algorithm [9].

Extensive literature shows that DLBP is not the reverse process of an assembly line [26];
disassembly operations are usually fraught with uncertainties. Three techniques are
often used to deal with these uncertainties. Most literature assumes that the disassembly
time is a random variable with a known probability distribution (such as the normal
distribution) [9,13,27,28]. Some assume that the disassembly time is an interval number [22].
The disassembly time is expressed by triangular fuzzy numbers in other studies [19,29,30].

However, all of these methods dealing with the uncertain disassembly time have
some limitations to some extent. In practice, it is often impossible to obtain the unbiased
estimation of disassembly time by a limited number of samples, let alone the probability
distribution function of disassembly time due to the high uncertainty of EOL product or the
skill of the disassembly operator. The interval numbers of disassembly time only give the
lower and upper bounds, which can be obtained easily but lack some necessary statistical
significance. In addition, some practical constraints of large-volume EOL products in the
two-sided disassembly line are idealized, which lead to the inconsistency between the
previous two-sided disassembly line model and the reality. In view of the deficiencies of
the above research, the main contributions of this paper follow:

1. The triangular fuzzy number is introduced into the two-sided disassembly line to
simulate the uncertainty of parts disassembly time. This method can not only simulate
the average disassembly time of parts, but also expresses the disassembly time of parts
with good conditions (less than the average disassembly time) and parts with poor
conditions (more than the average disassembly time), which increases the universality
of uncertainty expression.

2. The parallel operation constraint is introduced to imitate some large-volume com-
ponents and parts that lay across the two-side disassembly line and that should be
dismantled parallel in the same mated-station, which is significantly different from
the straight one-sided disassembly line and U-shaped. For example, the removal
of the engine cover of an EOL automobile requires the workers at the left and right
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stations of the same disassembly mated-station to work together to remove their
respective fastening bolts due to its large size.

3. A mixed-integer programming (MIP) model based on energy efficiency is established
for the two-sided disassembly line balancing problem considering parallel operation
and fuzzy processing times (TDLBP-POF), which is more realistic than the previ-
ous model, and a multiobjective flatworm algorithm (MOFA) is developed to solve
the problem.

The rest of the paper is organized as follows. Section 2 describes the problem descrip-
tion and constructs the mathematical model for TDLBP-POF. Then the proposed multi-
objective flatworm algorithm for solving TDLBP-POF is explained in detail in Section 3.
Section 4 presents three computational cases to verify the performance of the proposed
model and algorithm. Conclusions, including directions for further research and explo-
ration, are argued in the last section.

2. Model Construction of TDLBP-POF
2.1. Problem Description

The two-sided disassembly line is to arrange the workstations on the two sides of the
conveyor to form two independent working areas. As shown in Figure 1, each station is
equipped with operators, fixtures and disassembly tools; the EOL product is distributed to
the left (L) or right (R) side of the disassembly line, and is broken down into the required
parts on each workstation. Two workstations directly facing each other is called a mated-
station, the station (2, L) and (2, R) together constitute the mated-station 2, station (2, L)
can be called the companion station of the station (2, R), and vice versa [7,31].

Figure 1. Station configuration of the two-sided disassembly line.

Figure 2 shows a two-sided disassembly problem with 16 tasks (P16) modified from
the assembly line problem [32]. Each circle indicates a task, and the letters (L/R/E) above
the circle represent the side of the task that can be arranged; tasks with L indicate that
those tasks can only be dismantled on the left station of the disassembly line, and R on the
right, tasks with E imply that they can be disassembled on the left as well as on the right
of the line [7,9]. The real number between 0 and 1 in brackets above denotes the hazard
degree of the task: the larger, the higher the danger degree is, and the more serious the
environmental pollution generated. It should be noted that if the hazard degree of a task
is 0, it is not identified in Figure 2. The triple array below the task represents the fuzzy
disassembly time of the task, which will be introduced in Section 2.3.

The problem can be described as how to assign a sequence of disassembly tasks to
workstations in a reasonable manner, so that the efficiency of the disassembly line is fully
utilized and the task disassembly time on each workstation is approximately balanced;
meanwhile, energy consumption during the disassembly process is effectively reduced.
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Figure 2. Disassembly precedence relationship with 16 tasks.

2.2. Parallel Operation Constraint

In the disassembly process of EOL products, in addition to meeting the basic task dis-
assembly precedence constraints, due to the characteristics of large-volume EOL products,
a parallel operation constraint often appears in actual disassembly, which means that a
pair of tasks must be disassembled at the left and right stations of the same disassembly
mated-station in parallel, whether the disassembly time of the pair of tasks is the same
or not, and they usually have to be completed at the same time in order to remove the
parts containing the pair of tasks. In Figure 2, a pair of tasks connected by a dotted line
indicates that they need a parallel operation by two stations in a mated-station to complete
the disassembly. For example, task 5 should be dismantled in a station on the right, task
6 is on the left in the same mated-station. It should be pointed out that the disassembly
direction of a pair of tasks that need parallel operation must be compatible, that is, the
disassembly direction of the pair of tasks cannot be L or R at the same time.

2.3. Approaches for Fuzzy Processing Times

To simulate the uncertainty or inaccuracy of disassembly time in a more realistic
situation, triangular fuzzy numbers are applied to represent and describe the undeter-
mined operation time due to their simplicity of calculation and are easy to compare with
other fuzzy numbers [30]. Assuming that the disassembly time of task i is a triangular
fuzzy number with three parameters Ã =

(
Al , Am, Au

)
, where Al and Au are the upper

and lower bounds of the triangular fuzzy numbers, representing optimistic disassembly
time and conservative disassembly time, respectively [29], the membership function value
corresponding to Am is equal to a maximum of 1, which indicates the most likely disas-
sembly time in the process. Figure 3 describes a triangular fuzzy number of Ã, the x-axis
represents the boundary range of Ã, and µÃ(x) represents the membership degree of the
fuzzy number Ã, the membership degree decreases gradually from point Am to both sides,
and decreases to 0 at Al and Au.
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Figure 3. Membership function of a triangular fuzzy number.

Let B̃ =
(

Bl , Bm, Bu
)

represent another triangular fuzzy number. When solving the
TDLBP-POF, all of the time parameters are triangular fuzzy numbers; in order to calculate
the start and end time of the disassembly tasks, basic operation rules of two triangular
fuzzy numbers are calculated as follows:

Ã + B̃ =
(

Al + Bl , Am + Bm, Au + Bu
)

(1)

Ã− B̃ =
(
(Al − Bu) ∨ 0, Am − Bm, Au + Bl

)
(2)

Ã× B̃ =
(

Al × Bl , Am × Bm, Au × Bu
)

(3)

Ã/B̃ =
(

Al/Bu, Am/Bm, Au/Bl
)

(4)

The symbol (Al − Bu) ∨ 0 in Equation (2) represents the parameter at this position,
taking the maximum value between Al − Bu and 0. Meanwhile, in order to compare the
size of a group of fuzzy numbers, a popular defuzzification technique is adopted to convert
fuzzy numbers into crisp real numbers [30,33], the defuzzification method can be computed
by Equation (5). Notation DF(Ã) indicates the maximum possible real number of Ã.

DF(Ã) =
(

Al + 2Am + Au
)

/4 (5)

For example, in Figure 2, the fuzzy disassembly time of task 8 is (2,4,8) and that of
task 16 is (2,4,6). Although the most likely disassembly time in the middle is 4 units, the
results are not the same when using Equation (5) to defuzzify them into real numbers because
their upper and lower bounds are different, and be converted into 4.5 and 4.0 units, respectively.

2.4. Mathematical Model of TDLBP-POF
2.4.1. Notations

i, g, h : disassembly tasks index, i, g, h ∈ I.
j, p : mated-stations index, j, p ∈ J.

k : left or right side of a mated-station, k =

{
1, le f t side
2, right side

.

(j, k) : the mated-station index j at side k.
Nt : number set of disassembly tasks.
Nm : number set of mated-stations.
I : disassembly task number, I = {1, 2, · · · , Nt}.
J : mated-stations number, J = {1, 2, · · · , Nm}.
C̃T : the maximum allowed fuzzy cycle time.
t̃i : fuzzy time of duration of task i.
hi : hazard degree of task i, hi ∈ [0, 1).
T̃jk : total fuzzy time of duration at the station (j, k).
Il : set of tasks operated on the left of the disassembly line, Il ∈ I.
Ir : set of tasks operated on the right of the disassembly line, Ir ∈ I.
Ie : set of tasks can be operated on the left or right side of the line, Ie ∈ I.
P(i) : set of immediate disassembly predecessors of task i.
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Pall(i) : set of all disassembly predecessors of task i.
S(i) : set of immediate disassembly successors of task i.
Sall(i) : set of all disassembly successors of task i.
P0 : set of tasks without immediate predecessors P0 = {i ∈ I|P(i) = ∅}.
e f t : unit energy consumption of fixtures and tools in each station.
eeq : unit energy consumption of disassembly equipment in each station.
eh : unit energy consumption of a hazardous task.
O(i) : set of tasks disassembled on the opposite side of task i.

K(i) : side of task i to be arranged, K(i) =


1, i f i ∈ Il
2, i f i ∈ Ir
{1, 2}, i f i ∈ Ie

.

TPO : set of disassembly tasks require a parallel operation.
t̃s
i : the fuzzy disassembly starting time of task i.

xijk : if task i is assigned to station (j, k), then xijk = 1; otherwise, xijk = 0.
N1(j) : if only one station in the mated-station j is opened, N1(j) = 1; otherwise,

N1(j) = 0.
N2(j) : if a pair of stations in the mated-station j are opened, N2(j) = 1; otherwise,

N2(j) = 0.
ξ : an infinite positive number.
η : energy consumption sharing coefficient for both a pair of stations are utilized in

the same mated-station.
ri : position index of task i in the disassembly sequence.
yig : if task i starts earlier than task g in the same station, then yig = 1; otherwise,

yig = 0.
B̃LR : the fuzzy line balance loss rate.
S̃I : the fuzzy smoothness index.
T̃EC : the fuzzy total energy consumption.

2.4.2. Objective Functions

min B̃LR = 1− ∑i∈I t̃i

C̃T ×∑j∈J(N1(j) + 2× N2(j))
(6)

min S̃I = ∑
j∈J

∑
k=1,2

(T̃jk −max
{

T̃jk

}
j∈J,k=1,2

)
2

(7)

min T̃EC = ẼC1 + ẼC2 + ẼC3 (8)

ẼC1 = e f t × [2× η ×∑
j∈J

N2(j) + ∑
j∈J

N1(j)]× C̃T (9)

ẼC2 = eeq ×∑
i∈I

t̃i (10)

ẼC3 = eh ×∑
i∈I

(1 +
ri
Nt

)× hi × t̃i (11)

Three objectives need to be optimized in the TDLBP-POF. The fuzzy balance loss
rate is expressed by Equation (6) to calculate the imbalance of the disassembly line, the
lower B̃LR and the higher balance rate of the disassembly line; therefore, the minimal B̃LR
is preferred in this paper. The smoothness index is designed to measure the workload
balance or deviation of the workload among workstations; it is computed by Equation (7).
The larger S̃I means the greater gap of working state and idle state between different
workstations [34,35], so the minimal S̃I is pursued and zero is the ideal. The fuzzy total
energy consumption is calculated by Equation (8), which consists of three parts, ẼC1 in
Equation (9) represents the energy consumption caused by the lighting and ventilation of
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the utilized stations, ẼC2 indicates the energy consumption related to disassembly time,
and ẼC3 denotes the energy consumption of the hazardous task, which is not only related
to the hazard degree of tasks, but also related to the disassembly sequence of the hazard
tasks—tasks with higher hazard degree and later disassembly, which will consume more
energy. Therefore, total energy consumption is the main focus of this paper, and the
minimum is preferred.

2.4.3. Constrains

Nm

∑
j=1

∑
k=1,2

xijk = 1, ∀i ∈ I (12)

Nm

∑
j=1

∑
k∈K(g)

j·xgjk ≤
Nm

∑
j=1

∑
k∈K(h)

p·xhpk, ∀h ∈ I, g ∈ P(h) (13)

t̃s
i + t̃i ≤ C̃T, ∀i ∈ I (14)

t̃s
h −

(
t̃s
g + t̃g

)
+ ξ·

(
1−∑k∈K(h) xhjk

)
+ ξ·

(
1−∑k∈K(h) xgjk

)
≥ 0,

∀h ∈ I − P0, g ∈ P(h), j ∈ J
(15)

t̃s
g − (t̃s

i + t̃i) + ξ·
(

1− xijk

)
+ ξ·

(
1− xgjk

)
+ ξ·

(
1− yig

)
≥ 0,

∀i ∈ I, g ∈ {m|m ∈ I − Pall(i) ∪ Sall(i) ∪O(i) and i < m}, j ∈ J, k ∈ K(i) ∩ K(g)
(16)

t̃s
i − (t̃s

g + t̃g) + ξ·
(

1− xijk

)
+ ξ·

(
1− xgjk

)
+ ξ·yig ≥ 0,

∀i ∈ I, g ∈ {m|m ∈ I − Pall(i) ∪ Sall(i) ∪O(i) and i < m}, j ∈ J, k ∈ K(i) ∩ K(g)
(17)

∑
k1∈K(g)

xgjk1 − ∑
k2∈K(h)

xhjk2 = 0, ∀(g, h) ∈ TCO, j ∈ J, k1 6= k2 (18)

t̃s
g + t̃g = t̃s

h + t̃h, ∀(g, h) ∈ TCO (19)

xij1 = 0, ∀i ∈ Ir, j ∈ J (20)

xij2 = 0, ∀i ∈ Il , j ∈ J (21)

t̃s
i ≥ 0, ∀i ∈ I (22)

Equation (12) indicates that each disassembly task can only be assigned to only one
workstation. Equation (13) denotes that the disassembly precedence relations between two
tasks should not be violated when disassembled at each workstation. For task pairs (g, h)
where g ∈ P(h), task h only can be disassembled after the predecessor task g is completed.
Equation (14) ensures that the total disassembly time of any workstation is less than or
equal to the allowed fuzzy cycle time C̃T. Equations (15)–(17) ensure there is no time
crossing between the start and end times of any two tasks with disassembly precedence
relations at the same station, that is, an operator of any workstation can only execute at most
one task at any time. An infinite positive number ξ is introduced to call off the constraints
when the two tasks are scheduled to different mated-stations [7,36]. Equations (18) and
(19) ensure that the completion time of two tasks that need to be operated in parallel at a
mated-station is the same. Equations (20) and (21) are the disassembly direction constraints
and the last ensures that all tasks start at a meaningful time.

3. Multiobjective Flatworm Algorithm for TDLBP-POF

The flatworm algorithm (FA) was recently developed by Tseng [37] to solve the
problem of disassembly sequence planning, which proved that FA is more effective than
either the genetic algorithm (GA) and ant colony algorithm (ACO) in reducing the times
of disassembly direction change and tool replacement through a ceiling fan disassembly
with 26 parts, a printer disassembly with 52 parts and a simulated product disassembly
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with 150 parts. The main reason is that FA uses a single individual to generate the next
generation, rather than cross-exchanging information between multiple individuals, which
can effectively escape the local optimum and find a better solution. The algorithm was
inspired by the self-renewal function of the multipotential stem cells (MSCs) of flatworms.
A flatworm is accidentally split into two or more segments in the face of stimulation such
as auto division or any disruption. Each segment will supplement the missing part of its
full body through the growth and tissue repair function of its preserved multipotential
stem cells. After a period of recovery, each part body of the flatworm will differentiate
into a complete flatworm. FA is significantly different from the traditional GA, particle
swarm optimization (PSO) and ACO. The population of FA constantly evolves through
growth, splitting and regeneration mechanisms, with few evolutionary parameters and
high efficiency, and only the population number of flatworms (n), growth probability (p)
and the total evolutionary iterations are considered as the parameters.

This paper focuses on the multiobjective energy-efficient optimization of the two-sided
disassembly line balancing, so the Pareto-optimal mechanism [38] is embedded into FA
and called the multiobjective flatworm algorithm (MOFA); the other details of the growth,
splitting and regeneration process are introduced in Sections 3.1–3.5. The procedure of the
MOFA is depicted in Figure 4.

Figure 4. The procedure of the proposed multiobjective flatworm algorithm (MOFA).

3.1. Solution Encoding

A reasonable solution encoding scheme is a prerequisite for solving the TDLBP-POF
problem with MOFA, so it should be a feasible disassembly task sequence, and meanwhile,
conducive to the stable execution of growth, splitting and regeneration processes in the
discrete solution space. Thus, an initial feasible solution is represented by a complete
flatworm, in which a total of three vectors are employed in FA: the task disassembly
sequence vector, the task disassembly direction vector and the task hazard degree vector.
The first vector is composed of all tasks to determine the sequence to enter the disassembly
line. The second represents the disassembly direction of each task, tasks with L indicate
that those tasks can only be dismantled on the left station of the disassembly line, and
R on the right, tasks with E imply that they can be disassembled on the left as well as
on the right of the line. The hazard degree vector is used to indicate the environmental
hazard degrees of disassembly tasks. It should be pointed out that, between a pair of tasks
with parallel operation constraint, there should be no predecessor tasks of the pair tasks
that finally appear in the disassembly task sequence. Figure 5 depicts a feasible encoding
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scheme of P16. For example, task 13 is in the fifth position from the left of the disassembly
sequence; its disassembly direction is E, and its hazard degree is 0.5.

Figure 5. A feasible encoding scheme of 16 disassembly tasks.

3.2. The Growth Process

As time goes on, the MSCs of a flatworm self-proliferate a limited number of times,
and its body gradually grows longer, which makes the tissue preparation for the splitting
process in the face of adverse stimulation in the future. In the problem of TDLBP-POF, the
algorithm imitates the characteristics of the limited proliferation of the MSCs of flatworms,
set a fixed growth probability based on the number of disassembly tasks, and let the fixed
number but randomly selected disassembly tasks replicate themselves to complete the
growth process.

Figure 6 depicts the growth process of P16. Here, the growth probability is set to 0.1,
then 2 of the 16 disassembly tasks will be randomly selected for growth. Assuming that
tasks 9 and 15 are selected separately, then the available positions of task 9 can be inserted
only to the immediate left of task 9 or 8 or 10, according to the disassembly precedence
relationship of the tasks, assuming that the actual insertion position is to the immediate left
of task 8. In the same way, the actual insertion position of task 15 is fixed to the immediate
left of task 14. At this time, the disassembly task sequence is no longer feasible because of
the existence of redundant tasks, but it is prepared for the next splitting process.

Figure 6. The growth process of 16 disassembly tasks.

3.3. The Splitting Process

Based on the fact that flatworms are accidentally divided into two or more segments
when stimulated, the grown disassembly task sequence enters the splitting process. To
increase the diversity of feasible solutions in the evolution process, the number of splitting
points is the same as the number of growth tasks, but the splitting positions adopt a
random mode.

Assume that the two splitting points in Figure 6 are immediate to the left of tasks 8
and 4, then the grown disassembly task sequence is split into three segments, as shown in
Figure 7.

3.4. The Regeneration Process

The partial tissue of the split flatworm slowly regenerates the lost tissue in a suitable
environment. Based on the same mechanism, the regeneration of the split disassembly task
sequence begins to regenerate the lost disassembly tasks. The main steps are as follows:
first, ensure that the disassembly task of each remaining split part is unique; then find all
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the lost disassembly tasks; and finally, regenerate each lost disassembly task one by one
according to the task disassembly precedence relationship.

Figure 7. The splitting process of 16 disassembly tasks.

Tasks with higher hazard degrees and later to be disassembled will consume more
added energy; therefore, in the regeneration, priority should be given to removing high-
hazard tasks to reduce the energy consumption, and meanwhile, the convergence can
be accelerated to prevent the random search of solution space. Figure 8 depicts the full
state of the three split disassembly task sequence segments after regeneration. Taking the
regeneration process based on the intermediate segment as an example, first, it can be found
that all tasks in the fragment are unique, and the lost task set is {1,2,4,5,8,10,11,13,14,15,16};
then, according to the disassembly precedence relationship, tasks 16, 15 and 14 can be the
first candidate task in the new regenerated task sequence, and task 15 is selected since it
has a hazard degree of 0.5 unit, then task 16 is randomly identified as the second, when
tasks 14, 13, and 11 become available, task 13 is selected based on the same principle of
hazard degree priority. Other lost disassembly tasks are selected into the new regenerated
task sequence similarly.

Figure 8. The regeneration process of 16 disassembly tasks.

3.5. Solution Decoding

The process of assigning each task of disassembly task sequence to the workstation
in precise order under the constraints of the disassembly direction, parallel operation
and fuzzy cycle time is called decoding. A pair of tasks that need a parallel operation
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should be disassembled at both left and right stations in the same mated-station and
completed simultaneously.

The fuzzy cycle time is set to (15,18,21), two decoding schemes of P16 are depicted in
Figures 9 and 10, where Figure 9 is a task assignment scheme of an initial encoding scheme
in Figure 5, and Figure 10 is an assignment of the regeneration of the disassembly task
sequence based on the intermediate segment Figure 8. Both 4 mated-stations are utilized,
a total of 8 stations are utilized in Figure 9, while only 7 stations in 4 mated-stations are
utilized in Figure 10, the parallel operation task pairs {11,12} and {5,6} are completed in
mated-stations 1 and 3, respectively. Intuitively, compared with the first decoding scheme,
the second decoding scheme not only uses fewer workstations to complete all disassembly
tasks, but also causes less idle time on the disassembly line, which also leads to less energy
consumption. This illustrates the effectiveness of the growth, splitting and regeneration
process preliminarily, and detailed cases will be introduced to verify this next.

Figure 9. Decoding scheme of an initial encoding scheme.

Figure 10. Decoding scheme of a regeneration individual.

3.6. The Pareto-Optimal Solutions

The Pareto-optimal solutions are introduced to compare the quality of the solutions
of the multiobjective problem. Taking the multiobjective minimization problem as an
example, there are three objectives in this paper. Assuming that there are two feasible
solutions X1 and X2, if all the objectives in X1 are less than or equal to those in X2, and at
least one objective in X1 is clearly less than the corresponding objective in X2, then we call
X1 dominates X2. If the above conditions are not fully satisfied, then X1 and X2 are called
nondominated solutions. Furthermore, if X1 and X2 are nondominated solutions, and no
other feasible solution can dominate X1 and X2, then X1 and X2 are called Pareto-optimal
solutions [8].

4. Case Verification and Discussion

The proposed MOFA is coded in the environment of Matlab R2019a on Windows 10
with a 3.2 GHz processor and 8 GB RAM. In the following section, three different types of
cases show that the proposed model and MOFA can provide more exciting solutions for
TDLBP-POF problems.

4.1. Fuzzy Straight One-Sided Disassembly Line Case with No Parallel Operation

Two scales of the straight disassembly line with fuzzy processing times are taken from
Kalayci [30] to study the effectiveness of the proposed algorithm, one is the mobile phone
case with 25 tasks and another is the laptop case with 47 tasks. Four main definite objectives
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and three additional fuzzy objectives of the line balance efficiency (B̃E), smoothness index
(S̃I) and the line balance delay time (B̃D) are considered. Three Pareto-optimal solutions by
the hybrid discrete artificial bee colony (HDABC) [30] and eight by the improved artificial
fish swarm algorithm (IAFSA) [29] are found for the mobile phone case. The parameters
of the proposed MOFA for the mobile phone case are set as follows: n =30, p = 0.05,
C̃T = (12, 15, 18) and the total iteration is 50.

More than 10 Pareto-optimal solutions are obtained, of which 5 are listed in Table 1,
and the task assignment scheme of each solution is shown in Table 2. The minimum values
of four definite objectives both are (12, 14.048, 85, 919) by HDABC and IAFSA, while the
minimums by MOFA are (11, 10.714, 77, 913). Partial obtained solutions by HDABC and
IAFSA are dominated by the MOFA, which indicates that the MOFA is superior to the
above two methods in obtaining more and better Pareto-optimal solutions for the mobile
phone case.

Table 1. Computed results by the multiobjective flatworm algorithm (MOFA) for the mobile phone case.

Solution f1 f2 f3 f4 B̃E S̃I B̃D

1 11 10.714 79 908 (0.551, 0.891, 1) (0, 7.616, 27.622) (0, 18, 89)
2 11 10.960 75 908 (0.551, 0.891, 1) (0, 8.000, 27. 839) (0, 18, 89)
3 12 15.239 73 882 (0.505, 0.817, 1) (3, 12.845, 32.265) (0, 33, 107)
4 12 16.422 76 856 (0.505, 0.817, 1) (3, 14.799, 33.091) (3, 33, 107)
5 13 20.887 71 873 (0.466, 0.754, 1) (9.055, 18.868, 36.756) (14, 48, 125)

f1: number of workstations. f2: smoothness index. f3: disassembly priority of hazardous parts. f4: disassembly priority of high demand
parts. B̃E: fuzzy line balance efficiency. S̃I: fuzzy smoothness index. B̃D: fuzzy line balance delay time.

Table 2. Task assignment schemes by the multiobjective flatworm algorithm (MOFA) for the mobile phone case.

Solution Task Assignment Schemes

1 {4}-{5,2}-{1,10,11,12,3}-{8}-{6}-{7}-{9}-{13,14,17,21,22}-{25,15,18,16,20}-{19}-{23,24}
2 {2,4}-{1,5}-{10,11,12,3}-{7}-{6}-{9}-{8}-{14,13,17,15,18,16}-{19,21}-{25,22,20}-{23,24}
3 {2,4}-{1,5}-{10,11,12,3}-{8}-{7}-{6}-{9}-{14,13,17,21,25}-{22,15,18,16}-{19}-{23}-{20,24}
4 {2,1}-{7}-{6}-{5,3}-{9}-{8}-{14,13,17,21,25}-{22,4}-{16,23}-{10,11,12,15,18}-{19}-{20,24}
5 {2,5}-{1,4}-{10,11,12,3}-{8}-{6}-{7}-{9}-{14,13,17,21,25}-{22,16}-{23,15}-{18}-{19}-{20,24}

The parameters for the laptop case are set as follows: n =50, P = 0.05,
C̃T = (98, 104, 110) and the total iteration is set to 50. More than 20 Pareto-optimal solu-
tions are obtained, of which 9 are listed in Table 3, while only 3 Pareto-optimal solutions
by HDABC [30] and 10 by IAFSA [29] are found for the laptop case. The corresponding
task assignment by the proposed MOFA is shown in Table 4. The minimum number of
workstations and smoothness index by MOFA are 9 and 38.76, respectively, which are less
than the computed results by HDABC and IAFSA, which also shows that the performance
of the proposed MOFA can obtain more high-quality and diverse optimal solutions.

Table 3. Computed results by the multiobjective flatworm algorithm (MOFA) for the laptop case.

Solution f1 f2 f3 f4 B̃E S̃I B̃D

1 9 39.12 271 2372 (0.72, 0.91, 1) (0, 30.56, 95.35) (0, 80, 278)
2 9 39.96 263 2335 (0.72, 0.91, 1) (0, 32.28, 95.27) (0, 80, 278)
3 9 40.28 264 2325 (0.72, 0.91, 1) (0, 32.77, 95.58) (0, 80, 278)
4 9 45.43 261 2334 (0.72, 0.91, 1) (9.00, 38.08, 96.58) (9, 80, 278)
5 10 71.01 259 2330 (0.65, 0.82, 1) (14.93, 69.70, 129.69) (27, 184, 388)
6 10 74.00 261 2313 (0.65, 0.82, 1) (21.42, 71.96, 130.66) (33, 184, 388)
7 10 79.18 257 2322 (0.65, 0.82, 1) (29.41, 77.06, 133.21) (47, 184, 388)
8 11 129.08 260 2311 (0.59, 0.75, 0.97) (93.77, 125.90, 170.76) (134, 288, 498)
9 11 144.90 259 2303 (0.59, 0.75, 0.97) (117.69, 141.63, 178.66) (192, 288, 498)

f1: number of workstations. f2: smoothness index. f3: disassembly priority of hazardous parts. f4: disassembly priority of high demand
parts. B̃E: fuzzy line balance efficiency. S̃I: fuzzy smoothness index. B̃D: fuzzy line balance delay time.
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Table 4. Task assignment schemes by the multiobjective flatworm algorithm (MOFA) for the laptop case.

Solution Task Assignment Schemes

1 {5,13,14,19,15,16,17,18,47}-{20,21,22,23,24}-{25,8,9,10,11,1,6}-{26,27}-{2,3,28,29,30,31,4}-{32}-{33,34,35,36,43,44,12,45}-
{37,46,7,38}-{39,40,41,42}

2 {5,13,14,19,15,16,17,18,47}-{20,22,21,24,23}-{25,8,9,10,11,1}-{26}-{2,3,27,28,29,30,31}-{32}-{33,34,35,36,43,44,45,46,6}-
{12,7,37,38,4}-{39,40,41,42}

3 {5,13,14,19,15,16,17,18,47}-{20,22,21,24,23}-{25,8,9,10,11,1}-{26,27}-{28,29,30,31,2,3}-{32}-{33,34,35,36,43,44,45,46,12}-
{6,7,37,38,4}-{39,40,41,42}

4 {5,13,14,19,15,16,17,18,47,22}-{20,21,23,24,25}-{1,2,3,8,9}-{26}-{10,11,27,28,29,30,31}-{32}-{33,34,35,36,43,44,45,46,12}-
{6,7,37,38,4}-{39,40,41,42}

5 {5,13,14,19,15,16,17,18,47,22}-{20,21,23,24,25}-{1,2,3,8,9}-{26}-{10,11,27,28,29,30,31}-{32}-{33,34,35,36,43,44,6}-{37,38}-
{39,40}-{45,46,12,41,42,4,7}

6 {5,13,14,19,15,16,17,18,47,22}-{20,21,23,24,25}-{8,9,10,11,1}-{26,27}-{28,29,30,31,2,3}-{32}-{33,34,35,36,43,44}-{37,38}-
{39,40,6}-{45,46,12,41,42,4,7}

7 {5,13,14,19,15,16,17,18,47,22}-{20,21,23,24,25}-{1,2,3,8,10}-{9,11,26}-{27,28,29,30,31}-{32}-{33,34,35,36,43,44}-{37,38}-
{39,40}-{45,46,12,41,42,6,4,7}

8 {5,13,14,19,15,16,17,18,47,22}-{20,21,23,24,25}-{8,9,10,11}-{26,27}-{28,29,1,30,31,2}-{3}-{32}-{33,34,35,36,43,44,6}-
{37,38}-{39,40}-{45,46,12,41,42,4,7}

9 {5,13,14,19,15,16,17,18,47,22}-{20,21,23,24,25}-{8,9,10,11}-{26,27}-{28,29,1,30,31,2}-{3}-{32}-{33,34,35,36,43,44,45,46,12}-
{37,38}-{39,40,41,42}-{6,4,7}

4.2. Fuzzy Two-Sided Disassembly Line with Parallel Operation Tasks

To illustrate the performance of the proposed MOFA in the two-sided disassembly line
with parallel operation tasks, the disassembly model and data in this section are modified
from Figure 2. Meanwhile, to enrich the diversity of validation model data, the α-cut
sets are introduced to produce more triangular fuzzy processing times; α is computed by
Equation (23).

α = µÃ(x) =


x− Al/Am − Al , Al ≤ x < Am

Au − x/Au − Am, Am ≤ x < Au

0, otherwise
(23)

Let the fuzzy processing times in Figure 2 be the initial times when α = 0, and
the fuzzy task times of different α-cut sets can be obtained by Equation (23) in Table 5.
Parameter α is set to 0, 0.3, 0.5, 0.7 and 1, respectively. The fuzzy degree of the task times
gradually decreases with the increase of α; in particular, the fuzzy task times become a
deterministic value when α = 1, which indicates Al = Am = Au and is abbreviated as a
single number.

Two other multiobjective algorithms PSO and the improved nondominated sorting
genetic algorithm (NSGA-II) based on the population optimization are designed to test
the performance of the proposed MOFA. The parameters of the three algorithms are set
as n =16, C̃T = (15, 18, 21) and the maximum iteration is set to 30. The inertia weight,
personal and global learning coefficients of PSO are set to 0.6, 1, and 2. The crossover
and mutation probabilities of NSGA-II are set to 0.8 and 0.2. Other parameters are set as
η = 0.6, e f t = 1, eeq = 1, eh = 0.2. Each algorithm with different levels of α is executed
10 times; the computed results are shown in Tables 6–8.

To facilitate analysis, the results of different α are converted to real numbers for
comparison, and the scatter point distribution in the three-dimensional space is shown in
Figure 11. On the whole, three objectives showed a downward trend. The reason is that as
α increases, the uncertainty in the disassembly process decreases, which is in accord with
the actual situation that the fuzzier the task processing time, the worse the overall balance
effect. Meanwhile, as shown in Figure 11, only one solution obtained by MOFA has higher
energy consumption; the others are significantly lower than the other two algorithms.
When α is equal to 1, the minimum energy consumption of MOFA, NSGA-II and PSO is
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149.26, 149.35 and 149.28, respectively, considering the balance loss rate and smoothness
index; obviously, MOFA is superior to the other two algorithms, and the Pareto-optimal
solutions (8.89, 16.00,149.37) and (8.89, 20.00,149.31) obtained by MOFA even dominate
the other two algorithms. The superiority of the proposed MOFA to the comprehensive
optimization of the disassembly line is proved.

Table 5. Fuzzy task processing time with different fuzzy degrees of P16.

Task α = 0 α = 0.3 α = 0.5 α = 0.7 α = 1

1 (4, 6, 8) (4.6, 6, 7.4) (5, 6, 7) (5.4, 6, 6.6) 6
2 (4, 5, 6) (4.3, 5, 5.7) (4.5, 5, 5.5) (4.7, 5, 5.3) 5
3 (1, 2, 4) (1.3, 2, 3.4) (1.5, 2, 3) (1.7, 2, 2.6) 2
4 (8, 9, 14) (8.3, 9, 12.5) (8.5, 9, 11.5) (8.7, 9, 10.5) 9
5 (6, 8, 10) (6.6, 8, 9.4) (7, 8, 9) (7.4, 8, 8.6) 8

6 (2, 4, 6) (2.6, 4, 5.4) (3, 4, 5) (3.4, 4, 4.6) 4
7 (5, 7, 10) (5.6, 7, 9.1) (6, 7, 8.5) (6.4, 7, 7.9) 7
8 (2, 4, 8) (2.6, 4, 6.8) (3, 4, 6) (3.4, 4, 5.2) 4
9 (3, 5, 8) (3.6, 5, 7.1) (4, 5, 6.5) (4.4, 5, 5.9) 5

10 (2, 4, 6) (2.6, 4, 5.4) (3, 4, 5) (3.4, 4, 4.6) 4
11 (5, 6, 10) (5.3, 6, 8.8) (5.5, 6, 8) (5.7, 6, 7.2) 6
12 (4, 5, 8) (4.3, 5, 7.1) (4.5, 5, 6.5) (4.7, 5, 5.9) 5
13 (5, 6, 12) (5.3, 6, 10.2) (5.5, 6, 9) (5.7, 6, 7.8) 6
14 (2, 4, 6) (2.6, 4, 5.4) (3, 4, 5) (3.4, 4, 4.6) 4
15 (2, 3, 6) (2.3, 3, 5.1) (2.5, 3, 4.5) (2.7, 3, 3.9) 3
16 (2, 4, 6) (2.6, 4, 5.4) (3, 4, 5) (3.4, 4, 4.6) 4

α: Different fuzzy degrees.

Table 6. Results of different fuzzy degrees by multiobjective particle swarm optimization (PSO).

α B̃LR S̃I T̃EC

0 (0, 8.89, 63.46) (0, 16.00, 1643.00) (113.01, 149.37, 207.97)
(0, 16.33, 59.29) (0, 74.00, 1023.00) (127.99, 167.33, 228.91)
(0, 21.90, 59.29) (0, 109.00, 997.00) (127.96, 167.29, 228.86)

0.3 (0, 8.89, 52.64) (0, 16.00, 863.21) (123.92, 149.37, 190.39)
(0, 21.15, 46.61) (12.25, 96.00, 422.41) (155.82, 185.48, 230.77)
(0, 19.61, 53.86) (0, 106.00, 969.59) (123.84, 149.28, 190.27)

0.5 (0, 8.89, 43.50) (0, 16.00, 482.25) (131.19, 149.37, 178.67)
(0, 14.58, 42.08) (1, 66.00, 449.75) (131.11, 149.28, 178.56)

0.7 (0, 8.89, 34.30) (0.18, 20, 264.29) (138.41, 149.31, 166.89)
(0, 14.58, 32.52) (3.38, 46.00, 233.35) (138.38, 149.28, 166.85)

1 14.58 42.00 149.33
14.58 46.00 149.31
14.58 66.00 149.28

α: different fuzzy degrees. B̃LR: fuzzy line balance loss rate. S̃I: fuzzy smoothness index. T̃EC: fuzzy energy
consumption.

4.3. Application Case Verification and Analysis

This section will take a large-capacity automobile disassembly line in Chongqing,
China, as the research application; the layout of the automobile disassembly line is shown
in Figure 12, involving 62 disassembly tasks. Due to the symmetry of the assembly position
of automobile parts, 19 tasks are disassembled on the left, 15 tasks are on the right, and the
rest can be performed on the left or right side of the line. During the disassembly process,
7 pairs of 14 disassembly tasks need to be disassembled in parallel, marked as TPO, such
as tasks 1 and 2. Only when the two disassembly tasks are completed on both sides of
the same mated-station on the line at the same time, task 3 can be performed. The fuzzy
disassembly time is obtained by the continuous measurement method of the stopwatch,
and the degree of disassembly hazard is obtained from historical disassembly statistics.
The fuzzy disassembly cycle time is set to (480,510,550). Details are shown in Table 9.
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Table 7. Results of different fuzzy degrees by the improved nondominated sorting genetic algorithm
(NSGA-II).

α B̃LR S̃I T̃EC

0 (0, 14.58, 60.42) (0, 56.00, 1275.00) (113.06, 149.43, 208.09)
(0, 14.58, 63.46) (0, 48.00, 1647.00) (112.97, 149.31, 207.89)
(0, 21.90, 59.29) (0, 99.00, 995.00) (128.02, 167.37, 229.00)

0.3 (0, 14.58, 50.23) (0, 56.00, 720.51) (123.91, 149.35, 190.38)
(0, 14.58, 53.26) (0, 48.00, 912.99) (123.88, 149.31, 190.32)
(0, 21.90, 50.19) (0, 101.00, 617.32) (139.92, 167.48, 210.67)
(0, 21.90, 50.19) (0, 101.00, 617.32) (139.92, 167.48, 210.67)

0.5 (0, 8.89, 43.50) (0, 18.00, 483.75) (131.29, 149.48, 178.82)
(0, 14.58, 42.08) (4.00, 66.00, 458.75) (131.21, 149.39, 178.71)
(0, 14.58, 47.35) (0, 52.00, 666.75) (131.21, 149.39, 178.70)
(0, 19.61, 46.12) (0.25, 84.00, 606.75) (131.17, 149.35, 178.66)

0.7 (0, 8.89, 32.15) (0, 18.00, 214.23) (152.16, 163.78, 182.09)
(0, 14.58, 32.52) (2.18, 44.00, 227.39) (138.45, 149.35, 166.93)
(0, 14.58, 32.52) (14.89, 66.00, 246.75) (138.37, 149.28, 166.84)

1 8.89 24.00 163.89
14.58 44.00 149.38
19.61 84.00 149.35

α: different fuzzy degrees. B̃LR: fuzzy line balance loss rate. S̃I: fuzzy smoothness index. T̃EC: fuzzy
energy consumption.

Table 8. Computed results of different fuzzy degrees by the multiobjective flatworm algorithm (MOFA).

α B̃LR S̃I T̃EC

0 (0, 8.89, 60.42) (0, 22.00, 1277.00) (125.04, 163.80, 224.84)
(0, 8.89, 63.46) (0, 16.00, 1643.00) (113.01, 149.37, 207.97)
(0, 8.89, 66.07) (0, 27.00, 2085.00) (112.93, 149.26, 207.81)

(0, 14.58, 60.42) (0, 46.00, 1275.00) (112.99, 149.33, 207.93)
(0, 16.33, 59.29) (0, 74.00, 1023.00) (127.99, 167.33, 228.91)

0.3 (0, 8.89, 52.64) (0, 16.00, 863.21) (123.92, 149.37, 190.39)
(0, 8.89, 55.39) (0, 20, 1088.69) (123.88, 149.31, 190.32)

(0, 14.58, 50.23) (0, 42.00, 720.79) (123.89, 149.33, 190.34)
0.5 (0, 8.89, 37.39) (0, 18.00, 294.75) (131.20, 149.38, 178.69)

(0, 8.89, 43.50) (0, 16.00, 482.25) (131.19, 149.37, 178.67)
(0, 14.58, 42.08) (0, 42.00, 437.75) (131.16, 149.33, 178.63)
(0, 14.58, 42.08) (0, 46.00, 447.75) (131.11, 149.28, 178.56)

0.7 (0, 8.89, 27.39) (0.04, 18.00, 138.75) (138.47, 149.38, 166.96)
(0, 8.89, 32.15) (0, 16.00, 212.41) (138.46, 149.37, 166.95)
(0, 8.89, 34.30) (0.18, 20, 264.29) (138.41, 149.31, 166.89)

(0, 14.58, 32.52) (3.38, 46.00, 233.35) (138.38, 149.28, 166.85)
(0, 14.58, 34.65) (1.37, 50, 278.93) (138.36, 149.26, 166.82)

1 8.89 16.00 149.37
8.89 20.00 149.31

14.58 44.00 149.27
14.58 50.00 149.26

α: different fuzzy degrees. B̃LR: fuzzy line balance loss rate. S̃I: fuzzy smoothness index. T̃EC: fuzzy
energy consumption.

Before the algorithm comparison test, the parameters of each algorithm need to be
calibrated. The orthogonal test design and the analysis of variance (ANOVA) techniques are
utilized to determine the value of each parameter in this paper. Taking the proposed MOFA
as an example, all core parameters, namely the population number (n: 60, 80 and 100), the
growth probability (p: 0.05, 0.07 and 0.1), and the total number of evolutionary iterations
(s: 120, 160 and 200) are tested at three levels. The three main parameters and the interaction
between each two parameters are considered, and the simultaneous interaction between the
three is ignored. The energy consumption is selected as the dependent variable. Repeated
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experiments were performed to improve the reliability of the statistical analysis, so the
energy consumption was measured three times under each same factor level configuration,
and the significance level was set at 0.05. The result of the analysis of variance for MOFA
is shown in Table 10. Obviously, except for factors n and s and their interactions that are
considered to be highly statistically significant, other factors are not highly statistically
significant. Therefore, the preferred parameters of n and s are determined as 80 and 160,
after the estimated marginal mean values of the energy consumption with all available
configurations, and parameter p can be set to any value in all available levels; here it is set
to 0.05.

Figure 11. Distributions of crisp real number Pareto-optimal solutions of three algorithms: (a) fuzzy degree α = 0; (b) fuzzy
degree α = 0.3; (c) fuzzy degree α = 0.5; (d) fuzzy degree α = 0.7.
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Figure 12. Site of the automobile two-sided disassembly line.

Table 9. The automobile disassembly data information with 62 tasks.

Task Description t̃ h K TPO S

1 Engine cover left bolt (30,36,41) 0 L 2 3
2 Engine cover right bolt (30,36,41) 0 R 1 3
3 Engine cover (22,30,36) 0 E 5,7
4 Air bag (160,185,200) 1 L
5 Battery (66,73,85) 0.8 R 6
6 Waste fluid (151,162,190) 0.5 E
7 Waste oil (200,225,252) 0.7 E
8 Left wheels (112,128,136) 0 L 10
9 Right wheels (112,128,136) 0 R 11
10 Left fender (50,56,65) 0 L 12
11 Right fender (50,56,65) 0 R 13
12 Left front bumper (42,49,57) 0 L 13 14
13 Right front bumper (42,49,57) 0 R 12 14
14 Front bumper (30,34,41) 0 E 15,16,17
15 Air intake grille (41,46,53) 0 E 26,27,28,29
16 Left mirrors and lamps (55,70,79) 0 L
17 Right mirrors and lamps (55,70,79) 0 R
18 Left door (107,127,139) 0 L 37
19 Right door (87,97,109) 0 R 38
20 Left trunk cover hinge (22,25,30) 0 L 21 22
21 Right trunk cover hinge (22,25,30) 0 R 20 22
22 Trunk cover (31,36,42) 0 E
23 Left behind bumper (55,61,72) 0 L 24 25
24 Right behind bumper (55,61,72) 0 R 23 25
25 Behind bumper (23,26,35) 0 E 16,17
26 Radiator (90,97,110) 0 E 56
27 Condenser (101,106,121) 0 E 56
28 Coolant tank (103,112,127) 0.3 E 56
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Table 9. Cont.

Task Description t̃ h K TPO S

29 Air cleaner (57,63,70) 0 E 56
30 Wiper (47,51,59) 0 E 33,36
31 Front glass left sealant (60,67,75) 0 L 32 33
32 Front glass right sealant (60,67,75) 0 R 31 33
33 Front glass (32,39,46) 0.3 E 41,44
34 Behind glass left sealant (40,47,57) 0 L 35 36

35 Behind glass right
sealant (40,47,57) 0 R 34 36

36 Behind glass (25,28,35) 0.2 E
37 Left seat (201,225,246) 0 L 39
38 Right seat (200,216,235) 0 R 39
39 Armrest box (90,98,117) 0 E 41
40 Fuel tank (95,106,121) 0.2 R
41 Steering wheel (120,132,150) 0 L 45
42 Dashboard left bolt (94,102,110) 0 L 43 44
43 Dashboard right bolt (69,75,86) 0 R 42 44
44 Dashboard (70,75,85) 0 E 45
45 Instrument (87,98,110) 0 L 48
46 Shift handle (105,121,139) 0 E 47
47 Brake rigging (70,78,88) 0 L 48
48 Clutch pedal (59,65,78) 0 L 49
49 Accelerator pedal (55,60,72) 0 L 61
50 Air conditioner (125,138,153) 0 E 51
51 Carbon canister (35,41,50) 0.4 E 61,62
52 Bottom guard board (56,61,77) 0 E 53
53 Ternary catalysis (101,120,136) 0.7 E 54
54 Exhaust pipe (104,118,127) 0.5 E 55
55 Transmission shaft (230,258,280) 0 E 56
56 Electric generator (124,135,154) 0 E 57
57 Engine (450,475,499) 0 E 58
58 Transmission (207,228,244) 0 E 59
59 Front suspension (221,239,256) 0 E 60
60 Behind suspension (229,248,268) 0 E 61,62
61 Left body accessories (129,138,152) 0.1 L
62 Right body accessories (100,117,131) 0.1 R

t̃: task fuzzy disassembly time. h: task hazard degree. K: task disassembly direction. TPO: task with a parallel operation. S: immediate
disassembly successors.

NSGA-II and the multiobjective PSO (MOPSO), differential evolution (MODE), and
simulated annealing (MOSA) are selected to be compared against the MOFA. Based on the
same orthogonal test design and ANOVA, the crossover and mutation rates of NSGAII
and MODE are both set to 0.75 and 0.25. The inertia weight, personal and global learning
coefficients of MOPSO are set to 0.6, 1 and 2. The end time of the total number of iterations
of the algorithms is regarded as the end time of MOSA, and the initial temperature and
cooling rate are set to 1000 and 0.98, respectively. Each algorithm is executed 10 times; a
total of 47 crisp real number of Pareto-optimal solutions are obtained by MOFA, 17, 8, 15
and 11 Pareto-optimal solutions by NSGA-II, MOPSO, MODE and MOSA, respectively,
by combining the 98 solutions together and recalculating the dominating relationship
between them, 47 approximate true Pareto-optimal solutions (ATP) can be obtained. The
distribution of Pareto-optimal solutions computed by each algorithm on each objective is
shown in Figure 13.
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It is clear from Figure 13 that the Pareto-optimal solutions obtained by MOFA can
obtain a better distribution on any objective than other algorithms. Although the line
balance loss rate (BLR) and smoothness index (SI) in Figure 13a,b are relatively higher,
referring to Figure 13d, it can be seen that the corresponding energy consumption is
relatively lower.

Figure 13. Distributions of the crisp real number of Pareto-optimal solutions of five algorithms: (a) balance loss rate;
(b) smoothness index; (c) total energy consumption; (d) approximate true Pareto-optimal solutions (ATP) of five algorithms.

Three Pareto-optimal disassembly schemes of the proposed MOFA are depicted in
Figures 14–16. First of all, both the minimum BLR and minimum SI schemes need to open
8 mated-stations, and in which 2 stations are not opened, while in the minimum TEC
scheme only needs to open 7 mated-stations and each workstation is fully utilized. Secondly,
the task pairs requiring parallel disassembly on both sides are satisfied, in the minimum
BLR and minimum SI schemes; those operations are mainly completed on mated-station 2,
while in the minimum TEC scheme are mainly operated on mated-station 1. Finally, the BLR
of the minimum BLR and minimum SI schemes is 6.51%, and the SI and TEC are 32,678.75;
11,313.75 and 33,045.25; 11,310.41, respectively. While the minimum TEC scheme only needs
10,908.77 owning to the less energy consumption of lighting and ventilation by opening
the fewer mated-stations. More importantly, the minimum TEC scheme can complete all
hazardous tasks except task 7 before mated-station 4, which reduces the additional energy
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consumption needed to deal with hazardous tasks, while the remaining two schemes can
only complete most of the hazardous tasks before mated-station 5. However, it should be
noted that the minimum TEC scheme leads to higher BLR and SI, which are 12.72% and
144,200.75, respectively.

Table 10. The ANOVA result for the parameters of MOFA.

Source Type III Sum of Squares df Mean Square F-Ratio p-Value

Corrected Model 337312.773 a 18 18739.598 4.341 7.45 × 10−6

Intercept 10307942906.242 1 10307942906 2388057.884 7.05 × 10−145

n 78530.084 2 39265.042 9.097 3.43 × 10−4

s 48637.008 2 24318.504 5.634 0.006
p 17303.642 2 8651.821 2.004 0.143

n ·s 130419.706 4 65209.854 15.107 0.002
n ·p 28153.932 4 14076.966 3.261 0.435
s ·p 34268.4 4 17134.199 3.969 0.292

Error 267620.171 62 4316.454
Total 10308547839 81

Corrected Total 604932.944 80
a R squared = 0.558 (adjusted R squared = 0.429). n: population number. s: total evolutionary iterations. p: growth probability.
n·s: interaction between n and s. n·p: interaction between n and p. s·p: interaction between s and p.

Figure 14. Minimum balance loss rate (BLR) scheme of the automobile disassembly.
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Figure 15. Minimum smoothness index (SI) scheme of the automobile disassembly.

Figure 16. Minimum total energy consumption (TEC) scheme of the automobile disassembly.

5. Conclusions

In this paper, the authors propose an energy-efficient optimization model for the
two-sided disassembly line. The model mainly considers the common but neglected opera-
tional constraints that some large-volume components or parts lay across the disassembly
line should be dismantled parallel in the same mated-station under uncertain conditions.
Three objectives of the disassembly line balance loss rate, smoothness index and energy
consumption during the disassembly activities are designed. Then a multiobjective flat-
worm algorithm is proposed, and two existing literature cases and a self-designed case are
designed to verify the effectiveness of the model and algorithm. Finally, the model and algo-
rithm are applied to an automobile two-sided disassembly line. Results of the experiments
show that, compared with NSGA-II, MOPSO, MODE and MOSA, the model and algorithm
can provide a set of the higher quality Pareto-optimal solutions for disassembly scheme
planners, enable disassembly workers to complete tasks in a more energy-effective manner
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under the parallel operation constraint. Meanwhile, the proposed model and algorithm
can reduce the line balance loss rate and workload smoothness during the disassembly
process, and the decision-maker can choose the preferred solution from the multiobjective
optimization solution according to the disassembly needs.

In future research, researchers can further improve the model to make it more consis-
tent with the actual situation. At the same time, researchers can also study how to reduce
the uncertainty in the demolition process and liberate the workers from the heavy disas-
sembly operation, and use more efficient ways such as robots or human–robot collaborative
disassembly, which are very valuable, and ultimately promote the green and sustainable
development of EOL products disassembly industry.
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