
symmetryS S

Article

WebShell Attack Detection Based on a Deep
Super Learner

Zhuang Ai , Nurbol Luktarhan *, AiJun Zhou and Dan Lv

College of Information Science and Engineering, Xinjiang University, Urumqi 830000, China;
az@stu.xju.edu.cn (Z.A.); zaj@stu.xju.edu.cn (A.Z.); lvdan@stu.xju.edu.cn (D.L.)
* Correspondence: nurbol@xju.edu.cn

Received: 22 July 2020; Accepted: 21 August 2020; Published: 24 August 2020
����������
�������

Abstract: WebShell is a common network backdoor attack that is characterized by high concealment
and great harm. However, conventional WebShell detection methods can no longer cope with
complex and flexible variations of WebShell attacks. Therefore, this paper proposes a deep super
learner for attack detection. First, the collected data are deduplicated to prevent the influence of
duplicate data on the result. Second, to detect the results of the algorithm, static and dynamic feature
are taken as the feature of the algorithm to construct a comprehensive feature set. We then use the
Word2Vec algorithm to vectorize the features. During this period, to prevent the outbreak of the
number of features, we use a genetic algorithm to extract the validity of the feature dimension. Finally,
we use a deep super learner to detect WebShell. The experimental results show that this algorithm
can effectively detect WebShell, and its accuracy and recall are greatly improved.

Keywords: WebShell; genetic algorithm; Word2Vec; deep super learner

1. Introduction

With the development of Internet technology, web-based applications have been assimilated into
all aspects of our lives. With the rapid growth of the number of website visitors, websites also store
large amounts of our personal information; thus, the issue of how to protect this private information
has become the primary task of website maintenance staff. According to the “Overview of China’s
Internet Network Security Situation in 2019” released by the National Internet Emergency Center [1],
in 2019, CNCERT monitors found that approximately 45,000 IP addresses inside and outside China
implanted backdoors into approximately 85,000 websites in China and that the number of websites
with backdoors implanted in China has increased by more than 2.59 times compared to the number
found in 2018. As the number of backdoors implanted in websites increases year by year, the issue of
how to detect backdoors in websites is critical for data security. Malicious WebShell files can function
as website backdoors, so the detection of WebShell files on websites is also very important.

WebShell is an executable program language written with web scripts such as ASP, PHP, and JSP.
It is always referred to as a web backdoor because users can upload malicious files to a web page
and obtain database information by executing OS commands to view the database. As PHP is the
preferred language for website development, it is also very important to study the detection method
of PHP-type WebShell.

Webshell attack can be divided into two categories, “large Trojan” file for attack and “micro Trojan”
file for attack. “micro Trojan” file code is small, usually a few lines to dozens of lines, its main function is
used to assist“ large Trojan”file upload, execution script command. Compared with “micro Trojan” file
size is much larger, “large Trojan” file size even more than 1 MB, its functions are complex, including
the execution of command line procedures, database operations, etc. In addition, “large Trojan” to

Symmetry 2020, 12, 1406; doi:10.3390/sym12091406 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-2251-5545
http://www.mdpi.com/2073-8994/12/9/1406?type=check_update&version=1
http://dx.doi.org/10.3390/sym12091406
http://www.mdpi.com/journal/symmetry

Symmetry 2020, 12, 1406 2 of 16

complete its function can also cooperate with other offensive files to operate jointly, to achieve the
purpose of attack.

2. Related Work

At present, WebShell detection methods based on the PHP language can be divided into two types:
static feature detection based on .php files and dynamic feature detection based on the execution process
of .php files.

Detection based on the static feature of .php files finds WebShell by matching specified scripts
with special function names and strings, file modification time, file execution permissions, and so on.
This method can find only the existing WebShell and thus has certain limitations for the new WebShell.
Session-Based Webshell Detection Using Machine Learning in Web Logs [2] extracts the features directly
from the original files of the Web logs and proposes a statistical method based on time interval to
identify the features. The long short-term memory and hidden Markov model were used to construct
the framework and detect it. Webshell detection techniques in web applications [3] proposed a novel
method based on an optimal threshold to identify files containing malicious code in web applications.
The detection system finds all the files in classifiers target folder and provides suspicious files to the
administrator for inspection.

Detection based on the dynamic feature of .php file execution determines whether the file is a
malicious WebShell file through the degree of abnormal opcodes invoked by WebShell runtime. First,
the system must acquire the existing WebShell files and the opcode sequence feature of these files.
Every time a new WebShell appears, this feature library must be updated. If the feature database
is not regularly updated, the alarm failure rate will be high. Webshell Detection Based on Random
Forest-Gradient Boosting Decision Tree Algorithm [4] extracts static features from .php source files and
uses the TF-IDF vector and hash vector to extract dynamic features under the opcode. The two features
are unified as WebShell features. Finally, classification is carried out by combining the random forest
classifier and gbdt classifier. In Research on Webshell Detection Method Based on Machine Learning [5],
it is proposed to use opcode to extract the dynamic features of Webshell files, and then use TF-IDF
for feature vectorization; secondly, use XGBoost, Multilayer Perceptron, RandomForestClassifier,
and NaiveBeyesians for comparison; finally, select XGBoost as the optimal detection model through
comparison. In Detecting Webshell Based on Random Forest with FastText [6], a PHP opcode sequence and
static feature were first used, the dynamic features were vectorized using FastText, the two features
were fused, and the random forest was used for model training and prediction. In Toward a Deep
Learning Approach for Detecting PHP Webshell [7], Yara rule technology is used to convert the PHP source
code into opcodes to determine whether a file is malicious code.

To summarize, detection based on static features and dynamic features exhibit certain advantages,
but both have certain limitations. WebShell detection mainly presents the following three difficulties:

(1) Extremely unbalanced datasets,
(2) Irrelevant or redundant features, and
(3) Certain limitations in the detection algorithm.

3. Webshell Attack Detection Based on a Deep Super Learner

3.1. System Architecture

This article uses a deep super learner with the structure shown in Figure 1. The research can be
divided into three modules: data preprocessing, feature selection, model building and prediction.

3.2. Opcode

Opcode refers to the portion of instructions or fields specified in a computer program to perform
an operation, and the opcode generated by PHP refers to the sequence of bytecodes that can be
recognized by the Zend engine virtual machine. This is similar to a bytecode file in Java, or a bytecode

Symmetry 2020, 12, 1406 3 of 16

object in Python, pycodeObject. Essentially, the opcode bytecode tells the machine what to do and what
it is doing. Therefore, we can determine whether this file belongs to a malicious WebShell file through
the opcode generated during the execution of the malicious WebShell file uploaded by the user.

In the Zend engine, the opcode bytecode file can be obtained through the Vulcan Logic Dump
(VLD) tool. An example listed below is a typical malicious WebShell file parsed by the Zend engine:

<?php @eval($_POST[’password’]);?>

We use the VLD tool to run the above malicious WebShell file, and the opcode is shown in Table 1.

Start

Dynamic feature Opcode

code extrac�on

Datasets

Sta�c feature extrac�on

Deduplica�on

of documents

Gene�c algorithm

feature selec�on

Deep Super Learner

End

Predicted results

Data preprocessing

Feature selec�on

Model building

and predic�on

Use SMOTE to make up

the data sampling

test datasets training datasets

Word2vec feature

vectoriza�on

Figure 1. System architecture.

Table 1. Opcode compiled files.

OPCODE

1 BEGIN_SILENCE
2 FETCH_R
3 FETCH_DIM_R
4 INCLUDE_OR_EVAL
5 END_SILENCE
6 RETURN

Symmetry 2020, 12, 1406 4 of 16

3.3. Static Feature Extraction

3.3.1. Static Character of the String Length Variance

Variance is a measure of dispersion in probability theory and statistical variance used to measure a
random variable or a set of data. WebShell files are encrypted to avoid detection tools. Extremely long
words and strings generated by encryption algorithms, in which abnormal characters are exhibited or
the string length is longer than normal file strings, ultimately lead to greater string length variance of
the files and therefore can be used as features for detecting malicious WebShell files.

3.3.2. Static Character of the Index of Coincidence

Index of Coincidence (IC) is a mathematical index. Let y be a ciphertext of length n—that is,
y = y1y2y3. . . yi. . . yn—where yi is ciphertext and the index of coincidence is the probability of picking
two identical letters at random. The encrypted WebShell file is similar to the random file, and the
encryption algorithm increases the randomness of the characters in the encrypted WebShell file;
ultimately, the file IC is small. Therefore, it can be used as a feature to detect malicious WebShell files.

3.3.3. Static Character of Information Entropy

Information entropy is a measure of the degree of systematization. The more chaotic a system is,
the higher its information entropy. The encrypted WebShell file contains many random strings for the
purpose of obfuscation. These files produce a significant amount of ASCII code, increasing the entropy
of the file. In contrast, the ASCII code of normal files is between 1 and 255 (excluding the ASCII space
of 127), which is relatively fixed. Therefore, information entropy can be used as a feature for detecting
malicious WebShell files. The calculation formula of information entropy is as follows:

H(x) = −
255

∑
n=1

pnlog2 pn(n 6= 127) (1)

where n is ASCII code and the judgment of ASCII (space) with an ASCII value of 127 is meaningless,
so pn represents the occurrence probability of the current character relative to the total character.

3.3.4. Static Character of the File Compression Ratio

The compression ratio is the ratio of the original file size to the compressed file size. Low-frequency
characters correspond to long code, and high-frequency characters correspond to short code, which can
effectively balance the length of the original string. Encrypted WebShell files have a more balanced
distribution of specific characters. Therefore, compression ratio can be used as a feature to detect
malicious WebShell files. The compression ratio formula is as follows:

Compression ratio =
Original f ile size

Compressed f ile size
(2)

3.3.5. Static Character of Eigencode Matching

In malicious WebShell files, special variables or expressions are often used, such as eval,
base64_decode and other functions. We match these special feature codes one by one to each test file,
and the matching result is a feature of detecting malicious WebShell files.

3.4. Feature Vectorization

Word2vec is a feature vectorization tool that Google opened open in 2013, which is a deep learning
model [8,9]. By training word vectors, Word2Vec can use low-latitude features to represent complex words,
which can well reduce the feature dimension disaster caused by the traditional way to represent word
vectors, thus reducing the time and space complexity of later algorithms. There are two implementations,

Symmetry 2020, 12, 1406 5 of 16

CBOW and Skip-Gramm. CBOW predicts the target words by the context, and its model structure is
shown on the left of in Figure 2 . Skip-gramm predicts context through the target words, and its model
structure is shown on the right of Figure 2. For a Word2vec implementation of words, in a good word
vector, the relationship between the similarity of words can be expressed as a function of the distance
between the words.

W(t)

W(t-2)

W(t-1)

W(t+1)

W(t+2)

W(t)

W(t-2)

W(t-1)

W(t+1)

W(t+2)

INPUT PROJECTION OUTPUT INPUT OUTPUTPROJECTION

CBOW Skip-gram

sum

Figure 2. Word2Vec model.

Word2Vec is one of the most popular fields in NLP [10–12]. In Research on the Construction of
Sentiment Dictionary Based on Word2vec [13], SO-PMI algorithm was used to judge the emotional state
of the words not recorded in the dictionary, and word2Vec algorithm was used to correct them. Finally,
the corrected words were added to the dictionary to complete the reconstruction of the dictionary.
In Using Word2Vec to Process Big Text Data [14], the Word2Vec algorithm is first used to train the data
model and obtain the word similarity, similar words are clustered together, and the generated cluster is
used to adapt to the new data dimension to reduce the data dimension. A Study on Sentiment Computing
and Classification of Sina Weibo with Word2vec [15] proposed a semantic orientation pointwise similarity
distance (SO-SD) model, built an emotional dictionary using the Word2Vec tool, and then used the
emotion dictionary to determine the emotional tendency of the microblog information.

3.5. Feature Selection

Feature selection is one of the most commonly used and important techniques in data
preprocessing and has become an indispensable component of machine learning processes [16]. Feature
selection is a way to select some of the most effective features from the original features. In this paper,
it is the feature that can distinguish malicious files from non-malicious files. It is also a means to
improve the efficiency of the algorithm on the basis of ensuring the evaluation index. Feature selection
based on a genetic algorithm is a wrapper method. The basic execution process is as follows.

(1) Determine the search space: All feature sets after Word2Vec feature vectorization.
(2) Chromosome encoding: A binary encoding method is adopted. Each feature is represented by

encoding “0” or “1”, where “0” indicates that the feature is not selected and “1” indicates that
the feature is selected.

(3) Generation of initial population: N initial individuals are randomly generated to form the initial
population, and each individual consists of 0 and 1, which represents whether or not this feature
is selected.

(4) Fitness function: Fitness function can calculate the pros and cons of an individual. In feature
selection, the fitness function mainly judges the ability of features to distinguish malicious and
nonmalicious WebShell files.

Symmetry 2020, 12, 1406 6 of 16

(5) There are three important steps in a genetic algorithm: selection, crossover and mutation.
Generally, “roulette” is used as the selection method to randomly select m individuals with
the highest fitness, which are the sub-feature sets that can well distinguish malicious and
non-malicious samples and are unconditionally copied to the next total group. N-m individuals
are selected by crossover and mutation operators to restore the original N individuals. Crossover
probability and mutation probability are parameters and must be adjusted. If the crossover
probability is too high, the individual structure with high fitness will be destroyed quickly. If it
is too small, the search stops. If the mutation probability is too high, the genetic algorithm will
become a random search. If the probability is too small, no new individuals will be created.

(6) If the self-set reproduction algebra is exceeded, the best individual is returned and used as the
basis for feature selection, and the algorithm will end. Otherwise, the process returns to (5) to
continue the reproduction of the next generation.

The flowchart of the genetic algorithm is shown in Figure 3.

Start
Create an ini�al

popula�on

Fitness

calcula�on

Whether the

termina�on condi�on

is met

Select opera�on
Crossover

opera�on

muta�on

opera�on

Outputs an

op�mal subset

of features

End

Determine the

search space

Figure 3. Flowchart of genetic algorithm.

3.6. Data Sampling Based on the Smote Algorithm

The SMOTE algorithm [17] is a method for managing unbalanced datasets put forward by
Chawla et al. in 2002. In the real world, datasets are mainly composed of “normal” samples, with only
a small fraction of “abnormal” examples, so the SMOTE algorithm treats the minority “anomalies”
by using the method of linear interpolation between the two minority class sample syntheses of
new samples, thus effectively relieving the unbalanced data and the effects on the classifier [18–21].
The proportion of malicious WebShell samples to nonmalicious samples in the datasets in this study is
approximately 10:1. This causes data imbalance. Therefore, this study uses the SMOTE algorithm to
oversample the datasets to reduce the impact of data imbalance on the classifier.

3.7. Deep Super Learner

Through the Data preprocessing operations of opcode dynamic feature extraction, static feature
extraction, feature vectorization, feature selection and data sampling, the best feature set can
be obtained to ensure that the deep integrated learning algorithm can give full play to the best
detection effect.

Traditional machine learning algorithms are relatively simple and have strong interpretable,
but their accuracy is often not as high as that of deep neural networks (DNN). The DNN output
accuracy is often relatively high, and has a good application scenario in many aspects [22–24]. However,
DNN is poor in interpretation and the algorithm implementation is complex. Therefore, Deep Super
Learner: A Deep Ensemble for Classification Problems [25] proposed a deep super learner to enable the
advantages of fusion between the two, and this algorithm was applied to detect WebShell files in
this study. Among them, LogisticRegression, MLPClassifier and RandomForestClassifier are used
as the base classifier in the deep super learner. They can compensate for each other’s disadvantages.
The advantages and disadvantages between the base classifier are shown in Table 2. The specific
implementation of model training for deep super learner is shown in Algorithm 1, the specific
implementation of model test is shown in Algorithm 2, and the overall flowchart is shown in Figure 4.

Symmetry 2020, 12, 1406 7 of 16

Dataset

training datasetstest datasets

K fold cross valida�on

RandomForest Logis�cs Regression MLPClassi�er

Predicted probability value

Calculate the

weight value for

each base

classi�er

Mean predic�ve value

Reduced CrossEntropy Loss?End

test datasets

predicts probability

values

The test set predicts probability values

Get the weight value
Average probability value

Predict test Dataset

based on each

valida�on model

Add new feature Add new feature

No Yes

Figure 4. Flowchart of the deep super learner.

Table 2. The advantages and disadvantages of the base classifier.

Base Classifier Advantages Disadvantages

LogisticRegression
Clear model, strong interpretability,
simple implementation, high
efficiency [26,27].

Easy to underfit; if the feature space
is too large, the performance will
be reduced; cannot handle feature
dependent situations [28].

MLPClassifier Can learn nonlinear models [29,30].
Slow learning speed, easy to fall into
local extrema, learning may not be
sufficient [31].

RandomForestClassifier
High latitude data processing,
rapid training speed, easy parallel
processing [32,33].

Models are not easy to interpret and
can have bad consequences for small
datasets [34].

Symmetry 2020, 12, 1406 8 of 16

Algorithm 1 Model training.

Input: Training datasets: X_data, Y_data; List of base classifiers: Bases; K-fold cross-validation: K;

Maximum iteration number: MaxIterations.
Output: K-fold cross-validated base classifiers model: f itted_classi f iers_per_ f old, base classifiers

temporary weight value: weights_per_iteration.
1: f itted_classi f iers_per_ f old = []
2: weights_per_iteration = []
3: for t1 = 1, 2, . . . , MaxIterations do
4: K-fold cross-validation in X_data, Y_data to obtain training datasets and validation datasets;
5: for t2 = 1, 2, . . . , K do
6: for classifier Basei is extracted from base classifier list Bases in turn do
7: The K-fold model is trained in Basei;
8: add Basei to f itted_classi f iers_per_ f old;
9: under the model Basei, obtain the predicted probability value of the verification data at

this time;
10: end for
11: end for
12: the weight value of Basei is calculated using predicted probability value of the verification data

and Y_data;
13: add the weight value of Basei to weights_per_iteration;
14: predicted probability value and weight value of Basei are used to calculate the average predicted

probability value of each sample;
15: loss minimization is calculated using average predicted probability value and Y_data;
16: if the loss is smaller now than it was last time then
17: Add the average predicted probability value to X_data as a new feature;
18: else
19: break
20: end if
21: end for
22: return f itted_classi f iers_per_ f old, weights_per_iteration.

Algorithm 2 Model test.

Input: Test datasets: X_test, Y_test; base classifiers model: f itted_classi f iers_per_ f old; K-fold

cross-validation: K; base classifiers weight parameter: weights_per_iteration.
Output: The average predicted probability value of the test sets sample.

1: for weights value w is extracted from weights_per_iteration in turn do
2: K-fold cross-validation in X_test, Y_test to obtain training datasets and validation datasets;
3: for model m is extracted from f itted_classi f iers_per_ f old in turn do
4: for t3 = 1, 2, . . . , K do
5: model m training and prediction based on k-fold cross validation;
6: end for
7: In the base classifier model m on the testsets to calculate the average predicted

probability value;
8: end for
9: average predicted probability value and weights value w are used to calculate the average

prediction probability value avg_probs of each sample in the test sets;
10: Take avg_probs as a new feature of X_data;
11: end for
12: return avg_probs

Symmetry 2020, 12, 1406 9 of 16

The SLSQP Algorithm was used to calculate the algorithm weight value in the 12th line of
Algorithm 1 model training. SLSQP (Sequential Least Squares Programming), which was proposed
and written by Kraft in 1988 [35], can be used to solve nonlinear programming problems that minimize
scalar functions:

min
x∈Rn

F(x) (3)

when constrained by equality and inequality:

gj(x) = 0, j = 1, . . . , me (4)

gj(x) ≥ 0, j = me + 1, . . . , m (5)

The upper and lower limits of the variable are

li ≤ xi ≤ ui, i = 1, . . . , n (6)

where m represents the number of equality and inequality constraints , me represents the number of
equality constraints, li is the lower limit of variable xi, ui is the upper limit of variable xi, and n is the
sample size.

The SLSQP algorithm is integrated in PyOpt and SciPy. Pyopt is a python-based nonlinear
constraint optimization package used to solve the optimal solution under nonlinear constraints. SciPy,
a Python-based optimization package, also integrates the algorithm. In this study, however, we will
use only SLSQP in SciPy.

Since this study focuses on the dichotomy of WebShell samples, y can only be 0 or 1. The model
predicts that the probability of a sample labeled 1 is:

ŷ = P(y = 1|x) (7)

The probability that the sample label is 0 is:

1− ŷ = P(y = 0|x) (8)

Using maximum likelihood estimation is:

P(y|x) = ŷy ∗ (1− ŷ)1−y (9)

The above equation is the probability that the model predicts that it belongs to the sample label y.
Since y is the correct result given in the data set, the larger the above equation is, the better. In the
formula above, we use the log transformation to get the following result:

log(P(y|x)) = log(ŷy ∗ (1− ŷ)1−y) = y ∗ logŷ + (1− y) ∗ log(1− ŷ) (10)

Generally, the smaller the loss function is, the better. Therefore, by adding a negative sign to
the above formula, the following formula can be obtained, namely the crossentropy loss in line 15 of
Algorithm 1 model training.

L = −[y ∗ logŷ + (1− y) ∗ log(1− ŷ)] (11)

where y is the true category of the input instance x and ŷ is the probability that the input instance x
belongs to the malicious WebShell category.

Symmetry 2020, 12, 1406 10 of 16

3.8. Research Features

In this study, static feature detection and dynamic feature detection are combined to extract as
much feature data as possible. Next, Word2Vec is used for feature vectorization. A genetic algorithm is
used for feature dimension reduction. Finally, the deep super learner is used to improve the recognition
rate of WebShell detection. The main contributions of this paper are as follows:

(1) Using SMOTE effectively solves the misjudgment result caused by the imbalance of the datasets;
(2) Using a genetic algorithm effectively solves irrelevant or redundant features;
(3) Using the deep super learner effectively solves the limitations of a single algorithm, so that the

algorithm can achieve the best expected results.

4. Experiment

4.1. Experimental Conditions

The experimental environment in this study is based on the Ubuntu 64-bit operating system,
and the processor is an Intel Xeon CPU E5-2650 V4@2.20 GHz. Based on the Python language
implementation, the Python version is 3.5.1.

4.2. Experimental Data

Since this paper is only an exploration and study of WebShell samples of the .php type, this study
first downloads all WebShell samples from Github, categorizes the malicious WebShell, extracts files
with the suffix .php, and finally acquires the required samples. There are 571 WebShell samples in total.
The nonmalicious PHP files mainly come from common PHP development frameworks, including
phpCMS, Yii2, WordPress, oa, and Fenxiangyo. The collected data are extracted only from files with the
suffix .php and processed again, and 5,379 nonmalicious samples are ultimately obtained. The datasets
distribution is shown in Figure 5 and Table 3.

Table 3. Dataset distribution.

Sample Project Name URL

Nonmalicious sample

phpCMS https://github.com/johnshen/phpcms
yii2 https://github.com/yiisoft/yii2

WordPress https://github.com/WordPress
oa https://github.com/rainrocka/xinhu

Fenxiangyo https://github.com/learnstartup/4tweb

Sample malicious WebShell
https://github.com/JohnTroony/php-WebShells

https://github.com/tanjiti/WebShellSample
https://github.com/tennc/WebShell

Figure 5. Dataset distribution.

https://github.com/johnshen/phpcms
https://github.com/yiisoft/yii2
https://github.com/WordPress
https://github.com/rainrocka/xinhu
https://github.com/learnstartup/4tweb
https://github.com/JohnTroony/php-WebShells
https://github.com/tanjiti/WebShellSample
https://github.com/tennc/WebShell

Symmetry 2020, 12, 1406 11 of 16

4.3. Evaluation Standard

The WebShell detection method based on a deep super learner is evaluated in terms of accuracy,
recall, and specificity. The confusion matrix of model evaluation is shown in Table 4 below,
where “Positive” represents the WebShell sample and “Negative” represents the nonmalicious sample.

Table 4. Confusion matrix.

Reality
Prediction

Positive Negative

Positive TP FN
Negative FP TN

(1) If an instance is a WebShell sample and is predicted to be a WebShell sample, it is a true positive (TP).
(2) If an instance is a nonmalicious sample and is predicted to be a nonmalicious sample, it is a true

negative (TN).
(3) If an instance is a nonmalicious sample but is predicted to be a WebShell sample, it is a false

positive (FP).
(4) If an instance is a WebShell sample but is predicted to be a nonmalicious sample, it is a false

negative (FN).

Recall =
TP

TP + FN
(12)

Equation (12) indicates the proportion of model prediction pairs among all results whose true
values are WebShell samples and reflects the classifier’s recognition ability of positive examples
(WebShell sample).

Accuracy =
TP + TN

TP + FN + FP + TN
(13)

Formula (13) indicates the proportion of correct samples in the model prediction.

Speci f icity =
TN

TN + FP
(14)

Formula (14) indicates the proportion of a nonmalicious sample correctly predicted by the model,
and the ability of the classifier to recognize a normal PHP file.

4.4. Algorithm Parameter Selection

4.4.1. Feature Vectorization

Based on the feature vectorization of Word2Vec, K is a very important parameter: it is the choice
of the K value in the k-dimensional vector mapped to each word. Too many or too few feature
dimensions will influence the experimental results to some extent. Too many feature dimensions
will result in feature redundancy, which will greatly increase the spatial complexity of subsequent
experiments and ultimately affect algorithm efficiency. Meanwhile, redundant features will have an
adverse effect on algorithm detection. Too few feature dimensions will greatly reduce the ability of
the algorithm to distinguish black and white lists. Therefore, this study tested this parameter with
respect to integer values from 100 to 10,100. The experimental results are shown in Table 5 and Figure 6.
It can be observed that the three detection indexes of K values from 100 to 7100—namely accuracy,
recall, and specificity—do not change very much, but when the feature dimension(K) is kept at 7100,
the accuracy and recall reach the highest values. The specificity is not at the highest value in this
case but tends to remain at the maximum value. Therefore, the feature vectorization parameter K in
Word2Vec is set to 7100.

Symmetry 2020, 12, 1406 12 of 16

4.4.2. Deep Super Learner

Deep super learner is the more important parameter for the training datasets of cross-validation
K_flod values because each time, the cross-validation will first affect the weight value of learning,
thereby affecting the algorithm of crossentropy loss value calculation, and then the learning of
crossentropy loss value calculation, ultimately affecting the depth of integration testing efficiency
of the algorithm. Therefore, this study tests the parameters from 3-fold cross-validation to 10-fold
cross-validation. The test results are shown in Table 6 and Figure 7 below. It can be determined from
the figure that the recall has not changed from 4-fold cross-validation, that accuracy and special effects
in the 3-fold cross-validation to 7-fold cross-validation increase, and that these values peak for 7-fold
cross-validation; the values of the cross-validation test indicators exhibit fluctuations, but the peak is
exhibited for 7-fold cross-validation. Therefore, the K_flod value of the deep super learner is set as
7-fold cross validation in this study.

Table 5. The influence of different K values on accuracy, recall and specificity.

K Accuracy Recall Specificity

100 0.98741611 0.94871795 0.99162791
1100 0.98571429 0.94017094 0.99068034
2100 0.98403361 0.94871795 0.98788444
3100 0.98739496 0.94017094 0.99254427
4100 0.98655462 0.94871795 0.99068034
5100 0.98658843 0.94017094 0.99163569
6100 0.98739496 0.94871795 0.99161230
7100 0.98907563 0.95726496 0.99254427
8100 0.98487395 0.94871795 0.98881640
9100 0.98823529 0.95726496 0.99161230

10100 0.98655462 0.95726496 0.98974837

Figure 6. The influence of different K values on accuracy, recall and specificity.

Symmetry 2020, 12, 1406 13 of 16

Table 6. The influence of different K_flod values on accuracy, recall and specificity.

K_Fold Accuracy Recall Specificity

3_fold 0.98067227 0.94871795 0.98415657
4_fold 0.98403361 0.95726496 0.98695247
5_fold 0.98655462 0.95726496 0.98974837
6_fold 0.98571429 0.95726496 0.9888164
7_fold 0.98907563 0.95726496 0.99254427
8_fold 0.98571429 0.95726496 0.9888164
9_fold 0.98151261 0.95726496 0.98415657

10_fold 0.98655462 0.95726496 0.98974837

Figure 7. The influence of different K_fold values on accuracy, recall and specificity.

4.5. Comparison with Other Algorithms

LogisticRegression, MLPClassifier and RandomForestClassifier are used as the basic learners in
the deep super learner. To enable the deep super learner to produce better results, this study uses
a Bayesian optimization-based Python module called Hyperopt. Using Bayesian optimization for
tuning parameters allows us to obtain the best parameters of the base classifier. In logistic regression,
the regularization selection parameter “penalty” is “L1”; in the MLPClassifier, the regularization
parameter “alpha” is “0.369841375226992”, the number of neurons of each layer “hidden_layer_sizes”
is (5,5), the activation function parameter “activation” is “logistic” and the solver parameter of
weight optimization is “lbfgs”; in the RandomForestClassifier, the number parameter “n_estimators”
in the random forest is “47”, the maximum depth parameter “max_depth” of the tree is “18”,
the sample set segmentation policy parameter “criterion” is “gini”, the number of randomly selected
features per decision tree “max_features” is “3”, and the minimum number of separable samples
“min_samples_split” is “2”.

To verify the performance of the algorithm, this paper presents a one-to-one comparison of
the single algorithm and common ensemble algorithm. The preliminary work of all the following

Symmetry 2020, 12, 1406 14 of 16

algorithms is fully consistent with the preliminary work data of the deep super learner used in this
study. This study compares the accuracy, recall, specificity and test time. The experimental results are
shown in Table 7. It can be determined that the algorithm presented in this paper requires a longer
duration than other algorithms in terms of time efficiency, but the deep super learner can collect the
advantages of the algorithm and combine them together to give full play to the advantages of each
base classifier, so the three evaluation indexes—accuracy, recall and specificity—achieve good results.

Table 7. Contrast experiment.

Grand
Classification

Fine
Classification Specific Algorithm Accuracy Recall Specificity Test Time (s)

Single algorithm Logistics Regression 0.94874 0.59829 0.98695 0.07679

Ensembles algorithm

Boost
Adaboost 0.98067 0.91453 0.98788 2.47327
Xgboost 0.97479 0.88034 0.98509 0.62096
LightGBM 0.98655 0.91453 0.99441 8.43800

Bagging Random Forest 0.98655 0.91453 0.99441 0.09772

Stacking 0.98571 0.93162 0.99161 0.35306

Deep Super Learner 0.98908 0.95727 0.99254 2.89614

5. Conclusions

This paper conducts an in-depth analysis of the existing problems of malicious WebShell detection.
The feature library of malicious WebShell files is not perfect; the existing features cannot effectively
distinguish malicious samples from nonmalicious samples, and the detection algorithm cannot produce
good results. Thus, this study uses dynamic and static feature for the combination of diverse feature
of the data and then uses a genetic algorithm to filter feature to maintain the accuracy and recall,
produce effects of roughly the same conditions, and greatly reduce the feature dimensions to reduce
the time and space complexity. The deep super learner is then applied to the detection algorithm.
The experimental results show that even though the algorithm presented in this paper has certain
limitations in time, it exhibits a better WebShell detection effect than other algorithms. Future research
can focus on improving the time efficiency of the deep super learner and improving the practical
application ability of the algorithm.

Author Contributions: Conceptualization, Z.A. and N.L.; methodology, Z.A., N.L. and A.Z.; writing—original
draft preparation, Z.A.; writing—review and editing, Z.A. and D.L.; project administration, N.L.; funding
acquisition, N.L. All authors read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China (NSFC) under
Grant 61433012 and in part by the Innovation Environment Construction Special Project of Xinjiang Uygur
Autonomous Region under Grant PT1811.

Conflicts of Interest: The authors declare that they have no conflict of interest to report.

References

1. National Internet Emergency Center. Overview of China’s Internet Network Security Situation in
2019. Available online: https://www.cert.org.cn/publish/main/46/2020/20200420191144066734530/
20200420191144066734530_.html (accessed on 15 May 2020).

2. Wu, Y.; Sun, Y.; Huang, C.; Jia, P.; Liu, L. Session-Based Webshell Detection Using Machine Learning in Web
Logs. Secur. Commun. Netw. 2019, 2019, 1–11. [CrossRef]

3. Tu, D.T.; Cheng, G.; Xiao, J.G.; Wu, B.P. Webshell detection techniques in web applications. In Proceedings
of the International Conference on Computing, Communication and Networking Technologies (ICCCNT),
Hefei, China, 11–13 July 2014; pp. 1–7. [CrossRef]

4. Cui, H.; Huang, D.; Fang, Y.; Liu, L.; Huang, C. Webshell Detection Based on Random Forest–Gradient
Boosting Decision Tree Algorithm. In Proceedings of the 2018 IEEE Third International Conference on Data
Science in Cyberspace (DSC), Guangzhou, China, 18–21 June 2018; pp. 153–160. [CrossRef]

https://www.cert.org.cn/publish/main/46/2020/20200420191144066734530/20200420191144066734530_.html
https://www.cert.org.cn/publish/main/46/2020/20200420191144066734530/20200420191144066734530_.html
http://dx.doi.org/10.1155/2019/3093809
http://dx.doi.org/10.1109/ICCCNT.2014.6963152
http://dx.doi.org/10.1109/dsc.2018.00030

Symmetry 2020, 12, 1406 15 of 16

5. Tianmin, G.; Jiemin, Z.; Jian, M. Research on Webshell Detection Method Based on Machine Learning.
In Proceedings of the 2019 3rd International Conference on Electronic Information Technology and Computer
Engineering (EITCE), Xiamen, China, 18–20 October 2019; pp. 1391–1394. [CrossRef]

6. Fang, Y.; Qiu, Y.; Liu, L.; Huang, C. Detecting Webshell Based on Random Forest with FastText. In Proceedings of
the 2018 International Conference on Computing and Artificial Intelligence, Chengdu, China, 12–14 March 2018;
pp. 52–56. [CrossRef]

7. Nguyen, N.-H.; Le, V.-H.; Phung, V.-O.; Du, P.-H. Toward a Deep Learning Approach for Detecting PHP
Webshell. In Proceedings of the Tenth International Symposium on Information and Communication Technology,
Hanoi, Ha Long Bay, Vietnam, 4–6 December 2019; pp. 514–521. [CrossRef]

8. Le, Q.; Mikolov, T. Distributed representations of sentences and documents. In Proceedings of the 31st
International Conference on Machine Learning, Beijing, China, 21–26 June 2014; pp. 1188–1196.

9. Mikolov, T.; Chen, K.; Corrado, G.S.; Dean, J. Efficient Estimation of Word Representations in Vector Space.
In Proceedings of the International Conference on Learning Representations, Scottsdale, Arizona, 2–4 May
2013.

10. Gennaro, G.D.; Buonanno, A.; Girolamo, A.D.; Ospedale, A.; Palmieri, F.; Fedele, G. An Analysis of Word2Vec
for the Italian Language. arXiv 2020, arXiv:2001.09332.

11. Li, C.; Lu, Y.; Wu, J.; Zhang, Y.; Xia, Z.; Wang, T.; Yu, D.; Chen, X.; Liu, P.; Guo, J. LDA Meets Word2Vec:
A Novel Model for Academic Abstract Clustering. In Proceedings of the Companion Proceedings of the Web
Conference 2018, Lyon, France, 23–27 April 2018; pp. 1699–1706. [CrossRef]

12. Tian, W.; Li, J.; Li, H. A Method of Feature Selection Based on Word2Vec in Text Categorization. In Proceedings
of the Chinese Control Conference, Wuhan, China, 25–27 July 2018. [CrossRef]

13. Song, X.-Y.; Zhao, Y.; Jin, L.-T.; Sun, Y.; Liu, T. Research on the Construction of Sentiment Dictionary Based on
Word2vec. In Proceedings of the 2018 International Conference on Algorithms, Computing and Artificial
Intelligence, Sanya, China, 21–23 December 2018; Article 70. [CrossRef]

14. Ma, L.; Zhang, Y. Using Word2Vec to process big text data. In Proceedings of the International Conference on Big
Data, Santa Clara, CA, USA, 29 October–1 November 2015; pp. 2895–2897. [CrossRef]

15. Xue, B.; Fu, C.; Shaobin, Z. A Study on Sentiment Computing and Classification of Sina Weibo with Word2vec.
In Proceedings of the International Congress on Big Data, Anchorage, AK, USA, 27 June–2 July 2014;
pp. 358–363. [CrossRef]

16. Chandrashekar, G.; Sahin, F. A survey on feature selection methods. Comput. Electr. Eng. 2014, 40, 16–28.
[CrossRef]

17. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling
technique. J. Artif. Intell. Res. 2002, 16, 321–357. [CrossRef]

18. Feng, W.; Dauphin, G.; Huang, W.; Quan, Y.; Bao, W.; Wu, M.; Li, Q. Dynamic Synthetic Minority
Over-Sampling Technique-Based Rotation Forest for the Classification of Imbalanced Hyperspectral Data.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2159–2169. [CrossRef]

19. Guoxun, H.; Hui, H.; Wenyuan, W. An Over-sampling Expert System for Learing from Imbalanced Data
Sets. In Proceedings of the 2005 International Conference on Neural Networks and Brain, Beijing, China,
13–15 October 2005; pp. 537–541. [CrossRef]

20. Liu, S.; Ong, M.L.; Mun, K.K.; Yao, J.; Motani, M. Early Prediction of Sepsis via SMOTE Upsampling and
Mutual Information Based Downsampling. In Proceedings of the 2019 Computing in Cardiology (CinC),
Beijing, China, 8–11 September 2019; pp. 1–4. [CrossRef]

21. Xiaolong, X.; Wen, C.; Yanfei, S. Over-sampling algorithm for imbalanced data classification. J. Syst. Eng.
Electron. 2019, 30, 1182–1191. [CrossRef]

22. Jo, J.; Hwang, S.; Lee, S.; Lee, Y. Multi-Mode LSTM Network for Energy-Efficient Speech Recognition.
In Proceedings of the 2018 International SoC Design Conference (ISOCC), Daegu, Korea, 12–15 November
2018; pp. 133–134. [CrossRef]

23. Yanagisawa, H.; Yamashita, T.; Watanabe, H. A study on object detection method from manga images using
CNN. In Proceedings of the 2018 International Workshop on Advanced Image Technology (IWAIT), Singapore,
7–9 January 2018; pp. 1–4. [CrossRef]

24. Bai, X. Text classification based on LSTM and attention. In Proceedings of the 2018 Thirteenth International
Conference on Digital Information Management (ICDIM), Berlin, Germany, 24–26 September 2018; pp. 29–32.
[CrossRef]

http://dx.doi.org/10.1109/EITCE47263.2019.9094767
http://dx.doi.org/10.1145/3194452.3194470
http://dx.doi.org/10.1145/3368926.3369733
http://dx.doi.org/10.1145/3184558.3191629
http://dx.doi.org/10.23919/chicc.2018.8483345
http://dx.doi.org/10.1145/3302425.3302481
http://dx.doi.org/10.1109/BigData.2015.7364114
http://dx.doi.org/10.1109/BigData.Congress.2014.59
http://dx.doi.org/10.1016/j.compeleceng.2013.11.024
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1109/JSTARS.2019.2922297
http://dx.doi.org/10.1109/ICNNB.2005.1614671
http://dx.doi.org/10.23919/CinC49843.2019.9005890
http://dx.doi.org/10.21629/JSEE.2019.06.12
http://dx.doi.org/10.1109/ISOCC.2018.8649913
http://dx.doi.org/10.1109/IWAIT.2018.8369633
http://dx.doi.org/10.1109/ICDIM.2018.8847061

Symmetry 2020, 12, 1406 16 of 16

25. Young, S.; Abdou, T.; Bener, A. Deep Super Learner: A Deep Ensemble for Classification Problems. In Proceedings
of the Canadian Conference on Artificial intelligence, Toronto, ON, Canada, 8–11 May 2018; pp. 84–95. [CrossRef]

26. Adil, S.H.; Ebrahim, M.; Raza, K.; Ali, S.S.A.; Hashmani, M.A. Liver Patient Classification using Logistic
Regression. In Proceedings of the 2018 4th International Conference on Computer and Information Sciences
(ICCOINS), Kuala Lumpur, Malaysia, 13–14 August 2018; pp. 1–5. [CrossRef]

27. Luo, H.; Pan, X.; Wang, Q.; Ye, S.; Qian, Y. Logistic Regression and Random Forest for Effective Imbalanced
Classification. In Proceedings of the 2019 IEEE 43rd Annual Computer Software and Applications Conference
(COMPSAC), Milwaukee, WI, USA, 15–19 July 2019; pp. 916–917. [CrossRef]

28. Yang, Z.; Li, D. Application of Logistic Regression with Filter in Data Classification. In Proceedings of the
2019 Chinese Control Conference (CCC), Guangzhou, China, 27–30 July 2019; pp. 3755–3759. [CrossRef]

29. Huang, K.; Shen, L.; Chen, K.; Huang, M. Multilayer perceptron learning with particle swarm optimization
for well log data inversion. In Proceedings of the 2012 International Joint Conference on Neural Networks
(IJCNN), Brisbane, Australia, 10–15 June 2012; pp. 1–6. [CrossRef]

30. Huang, K.; Shen, L.; Weng, L. Radial basis function network for well log data inversion. In Proceedings of
the 2011 International Joint Conference on Neural Networks, San Jose, CA, USA, 31 July–5 August 2011;
pp. 1093–1098. [CrossRef]

31. Li, H.; Ji, G.; Ma, Z. A Nonlinear Predictive Model Based on Multilayer Perceptron Network. In Proceedings
of the 2007 IEEE International Conference on Automation and Logistics, Jinan, China, 18–21 August 2007;
pp. 2686–2690. [CrossRef]

32. Sun, Y.; Li, Y.; Zeng, Q.; Bian, Y. Application Research of Text Classification Based on Random Forest
Algorithm. In Proceedings of the 2020 3rd International Conference on Advanced Electronic Materials,
Computers and Software Engineering (AEMCSE), Jinan, China, 24–26 April 2020; pp. 370–374. [CrossRef]

33. Li, R.; Zhou, L.; Zhang, S.; Liu, H.; Huang, X.; Sun, Z. Software Defect Prediction Based on Ensemble Learning.
In Proceedings of the 2019 2nd International Conference on Data Science and Information Technology,
Seoul, Korea, 19–21 July 2019; pp. 1–6. [CrossRef]

34. Palczewska, A.; Palczewski, J.; Robinson, R.M.; Neagu, D. Interpreting random forest models using a feature
contribution method. In Proceedings of the 2013 IEEE 14th International Conference on Information Reuse &
Integration (IRI), San Francisco, CA, USA, 14–16 August 2013; pp. 112–119. [CrossRef]

35. Kraft, D. A Software Package for Sequential Quadratic Programming; Technical Report DFVLR-FB 88-28; Institut
fuer Dynamik der Flugsysteme: Oberpfaffenhofen, Germany, July 1988.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/978-3-319-89656-4_7
http://dx.doi.org/10.1109/ICCOINS.2018.8510581
http://dx.doi.org/10.1109/COMPSAC.2019.00139
http://dx.doi.org/10.23919/ChiCC.2019.8865281
http://dx.doi.org/10.1109/IJCNN.2012.6252707
http://dx.doi.org/10.1109/IJCNN.2011.6033345
http://dx.doi.org/10.1109/ICAL.2007.4339035
http://dx.doi.org/10.1109/AEMCSE50948.2020.00086
http://dx.doi.org/10.1145/3352411.3352412
http://dx.doi.org/10.1109/IRI.2013.6642461
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Webshell Attack Detection Based on a Deep Super Learner
	System Architecture
	Opcode
	Static Feature Extraction
	Static Character of the String Length Variance
	Static Character of the Index of Coincidence
	Static Character of Information Entropy
	Static Character of the File Compression Ratio
	Static Character of Eigencode Matching

	Feature Vectorization
	Feature Selection
	Data Sampling Based on the Smote Algorithm
	Deep Super Learner
	Research Features

	Experiment
	Experimental Conditions
	Experimental Data
	Evaluation Standard
	Algorithm Parameter Selection
	Feature Vectorization
	Deep Super Learner

	Comparison with Other Algorithms

	Conclusions
	References

