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Abstract: A lack of memory can lead to job failures or increase processing times for garbage collection.
However, if too much memory is provided, the processing time is only marginally reduced, and most
of the memory is wasted. Many big data processing tasks are executed in cloud environments.
When renting virtual resources in a cloud environment, it is necessary to pay the cost according to the
specifications of resources (i.e., the number of virtual cores and the size of memory), as well as rental
time. In this paper, given the type of workload and volume of the input data, we analyze the memory
usage pattern and derive the efficient memory size of data-parallel workloads in Apache Spark.
Then, we propose a machine-learning-based prediction model that determines the efficient memory
for a given workload and data. To determine the validity of the proposed model, we applied it to
data-parallel workloads which include a deep learning model. The predicted memory values were in
close agreement with the actual amount of required memory. Additionally, the whole building time
for the proposed model requires a maximum of 44% of the total execution time of a data-parallel
workload. The proposed model can improve memory efficiency up to 1.89 times compared with the
vanilla Spark setting.

Keywords: big data; memory optimization; performance optimization; spark; data-parallel model

1. Introduction

Big data analysis applications [1] are executed on distributed parallel processing
environments, where multiple worker nodes can perform tasks simultaneously by par-
titioning big data into multiple blocks. This reduces the time required to perform large
amounts of computations. The Hadoop MapReduce framework [2], the first-generation
distributed parallel processing platform, performs large-scale computations on big data
using a mapping phase that processes parallelizable tasks and a reducing phase that merges
results from the mapping phase. A second-generation platform called Apache Spark [3]
increases the degree of freedom for designing and implementing big data applications by
specifying distributed parallel processing models for applications based on directed acyclic
graphs (DAGs). Spark provides a wide range of libraries for various types of workload,
such as machine learning [4], streaming data processing [5], and query processing [6] in
distributed environments, as well as the existing MapReduce-based algorithms. Overall,
it is improving on many aspects of the first-generation platforms. Additionally, it has
unique capabilities in terms of performance based on in-memory computing, and resilient
distributed dataset (RDD)-based fault tolerance [7].

Most distributed systems for working with big data are implemented on cloud plat-
forms [8]. Cloud service providers lend computing resources to users according to pay-
as-you-go policies and charge usage fees accordingly. Therefore, to save the budget, users
must select a suitable computing resource for their workload and configure resources
efficiently [9,10]. In existing distributed-processing environments, the efficient amount
of resources varies depending on the workload type and volume [11]. If these factors are
not considered, users may encounter excessive expenditures because of the unnecessary
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resources or deterioration/failure of the workloads due to insufficient resources. Thus,
users must carefully consider the types and amounts of resources suitable for processing
their workloads efficiently.

For specifying cloud resources, especially in configuring memory, reducing garbage
collection (GC) time is crucial for reducing overall execution time. This is because the
time required for memory management is the additional time incurred on top of the
actual task processing time [12]. If excessive memory is provided for processing a task,
the processing time converges and usage efficiency decreases. Conversely, if too little
memory is provided, the total time required to process a workload increases rapidly, which
could lead to failure [13].

For the given volume of input data, type of workload, and system environment, it is
necessary to consider the features closely related to runtime memory for providing an
adequate amount of memory, which enables the workloads to be processed efficiently. Ad-
ditionally, how the features affect the runtime memory should also be profiled. This paper
analyzes the memory usage pattern and derives the efficient memory size of data-parallel
workloads in a general distributed environment. We also propose the prediction model for
approximating the efficient amount of memory at a low cost for the data-parallel workloads.
For predicting the efficient memory size of the workloads accurately, machine learning
techniques are adopted. Data characteristics, workload characteristics, and system environ-
ment characteristics are used as input features. The main contributions of our study can be
summarized as follows.

e This paper proposes a memory usage model of data-parallel workloads that consid-
ers the characteristics of data, workloads, and system environments in the general-
purpose distributed-processing Spark platform.

e Based on the memory usage model, we propose the memory prediction model for
estimating efficient amounts of memory of data-parallel workloads using machine
learning techniques.

e  When the memory prediction model is applied to data-parallel workloads in the
Spark environment, it estimates the appropriate amount of memory at a maximum of
99% accuracy of the actual efficient memory requirements. In terms of cost, efficient
memory can be estimated in less than 44% of the workloads” actual processing time.

The remainder of this paper is organized as follows. The related work and background
for this study is provided in Sections 2 and 3. Section 4 analyzes the memory model
and memory usage pattern of Spark. Section 5 analyzes what features affect maximum
unrecoverable memory. Section 6 describes the memory estimation model for estimating
the amount of required memory by considering the workload type and data size. Section 7
presents the experimental results and performance of the proposed techniques. Section 8
concludes the paper.

2. Related Work

Various studies [14-17] have been conducted to model big data workload performance.
Such studies have selected various features that are considered to be correlated with
performance metrics. The metrics are typically measured by varying the values of selected
features through tedious experiments. Next, the prediction model that describes the
relationship between performance metrics and features is presented. The weights of such a
model are trained by exploiting machine learning models. Machine-learning-based models
require a priori knowledge for selecting features. Alternatively, additional analysis may be
performed to determine which features are directly correlated with metrics. Experiments
are typically performed repeatedly to improve the accuracy of a model. The experimental
overhead can be significant because of the range and scale of features tested.

In recent years, studies [18-20] that predict the performance of workloads based
on deep learning have been actively conducted. These studies select features related
to the processing time of a workload and train a predictive model with learning data
for the features which is the same as that of a machine-learning-based predictive model.
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Deep learning models generally show higher prediction accuracy than machine learning
but have a disadvantage in that the scale of training data is large, and the time required
for training is considerable compared to machine learning. The authors of [18] predicted
with high accuracy the performance of Spark applications running in a cloud environment
using a deep neural network. However, the memory size was not considered as a feature
that affects processing time. In [19], a deep fully connected network was used to predict
the workload processing time for a number of settings related to the workload’s processing
performance, such as Spark. This study reduced the search space for the configuration
set through heuristic-based random sampling, thereby reducing the predictive model’s
training data collection time. However, it did not consider the impact of the workload’s
data characteristics and memory size on the processing time, nor did it consider the efficient
memory size for processing the workload. The authors of [20] used a deep neural network
to efficiently use computational resources (CPU) in a cloud environment. This study was
conducted to maximize the efficiency of computing resources in the cloud by allocating
efficient CPU resources when processing Spark and Hadoop MapReduce workloads in the
cloud based on marginal utility law. However, this study did not consider the memory size
in cloud computing resource configuration and did not consider the data collection time
required for deep neural network training. In contrast, our study analyzes the relationships
clearly. The relationships provide a basis for the assertion that different workloads have
different efficient memory sizes depending on their characteristics and input data. Because
the size of memory required for a given workload was predicted with the concrete profile,
the number of features used for building the prediction model and samples used for
training the model were relatively small compared to previous studies [14-20]. In this
study, it was proven that there is no correlation between the data size of the workload
and the unrecoverable memory in order to shorten the training data collection time of the
memory prediction model. In the experimental results, it was proven that high prediction
accuracy could be achieved by sampling some of the workload’s input data and applying
interpolation to the predicted results.

A process running on a Java environment behaves as if the memory it can utilize is
infinite. However, allocated memory is typically insufficient when considering the cumu-
lative size of objects created during the runtime [21]. Therefore, a Java virtual machine
(JVM) searches for and reserves reusable areas within allocated memory to compensate
for memory insufficiency. Such insufficiency occurs when a user provides less memory
than the peak memory size required during run time. The amount of time required to
reserve recyclable areas varies according to the size of the provided memory. Depending
on the workload and size of the input data, the maximum required memory size varies
significantly. The memory efficiency depends on the allocated memory size, and the mem-
ory size that is actually used. The memory efficiency improvements based on different
memory sizes have been researched in a previous study [22]. Other studies have consid-
ered efficient memory usage, but they have not been able to predict the specific size of the
memory [23-26]. There have been a few studies on memory prediction in JVM environ-
ments [27-29]. However, no memory requirement prediction for the Spark environment
has been performed.

3. Background
3.1. Data-Parallel Workloads

This section briefly introduces data-parallel model-based big data workloads in the
Spark environment. When processing big data or large workloads, data-parallel models are
used to support the scalability of data with efficiency. The data-parallel model is suitable
for processing big data because multiple worker nodes can independently process data
partitions allocated by a master node. When the size of the data or volume of the workload
increase, data are distributed to multiple worker nodes and processed in parallel using
multi-core processors [30].
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The data-parallel model is also used in various machine learning and deep learning
model implementations [31,32], which have recently received significant attention. The ex-
tensive input data required for training such models can be partitioned and processed
simultaneously by multiple worker nodes. As such, the data-parallel model is often used
for the distributed parallel processing of large-scale tasks, such as big data processing,
machine learning, and deep learning. Therefore, analyzing and modeling data-parallel
workloads to improve processing performance is valuable.

3.2. Memory Management Model of the Java Runtime Environment

In an automatic memory management environment, such as Java, a memory man-
agement thread independently performs memory allocation and deallocation of the task
processing thread (in Java, a memory management thread is called a garbage collector) [33].
Note that since Parallel Old GC is the Spark’s default GC algorithm, the memory manage-
ment model is described based on the corresponding GC algorithm [34]. Java’s memory
model manages the memory by dividing it into multiple areas with different purposes
when a process is executed. First, when it is initially executed, all objects created are
allocated in the “Eden” space of the “young generation” area. When the Eden space is
exhausted, the memory management thread invokes the minor GC procedure. Minor GC
pauses all task threads, searches the Eden space, copies the objects that have been connected
to root set to the “survivor space” of the young generation area, and frees the memory
allocated to the remaining objects. The objects that survive minor GC are determined to
be long-term objects that will be used continuously within a process and are migrated to
the object space of the “old generation”. Assuming that continuous migrations from the
survivor space to the object space happen, major GC occurs when more than a certain
percentage of the object space is used. Major GC searches for the object space, removes
objects that are unnecessary for processing, and then performs compaction to prevent
the fragmentation of empty spaces in the object space. Therefore, major GC generally
takes more time than minor GC. When there is insufficient memory to allocate to a new
object after major GC, Out-of-Memory Error (OOME) occurs, which causes operations to
fail. If OOME occurs during the operation, the entire operation must be redone from the
checkpoint, which incurs a considerable cost.

3.3. Data-Parallel Model in Spark

The structure of Spark and the role of each component for implementing data-parallel
model in Spark are presented in Figure 1.

Worker Node

" Executor

Thread Thread
Master Node | | Va

Driver LA Cluster

4|
) | Worker Node

Executor

Figure 1. Architecture of Spark.

The cluster manager [35-37] initiates the spark driver on the master node and creates
the worker nodes” executors. Additionally, the cluster manager ensures allocating and
retrieving system resources for the Spark driver and executors. Typically, the Spark driver
runs on the master node, but it can also run on the client. The Spark driver manages the
distributed parallel work processing of executors through SparkContext objects. A worker
node is a computing node that manages an executor process that handles actual work.
An executor receives the specifications for a job from the driver and processes jobs in
parallel using multiple threads.
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Spark uses an RDD to represent distributed data logically. The Spark driver expresses
and processes work in the form of DAGs for RDDs. Figure 2 presents the process for
distributed parallel processing of work by executors according to RDD specifications.
The RDD is composed of one or more partitions, and each partition is composed of one or
more elements. The executor creates threads that fit the parallelism scale specified by the
SparkContext and processes the partitions in parallel.

E: element, P: partition,
p: spark.default.parallelism,
e: the number of element per partition

e |

-
1 -
-

Py
spark.scheduler Partition
={FIFO,Fair} Transformation - Action
» P; » P; » Res
PP
Task Thread
RDD

Figure 2. Processing procedure for an RDD.

In Spark, transformations and actions are applied to RDD. A transformation applies
a user-specified function to all partitions and returns a new type of partitions. Transfor-
mations are classified into narrow dependencies with no data exchange among executors
and wide dependencies for performing data exchanges. Wide-dependency transformation
performs a shuffle operation to exchange data between executors based on key values.
Therefore, in a wide-dependency transformation, executors” amount of required memory
varies depending on the distribution state of the key values of the data. An action delivers
processed data to the Spark driver, which then outputs the result. This study estimates
the appropriate amount of memory required to process a series of big data workloads to
exclude overused or underused resources.

4. Spark Memory Model

This section describes how memory is utilized when data-parallel operations are
executed in a Spark environment. Furthermore, the memory usage patterns of data-parallel
work are described based on the basic operations of Spark.

4.1. Memory Usage Pattern

When ajob is submitted to Spark, the Spark driver creates a DAG for the corresponding
RDD and requests the RDD’s processing from executors. An executor divides an RDD
into partitions and processes partitions in parallel at the thread level. According to the
DAG, an executor fetches the partition from a distributed file system [22] or the local file
system into the memory to apply a series of transformations to a partition. Whenever
a transformation is applied, newly generated partitions are allocated to memory based
on Spark’s in-memory processing characteristics. The RDD before the transformation is
applied retained by the Spark executor; however, if the executor’s memory runs out, these
data are removed. In this case, if the deleted data are required again, the efficiency of
in-memory processing decreases because the data must be retrieved from the disk.

Spark provides memory-level or disk-level caching for the reusability of all RDDs.
The cached RDDs are retained in the memory until the end of operations. However, if an
executor has an insufficient memory, the least-used RDD is deleted according to the default
memory management policy for cached RDDs. Therefore, all RDDs are to be removed
when the memory allocated by an executor runs out.
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Figure 3 presents an executor’s runtime memory using a Java Flight Recorder when
processing a basic transformation map in Spark. The x-axis represents the processing time,
and the y-axis represents the runtime memory of the executor. Figure 3 introduces the case
when sufficient memory for the target operation is supplied to the executor. If the Eden
space reaches a threshold while a workload is being processed, minor GC is performed to
secure the recoverable area.

Memory
(MB)

1536
1280 (‘ |
1024

768

512 \

256

0 2 4 6 8 10 12 14 16 Time(s)

Figure 3. Runtime memory of an executor when processing a transformation map with suffi-
cient memory.

At runtime, objects are created by applying data-parallel operations to partitions.
That is, the references to objects can disappear right after a partition is processed. After
minor GC, objects still connected to the root set are moved to the survivor space, and the
others are removed. After a certain number of minor GCs, remaining objects are moved
to the object space. Therefore, only objects located in the survivor space and in the object
space are left in the memory following minor GC. Note that when processing the same
data-parallel operation for the same input, the runtime memory required after minor GC
is almost constant. In Figure 3, after every minor GC, the runtime memory is consistent.
It means that the lower limit of the memory required for objects at runtime is fixed. Accord-
ing to Spark architecture, objects created at runtime are classified into two types. The first
type is used to process data directly, and the second type performs task management
(e.g., communication between the Spark driver and executors during the lifecycle of a
workload) [38]. Memory consumption of the first type depends on data characteristics and
workload characteristics, and that of the second type depends on system configuration.

4.2. Memory Undersupply

Figure 4 presents runtime memory when the memory is undersupplied. The runtime
memory continuously increases after the first minor GC, and the phenomenon occurs
repeatedly. When the object space usage reaches the upper threshold, major GC occurs.
The major GC rapidly reduces the runtime memory so that the lower bound of runtime
memory is near 128MB. It means that the sums of the first- and the second-type objects
are nearly consistent. When minor GC occurs, all survived objects should be moved to
the survivor space or object space. The objects which survive more than the particular
times of minor GCs are migrated to object space. The increased runtime memory after
the first minor GC indicates that some objects are abnormally promoted to the object
space. Initially, the survived objects in Eden space should be moved to the survivor space.
However, when the total size of the surviving objects exceeds the size of the survivor
space, some objects should be migrated to the object space. This phenomenon is called
premature promotion. In Figure 4, runtime memory increases following minor GC because
of continuous premature promotion, which leads to the consumption of object space,
causing additional major GCs, thereby increasing the processing time of the workload.
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Figure 4. Runtime memory of an executor when processing a transformation map with insuffi-
cient memory.

Table 1a shows the percentage of the workloads calculated by dividing the processing
time by the lowest processing time when the memory is provided in increments of 0.1 GB
from 1 GB to 1.9 GB. The workloads are wordcount, k-means, logistic regression, and neural
network. For each memory size, the average processing time was used by performing ten
times. In the worst case excepting OOME, at logistic regression with 1.4 GB, the processing
time is 1338.7%. Wordcount, which has the smallest difference between the maximum and
minimum processing time, has a processing time of 1010.7% compared to the minimum
processing time. This proves that even if OOME does not occur, exponential memory
management overhead occurs when the memory size is insufficient.

Table 1. (a) When memory deficiency occurred, actual processing times relative to the shortest possible processing time as

memory size increases. (b) When memory oversupply occurred, actual processing times relative to the shortest possible

processing time as memory size increases.

(a)
workload\memsize 1 GB 1.1GB 12GB 13GB 14GB 1.5GB 1.6 GB 1.7 GB 1.8 GB 19GB
wordcount OOME OOME OOME OOME OOME OOME 1010.70%  659.10%  238.70% 100%
K-Means OOME OOME OOME OOME OOME OOME 112340% 791.00%  325.20% 100%
logistic regression ~ OOME OOME OOME OOME 1338.70% 832.10%  583.90%  343.80%  172.90% 100%
neural network OOME OOME OOME OOME OOME 126520% 884.50%  522.60%  281.90% 100%
(b)
workload\memsize =~ 2 GB 3GB 4GB 5GB 6 GB 7 GB 8 GB 9GB 10 GB 11 GB
Wordcount 100%  101.70% 101.00% 102.40% 100.70% 100.90%  101.60%  101.10%  100.70%  101.70%
K-Means 100.20% 100%  100.50% 102.80% 100.90% 101.60%  100.40%  101.00%  100.20%  102.50%
logistic regression ~ 100.30% 102.90% 101.40% 100%  100.70% 101.10%  100.90%  100.80%  102.00%  101.40%
neural network 103%  102.80% 103%  101.20% 101.80%  100% 100.50%  102.70%  101.40%  100.70%
CNN OOME OOME OOME OOME OOME OOME 101.90%  100.70% 100% 101.20%

4.3. Memory Oversupply

When memory is oversupplied, only the objects will be migrated to the object space

(i.e., the second-type objects), and the others (i.e., the first-type objects) will be removed
after minor GC. Since the total size of the object space exceeds the migrated object, no major
GC occurs. Consequently, there will be no reduction in the major GC processing, even if
excessive memory is provided. Only the trade-off between the number of minor GCs and
minor GC processing time occurs. Table 1b shows the percentage of the workloads by
dividing the processing time by the lowest processing time when the memory is provided in
increments of 1 GB from 2 GB to 11 GB. Wordcount, k-means clustering, logistic regression,
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neural network algorithms, and convolutional neural network (CNN) are utilized. For each
memory size, the average processing time was used by performing ten times. The deviation
of processing time for all workloads with different memory sizes is up to 3%. Therefore,
providing excessive memory is not cost-effective. This study considers the minimum
amount of memory that does not cause the premature promotion to be an efficient amount
of memory. Machine learning techniques are used to determine the efficient memory size for
a given data-parallel operation. We used data characteristics and workload characteristics
that affect runtime memory as input features for the machine learning techniques.

5. Runtime Memory Profiling

In this section, the features considered to affect runtime memory are profiled. First,
the impact of the data-parallel model in the Spark environment is profiled. Next, the im-
pact of data representations in Spark and the characteristics of implemented methods
are profiled.

5.1. Data-Parallel Characteristics in Spark

When an action is called, as shown in Figure 5, an executor serially applies transforma-
tions (from the first transformation t; to the last transformation t,) to all partitions (from
the first partition Partition to the last partition Partition,) on an element-by-element basis,
where p is the index of the partition and the superscript denotes the number of applied
transformations. All transformations are applied to all elements from the first element
Element?, where the subscript denotes the index of the element and fg is the recently
applied transformation, to the last element E/ ementé". A total of N transformations are
applied to all elements. All related notations are described in Table 2.

. to(... (81 (ER))) .
Element Element'

If(hasnext()){next()}

. tn(..-(E1(ED))) .

Element, Element

¢ tn(-.-(t1(EZ"))) .

Element, Element
p'" partition P p'" partition Pj*!

Figure 5. Process for applying all transformations to elements.

When applying a series of transformations to an element in Spark, the memory used
while applying the previous stage of transformation immediately becomes recoverable.
Specifically, when Spark processes data transformation after the previous step’s transfor-
mation, the related objects’ references disappear. It means that the associated memory
is reclaimed.

A data partition is a collection of elements of any type. Spark implements partitions
in the form of iterators. An iterator only has a “next” function that points to the next
element and a “hasnext” function that checks the next element’s existence. When applying
a transformation to a partition, Spark overwrites the next function with the transformation
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function. For example, when the Spark “count” action is called, which counts the total
number of elements in the result RDD, the next function increments a counter variable
after processing one element. For the “collect” action, the results RDD are transformed
into an array. Then, the array is transmitted to the driver. Therefore, only the memory
used in the transformations applied to the current element becomes unrecoverable memory
at runtime.

Table 2. Notations for applying series of Spark data-parallel operations to a workload.

Notation Description

i-th Transformation among series of transformation which is

fi applied to partition(s).

i-th partition in a RDD that j-th transformation has been applied.

e o j
Partition; (i.e., ;) If j is 0, no transformation has been applied to the partition.

i-th element in a partition that j-th transformation has been
Element? (i.e., E:f ) applied. If j is 0, no transformation has been applied to
the element.

hasnext() A function that checks whether there is the next element.

next() A function that point the next element.

5.2. Data Characteristics

Data characteristics are the main factors influencing unrecoverable memory during
runtime. In Spark, data characteristics are expressed in terms of the element structure
and a total number of elements. The total number of elements is expressed as the average
number of elements per partition multiplied by the number of partitions. The experiments
for Figures 68 used the average of measurements within 95% of the confidence interval of
the unrecoverable memory size as observations after 30 experiments for each variance.

300
250 .
- il 7
200 .
el — el {

120 —— PN L

SRR St Tl o

o———0""

100 200 300 400 500 600 700 800 900 1000

Maximum Unrecoverable
Memory (MB)
S

Size of Element (KB)
—o— Wordcount k-means clustering

—®= |0gistic regression =@« neural network

Figure 6. Maximum Unrecoverable Memory (MB) of wordcount, k-means clustering, logistic regres-
sion, and neural network when the size of element grows.

Figure 6 presents the maximum sizes of runtime memory not reclaimed following GC
when the number of elements per partition and number of partitions is fixed, and the size of
each element increases for the wordcount, k-means, logistic regression, and neural network.
For each workload, the unrecoverable memory is measured ten times. In a CNN case,
the element size cannot be adjusted because the element structure is a single image. As the
element size increases for all workloads, the size of the unrecoverable memory following
GC increases. The wordcount has a quasi-linear trend line with an unrecoverable memory
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size of 111 MB when the element size is 100 KB, and an unrecoverable memory size of
234 MB when the element size is 1000 KB. The k-means algorithm, whose trend line is
also quasi-linear, has an unrecoverable memory of 96 MB when the element size is 100 KB,
and an unrecoverable memory size of 212 MB when the element size is 1000 KB. Logistic
regression exhibits a curved trend with an unrecoverable memory size of 83 MB when the
element size is 100 KB, and 240 MB when the element size is 1000 KB. Finally, the neural
network algorithm has a linear trend line with an unrecoverable memory size of 83 MB
when the element size is 100 KB, and 144 MB when the element size is 1000 KB. Therefore,
note that data-parallel operations have different unrecoverable memory depending on the
type of operation and size of elements.

1000

800
600
400
200
R T s e ST PP

2500 5000 7500 10,000 12,500 15,000 17,500 20,000 22,500 25,000

i of Elements per partition

Maximum Unrecoverable
Memory (MB)

—e— wordcount k-means clustering
—®=|ogistic regression - @ = neural network
—e— CNN

Figure 7. Maximum Unrecoverable Memory (MB) of wordcount, k-means clustering, logistic regres-
sion, and neural network when the number of elements per partition grows.

1000
800
600
400
200

| em— e —t————— = ——0—— - ————t-——0

42 48 54 60 66 72 78 84 90 96

Maximum Unrecoverable
Memory (MB)

# of partitions
—o— wordcount k-means clustering
- ®=|0gistic regression =@ = neural network

—eo—CNN

Figure 8. Maximum Unrecoverable Memory (MB) of wordcount, k-means clustering, logistic regres-
sion, and neural network when the number of partitions grows.

Figure 7 presents the average maximum sizes of unrecoverable memory following
GC when the element size and number of partitions are fixed, and the number of elements
per partition is increased for the data-parallelized wordcount, k-means, logistic regression,
neural network algorithms, and CNN. For each workload, the maximum unrecoverable
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Data parallel werkload
(e.g. wordcount, kmeans)

memory is measured 10 times. As the number of elements per partition increases for
all workloads, the size of unrecoverable memory is almost stable. For the wordcount
algorithm, the maximum size of unrecoverable memory is 107.797 MB, and the minimum
is 106.352 MB. K-means has a maximum value of 37.846 MB and a minimum of 37.421 MB.
Logistic regression has a maximum value of 39.646 MB and a minimum of 39.521 MB.
The neural network has a maximum value of 41.646 MB and a minimum of 40.796 MB.
Finally, CNN has a maximum value of 899.6174 MB and a minimum of 884.126 MB. The size
of unrecoverable memory is different for each application; however, it is not affected by
the number of elements per partition.

Figure 8 presents the maximum sizes of unrecoverable memory following GC when
the size of elements and number of elements per partition are fixed, and the number of
partitions is increased for the data-parallelized wordcount, k-means, logistic regression,
neural network algorithms, and CNN. Each workload is performed ten times. The max-
imum size of unrecoverable memory for wordcount is 99.789 MB, and the minimum is
99.042 MB. K-means has a maximum value of 37.846 MB and a minimum of 37.421 MB.
Logistic regression has a maximum value of 39.646 MB and a minimum of 37.521 MB.
The neural network has a maximum value of 41.646 MB and a minimum of 41.221 MB.
Finally, CNN has a maximum value of 894.57 MB and a minimum of 891.275 MB. Similar
to Figure 7, the size of unrecoverable memory is different for each workload; however, it is
not affected by the number of partitions.

6. Maximum Unrecoverable Memory Estimation

Figure 9 shows the flow diagram for efficient memory size prediction. First, it receives
the workload that is the target of memory prediction from the user. The input workload
is sent to the Feature Set Collector. The Feature Set Collector sets an element size set,
samples the workload’s input data, and executes the workload on the configured element
size set and sampled input data. It also measures the maximum unrecoverable memory
of the workload while it is running. The result of the Feature Set Collector is delivered
to Model Builder. Model Builder creates a model for every combination of the terms in
Definition 3. Moreover, it converts Feature Set into Training Data and transfers it to Model
Trainer. Finally, Model Trainer trains the transferred data on the received models and then
selects the model with the highest prediction accuracy for the test data.

Configure features,

Sample workload input data, Build the model with all possible Train the models and Find the model with the
Run workload with the features and input data, combinations of highest accuracy based on ML
Measure unrecoverable memory size the base features in Table 3

Feature Set Training Data

(e.g. (Element size=10KB, max (e.g. X=(SoE, RSoE, LSoE,

unrecoverable memory=1GB)) ...), Y=(max unrecaverable
Model memory) Model
Builder Trainer

Feature Set
Collector

Figure 9. Flow diagram of predicting efficient memory size.

6.1. Estimation Model

For preventing premature promotion, it is necessary to provide an amount of memory
greater than the maximum size of unrecoverable memory for a given workload. This section
presents a machine-learning-based memory prediction model for predicting the maximum
size of unrecoverable memory for a given workload W. A data-parallel workload W is
defined in Definition 1.

Definition 1 (Workload). A workload W in Spark is defined by T and a where:

o  Tisafinite set of transformation t.
e aisan action called right after the last transformation.
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The maximum unrecoverable memory size required for each transformation and
action (i.e., t, a) is calculated by Definition 2.

Definition 2 (Estimation target). The Maximum Unrecoverable Memory (MUM) of given
workload W is Defined as MUM(W) where:

e For n trials of W, MUM(W) is the maximum value of all runtime memory usages after GC.

Note that the runtime memory usage following GC is measured for all GCs that occur
while processing W, and the maximum value of all trials is considered as the maximum
unrecoverable memory size. For measuring the runtime memory usage following GC, the “-
printHeapatGC” option is used for the executor that observes the target workload. With the
option, the memory usage before and after GC is measured for all heap memory areas.

For each W, the relationship between the element size characteristics and MUM(W) is
obtained by machine learning models. The unrecoverable memory model for a workload
W and related features are defined in Definition 3.

Definition 3 (Estimation model). The estimation model for MUM(W) consists of sum of the
terms. Each term is a product of input value based on the size of element (SoE) and model parameter
(w). Each term is defined as follows:

The first term is bias;

The second term is product of SOE multiplied and w;

The third term is product of square root of SoE multiplied and wy;

The fourth term is product of logarithm of SoE multiplied and wy;

The fifth term is product of square root of SoE and logarithm of SoE and ws;
The sixth term is product of logarithm of SOE and SoE and wj.

As shown in Definition 3, SoE is the element size of W. Since MUM(W) is only affected
by the type of workload and size of elements, it is estimated using features based on SoE.
The average number of elements per partition and the number of partitions do not affect
MUM(W). Therefore, after generating an unrecoverable memory estimation model, if the
workload has the same element structure (i.e., element size), the same model can be reused.
Even if the average number of elements per partition and the number of partitions differ,
MUM(W) can be estimated accurately. Note that the maximum unrecoverable memory of
data-parallel workloads for big data can be estimated using a small amount of data, which
significantly reduces the time required to construct the estimation model.

6.2. Model Building Methods

For estimating the maximum unrecoverable memory sizes of a broad range of work-
loads, the exponential terms and nth power terms of the SoE in Definition 3 can be utilized.
However, the use of many weights does not always increase the prediction accuracy. If an
estimation model or some features used in such a model are irrelevant, the prediction
accuracy is reduced by incorporating additional features. Therefore, only features directly
related to memory prediction’s target tasks are selected and used to improve prediction
accuracy. Note that, excluding bias, an estimation model was created for all combinations
of the remaining set of features in Definition 3. Leave-one-out cross-validation was applied
to each estimation model to select the model with the highest prediction accuracy.

In the machine learning models, Lasso regression (Lasso), Ridge regression (Ridge),
Random forest (RF), and Multi-layer perceptron (MLP) were used to learn the parameters
of the maximum unrecoverable memory prediction model. Therefore, it was necessary to
deduce a set of hyperparameters that can maximize the prediction accuracy of performance
models. The hyperparameter values applied to each machine learning technique in this
study are shown in Tables 3-5.
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Table 3. Hyperparameters of Lasso and Ridge regression.

Lasso and Ridge

Hyperparameter Values

Penalty alpha 1x10719,1x%x1075,0.1,1,5,10,20

Table 4. Hyperparameters of Random Forest.

RF
Hyper-Parameter Values
# of estimators 50, 100, 150
Max features auto, sqrt, log2
Max depth 50, 100, 150

Table 5. Hyper-parameters of Multi-Layer Perceptron.

Lasso and Ridge
Hyperparameter Values
Solver Lbfgs, adam, sgd
Activation functions Sigmoid, ReLU
Max iteration 1000, 5000, 10,000
Learning rate alpha 0.01,0.05
Hidden layer size 50, 100, 150

Each table includes a hyperparameter search for each machine learning technique.
The hyperparameter set with the lowest mean squared error was used for validation. Lasso
and Ridge use L1-norm and L2-norm as penalties to prevent overfitting the training data.
The values of Lasso and Ridge used for each hyperparameter are shown in Table 3. Table 4
shows the number of trees (# of estimators) and the values of Max features to increase
the accuracy of RF. The Max feature auto enables building a tree using all features, while
sqrt and log2 imply building a tree using many features, as these functions are applied
to the maximum number of features. The max depth values are also provided to prevent
overfitting. In the MLP model, Table 5, a grid search is performed on the combinations of
Solver, Activation function, Max iteration (number of training iterations), Learning rate
alpha, and the hidden layer’s size to prevent overfitting and under-fitting and to improve
prediction accuracy.

7. Experiment

In the first subsection, the experiment environment (e.g., the clusters’ specifications,
platform parameters) is described. Next, data-parallel workloads that are used for perfor-
mance evaluation and their input data are presented. After that, the performance metrics of
the maximum unrecoverable memory prediction model are described. Finally, we apply the
prediction model for all workloads and present performance for each metric. Additionally,
the model’s performance is evaluated for each model building method.

7.1. Experiment Environment

Our experiments were conducted using a cluster of one master and four workers.
Each device had an i7-6700 (8 cores, 3.4 GHz) CPU, 16 GB of RAM, a 256 GB SSD, and 1 Gbit
of network bandwidth. The Ubuntu 16.04 LTS operating system, Java Runtime Environ-
ment version 1.8.0, Spark version 2.1.0, and Scala version 2.11.8 were used to collect
the model’s input/output data and to implement the prediction model. In this study,
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each executor processed a workload with the same specifications and the same amount
of data simultaneously. Therefore, the maximum amount of unrecoverable memory for a
given workload was the same for all processors. For estimating the maximum amount of
unrecoverable memory with a default configuration, the number of cores per processor,
initial memory provision, and the number of partitions were set according to Spark’s
default settings.

7.2. Performance Metrics

The performance of the proposed memory prediction model was evaluated with three
different metrics. The first one is Accuracy, which is calculated as shown in Equation (1),
where answer is the maximum amount of unrecoverable data measured during validation
and predicted is the predicted value for a given model based on training data.

|(answer — predicted)|
answer

Accuracy = * 100% €))]

The second metric is Prediction Cost, which is defined as the ratio of the execution
time for memory prediction over the total execution time for a workload, as shown in
Equation (2). Model Generation Time is the whole processing time for building the model.
It includes the time for collecting sample data and the time for training the model for each
set of element sizes for a given workload. Workload Running Time is the workload running
time of one validation dataset.

Prediction Cost = Model Generation Time/Workload Running Time * 100% )

As shown in Equation (3), Ef ficiency is the third metric. It is calculated by dividing
Proposed Memory Ef ficiency by Default Memory Ef ficiency. As shown in Equation (4),
Proposed Memory Ef ficiency is the reciprocal of the product of Execution Time and Provided
Memory per Executor when the proposed model’s result is used. Default Memory Ef ficiency
is the reciprocal of the product of Execution Time and Provided Memory per Executor when
Spark’s default memory is used.

Efficiency = Proposed Memory Ef ficiency/Default Memory Ef ficiency * 100%  (3)
Memory Ef ficiency = 1/ (Execution Time x Provided Memory per Executor) 4)

7.3. Workload

The proposed memory prediction model was applied to four data-parallel workloads.
The details of the workloads are discussed below.

7.3.1. Wordcount

The wordcount algorithm extracts words from a given document set and calculates
how many times certain words appear within the documents. The workload consists
of tasks that transform the document set into distributed data in the single-line element
format. Then, it splits each element into words. Lastly, it calculates the occurrence frequency
of different elements within the documents. As a conclusion, the maximum amount of
unrecoverable memory was estimated for three transformations called “map,” “flatmap,”
and “reducebykey,” which are data-parallel operations.

7.3.2. K-Means Clustering

The k-means clustering [39] algorithm finds the central K points for a given set of
vectors. For each vector, a central point closest to the vector is selected, and the vector is
included in the point’s group. The central point for each group is selected as a new centroid.
Grouping the vectors and selecting new centroids is done recursively while termination
conditions are fulfilled. Therefore, the workload consists of a set of transformations that
create a k-means clustering model for all elements based on K points and a set of transfor-
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mations that calculate the silhouette scores for a given dataset. We estimated the maximum
amount of unrecoverable memory for these two sets of data-parallel transformations.

7.3.3. Logistic Regression and Neural Network

Logistic regression [40] is an algorithm that derives an objective function representing
the correlation between input vectors and output values. Therefore, a set of weights (i.e.,
model parameters) that can reduce the difference between the regression function’s results
and the actual result values is trained. The neural network algorithm [41] is similar to logis-
tic regression, but there is a structural difference in that a neural network contains multiple
hidden layers between input vectors and output values. In the neural network, the input
layer has been adjusted to match the element sizes in Table 6. Two hidden layers are used,
and each consists of 100 neurons. Finally, the output layer used two neurons. A neural
network requires greater computational power than logistic regression because it must
calculate multiple hidden layers” weight vectors. The maximum amount of unrecoverable
memory was predicted for a data-parallel transformation set that obtains output values
by solving logistic functions and another set of transformations that calculates updated
weight values.

Table 6. Workload input data description for all workload.

Workload Element Format Element Size
Set of randomly chosen characters Element size setl = {1 KB,
wordcount that fulfill element size 150 KB, 300 KB, 450 KB,
(e.g., if element size is 4byte, “abcd”) 600 KB, 750 KB, 1 MB}
k-means clustering  Set of randomly chosen double type ~ Element size set2 = {1 KB,
logisti . numbers that fulfill element size 100 KB, 200 KB, 300 KB,
OBISHC regression (e.g., if element size is 32byte, 500 KB, 600 KB, 700 KB,
neural network (1,2,3,4)) 800 KB, 900 KB}
CNN image Open image dataset [42]

7.3.4. Convolutional Neural Network (CNN)

The CNN [43] is a deep learning model that mainly receives visual images and
processes tasks such as recognition and classification with high accuracy. Similar to the
neural network structure, several hidden layers are arranged between the input and output
layers. However, there is a structural difference in arranging multiple convolution layers
and pooling layers between the input and output layers. Therefore, compared to the neural
network, the model is large, and the complexity is high. Since the parallelization of the
CNN model (e.g., InceptionV4) is implemented on a partition basis, the maximum value of
the unrecoverable memory is predicted for all transformations that output CNN’s result
from one image.

7.4. Workload Input Data Description

The workload’s element format and element size are described in Table 6. The word-
count uses documents as an input and the string as an element. The wordcount input
documents consist of randomly generated characters. In the implementation, the length
of characters is equal to the element size. Since k-means clustering, logistic regression,
and neural networks use vectors as input values, the element is a set of real numbers. The el-
ement of the workloads consists of randomly generated double-type numbers. The total
size of the double-type numbers is equal to the element size. Note that existing datasets
cannot be used since the size of the element should be manipulated.

For the wordcount, k-means clustering, logistic regression, and neural network,
the minimum element size is 1 KB, and the maximum is 1 MB. This range was divided
into seven and ten groups for each workload. The first set is denoted as Element size set1,
and the second set is defined as Element size set2. The average of samples within 95% of
the confidence interval of the unrecoverable memory size is used as a measurement after
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repeating 30 experiments for each element size in Table 6. In the CNN case, the element is
a single image, so the element size cannot be adjusted. Instead, yelp data [43] were used as
input data.

Since the unrecoverable memory is critically affected by element size, only small
partitions for each element size were used to train the memory prediction model. However,
when verifying the model’s performance, more than 10 GB of data were used to reflect
a data size scalability. For each element size, 100 MB of training data were generated.
Additionally, 10, 30, 50, and 100 GB of data for each element size were generated as
the validation data. In the CNN case, images from the yelp dataset were duplicated for
adjusting the total size of input data to be 10, 30, 50, and 100 GB.

7.5. Performance Evaluation
7.5.1. Prediction Accuracy

The experiments for each workload and for each model building method were divided
into two cases. The first case trains the model using Element size setl, and the second case
utilizes Element size set2. In both cases, models were trained using the result from 100 MB
of input data. For each element set, accuracy was calculated using the experiment results
of 10, 30, 50, and 100 GB input datasets.

Figure 10 describes when Lasso is applied to both Element size setl and Element
size set2. In Element size setl, k-means clustering with validation data size 100 GB has
a minimum accuracy of 94.4%, and neural network with validation data size 10 GB has
maximum accuracy of 98.7%. In Element size set2, wordcount with 100 GB have an
accuracy of at least 96.3%, and a neural network with 10 GB has an accuracy of up to
99.7%. The average accuracy of more than 95% proves that the polynomial regression
machine learning technique effectively predicts the maximum unrecoverable memory of

all workloads.
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Figure 10. Prediction accuracy for Element size setl and Element size set2 of wordcount, k-means
clustering, logistic regression, neural network, and CNN when Lasso is used as the machine learn-
ing method.

In Figure 11, both Element size setl and set2 with Ridge are described. When Ridge is
applied to Element size setl, the accuracy of at least 85.9% is achieved in logistic regression
with 50 GB. In k-means clustering with the validation data size of 10 GB, it has a maximum
of 94.5% accuracy. In Element size set2, logistic regression with 50 GB has an accuracy of at
least 86.2%, and k-means clustering with 10 GB has a maximum accuracy of 95.7%. Ridge,
which has the lowest average prediction accuracy, is also less affected by the workload
input data size.
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Figure 11. Prediction accuracy for Element size setl and Element size set2 of wordcount, k-means
clustering, logistic regression, neural network, and CNN when Ridge is used as the machine learn-

ing method.

In Figure 12, when RF is applied to Element size set1, logistic regression with valida-
tion data size 30 GB has the lowest accuracy of 95.1%, and neural network with validation
data size 10 GB has an accuracy of up to 99.4%. Element size set2 achieves at least 96.3%
accuracy in logistic regression with validation data size 30 GB. It has an accuracy of up to
99.5% in neural network with validation data size 10 GB. When RF was applied, the average
prediction accuracy was the highest for all workloads.
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Figure 12. Prediction accuracy for Element size set]l and Element size set2 of wordcount, k-means
clustering, logistic regression, neural network, and CNN when RF is used as the machine learn-

ing method.

In Figure 13, when MLP is applied to Element size setl, wordcount with validation
data size 50 GB has the lowest accuracy of 95.9%. Furthermore, when the size of the
validation data in the neural network is 10 GB, it has a maximum accuracy of 98.7%.
The Element size set2 has an accuracy of at least 96.2% when the validation data size is
10 GB and 100 GB is applied to logistic regression. It has up to 99% accuracy in neural
network when the validation data size is 10 GB. In the case of neural network, the larger
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the workload input data, the lower the prediction accuracy compared to other techniques
due to overfitting problem. As a result, the proposed memory prediction model shows
less than 2% accuracy reduction even when the size of the workload’s input data increases.
It means that the proposed model guarantees the scalability of the input data size.
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Figure 13. Prediction accuracy for Element size setl and Element size set2 of wordcount, k-means
clustering, logistic regression, neural network, and CNN when MLP is used as the machine learn-
ing method.

7.5.2. Prediction Cost

Model Generation Time at Equation (2) is the sum of the time necessary to collect the
training data and to build the model with the highest prediction accuracy using the model
building method. The training data collection time refers to collecting 100 training samples
for all workloads with Element size setl and set2, excluding CNN. For each element
in Element size setl and set2, 100 MB input data are used to collect a training sample.
The number of training samples is sufficient to be utilized in machine-learning-based
methods. Note that even with 100 training samples for each case, the prediction accuracy is
kept high, but also the prediction cost at Equation (2) is reasonable. Workload Running Time
at Equation (2) is the total workload execution time when input data are 10 GB and 100 GB.
Figures 14-16 present the prediction costs when 100 MB of input data are used for each
workload, and 100 training samples are used to train the prediction model. The workloads’
prediction costs are validated with 10 GB and 100 GB input data.

Figure 14 shows the prediction cost for generating Lasso and Ridge regression-based
prediction models for all workloads. In Lasso and Ridge’s case, the prediction cost is
similar because the processing method is almost the same except for the penalty term.
Therefore, the average prediction cost of the two methods was calculated. When the input
data are 10 GB, the time required for model generation for each workload is at least 27%
in wordcount and at most 32% in the neural network. However, when the input data are
100 GB, it is less than 1% for all workloads. Figure 15 shows the prediction cost when RF is
applied to all workloads. When input data are 10 GB, it is at least 23% in wordcount and at
most 26% in the neural network. At 100 GB, it is equally less than 1% for all workloads.
Finally, Figure 16 shows the prediction cost when MLP is applied. Compared to other
gradient descent methods, MLP takes the longest time to create a model because it has the
largest hyperparameter space. In addition, as the number of epochs for training data is
large, the time required is longer than the others. Therefore, when the input data are 10 GB,
it is at least 38% in wordcount and 44% in the neural network. However, if the input data
are 100 GB, even if MLP is applied, the prediction cost is less than 1% for all workloads.
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Figure 14. Average prediction cost when Lasso and Ridge are applied to wordcount, k-means
clustering, logistic regression, neural network, and CNN when input data grow.
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Figure 15. Prediction cost when RF is applied to wordcount, k-means clustering, logistic regression,
neural network, and CNN when input data grow.
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Figure 16. Prediction cost when MLP is applied to wordcount, k-means clustering, logistic regression,
neural network, and CNN when input data grow.

Note that as the input data’s size increases, the cost of the proposed technique itself
is relatively small because the time required to generate a model is static, and the total
processing time is proportional to the size of the input data.
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7.5.3. Memory Efficiency

Figure 17 presents Ef ficiency at Equation (3) of whole workloads. For calculating
Ef ficiency in Equation (3), Default Memory Ef ficiency and Proposed Memory Ef ficiency
are required. Additionally, for calculating Default Memory Efficiency and Proposed
Memory Ef ficiency in Equation (3), both Execution Time and Provided Memory per Executor
are required. Execution Time of the former is observed by processing workloads with
default memory values of Spark’s standalone cluster for 100 GB validation datasets.
Provided Memory per Executor of the former is the default memory values of Spark’s stan-
dalone cluster. Execution Time of the latter is observed by processing workloads with result
values of our memory prediction model for 100 GB validation datasets. Provided Memory per
Executor of the latter is the result values of our predictor. A higher value indicates en-
hanced memory efficiency. Note that we calculated the memory efficiency based on the
prediction model, which has the highest accuracy when the input data size is 100 GB for
each workload.
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162%  157%
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133%

Efficiency (%)

neural network HCNMN

Figure 17. Efficiency of wordcount, k-means clustering, logistic regression, neural network, and CNN
according to (3) and (4).

The standalone cluster provides 1 GB of memory to each executor by default. There-
fore, a total of 4 GB is allocated so that each worker uses 1 GB equally without generating
out-of-memory errors. In the case of CNN, since the minimum memory that does not
generate OOME is 8 GB per executor, efficiency is calculated according to the corresponding
memory and the predicted memory size. When the proposed method is applied, the effi-
ciency is boosted by at least 1.33 times for CNN and up to 1.89 times for the neural network.
The larger the default memory size provided to the executors, the higher the efficiency
with the memory derived by the proposed technique.

8. Conclusions

When processing workloads in an in-memory distributed parallel processing environ-
ment, efficient memory usage is beneficial in terms of resource usage but is also a challenge.
There have been studies to predict efficient memory in the JVM environment, but this did
not take into account in-memory-based distributed parallel processing environments such
as Hadoop MapReduce and Spark. Since then, there have been papers on performance pre-
diction for efficient workload processing by manipulating parameters related to processing
performance based on machine learning or Al in the environment. However, the analysis
of how memory causes a causal relationship to the workload processing performance in
the environment and studies to derive an efficient memory value has been insufficient.
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Additionally, the disadvantage of existing machine learning or Al-based predictive mod-
els is that the workload must be rerun dozens or hundreds of times to collect data for
model training.

This paper proposed a low-cost method for predicting unrecoverable memory size
with high accuracy for big data processing data-parallel tasks in a general distributed
environment. At first, to define the efficient memory size for a data-parallel operation,
data-parallel processing in the distributed platform and memory management overhead in
a JVM were analyzed. Secondly, we proposed the prediction that estimates the maximum
amount of unrecoverable memory for a given workload at runtime by analyzing memory
usage patterns. Thirdly, existing machine learning or deep learning-based models are
challenging to use in practice because of the time needed to collect data for training.
However, in this study, when the volume of the prediction target workload is large and
the time required for model construction is considerable, a small amount of sampled
input data is used, and the time required for building the model is reduced through using
extrapolation. Additionally, when evaluating the performance of trained memory models,
they achieved high prediction accuracy for validation datasets that were much larger than
the input data of the training samples. By applying the proposed technique to typical
data-parallel workloads, the workloads” memory efficiency is improved prominently.
In future work, we will prove the proposed technique’s effectiveness in other frameworks
that perform in-memory distributed parallel processing in the Java environment, such as
Hadoop MapReduce framework. Furthermore, based on efficient memory size prediction
and workload processing time prediction [44], we will develop a resource recommendation
system that can efficiently set operator resources and memory for the target processing time
in a configurable resource environment such as docker container [45]. The effectiveness of
the system will be proved through statistical tests like [46,47].
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