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Abstract: In western China, railway lines are sparse, and there is a large fluctuation in transport
demand under different transportation scenarios, which yields severe difficulties in setting up a
signaling system and making a train timetable. To meet the fluctuating transport demand effectively
and provide efficient train services in the changing multimodal transportation market, a new Chinese
train control system based on flexible minimum headway time (FCTCS) is introduced and going to
be implemented. Considering that the cost of implementing signaling systems corresponding to
different minimum headway times varies significantly, it is necessary to find an optimal minimum
headway time and design its corresponding train timetable. In this paper, we propose a mixed
integer linear programming model for selecting an optimal minimum headway time, with which
a satisfactory train timetable is generated with the consideration of symmetry transport demand.
The objective function is to maximize the total profit of train operation. We further develop genetic
algorithm with an integer and binary coding method for searching for the solution. Finally, a set
of numerical tests based on a railway line in a sparse railway network in western China is used to
demonstrate the validity and effectiveness of the proposed model.

Keywords: optimal minimum headway time; train timetabling; transport demand; genetic algorithm

1. Introduction

Compared with the complex railway network in eastern China, the railway lines in western China
are sparse. In a normal transportation scenario, the transport demand in western area is generally
low; however, during some special periods, the transport demand increases sharply, which brings a
great challenge for train operation on these sparse lines. When higher demand occurs, the provided
signaling resource may not adequately meet the given demand. Although we can operate trains with a
longer headway—compared with the minimum one based on the existing signaling system, where
the minimum headway time remains the same—it will also lead to a waste of signaling resources as
implementing excessive signaling resources generates costs, especially in such areas with fluctuating
demand and not so good operational conditions. Therefore, a new Chinese train control system based
on flexible minimum headway time (FCTCS) is introduced and going to be implemented to attempt to
meet the fluctuating transport demand for sparse railway lines. Using the new signaling system, it is
more flexible to operate trains corresponding to the generated demand and makes it possible to save
more operational costs, due to the flexible minimum headway. To explain clearly about the flexible
minimum headway in FCTCS, we illustrate it in Figure 1.
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Figure 1. Explanation of flexible minimum headway time. 

Based on the new proposed FCTCS, train timetabling is therefore required to optimize. In view 
of the characteristic of flexible minimum headway in FCTCS, we consider the corresponding cost of 
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operation. In addition, transport demand is regarded as an essential element in solving a train 
timetabling problem. Generally, after a demand analysis, the train timetable is constructed to 
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However, in many real-world cases, the transport demand fluctuates randomly, and the obtained 
train schedule in the latter step might not satisfy the demand in such a sequential process. As a result, 
embedding transport demand into the train timetable phase has gradually attracted more attention. 
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minimum headway time with which a satisfactory train timetable is designed to well satisfy the 
fluctuating transport demand. Although the problem of optimizing train timetables was often 
investigated, the optimization of minimum headway time to make the train timetable design more 
adaptive to the fluctuating transport demand was paid less attention, and can still be improved. Here, 
we give a method of how to select the optimal minimum headway in train timetabling, which can be 
used to support the planning decisions. Furthermore, innovated by the flexibility of minimum 
headway time, the train timetable can still be well-designed with the cost of implementing signaling 
system corresponding to different minimum headways considered in the objective function, because, 
for train operators, the greatest concern is how to maximize the profit of train operation after 
satisfying demand. The cost of implementing signaling system has a great impact on train operational 
costs. Thus, a methodology is proposed to select an optimal minimum headway with the cost of 
implementing signaling system corresponding to different minimum headways and is considered in 
this study to fill in the gap of optimizing minimizing headway time in train timetabling. 

To solve this problem, a mixed integer linear programming model is formulated, in which the 
transport demand corresponding to different origin and destination stations, train stop planning, 
train routing and train timetabling are included in the model formulation. In this train timetabling 
process, first of all, the transport demand and minimum headway time are regarded as inputs into 
the proposed train timetabling model, to obtain an initial train schedule with an objective function of 
maximizing the profit of rail transportation revenue and train routing cost. Then, we vary the 
minimum headway time t to evaluate the initial train timetable by maximizing the total operational 
profit of rail transportation revenue, train routing cost and the cost of implementing signaling system. 
Finally, we obtain the optimal minimum headway time and its corresponding train timetable. The 
whole optimization process in this paper is shown in Figure 2. 
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Figure 1. Explanation of flexible minimum headway time.

Based on the new proposed FCTCS, train timetabling is therefore required to optimize. In view
of the characteristic of flexible minimum headway in FCTCS, we consider the corresponding cost
of implementing signaling systems in train timetabling, and make efforts to maximize the profit of
train operation. In addition, transport demand is regarded as an essential element in solving a train
timetabling problem. Generally, after a demand analysis, the train timetable is constructed to determine
the departure and arrival time of each train at each station, which is a sequential process. However,
in many real-world cases, the transport demand fluctuates randomly, and the obtained train schedule
in the latter step might not satisfy the demand in such a sequential process. As a result, embedding
transport demand into the train timetable phase has gradually attracted more attention.

In this paper, based on flexible minimum headway in FCTCS, we focus on finding an optimal
minimum headway time with which a satisfactory train timetable is designed to well satisfy the
fluctuating transport demand. Although the problem of optimizing train timetables was often
investigated, the optimization of minimum headway time to make the train timetable design more
adaptive to the fluctuating transport demand was paid less attention, and can still be improved. Here,
we give a method of how to select the optimal minimum headway in train timetabling, which can
be used to support the planning decisions. Furthermore, innovated by the flexibility of minimum
headway time, the train timetable can still be well-designed with the cost of implementing signaling
system corresponding to different minimum headways considered in the objective function, because,
for train operators, the greatest concern is how to maximize the profit of train operation after satisfying
demand. The cost of implementing signaling system has a great impact on train operational costs. Thus,
a methodology is proposed to select an optimal minimum headway with the cost of implementing
signaling system corresponding to different minimum headways and is considered in this study to fill
in the gap of optimizing minimizing headway time in train timetabling.

To solve this problem, a mixed integer linear programming model is formulated, in which the
transport demand corresponding to different origin and destination stations, train stop planning, train
routing and train timetabling are included in the model formulation. In this train timetabling process,
first of all, the transport demand and minimum headway time are regarded as inputs into the proposed
train timetabling model, to obtain an initial train schedule with an objective function of maximizing the
profit of rail transportation revenue and train routing cost. Then, we vary the minimum headway time
t to evaluate the initial train timetable by maximizing the total operational profit of rail transportation
revenue, train routing cost and the cost of implementing signaling system. Finally, we obtain the
optimal minimum headway time and its corresponding train timetable. The whole optimization
process in this paper is shown in Figure 2.

The remainder of this paper is organized as follows. Section 2 provides a literature review on
three areas: train timetabling, train timetabling considering transport demand, as well as optimizing
headway for train timetable. In Section 3, conditions of the model are given, followed by a mathematical
model that formulates the optimization problem. Next, a genetic algorithm is introduced to solve the
proposed model in Section 4. In Section 5, the proposed model and algorithm are applied on a railway
line of a sparse railway network in western China to evaluate their validity. Finally, conclusions and
future research are presented in Section 6.
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Figure 2. The optimization process of train timetabling in this paper. 
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Figure 2. The optimization process of train timetabling in this paper.

2. Literature Review

In this section, we review the state-of-the-art in three parts: (1) train timetabling; (2) train
timetabling considering transport demand; (3) optimizing headway for train timetable.

Train timetabling plays an important role in train operations and several researchers have
investigated this problem with a variety of models and algorithms [1–6]. Based on the job-shop
scheduling problem, Szpigel (1973) first modeled the single-track train scheduling problem to determine
the location of crossing and overtaking [7]. Carey and Lockwood (1995) designed a mathematical
model and algorithm for the train pathing and timetabling problem on a double-track railway
line [8]. Higgins, Kozan and Ferreira (1996) scheduled trains optimally on a single-line track and
presented a lower bound to reduce the search space in the branch and bound tree [9]. Caprara et al.
(2002,2006) provided a graph description of the train timetabling problem with a fixed train running
time and headway time [10,11]; however, this approach is not practical due to train acceleration
and deceleration. Ghoseiri et al. (2004) used a multi-objective model to balance the satisfaction of
railway companies and passengers, which was solved by the Pareto frontier [12]. Zhou and Zhong
(2007) used branch-and-bound solution algorithms to solve a single-track train timetabling problem,
and generalized station headway capacities-constrained scheduling formulation [13]. Based on the
time-space network, Lusby et al. (2011) represented train timetabling by illustrating the occupation
of time-space resources and used multiple heuristic algorithms to solve the problem [14]. Mu and
Dessouky (2011) developed two optimization algorithms to solve the freight train scheduling problem
on an N-track network in the US [15]. Yang et al. (2016) considered the uncertain dwell time and
formulated the timetable optimization problem as a bi-objective expected value model [16].

We now move to a brief review on train timetabling considering transport demand. In recent
years, studies on demand-sensitive train timetabling have attracted increasing attention, with the goal
of providing a high level of train service to satisfy demand. Sun et al. (2014) provided a demand-driven
timetable for metro services, which adjusted service frequency dynamically instead of fixing it for
peak/off-peak times respectively, aiming to minimize total passenger waiting time [17]. Barrena et
al. (2014) proposed three exact linear formulations and the branch-and-cut algorithm to design train
timetables that were consistent with dynamic demand [18]. To solve large-scale instances, Barrena
et al. (2014) presented an adaptive large neighborhood search (ALNS) meta-heuristic model [19].
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Canca et al. (2014) and Cheng and Peng (2014) considered elastic passenger demand and optimized
the train timetable. Based on time-varying origin–destination demand [20,21]. Niu, Zhou and Gao
(2015) proposed quadratic and quasi-quadratic objective functions to formulate total passenger waiting
time [22]. Wang et al. (2015,2018) then concentrated on the time-varying passenger demand of the
segment between two adjacent stations to integrate train scheduling and rolling stock circulation
planning for an urban rail transit line [23,24]. Furthermore, Robenek et al. (2018) studied the
unknown demand elasticities with using a logit model [25]. These aforementioned studies on timetable
optimization usually featured models based on the pre-planned stop pattern, which cannot optimize
the stop pattern at the same time. Therefore, some studies furthered train stop plan optimization in
timetabling [26–28]. Qi, Cacchiani and Yang (2018) emphasized uncertain passenger demand and
aimed to determine both train timetables and stop plans [29].

Headway time is a vital factor to detect train conflicts in the process of train timetabling. Given that
transport demand has large variations, train timetables with fixed headways cannot satisfy fluctuating
demand well [30]. Furthermore, most optimization models that deal with train timetables treat the
minimum headway required between consecutive trains as given constants. However, this is not very
practical. As a consequence, improved studies that take flexible headways into consideration have
been proposed [31–34]. Lee and Chen (2009) let the minimum headway between the trains depend on
the trains’ relative status (track assignment), instead of regarding it as a constant [35]. Khoshniyat
and Peterson (2017) proposed an idea of travel time dependent scheduled minimum headway, which
was to reserve a triangular time slot for trains’ arrival times, instead of a fixed-sized time slot [36].
In terms of optimizing the minimum headway time, Sangphong, Siridhara and Ratanavaraha (2017)
determined the minimum train headway by train speed and the maximum block length in a fixed-block
system to maximize rail line capacity, which was applied to both equal and unequal block length
situations [37]. Liu and Han (2017) also distinguished different headway time in train timetabling and
tried to obtain a feasible timetable with more scheduled trains [38]. Zhang and Han (2011) constructed
a train headway optimization programming model to optimally use the minimum train headway with
an objective function of maximizing reliability [39]. Apart from the mostly used integer programming
in the aforementioned research, simulation methods were also adopted to optimize the minimum
headway time. Based on active communications, Zhao and Ioannou (2015) adopted a simulation model
to calculate dynamic minimum headway in a headway selection loop, and then used it to solve a train
dispatching problem [40].

Regarding the past studies, we can see that a lot of studies considered fluctuating transport
demand and optimized headways in train timetabling. Many researchers concentrated on scheduling
trains to satisfy the demand, but few of them optimized the timetable from the viewpoint of selecting
the optimal minimum headway to design a satisfactory train timetable with the given demand. In this
work, we focus on finding an optimal minimum headway in train timetabling, with which a satisfactory
train timetable can be designed to be adaptive to the fluctuating transport demand. Furthermore, in the
process of optimizing headways, most studies optimized the scheduled headway between consecutive
running trains, instead of the technical minimum headway that we study in this work. Finally, few
studies on train timetabling were found with the consideration of the cost of implementing signaling
systems. This should not be ignored, because the flexibility in minimum headway has an important
influence on the variation in the cost of implementing signaling system corresponding to different
minimum headways. In this paper, the corresponding cost is included into the objective function to
maximize the train operational profit.

Therefore, this paper makes the following two contributions.

• In view of the flexible minimum headway time in FCTCS, this work tries to find the optimal
minimum headway time by varying the minimum headway in a set of given minimum headways
and generates a satisfactory train timetable. A linear programming model is built, rigorously
considering the cost of implementing signaling systems corresponding to different minimum
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headway time, which makes it possible to save signaling resources, as well as to well satisfy the
fluctuating transport demand.

• In the proposed model, we also embed transport demand into the train timetabling stage and
simultaneously optimize the train timetable, as well as the stop plan, which satisfies the demand
more flexibly.

3. Mathematical Model

3.1. Conditons of the Model

Before the mixed-integer linear programming model is described, inputs, key decision variables
and model assumptions are given sequentially. First, inputs of this problem are explained as follows:

1. A railway network based on a railway line

A railway network is given with a number of stations and segments between consecutive stations,
which are represented by physical nodes and physical cells. Each segment and each station on a rail
line are set as one cell, respectively.

2. A set of trains

For each train, we know its origin and destination station, the earliest starting time at its origin
station, the running time between two consecutive stations, the minimum and maximum dwell
time at intermediate stations, a set of minimum headway time, the train carrying capacity and the
train characteristics.

3. Transport demand pairs

In this paper, we consider transport demand as a number of demand pairs with different origin
and destination stations. For each demand pair, we know its origin station, destination station and
demand pair volume.

The train timetabling problem based on FCTCS has the following key decision variables

1. For each planned train, we need to determine its departure time at the origin station, the arrival,
dwell time, and departure time at intermediate stations, and the arrival time at the destination
station. In addition, we also need to determine its stop plan, i.e., whether the train chooses to
stop and how long it will stop at a station.

2. For each demand pair, we need to determine which train delivers the demand pair and how
many of the transport demand is delivered in the demand pair.

In our model, we assume that:

1. The responses of demand to the resulting train service, such as travelers’ choices, are not
considered in this work. As dynamic choice behaviors of travelers can influence the underlying
train service patterns and detailed timetables, such as service interval times or frequencies, we
assume that the transport demand is assigned to take trains in equal proportions.

2. For simplicity, we simplify the detailed calculation of ϕ(t) into a simple decreasing function in
this work and directly give corresponding costs with the variation in t. The relation between
minimum headway time t and the implementing signaling system cost function ϕ(t) is complex.
Moreover, it is obvious to see that the cost decreases with t increasing, because the increasing t
can save more signaling resources.

3. The price is roughly estimated based on the distance. Although our objective is to maximize
train operational profit, we concentrate on selecting an optimal minimum headway in a train
timetabling model instead of making price decisions.
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4. The minimum dwell time is fixed without changing with demand fluctuations at a station. If the
minimum dwell time is regarded as a variable influenced by the fluctuating demand, it is difficult
to evaluate the influence of varying minimum headway on train timetable.

5. The station can accommodate enough trains, which means that the station capacity is not
constrained. Our model is at a macroscopic level, regardless of detailed track assignment in
a station.

6. It should be noted that the granularity of minimum headway time is one minute in this work, or
a shorter time interval (if required).

The general subscripts and input parameters of the proposed formulations are introduced in
Tables 1 and 2 respectively, and the decision variables are provided in Table 3.

Table 1. General subscripts.

Symbol Description

i, j, k Physical node index, i, j, k ∈ N, N is the set of nodes.
e Physical cell index, e ∈ E, E is the set of cells.

p
Transport demand origin-destination (OD) pair index, p, p′ ∈ P, P is the set of transport
demand OD pairs. One demand OD pair refers to a group of transport demands who
have the same origin and destination stations.

f Train index, f ∈ F, F is the set of trains that need to be scheduled.
t, t′ Minimum headway time, t, t′ ∈ I, t′ = t± 1, I is the set of given minimum headway time.

m, m′ Station index, m, m′ ∈ S, S is the set of all stations.

Table 2. Input parameters.

Symbol Description

E f Set of cells train f may use, E f ⊂ E.
Es Set of station cells, Es ⊂ E.
Ec Set of segment cells, Ec ⊂ E.
Eo

i Set of cells starting from node i.
Es

i Set of cells ending at node i.
δ f ,i, j Free-flow running time for train f to drive through cell (i, j).
ϑmin

f ,i, j Minimum dwell (waiting) time for train f on cell (i, j).
ϑmax

f ,i, j Maximum dwell (waiting) time for train f on cell (i, j).
TT f ,i, j Travel time for train f on cell (i, j).

O f Origin node of train f.
S f Destination (sink) node of train f.
Om Origin node of station m.
Sm Destination (sink) node of station m.
mo

p Origin station of demand pair p.
ms

p Destination station of demand pair p.
EST f Predetermined earliest starting time of train f at its origin node.
ηp Volume of demand OD pair p.
C f The capacity of train f.
α The maximum demand carrying coefficient of the scheduled trains.
ϕ(t) The implementing signalling system cost function when minimum headway time is t.

CT f ,i, j The cost when train f traverses on cell (i, j).
R f ,p The rail transportation revenue when train f carries transport demand pair p.

kp,i, j
0–1 binary demand pair p routing variables, =1, if demand pair p travel on cell (i, j), =0
otherwise.

M A sufficiently large positive number.
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Table 3. Input parameters.

Symbol Description

a f ,i, j The arrival time of train f at cell (i, j).
d f ,i, j The departure time of train f at cell (i, j).

x f ,i, j
0–1 binary train routing variables, =1, if train f selects cell (i, j) on the network; =0
otherwise.

θ f , f ′,i, j
0–1 binary train ordering variables, =1, if train f’ arrives at cell (i, j) after train f ; =0
otherwise.

y f ,p
Transport demand variables, transport demand of demand pair p that is transported by
train f.

z f ,p,i, j
Transport demand variables on cell (i, j), transport demand of demand pair p that is
transported by train f on cell (i, j).

rm,m′
f

0–1 binary train stopping variables, =1, if train f stops at both station m and m’, =0
otherwise.

3.2. Formulation of the Model

As we have explained in Section 1, the objective function in our train timetabling work considers
two parts. First of all, we consider train routing costs and maximize the difference between rail
transportation revenue and train routing costs, in order to obtain an initial train timetable. Then,
based on the initial timetable, we consider the different given costs of implementing signaling systems
with flexible minimum headway ϕ(t) and maximize the total profit of train operation, in order to
obtain an optimal minimum headway time from a set as well as its corresponding train timetable.

Therefore, the objective function can be presented as follows.

maxZ =
∑
p∈P

∑
f∈F

y f ,p ×R f ,p −
∑
f∈F

∑
i, j:(i, j)∈E f

CT f ,i, j × x f ,i, j −ϕ(t) (1)

For clarity, the constraints of the optimization problem can be divided into several groups,
namely train timetabling constraints, transport demand constraints, and mapping constraints between
transport demand and stopping pattern, which are shown sequentially as below.

Group 1: Train timetabling constraints

In a train timetabling problem, all trains are supposed to meet the flow balance when the train
runs on the railway network. In this model, we divide the nodes in the network into three types of
nodes (origin node, intermediate node and destination node) to explain the flow balance problem.
At the origin node and destination node, there is only one routing choice for train f to go through.
Constraints (2)–(4) ensure flow balance on the railway network at the origin node, the intermediate
nodes and the destination node of train f, respectively.∑

i, j:(i, j)∈Eo
o f
∩E f

x f ,i, j = 1, ∀ f ∈ F (2)

∑
i:(i, j)∈Es

j∩E f

x f ,i, j =
∑

k:( j,k)∈Eo
j∩E f

x f , j,k, ∀ f ∈ F, j ∈ N\
{
o f , s f

}
(3)

∑
i, j:(i, j)∈Es

s f
∩E f

x f ,i, j = 1, ∀ f ∈ F (4)
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Train timetabling is actually to determine train routes on a time-space network. Hence,
constraints (5)–(8) are time-space network constraints for train f.

In the time-space network, a train’s starting time is required to ensure that the train departs within
a given time. For a train’s starting time, constraints (5) ensure that each train does not depart earlier
than its predetermined earliest starting time at its origin station. Within the cell-to-cell transition,
constraints (6) enforce the departure time on cell (i, j) and the arrival time of adjacent cell (j, k), when
they are both used by train f. ∑

j:(o f , j)∈E f

a f ,o f , j +
(
1− x f ,i, j

)
×M ≥ EST f , ∀ f ∈ F (5)

∑
i, j:(i, j)∈E f

d f ,i, j =
∑

j,k:( j,k)∈E f

a f , j,k, ∀ f ∈ F, j ∈ N\
{
o f , s f

}
(6)

Constraints (7) and (8) are mapping constraints between time-space network and physical network.

x f ,i, j − 1 ≤ a f ,i, j ≤ x f ,i, j ×M, ∀ f ∈ F, (i, j) ∈ E f (7)

x f ,i, j − 1 ≤ d f ,i, j ≤ x f ,i, j ×M, ∀ f ∈ F, (i, j) ∈ E f (8)

Here, we use the decision variables a f ,i, j and d f ,i, j to represent the running time TT f ,i, j, the value
of which is the difference between the exit time and entrance time for train f on cell (i, j), shown by
constraints (9).

TT f ,i, j = d f ,i, j − a f ,i, j,∀ f ∈ F, (i, j) ∈ E f (9)

In real-world cases, due to train stops and some unexpected disturbances, the total running time
on cell (i, j) must be equal or larger than its free-flow travel time. Constraints (10) specify this scenario
in an inequality. Then, constraints (11) enforce the maximum planned dwell time at a station.

δ f ,i, j ≤ TT f ,i, j +
(
1− x f ,i, j

)
×M,∀ f ∈ F, (i, j) ∈ E f (10)

ϑmax
f ,i, j + δ f ,i, j ≥ TT f ,i, j +

(
x f ,i, j− 1

)
×M,∀ f ∈ F, (i, j) ∈ E f ∩ Es (11)

Constraints (12)–(14) link train order variables and train routing variables. Specifically, constraints
(13) make sure that only if both train f and f’ traverse on cell (i, j) (x f ,i, j = x f ′,i, j= 1), then θ f , f ′,i, j +θ f ′, f ,i, j
is constrained to be the value of 1, which means that either train f arrives after train f’ at cell (i, j) or
train f’ arrives after train f at cell (i, j). If x f ,i, j= 1, x f ′,i, j= 0 or x f ,i, j= 0, x f ′,i, j= 1, or x f ,i, j= 0, x f ′,i, j= 0,
then the inequality of constrains (12) reduce to be non-active as the value of θ f , f ′,i, j + θ f ′, f ,i, j returns
between 0 to 2. In addition, constraints (13) and (14) ensure that any θ f , f ′,i, j and θ f ′, f ,i, j are always less
than x f ,i, j and x f ′,i, j.

x f ,i, j + x f ′,i, j − 1 ≤ θ f , f ′,i, j + θ f ′, f ,i, j ≤ 3− x f ,i, j − x f ′,i, j,∀ f , f ′ ∈ F, f , f ′, (i, j) ∈ E f ∩ E f ′ (12)

θ f , f ′,i, j ≤ x f ,i, j,∀ f , f ′ ∈ F, f , f ′, (i, j) ∈ E f ∩ E f ′ (13)

θ f , f ′,i, j ≤ x f ′,i, j,∀ f , f ′ ∈ F, f , f ′, (i, j) ∈ E f ∩ E f ′ (14)

Constraints (15)–(16) ensure the cell capacity requirement by using a given minimum safety
headway time t if both two trains are running on the same segment cell (i, j). They make sure that only
if both train f and f’ traverse the same cell, the time interval between the arrival times of a preceding
train and a following train should respect the headway time t. Otherwise, when either train f or f’ does
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not traverse cell (i, j), constraints (15) and (16) reduce to be non-active. Then, we vary t in these two
constraints to optimize train timetable based on FCTCS.

a f ′,i, j + (3− x f ,i, j − x f ′,i, j − θ f , f ′,i, j
)
×M ≥ a f ,i, j + t,

∀ f , f ′ ∈ F, f , f ′, (i, j) ∈ E f ∩ E f ′ ∩ Ec, t ∈ I
(15)

a f ,i, j + (3− x f ,i, j − x f ′,i, j − θ f ′, f ,i, j
)
×M ≥ a f ′,i, j + t,

∀ f , f ′ ∈ F, f , f ′, (i, j) ∈ E f ∩ E f ′ ∩ Ec, t ∈ I
(16)

Group 2: Transport demand constraints

Constraints (17) ensure that for each demand pair, the total amount of the transport demand
carried by all planned trains is supposed to be no more than the volume of the demand pair. In addition,
constraints (18) indicate that for each train scheduled, the total amount of the transport demand of all
demand pairs that can be assigned to a train is limited by its maximum carrying capacity. Constraints
(19) are mapping constraints between z f ,p,i, j and y f ,p by using a binary demand routing variable kp,i, j.∑

f : f∈F

y f ,p ≤ ηp,∀p ∈ P (17)

∑
p:p∈P

z f ,p,i, j ≤ α×C f ,∀ f ∈ F, (i, j) ∈ E f (18)

z f ,p,i, j = y f ,p × kp,i, j,∀ f ∈ F, p ∈ P, (i, j) ∈ E f (19)

Group 3: Mapping constraints between transport demand and stopping pattern

The following constraints present that if train f carries demand pair p, then the train needs to
stop at both the origin station and the destination station of demand pair p to deliver demand pair p.
Constraints (20) explain this scenario in an inequality.

y f ,p ≤ r
mo

p,ms
p

f ×M,∀ f ∈ F, p ∈ P (20)

Further, if train f stops at the origin station and destination station of demand pair p (r
mo

p,ms
p

f = 1),
it is supposed to provide enough dwell time at both stations for train f to pick up and drop off the
transport demand. Therefore, constraints (21) and constraints (22) enforce the minimum waiting time
for train f to dwell at the origin station and the destination station of demand pair p, respectively.

d f ,i,Smo
p
− a f ,Omo

p
, j ≥ ϑ

min
f ,i, j + M× (r

mo
p,ms

p

f − 1),∀ f ∈ F, p ∈ P, (i, j) ∈ E f (21)

d f ,i,Sms
p
− a f ,Oms

p
, j ≥ ϑ

min
f ,i, j + M× (r

mo
p,ms

p

f − 1),∀ f ∈ F, p ∈ P, (i, j) ∈ E f (22)

4. Genetic Algorithm for Solving the Train Timetabling Problem

The model proposed in this paper is a complex, mixed-integer programming problem, which
enlarges the solution scale when the big-M method and train ordering variables are used in this
model. In addition, considering transport demand in the train timetabling model further enforces the
complexity and difficulty in solving the problem. It is difficult for commercial optimization solvers
(i.e., Cplex) to solve such large-scale problem. Following a genetic algorithm (GA) that has been widely
used to solve the train timetabling problem, GA is also adopted in this paper.
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4.1. Representation of Chromosome and Generation of the Initial Population

The decision variables of the proposed model are shown as follows: transported demand pair
volume, train routing, arrival and departure time and dwell time. Thus, the variables y f ,p, x f ,k, dm

f ,k
and wm

f ,k collectively form the chromosome in the GA.
To code the chromosome in GA, the variables are divided into two parts. Transport demand

assignment is the first part of the chromosome shown in Figure 3. Each train occupies p genes to
transport the demand pairs as much as possible. Furthermore, variables of train routing, departure time
at the first station and dwell time at the intermediate stations are the second part of the chromosome
shown in Figure 4 to represent a train timetable. Each train has k routes available to traverse, but it can
only choose one of them. x f ,k is a binary variable that represents whether train f traverses on route
k. dm

f ,k represents the departure time at station m (m = 1, . . . , n, n is the number of traversed stations)
when train f traverses on route k and wm

f ,k represents the dwell time at station m. Both of these two
parts compose an individual in GA shown in Figure 5.
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Figure 5. Illustration of the individual coding method in the GA.

Then, based on the coding approach, the following steps are performed to generate an initial
population shown in Figure 6.
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Figure 6. The process of generating an initial population.

4.2. Calculation of the Fitness Function

As the objective function is to maximize the total train operation profit, a fitness function f (λq) is
then defined in constraint (23) to determine the quality of each chromosome. Each chromosome is
named as λq.

f (λq) =
∑
p∈P

∑
f∈F

y f ,p ×R f ,p −
∑
f∈F

∑
i, j:(i, j)∈E f

CT f ,i, j × x f ,i, j −ϕ(t) (23)

However, the initial population obtained in Section 4.1 might not be feasible. To obtain an
unconstrained optimization problem, a penalty function is embedded in f (λq) to handle the constraints
and update f (λq) to f ′(λq).

f ′(λq) =

{
f (λq), if λq satisfies the constraints.
f (λq) − p(λq), if λq does not satisfy the constraints.

(24)

where p(λq) denotes the penalty function; f (λq) and f ′(λq) denote the initial fitness function and
adjusted fitness function, respectively.
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When the chromosome does not satisfy the constraints in the proposed model, the penalty function
can be described by the following function.

pi(λq) =

{
0, if λq satisfies constraints (i), i = 1, . . . , 22.
M, if λq does not satisfy constraints (i), i = 1, . . . , 22.

(25)

where M denotes a very large positive number.
Then, f ′(λq) can be reformulated into constraints (26).

f ′(λq) =
∑
p∈P

∑
f∈F

y f ,p ×R f ,p −
∑
f∈F

∑
i, j:(i, j)∈E f

CT f ,i, j × x f ,i, j −ϕ(t) −
22∑

i=1

pi(λq) (26)

4.3. Common Operators

Three common operators used in GA are selection, crossover and mutation.

1. Selection

The selection operator chooses the parents for the next generation based on their scaled values
from the fitness function, which can provide a high objective value with an increased possibility to be
selected and a low objective value with less possibility to be selected to conform the rule of survival
of the fittest. The selection of chromosomes is done by spinning the roulette wheel. The selection
probability of chromosome λi is calculated by the following equation.

Pi = Fi/
n∑

j=1

F j (27)

where Fi denotes the fitness value of chromosome λi and n denotes the scale of the population. Then,
the process of selection operation is shown as follows.

Step 1. Set j = 1.
Step 2. Randomly generate a number r ∈ [0,1].
Step 3. If r ≤ q1, chromosome λ1 is selected. If qk−1 ≤ r ≤ qk (2 ≤ k ≤ n), chromosome λk is selected.

qi is the cumulative probability of chromosome λi calculated by qi =
i∑

j=1
P j.

Step 4. If j ≥ n, stop; otherwise, set j = j + 1 and go to Step 2.

2. Crossover

The crossover operation is used to combine two individuals or parents to form a new individual
or child for the next generation. Assume that the probability of crossover operation is Pc. The process
of crossover operation is shown as follows.

Step 1. Randomly select two parents λi and λ j, and randomly generate a number r ∈ [0,1].
Step 2. If r ≤ Pc, then crossover operation will randomly select some positions of genes in two parts

of the chromosome. In the first part of chromosome, randomly select multi-genes and perform
crossover operation. While, in the second part, randomly select multi-genes representing train
f and perform crossover operation.

Step 3. Form two new individuals λl and λk, shown in Figure 7.
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Figure 7. Illustration of the crossover operation in the GA.

3. Mutation

Moreover, the mutation operation produces small random changes in the individuals of the
population; these changes provide genetic diversity and enable the GA to escape local optima. Assume
that the probability of mutation operation is Pm. The process of mutation operation is shown as follows.

Step 1. Randomly select one parent λp and randomly generate a number r ∈ [0,1].
Step 2. If r ≤ Pm, then mutation operation will randomly select some genes from two parts of the

chromosome and replace the genes with random numbers within the reasonable range. In the
first part of chromosome, randomly select multi-genes and perform mutation operation. In the
second part, randomly select multi-genes representing route k traversed by train f and perform
mutation operation on dm

f ,k and wm
f ,k.

Step 3. Form a new chromosome λq, shown in Figure 8.
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For every generation, the idea of elitism specifies the number of individuals that are guaranteed
to survive to the next generation to ensure that the fast convergence of the GA is adopted.

4.4. Process of GA in Solving the Proposed Model

The process of the GA used to solve the proposed model is described in the following. The process
contains the main operations (i.e., selection, crossover and mutation).
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Step 1. Initialize.

Step 1.1. Initialize GA parameters: population, initial generation g = 1, and maximum number of
generations G.

Step 1.2. Initialize model parameters: minimum/maximum dwell time at intermediate stations,
earliest departure time at the first station, train capacity, the volume of each demand pair etc.

Step 1.3. Initialize a parent chromosome, including transported demand pair volume, train routing,
train departure time at the first station and dwell time at the intermediate stations.

Step 1.4. Generate the chromosome until the number of chromosomes reaches the pop size.

Step 2. Create new population.

Step 2.1. Calculate the fitness function value with f ′(λq).
Step 2.2. Perform selection operation according to their fitness function values.
Step 2.3. Perform crossover operation.
Step 2.4. Perform mutation operation.
Step 2.5. Retain the elite children from the population after abovementioned operations and form

a new population.

Step 3. Stop.

Step 3.1. Update g = g + 1.
Step 3.2. If g = G, then stop. Otherwise, return to Step 2.

End

5. Case Study

In this section, we implement several numerical experiments to show the validity and effectiveness
of our proposed model, in which the Cplex solver is employed to code for a small-scaled example in
Section 5.1 at first; then, the Matlab programming platform is used to produce a good solution with
GA in Section 5.2 to solve a large-scaled case for a line on a sparse railway network. The following
experiments are all performed on a server with two Intel(R) Xeon(R) CPU E5-2660 v4 @ 2.00 GHz 2.00
GHz processors and 512 GB RAM.

5.1. A Small-Scaled Example

We adopt the Cplex solver version 12.6.3 with default settings to solve the MILP models. In this
example, we consider a double-track railway line corridor with six stations, and only the down
direction is tested for simplicity, as shown in Figure 9. The number of all related nodes and cells in the
experiments are 12 nodes and 11 cells. Trains of downward direction originally depart from station A
and finally arrive at station F, while vice versa for the trains of upward direction. In this small-scaled
example, the planning time horizon is from 8:00 to 13:00 (set as 300 min).
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Table 4. Train origin/destination station and carrying capacity in the small-scaled test. 

Number of 

Trains 

Train 

Number 

Origin 

Station 

Destination 

Station 

Demand 

Carrying 

Capacity 

Earliest Start Time 

at the Origin 

Station 

7 

No.1 Station A Station F 500 8:05 

No.2 Station A Station F 500 8:30 

No.3 Station A Station F 500 8:54 

No.4 Station A Station F 500 9:18 

No.5 Station A Station F 500 9:47 

No.6 Station A Station F 500 10:11 

No.7 Station A Station F 500 11:07 

Table 5. Demand pair volume and transportation revenue on the small-scaled railway line. 

Volume p / 

Revenue ,f pR  
Station A Station B Station C Station D Station E Station F 

Station A - 801/59 211/88 596/105 241/141 1118/243 

Station B - - 91/78 181/99 101/112 268/187 

Station C - - - 92/46 44/89 176/164 
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Figure 9. Illustration of a small-scale railway network.

For planned trains, a total of seven trains will be considered, and all trains are of the same type.
The same type of trains has the same fixed running time on each segment cell and station cell, but
the dwell time at stations is varied. The minimum and maximum dwell time at station cell are fixed
as 2 min and 5 min, respectively, to ensure necessary operation time if the train is scheduled to stop.
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The running times of all trains on segment cells are set uniformly as 10 min. The maximum carrying
coefficient of all trains scheduled in this work is set as 1.2. Detailed train information can be seen in
Table 4.

Table 4. Train origin/destination station and carrying capacity in the small-scaled test.

Number of
Trains Train Number Origin Station Destination

Station

Demand
Carrying
Capacity

Earliest Start
Time at the

Origin Station

7

No.1 Station A Station F 500 8:05

No.2 Station A Station F 500 8:30

No.3 Station A Station F 500 8:54

No.4 Station A Station F 500 9:18

No.5 Station A Station F 500 9:47

No.6 Station A Station F 500 10:11

No.7 Station A Station F 500 11:07

For transport demand, a total of 15 transport demand pairs between these stations are included.
We give the information of transport demand pairs with different origins and destinations on this
railway line in Table 5, and the total demand that needs to be transported is 4230.

In addition, the cost for train traversing on each segment cell and on each station cell are set as
CNY800/km. For the implementing signaling system cost, we simplify it into ϕ(t) = 90

t × 104.

Table 5. Demand pair volume and transportation revenue on the small-scaled railway line.

Volume ηp/
RevenueRf,p

Station A Station B Station C Station D Station E Station F

Station A - 801/59 211/88 596/105 241/141 1118/243
Station B - - 91/78 181/99 101/112 268/187
Station C - - - 92/46 44/89 176/164
Station D - - - - 83/62 198/123
Station E - - - - - 29/61
Station F - - - - - -

Using the data given above, we design the codes in the Cplex solver. As a result, we finally obtain
a train timetable (shown in Table 6), a stop plan (shown in Figure 10) where the solid dot “•” represents
a train stop, and a demand transportation assignment plan (shown in Table 7). The result shows that
when the minimum headway time is 3 min, seven trains can carry a demand of all 4230 with a profit of
CNY −1,979,212. The result demonstrates the validity of the proposed model.

Table 6. The train timetable for the small-scaled railway line.

Train
Number

Station A Station B Station C Station D Station E Station F

Dep. Arr. Dep. Arr. Dep. Arr. Dep. Arr. Dep. Arr.

No.1 8:05 8:15 8:17 8:27 8:27 8:37 8:37 8:47 8:49 8:59
No.2 8:30 8:40 8:40 8:50 8:50 9:00 9:00 9:10 9:10 9:20
No.3 8:54 9:04 9:04 9:14 9:14 9:24 9:26 9:36 9:36 9:46
No.4 9:18 9:28 9:30 9:40 9:40 9:50 9:52 10:02 10:02 10:12
No.5 9:47 9:57 9:59 10:09 10:11 10:21 10:23 10:33 10:35 10:45
No.6 10:11 10:21 10:23 10:33 10:35 10:45 10:47 10:57 10:59 11:09
No.7 11:07 11:17 11:17 11:27 11:29 11:39 11:41 11:51 11:51 12:01
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Table 7. Demand assignment plan for the small-scaled railway line.

Demand Pair
Number of Trains

Volume of Demand Pair
1 2 3 4 5 6 7

A-B 0 0 0 0 412 389 0 801

A-C 0 0 0 0 0 211 0 211

A-D 0 0 173 0 0 0 423 596

A-E 241 0 0 0 0 0 0 241

A-F 91 600 427 0 0 0 0 1118

B-C 0 0 0 0 91 0 0 91

B-D 0 0 0 181 0 0 0 181

B-E 0 0 0 0 0 101 0 101

B-F 268 0 0 0 0 0 0 268

C-D 0 0 0 0 0 92 0 92

C-E 0 0 0 0 44 0 0 44

C-F 0 0 0 0 0 0 176 176

D-E 0 0 0 0 83 0 0 83

D-F 0 0 0 0 0 198 0 198

E-F 0 0 0 0 0 29 0 29

5.2. Large-Scaled Experiments for a Line on a Sparse Railway Network

5.2.1. Data Preparation

To further test the computational performance, the following discussion intends to apply the
proposed model to designing a train timetable for a railway line on a sparse railway network in western
China. Here, we denote the railway line as line L. Line L is a double-track railway line with nine
stations, and both directions are available for trains to run.

There will be 30 trains scheduled in the train timetable, with 15 trains running from station A to
station I and another 15 trains running from station I to station A. All trains are fixed as the same type.
Different from the small-scaled experiments, the minimum and maximum dwell times at stations for a
train stop are set as 3 min and 10 min here. The running times on segment cells are also different based
on the distance between stations. Other parameters are the same as the above small-scaled example,
such as the train capacity, the maximum carrying coefficient of trains and cost-related parameters. The
given set of minimum headway time is {3 min, 4 min, . . . , 16 min}.

We plan to design a train timetable with a time period from 8:00 to 24:00 for the demand generated
from 8:00 to 12:00, in order to effectively analyze how the optimal minimum headway is obtained
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corresponding to the demand. A total of 69 transport demand pairs with 21,489 demand is included
and detailed transport demand information is shown in Table 8.

Table 8. Demand pair volume and rail transportation revenue for railway line L.

Volume ηp/
RevenueRf,p

Station
A

Station
B

Station
C

Station
D

Station
E

Station
F

Station
G

Station
H

Station
I

Station A - 101/78 301/159 396/287 241/355 118/428 606/501 428/578 1341/631
Station B 89/78 - 81/66 222/145 514/264 168/311 286/402 938/481 805/557
Station C 269/159 155/66 - 92/73 44/192 167/285 234/285 663/431 1431/496
Station D 118/287 34/145 81/73 - 73/101 98/172 100/291 203/366 412/417
Station E 211/355 321/264 208/192 109/101 - - - 342/298 723/344
Station F 434/428 234/311 198/285 83/212 98/113 - 177/91 38/169 336/286
Station G 552/501 486/402 209/385 409/291 89/236 100/91 - 56/88 198/177
Station H 622/578 532/481 716/431 245/366 109/298 121/169 87/88 - 78/86
Station I 1013/631 441/557 318/496 334/417 190/344 131/286 201/177 - -

5.2.2. Computational Results

Matlab is used to solve this large-scaled numerical example with the input data prepared above
initialized in the genetic algorithm. The related parameters of GA in this paper can be seen in Table 9.

Table 9. Genetic algorithm parameters in the following experiments.

Symbol Definition Value

pop_size Population scale 30
Pc Cross probability 0.6
Pm Mutation probability 0.05
gen Number of iterations 1200

To find the optimal minimum headway time, we fix other parameters and vary the minimum
headway time from 3 min to 16 min. Then the computational results with different minimum headway
times obtained by GA are shown in Figure 11.
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From Figure 11, we can see that when the minimum headway time increases from 3 min to
15 min, the total profit of train operation increases simultaneously, with the actual transport demand
being stable. When the minimum headway time increases from 15 min to 16 min, the total train
operation profit has a less significant increasing trend; in addition, it is interesting to see the transport
demand declined from 21,489 to 20,814. This finding shows that when the minimum headway time
is set as 16 min, some transport demand is not satisfied, although the total train operation profit
increases. This is because there exists a train that cannot be scheduled in the train timetable within the
planning horizon. It also indicates that the minimum headway time has a significant influence on train
timetabling, which requires us to optimize the minimum headway time, not only to meet the transport
demand, but also to minimize our basic rail transportation costs. Therefore, from the results above,
15 min is found to be an optimal minimum headway time in train timetabling in this paper. Based on
the optimal minimum headway time, we use GA to compute its corresponding train timetable, and the
iteration process of GA is shown in Figure 12.
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Figure 12. Optimization process of the genetic algorithm in solving the timetabling problem.

In Figure 12, the fitness value of the proposed model increases with iterations increasing. When the
number of iterations increases to 537, the model begins to weaken, and a relatively good solution is
obtained, where the total train operation profit is CNY 4,006,997, and the transport demands are all
satisfied. Finally, the satisfactory train timetable and stop plan with the optimal minimum headway
time can be seen in Figures 13 and 14, respectively.
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Figure 13. The train diagram with the optimal minimum headway time (t = 15 min).
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Figure 14. The train stop plan with the optimal minimum headway time (t = 15 min).

6. Conclusions and Future Research

The core of train timetabling problem is how to schedule trains to well satisfy the transport
demand. Considering the fluctuation in transport demand, a new train control system based on flexible
minimum headway is put forward. Therefore, it is required to design its corresponding train timetable
based on the new system. Our proposed model can be used to find the optimal minimum headway for
generating a satisfactory train timetable, according to the characteristics of flexible minimum headway
implemented in FCTCS.

In this paper, a problem of optimizing minimum headway time in train timetabling integrated
with train stop planning is studied. With the consideration of the cost of implementing signaling
systems corresponding to different minimum headway times in the objective function, the obtained
train timetable can maximize the train operational profit by varying the minimum headway time.
A binary variable was introduced to determine whether a train is scheduled to stop at the stations that
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the transport demand starts and ends, which can establish the relationship between transport demand
and the train stop plan in train timetabling. GA was used to solve the formulated mixed-integer linear
programming model on a railway line of a sparse railway network. The results show that an optimal
minimum headway for train timetabling can be selected, with which a train timetable is obtained to be
feasible and satisfactory, not only satisfying all the transport demand but also achieving a much better
train operation profit. It demonstrates the validity of the proposed model and the effectiveness of GA in
solving the model. A significant decline in transport demand from 21,489 to 20,814 in Figure 11 indicates
the close relation between minimum headway and transport demand, as well as the importance of the
reasonable optimization of minimum headway. Thus, the optimization of minimum headway can
be one of the useful and critical methods for a train timetable to be better adaptive to the fluctuating
transport demand, which can provide the train operator with useful recommendations and lay the
foundation for improving services. On the other hand, the obvious changes of train operational profit
demonstrate that the cost of implementing signaling systems, corresponding to different minimum
headway times, appears to be an important factor in practical train timetabling, which should be
considered in the future planning. Compared with fixed minimum headway, the variation in minimum
headway can fill in a maximum profit loss of about CNY 250,000.

For the future research, we will concentrate on the following main extension. First, we will
formulate the response of demand to existing train service into our mathematical model to maximize
the satisfaction of transport demand, especially for the travelers’ choices. Train service operation is
actually a mutual process. Next, a challenging extension is pricing decisions, as our objective is to
maximum the train operation profit. In addition, it is necessary to develop an optimized heuristic
algorithm and dynamic programming method, to improve the quality and computational efficiency of
the solution, as it does not seem that the genetic algorithm has a good direction in train timetabling
based on FCTCS. Finally, more research on this optimization problem is needed on a railway network,
rather than on a simple railway line, and efforts should be taken to integrate the flexible minimum
headway time with the train timetabling mathematical model.
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