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Abstract: In order to obtain comprehensive assessment of the factors influencing fatigue life
and to further improve the accuracy of fatigue life prediction of welded joints, soft computing
methods, including entropy-based neighborhood rough set reduction algorithm, the particle swarm
optimization (PSO) algorithm and support vector regression machine (SVRM) are combined to
construct a fatigue life prediction model of titanium alloy welded joints. By using an entropy-based
neighborhood rough set reduction algorithm, the influencing factors of the fatigue life of titanium
alloy welded joints such as joint type, plate thickness, etc. are analyzed and the reduction results
are obtained. Fatigue characteristic domains are proposed and determined subsequently according
to the reduction results. The PSO-SVRM model for fatigue life prediction of titanium alloy welded
joints is established in the suggested fatigue characteristic domains. Experimental results show that
by taking into account the impact of joint type, the PSO-SVRM model could better predict the fatigue
life of titanium alloy welded joints. The PSO-SVRM model indicates the relationship between fatigue
life and fatigue life influencing factors in multidimensional space compared with the conventional
least-square S-N curve fitting method, it could predict the fatigue life of the titanium alloy welded
joints more accurately thus helps to the reliability design of the structure.

Keywords: fatigue life prediction; welded joints; neighborhood entropy; PSO; SVRM

1. Introduction

Welded components have been widely used in the engineering equipment field under static or
dynamic load circumstances because of their advantages of good connectivity, light weight and ease
of use. Due to stress concentration however, the welded joint becomes one of the weak links of the
structural reliability of the product. This causes great hidden dangers to the safety and normal work of
the structure.

Currently, three popular fatigue life analysis methods of welded joints have been proposed, which
include S-N curve method, local stress strain method and fracture mechanics method [1]. Compared
with the local stress strain method and fracture mechanics method, the S-N curve method is more
widely used in the design stage which mainly consists of nominal stress method [2], hot spot stress
method [3,4] and nodal force-based structural stress method [5,6]. Due to the mesh insensitivity of
structural stress calculations, the higher accuracy of fatigue life prediction and the wide applicability,
the nodal force-based structural stress method is one of the most notable fatigue life evaluation
methods for welded structures. Dong reprocessed thousands of fatigue test data of steel welded joints
from the last 50 years [7]. The research results indicated that when taking into account the influences of
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joint thickness and load model, the S-N sample data is compressed into a narrow band. In the present
study, comprehensive and quantitative analysis of the influencing factors which affect the fatigue life
of welded joints is lacking and the problem of low precision of fatigue life prediction of welded joints
still exists.

Thermodynamics entropy has been used for fatigue life prediction for a long time. For example, a
damage metric based on the second law of thermodynamics and statistical mechanics was presented [8].
The proposed thermodynamic framework treated a solid body as a thermodynamic system and
required that the entropy production be non-negative. A thermodynamic framework was presented
for damage mechanics of solid materials [9]. It was believed that there was no need for physically
meaningless empirical parameters to define a phenomenological damage potential surface or a Weibull
function to trace damage evolution in solid continuum. A generalized theory of evolution based on
the concept of tribo-fatigue entropy was proposed where tribo-fatigue entropy was determined by
the processes of damage ability conditioned by thermodynamic and mechanical effects causing to
the change of states of any systems [10]. The Shannon’s differential entropies of both distributions
of the strain in the loading direction and the first principal strain were employed at the tension
peak of the cycles as measuring parameters of strain inhomogeneity [11]. A thermo- mechanical
fatigue life prediction model based on the theory of damage mechanics was presented in [12].
The damage evolution, corresponding to the material degradation under cyclic thermo mechanical
loading, was quantified thermodynamic framework. A viscoplastic constitutive model unified with a
thermodynamics based damage evolution model was embedded into a couple stress framework in
order to simulate low cycle fatigue response coupled to size effects [13]. Entropy, as a state function
of thermodynamics, is independent of the failure path and can deal with the uncertainties related to
the damage threshold [14] (such as the systemic chaos caused by performance degradation). Entropy
generation and entropy accumulation are taken as the measurement of performance degradation [15],
and the effectiveness of using constant irreversible entropy increment to evaluate metal fatigue
damage [14] is also gradually verified.

Meanwhile, from the perspective of information entropy, the principal author’s team has proposed
an evaluation model of aluminum alloy welded joint low-cycle fatigue data based on information
entropy [16]. In order to obtain the comprehensive assessment of fatigue life influencing factors of the
titanium alloy welded joints, to further reduce the dispersion level of S-N data samples and to improve
the accuracy of fatigue life prediction of the welded joints, the concept of fatigue characteristics domain
is proposed by using entropy based neighborhood rough set theory and the PSO-SVRM model for
fatigue life prediction of welded joints is established in this work.

2. Nodal Force Based Structural Stress Principle

In the finite element stress calculation the results are affected by mesh size, which causes
inconsistency in calculations for different structures. In order to address this problem, structural
stress based on the line force is first defined in the nodal force based structural stress method.

The normal structural stress at each node is defined as

σs = σm + σb (1)

σm =
Fy
A

=
Fy
l·t (2)

σb =
Mx

W
=

Mx
1
6 ·l·t2

(3)

where Fy is the vertical stress in the weld toe, Mx is the moment around the weld toe. fy = Fy/l is the
line force and mx = Mx/l is the line moment as shown in Figure 1. Structural stress can be expressed
as [5]:

σs = σm + σb =
fy

t
+

6mx

t2 (4)
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An equivalent structural stress range parameter can be defined as:

∆Ss =
∆σs

t
2−m
2m ·I(r)

1
m

(5)

where ∆σS represents the structural stress range calculated, I(r) is a dimensionless parameter derived
by fracture mechanics considerations, and m is the crack propagation exponent in the conventional
Paris law, taking on a value of about 3.6 [17]. It could be seen that the equivalent structural stress
parameter described in Equation (5) can capture the effects of stress concentration, plate thickness and
loading mode effects on fatigue behavior of welded components.

The formula for fatigue life calculation of welded joints using the equivalent structural stress ∆Ss

can be expressed as:
∆Ss = CNh (6)

where N is the number of cycles which indicate the fatigue life of the structure, C is material constant
and h represents the negative slope of the master S-N curve.

3. Entropy Based Neighborhood Rough Set Model

Basic concepts are introduced in this section before the entropy-based neighborhood rough set
model is established. Fatigue life influencing factors of the titanium alloy welded joints are analyzed
by using the established model. Key influencing factors together with the weights are obtained and
the fatigue characteristic domains are subsequently determined.

3.1. Basic Concept

Proposed by Pawlak, rough set theory [18] has been used successfully as a new feature reduction
tool to discover data dependencies and reduce the number of features, but the classical rough set can
only operate effectively with data sets containing categorical values. When using classical rough set
theory, discretion must be done beforehand which inevitably result in loss of information. To overcome
this drawback, Lin [19] proposed a neighborhood rough set model by extending the equivalence
relation of classical rough sets. The neighborhood rough set model can process both numerical and
categorical data set efficiently [20].

Uncertainty measure is an important way to describe classification ability and classification
accuracy in rough set theory. Many scholars have studied this. For example, Chen proposed
the concept of neighborhood entropy [21] and suggested several uncertainty measures including
neighborhood accuracy, information quantity, neighborhood entropy and information granularity
in the neighborhood systems [22]. Uncertain measures like roughness measure, accuracy measure,
entropy and granularity for covering rough set models were studied and a new kind of partial order
was suggested [23]. Huang [24] discussed the uncertainty measures of information entropy and
rough entropy.

Feature reduction is a quite useful data preprocessing technique, aiming to obtain a minimal
feature subset from a decision system while maintaining the same classification accuracy by deleting
the noisy, irrelevant or misleading features. An uncertainty measure method of neighborhood entropy
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to evaluate the quality of the reduction results is proposed for neighborhood rough set reduction
algorithm in this work. The fatigue characteristic domain is then determined on basis of the reduction
results for classification of the fatigue samples to further reduce the dispersion level.

Several definitions about the basic concept of neighborhood rough set theory would be introduced
first before further discussion of the neighborhood entropy based reduction algorithm.

Definition 1. A neighborhood decision system can be denoted as ND = (U, C ∪ D, δ) and a distance
function ∆(x, y)→ [0, 1] . Where U = {x1, x2, . . . , xn} is a nonempty finite set of objects called the universe,
C = {a1, a2, . . . , am} is the condition feature set, D is the set of decision features, and δ is the neighborhood
parameter (0 ≤ δ ≤ 1). ∆(x, y) is a distance function, which satisfies:

(1) ∆(x, y) ≥ 0;
(2) ∆(x, y) = 0, if and only if x = y;
(3) ∆(x, y) = ∆(y, x);
(4) ∆(x, y) + ∆(y, z) ≥ ∆(x, z).

For a feature subset B ⊆ C and a neighborhood parameter δ ∈ [0, 1], a similarity relation
denoted by:

NRδ(B) = {(x, y) ∈ U ×U|∆(x, y) ≤ δ} (7)

The neighborhood class nδ
B(x) of x ∈ U in the subspace B is defined as:

nδ
B(x) = {y|x, y ∈ U, f (x, y) ≤ δ} (8)

Definition 2. Let ND = (U, C ∪ D, δ) be a neighborhood decision system, B ⊆ C be a feature subset, for any
object set X ⊆ U, the neighborhood lower and upper approximations of X on B are defined as:

NB(X) =
{

xi ∈ U
∣∣∣nδ

B(x) ⊆ X
}

(9)

NB(X) =
{

xi ∈ U
∣∣∣nδ

B(x) ∩ X 6= φ
}

(10)

Definition 3. Let ND = (U, C ∪D, δ) be a neighborhood decision system, B, M, N ⊆ C be the feature subsets,
the neighborhood entropy of B is denoted by:

Eδ(B) = − 1
|U|

|U|

∑
i=1

log2
1∣∣nδ

B(x)
∣∣ (11)

and the neighborhood joint entropy of M and N is denoted by:

Eδ(M, N) = − 1
|U|

|U|

∑
i=1

log2
1∣∣nδ

M(xi) ∩ nδ
N(xi)

∣∣ (12)

Let U/D = {D1, D2, . . . , Dn} be equivalence classes constituted by decision feature set D on the
universe U, the neighborhood conditional entropy of D on B is denoted by:

Eδ(D|B) = − 1
|U|

|U|

∑
i=1

log2

∣∣nδ
B(xi)

∣∣∣∣nδ
B(xi) ∩ nδ

D(xi)
∣∣ (13)



Entropy 2019, 21, 117 5 of 13

Definition 4. Let ND = (U, C ∪ D, δ) be a neighborhood decision system, B ⊆ C be a feature subset,
∀a ∈ C− B the significance of condition attribute a is defined as:

SIG(a, B, D) = Eδ(D|B ∪ a)− Eδ(D|B) (14)

Definition 5. Let ND = (U, C ∪ D, δ) be a neighborhood decision system, B ⊆ C be a feature subset, we say
B is a reduction of C if:

Eδ(D|C) = Eδ(D|B) (15)

and ∀a ∈ B, Eδ(D|B) > Eδ(D|B− a) (16)

3.2. Entropy-Based Neighborhood Reduction Algorithm

An uncertain measurement of neighborhood entropy-based reduction algorithm is suggested
in this work. Generally speaking, there are five main steps in the algorithm. The flow chart of the
entropy-based neighborhood reduction algorithm is shown as Figure 2 and the detailed steps of the
algorithm are shown in Appendix A.1.
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Figure 2. Neighborhood entropy-based reduction algorithm.

In the figure ND denotes that the neighborhood decision system is the input of the algorithm and
red indicating the reduction result set is the output of the algorithm. The initial red is set to be φ at
the beginning. In each iteration of the algorithm, significance of each condition attribute is calculated
according to Equation (14), then the condition attribute ak which has the max significance is selected.
Determine whether the significance of the selected attribute ak is bigger than 0. If it is bigger than 0,
ak is added to the reduction result sets red, the next iteration of the algorithm will begin, otherwise,
the algorithm stops and output the reduction results red.

3.3. Fatigue Characteristic Domain Determination

Commercial pure titanium has already been used for seawater cooling pipes in thermal power
plants because of its high corrosion resistance in seawater. Additionally, the advantage of its high
specific strength has already been proved on racing yachts, although there is still a lack of research
concerning the fatigue strength of titanium fillet welded joints that are indispensable for ship structures.

In this work, a neighborhood decision system (Table 1) of titanium alloy welded joints was
established based on the well-documented fatigue data. Forty three (43) sets of titanium alloy fatigue
data [25] were cited. The test specimens were manufactured using 2 and 10 mm thick commercial
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pure titanium mill products (JISH4600 TP340C/H). They were made with their lengths both along and
transverse to the plate rolling direction, referred to as L or C, respectively. Furthermore, the butt-welded
joints, transverse fillet welded joints or longitudinal fillet welded joints are referred to as B, T or L,
respectively. The five-types of welded specimen (LB, CB, LT, CT and LL) were instrumented with
strain gauges to determine the nominal stress distribution approaching the weld in the tensile test.
Equivalent structural stress range was then calculated according to nodal force- based structural stress
principle detailed in Section 2. As could be seen from Table 1, there were five condition features
including joint type (J), plate thickness (t), load ratio (r), material name (M) and equivalent structural
stress range (∆Ss) and one decision feature {life cycles (N)} in the decision system.

Table 1. Decision system of titanium alloy welded joints.

U J t (mm) r M ∆Ss (MPa) N (Cycles)

x1 LB 2 0 JIS H4600 170.61 1734430
x2 LT 2 0 JIS H4600 258.4 675006
x3 CB 2 0 JIS H4600 248.51 129860
x4 LL 2 0 JIS H4600 353.73 447552
x5 LT 10 0 JIS H4600 205.54 2233310
x6 CB 10 0 JIS H4600 299.43 7946640
x7 CT 10 0 JIS H4600 288.15 833690
x8 LL 10 0 JIS H4600 278.98 833690

......

Entropy-based neighborhood rough set reduction algorithm was used here for attributes reduction
as described in Section 3.2. The attribute reduction result of the decision system of titanium alloy
welded joints was {J,∆Ss}. As could be seen from the reduction result, joint type (J) is one of the most
important influencing factors of the titanium alloy welded joints besides the equivalent structural
stress range (∆Ss). This indicates that the joint type influencing factor could not be omitted, or in other
words, the joint type should be considered for fatigue life prediction of the titanium alloy welded joints
in the nodal force based structural stress method. Fatigue characteristic domain of joint type is thus
proposed. All the fatigue test samples are then divided into 5 different domains (S1–S5 in Figure 3)
according to different joint type LB, CB, LT, CT and LL.
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As can be seen from Figure 3, an “automatic” classification of fatigue specimen samples could be
achieved when the fatigue characteristic domains are determined. This classification is based on the
theory of knowledge granularity. The most important fatigue life influencing factors of the titanium
alloy welded joints are obtained through attribute reduction by using entropy based neighborhood
reduction algorithm.

4. PSO-SVRM Model for Fatigue Life Prediction of Titanium Alloy Welded Joints

4.1. PSO Algorithm

PSO algorithm is an evolutionary computing technology proposed by Eberhart and Kennedy in
1995 [26]. It originates from the study of bird prey behaviour. Similar to other evolutionary algorithms,
PSO is a global search algorithm based on iterative updating. In PSO, multiple candidate solutions
coexist and cooperate with each other simultaneously. It searches for the optimal solution through
cooperation and information sharing among individuals in a group, and the convergence speed of
the algorithm is fast. It has been widely used in function optimization, pattern recognition and other
fields nowadays.

Suppose in a D-dimension target search space, the particle swarm consist of m particles, the
position of the i-th (i = 1, 2, . . . , m) particle is marked as Xt

i = (Xt
i1, Xt

i2, . . . , Xt
iD) and the velocity is

marked as Vt
i = (Vt

i1, Vt
i2, . . . , Vt

iD). The optimal personal position that the i-th particle has experienced
is marked as Pt

i = (Pt
i1, Pt

i2, . . . , Pt
iD) while the optimal position that the whole particle swarm has

experienced is marked as Pt
g = (Pt

g1, Pt
g2, . . . , Pt

gD).The position and velocity of each particle in the
swarm are updated by Formula (16) [27,28]:{

Vt+1
id = ωt·Vt

id + c1·rand·(Pt
id − Xt

id) + c2·rand·(Pt
gd − Xt

id)

Xt+1
id = Xt

id + Vt+1
id , d = 1, 2, . . . , D

(17)

where i = 1, 2, . . . , m, ωt = ωmax − ωmax−ωmin
tmax

× t is an inertia weight that controls the diversification
feature of the algorithm, c1 and c2 are learning factors that control the intensification feature of the
algorithm, rand is a random number between (0,1).

The velocity of each particle Vid in each dimension is usually limited between [−Vmax, Vmax], in
order to prevent the particle from being too fast to miss the optimal solution. The algorithm ends when
the maximum number of iterations is achieved or the specified accuracy requirements are met.

4.2. SVRM Principle

SVRM [29] is a supervised machine learning algorithm based on statistical learning theory with
finite samples. In the nonlinear case, the input vector is mapped into a high-dimensional feature vector
space by using the kernel function, and the linear inseparable classification problem of the original
input space is transformed into the linear separable classification problem in the high-dimensional
space, and the optimal classification hyperplaneis constructed in the high-dimensional space. Currently,
SVRM has been applied in more and more fields due to its unique superiority [30,31].

The principles of SVRM can be described briefly. For nonlinear regression, a nonlinear function is
used to map training data into a high-dimensional feature space and linear regression is carried out
in the high-dimensional feature space. The regression estimation function is set as Formula (18),
where ω represents the dimension of the feature space, φ(x) is the nonlinear function, b is the
threshold. The optimization problem to be solved by SVRM could be described by Equation (19),
where c is the penalty coefficient used to control the complexity of the model, training error rate and
generalization ability, ξi, ξ∗i are the relaxation factors, ε is the default error limit and m is the number of
training samples:

f (x) = ω·φ(x) + b (18)
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min
ω,b,ξ

1
2
‖ω‖+ c

m

∑
i=1

(ξi + ξ∗i ) (19)

s.t.


ω·φ(xi) + b− yi ≤ ξ∗i + ε

ω·φ(xi) + b− yi ≤ ξi + ε i = 1, 2, . . . , m
ξ∗i , ξi ≥ 0, (i = 1, 2, . . . , m)

The dual form of the optimization problem could be obtained as Equation (20):

maxL(a, a∗) = −1
2

m

∑
i=1

m

∑
j=1

(ai − a∗i )(aj − a∗j )K(xi·xj) +
m

∑
i=1

yi(ai − a∗i )− ε
m

∑
i=1

(ai + a∗i ) (20)

s.t.
m

∑
i=1

(ai − a∗i ) = 0 0 ≤ ai, a∗i ≤ C, i = 1, 2, . . . , m

where ai and ai
* are range multiplier, K(xi·xj) = φ(xi)·φ(xj) is the kernel function. The regression

estimation function could be expressed as Equation (21):

f (x) =
m

∑
i=1

(ai − ai
∗)K(x, xi) + b (21)

Generally speaking, the most commonly used kernel types in SVRM includes linear, polynomial,
radial basis function (RBF), sigmoid and pre-computed kernels. Since only one parameter needs to be
determined in RBF and it has global performance similar to other kernel functions, RBF is chosen as
the kernel function of SVRM here.

4.3. PSO-SVRM Model

There are two parameters to be optimized when using RBF as the kernel function, one is the
penalty factor C, the other is the kernel width parameter σ. Both of these parameters have a great
impact on the performance of SVRM. The penalty factor C controls the complexity of the SVRM
model and the penalty level for the wrong samples. If C is too large, the prediction accuracy of SVRM
in training phase is very high, but in testing phase is very low; if C is too small, it is difficult to
obtain satisfactory prediction accuracy. The parameter σ reflects the complexity of the distribution of
data samples in the high-dimensional feature space, which determines the complexity of the linear
classification surface. It has a greater impact on the prediction accuracy of SVRM than the penalty
factor C, too large value will lead to an “over-learning” problem, and too small value will lead to an
“under-learning” problem. Therefore, in the SVRM training process, it is particularly important to
choose the appropriate parameters for the penalty factor C and kernel function width σ. At present,
PSO algorithm has been used to optimize the parameters of least squares support vector machines
in order to construct an optimal LS-SVM classifies [32] and an improved adaptive particle swarm
optimization algorithm has been proposed [33]. In this paper, PSO algorithm is used to automatically
select the appropriate parameters of SVRM model and PSO-SVRM model is proposed to obtain the
best performance.

The process of optimization of SVRM parameters based on PSO algorithm is shown as Figure 4.
As could be seen from Figure 4, at the very beginning of the algorithm, the search range for SVRM
model parameters is set. After that, the values of the population size, learning factors (c1, c2), weight
factor (ω), the maximum number of iterations and the maximum speed value in the PSO algorithm are
initialized. Then particle velocity and its position are initialized randomly. The fitness of each particle
is calculated and the best individual and global particle position is updated. The velocity and the
position of the particle is updated subsequently. Determine whether the given maximum number of
iterations have been reached or the accuracy requirements have been achieved, if so, stop optimization,
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return the current optimal SVRM model parameters, otherwise go on with the iteration. A step by step
description of the algorithm is shown as Appendix A.2.
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5. Results and Discussions

The PSO-SVRM model for fatigue life prediction of titanium alloy welded joints was established by
using the LibSVM toolbox [34]. We set the local search capabilities related parameter c1 = 1.5, the global
search capability related parameters c2 = 1.7, the maximum number of iterations of the algorithm was
2000 times, the maximum population of the particles was 20, the value of ω decreased linearly from
0.9 to 0.4 as the number of iterations increased. The PSO algorithm was used for optimization of the
SVRM parameters C and σ. The SVRM model was established based on the best parameter values of C
and σ to predict the fatigue life of the titanium alloy welded joints.

Since there is only one fatigue sample in the fatigue characteristic domain1, it is not discussed here.
The PSO-SVRM model for fatigue life prediction of titanium alloy welded joints was established in the
determined fatigue characteristic domains, from domain2 to domain5, respectively. The fatigue life
prediction values of the titanium alloy welded joints by using the PSO-SVRM model were compared
with that obtained by using the tradition least square fitting method and the actual fatigue life obtained
through fatigue test. The comparison results are shown in Figure 5. The error of fatigue life prediction
by using PSO-SVRM model and by using the traditional least square fitting method is shown in
Figure 6.

As could be seen from Figure 5 that the blue ‘#’ indicates the actual fatigue life cycles in the
fatigue test. The red ‘�’ denotes the fatigue life prediction value by using the PSO-SVRM model.
The black ‘*’ indicates the fatigue life prediction value by using the least square method. Compared
with the least squares method, the prediction results obtained by using the PSO-SVRM model are
much closer to the actual fatigue life cycles.

As is shown in Figure 5 the black ‘*’ indicates the fatigue life prediction error of the least squares
method and the red ‘�’ denotes the fatigue life prediction error of the PSO-SVRM model. It could
be seen from Figure 5 that the fatigue life prediction error by using PSO-SVRM is less than using
the least squares method. The fatigue life prediction results shown in Figures 5 and 6 indicate that
when PSO-SVRM model is used in the determined joint type fatigue characteristic domain, smaller
prediction errors could be achieved than by using the tradition least squares method.
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6. Conclusions

Entropy-based neighborhood rough set theory is used for analysis of the fatigue life influencing
factors of titanium alloy welded joints and the PSO-SVRM model is constructed for fatigue life
prediction of the titanium alloy welded joints. The following conclusions can be proposed:

(1) The reduction results show that besides the equivalent structural stress range, the joint type
influencing factors also play a very important role in determining the fatigue life of titanium
alloy welded joints.

(2) The fatigue characteristic domain could be determined according to the reduction results of the
entropy-based neighborhood rough set theory.

(3) A PSO-SVRM model for fatigue life prediction of titanium alloy welded joints is established in
the determined fatigue characteristic domain. Experimental results indicate that compared with
the traditional least squares method, the proposed PSO-SVRM model could better predict the
fatigue life of the titanium alloy welded joints.

Future work will be concentrated on other determination methods of fatigue characteristic domain
and further validation of the PSO-SVRM model as more fatigue test samples become available.
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Appendix A

Appendix A.1. Entropy-Based Neighborhood Reduction Algorithm Consists of five Main Steps

The description of the algorithm is as follows:

Input: ND = (U, C ∪ D, δ);

Output: The reduction result red.

Step 1. Let the initial reduction result red = φ;

Step 2. For ∀a ∈ C− red, compute the significance of attribute a according to Equation (14);
SIG(a, red, D) = Eδ(D|red ∪ a)− Eδ(D|red)
where, Eδ(D|red ∪ a) is the neighborhood condition entropy of D on {red ∪ a} that could be
calculated according to Equation (13) and Eδ(D|φ) = 0.

Step 3. Select the attribute ak, which satisfies:
SIG(ak, red, D) = max{SIG(ai, red, D)

Step 4. If SIG(ak, red, D) > 0
then
red = red ∪ ak;
go to Step 3;
else go to Step 5;

Step 5. Return the reduction result red, end of the algorithm.
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Appendix A.2. The PSO-SVRM Model for Fatigue Life Prediction of Welded Joints Within the Defined Fatigue
Characteristics Domains Includes

Step 1. Set the search range for SVRM model parameters.
Step 2. Initialize the values of the population size, learning factors (c1, c2), weight factor (ω),

the maximum number of iterations and the maximum speed value in the PSO algorithm.
Step 3. Initialize the particle swarm, randomly generate the initial position of each particle and

initialize the initial velocity of each particle randomly.
Step 4. The fitness function is set as the standard deviation of the sample distribution of the

fatigue test data, and the fitness value of each particle is calculated.
Step 5. Update the velocity and position of all particles, and update the best individual position

and the global optimal position of the particle.
Step 6. Judge whether the given maximum number of iterations have been reached or the accuracy

requirements have been achieved, if so, stop optimization, return the current optimal SVRM model
parameters, otherwise, go to Step5.
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