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Abstract: In this paper, we provide an overview of recent research efforts on networked control
systems under denial-of-service attacks. Our goal is to discuss the utility of different attack modeling
and analysis techniques proposed in the literature for addressing feedback control, state estimation,
and multi-agent consensus problems in the face of jamming attacks in wireless channels and
malicious packet drops in multi-hop networks. We discuss several modeling approaches that are
employed for capturing the uncertainty in denial-of-service attack strategies. We give an outlook on
deterministic constraint-based modeling ideas, game-theoretic and optimization-based techniques
and probabilistic modeling approaches. A special emphasis is placed on tail-probability based
failure models, which have been recently used for describing jamming attacks that affect signal
to interference-plus-noise ratios of wireless channels as well as transmission failures on multi-hop
networks due to packet-dropping attacks and non-malicious issues. We explain the use of attack
models in the security analysis of networked systems. In addition to the modeling and analysis
problems, a discussion is provided also on the recent developments concerning the design of
attack-resilient control and communication protocols.

Keywords: networked control; cyber-security; denial-of-service; jamming attacks; probabilistic failure
models; stability analysis; resilient control systems; multi-agent systems

1. Introduction

Many industrial control systems rely on information and communication technologies for their
operation. In particular, wireless networks and the Internet are becoming key components of control
systems, since they can be utilized in the transmission of measurement and control data to remote
locations. As the Internet of Things is becoming more popular, the use of wireless technologies in
control systems is expected to increase even more. These new developments are bringing efficiency to
control systems, but they are also expected to introduce several vulnerabilities. A major concern is that
cyber-attackers may be able to exploit the vulnerabilities in control systems that are utilized in power
grids, transportation, water distribution, and many other services that are important for the society.
To prevent financial losses and environmental damages that may be caused by disruption of those
services, it is critical to assess and improve the security of existing control systems and develop new
systems that are resilient against cyber attacks.

Various cyber-security issues of networked control systems and detection/mitigation approaches
for those issues have been discussed in [1-8]. As pointed out in those works, attackers targeting
vulnerable networked control systems may be able to change the contents of measurement and control
packets. There may even be cases where attackers can inject false data into the system without being
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detected. These attacks require the attacker to be knowledgeable on the communication protocol as
well as the system dynamics. On the other hand, attackers who have limited information on the control
system may resort to denial-of-service (DoS) attacks that prevent delivery of control and measurement
data packets. Networked control system under DoS attacks can face severe performance issues.

Our goal in this paper is to provide an overview of attack-modeling and security analysis
approaches in recent works that explore networked control systems subject to DoS attacks. To this end,
we look at the control, estimation, and consensus problems and discuss different DoS attack models
utilized by researchers for addressing those problems. DoS attacks can take different forms in different
network settings. In this paper, we focus on packet drop attacks by malicious nodes in multi-hop
networks, and jamming attacks in wireless channels.

In multi-hop networks such as wireless ad hoc networks, remotely located nodes can transmit
data packets to each other with the help of intermediate nodes that act as routers. It is typically
assumed that all nodes obey the routing protocols in the network; however, in reality, a network
can face packet drops by malicious nodes [9,10]. For instance, in blackhole DoS attacks, a malicious
node first falsely introduces itself to other nodes as if it is part of the shortest path to a set of remote
nodes. Then, many unsuspecting nodes in the network attempt to send all packets addressed to those
remote nodes through the malicious node, which in fact drops all packets instead of forwarding them.
Furthermore, in grayhole attacks, malicious nodes act normal and follow the standard routing protocols
for certain periods of time to avoid being detected. The authors in [9-13] discussed both malicious and
non-malicious packet dropping issues in ad hoc networks and presented several attack detection and
mitigation approaches.

In addition to packet-dropping attacks, networked controls systems may also suffer from DoS
attacks in the form of jamming of wireless transmissions. Specifically, a jamming attacker can prevent
transmission of packets by emitting strong interference signals to a wireless channel [14,15]. It is
mentioned in [15] that jamming devices can target various wireless technologies including GPS,
mobile communications, and Wi-Fi. Jamming attacks can become a major concern for control systems,
since they are easy to launch. The work in [16] illustrates that off-the-shelf hardware with wireless
capabilities can be used for generating jamming attacks on wireless networks that use the popular IEEE
802.11 protocol. Jamming attacks can target both the physical layer and the medium access control
(MAC) layer of the protocol. In the case of physical-layer attacks, the jamming attacker is not even
required to follow the wireless protocol. By simply emitting strong interference signals, the jamming
attacker can cause a decrease in the Signal to Interference plus Noise Ratio (SINR), which in turn
prevents the receiver to detect transmitted packets [16]. In the case of MAC-layer attacks, both the
packet sender and the jamming attacker operate on the same channel; the jamming attacker’s goal
is to cause packet collisions [16]. Under jamming attacks, packets transmitted to the receiver may
get corrupted and fail cyclic redundancy checks (CRC) used in the protocol. Note that, in wireless
networks, jamming attacks and packet-dropping attacks by malicious nodes can also coexist.

Recently, DoS attacks have been investigated in the context of feedback control, state estimation,
and multi-agent consensus problems. To tackle these problems, researchers have proposed several
approaches for characterizing the occurrences of attacks. In particular, some of the works in
the literature present models that take into account the energy constraints that an attacker may
have. In another line of research, optimal attack strategies are investigated through game-theoretic
frameworks and worst-case attack scenarios are studied. In this paper, we give an overview of both
lines of research. In addition, we also discuss probabilistic modeling approaches that attempt to
capture the effects of both malicious DoS attacks and non-malicious reasons of transmission failures.
Such approaches are needed, as attacks may not be the only source of transmission failures in networks.
Typically, networks may face non-malicious link errors, channel noise, and congestions caused by
genuine network users [17,18]. In this paper, we discuss the utility of different modeling approaches
in analyzing system security in control, estimation, and consensus problems. Furthermore, we present
recent developments in the design of attack-resilient control and communication protocols.
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We note that there are several review articles that discuss various aspects of denial-of-service
attacks from the viewpoint of information technologies. In particular, denial-of-service attacks in
sensor networks are investigated in [19]. A discussion of defense mechanisms against denial-of-service
attacks is provided in [20]. Distributed denial-of-service attacks and potential approaches of mitigating
their effects are explored in [21,22]. Additionally, an overview of a set of control-theoretical methods
as well as techniques from information technologies to mitigate jamming attacks is presented in [23],
and, furthermore, a survey of articles concerned with DoS and false data injection attacks in control
systems for the smart grid is provided in [24]. Differently from previous works, we present an overview
of DoS attacks in networked control systems with a special emphasis on probabilistic modeling and
analysis approaches.

We organize the rest of our paper into five sections. In Section 2, we introduce control
problems subject to DoS attacks and provide an overview of the literature that explore those
problems. In Section 3, we discuss several deterministic, game-theoretical and optimization-based
attack-modeling approaches. Moreover, in Section 4, we discuss recent developments in probabilistic
approaches to modeling of networks that face denial-of-service attacks and also non-malicious issues.
We then present a set of recently developed attack-resilient control and communication techniques in
Section 5. Finally, we conclude the paper in Section 6.

We use fairly standard notation in the paper. Specifically, nonnegative and positive integers
are, respectively, denoted by Ny and N. Furthermore, the notation P[-] represents the probability on
a probability space (Q), F,P), and, moreover, E[-] represents the expectation. We use the notations V
and A to, respectively, denote the “or” and “and” operations on binary numbers. Moreover, we denote
the Lebesgue measure of a set S C R by |S].

2. An Overview of Literature on Denial-of-Service in Control Systems

In this section, we present an overview of the recent literature that investigates DoS attacks in:
(1) networked control; (2) state estimation, and (3) multi-agent consensus problems. We provide
a general outlook on the problem settings and discuss a range of subproblems. These problem settings
provide a basis for the more detailed discussions on attack models and security analysis techniques
presented in Sections 3 and 4.

2.1. Networked Control Problem

In the networked control problems depicted in Figure 1, the plant and the controller are remotely
located entities that exchange data packets over a network that is subject to DoS attacks in the form
of jamming and malicious packet-dropping. Such DoS attacks cause failures in the transmission of
packets between the plant and the controller. Below, we discuss the networked control problem in

both the discrete-time and the continuous-time settings.
Plant j
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Figure 1. Operation of networked control system under denial-of-service attack: (Left) wireless
networked control system facing jamming attacks; and (Right) multi-hop networked control system
that faces packet-dropping attacks by malicious nodes in the networks.).
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2.1.1. Discrete-Time Setting

We first look at the networked control problem of a discrete-time linear plant described by

x(t+1) = Ax(t) + Bu(t), x(0) =xp, te€ Ny, (1)
y(t) = Cx(1), @

where x(t) € R”, u(t) € R™, and y(t) € Rh, respectively, denote the state, the input, and the output
vectors of the plant. Moreover, A € R**", B € R"*™ and C € Rhxn, respectively, denote the state,
the input, and the output matrices representing the dynamics.

In the state-feedback networked control problem, sensors located at the plant side measure the
state x(-) and transmit it to the controller, which then computes a control input and transmits it back
to the plant. In the output-feedback setting, the sensors measure and transmit the output y(-).

State-feedback networked control problem under DoS attacks is discussed in our previous
works [25-27]. In those works, the system without control is considered to be unstable (i.e., A has
eigenvalues that are outside the unit circle of the complex plane); moreover, the goal is to achieve
stabilization of the zero solution x(t) = 0 by means of designing suitable control and communication
rules. It is also assumed there that the network does not induce delay in transmissions, but packets
may fail to be delivered due to attacks. In [28], we further generalized the setting so that delays can
also be taken into account.

In the control frameworks in [25-28], the input u(t) that is applied to the plant is set to 0 when
there is a failure in the transmission of the state measurement or the control input data. This is one
of the most common approaches in the networked control literature that deals with transmission
failures (e.g., Kellett et al. [29], Hespanha et al. [30], Gupta et al. [31], Okano and Ishii [32]). In the
setup in [25-28], acknowledgement messages are not needed, since a packet exchange failure is known
to the plant by the absence of an incoming control input. This in turn allows UDP-like communication
protocols discussed in [33] to be used for the practical implementation of the networked operation.

In [26,27], we assumed that packet exchanges take place at every time step. On the other hand,
in [25], we developed event-based communication (transmission) rules. In the event-based approach,
packet exchanges are attempted between the plant and the controller at times ¢, t1,t,... € Ny
(with t; < t;11). These times are decided based on certain event-triggering conditions. The triggering
conditions proposed in [25] guarantee that the state stays within certain level sets in between
consecutive transmission attempt times, and packet exchange attempts are triggered only before the
state is predicted to leave a predefined level set. A more detailed explanation to this event-triggering
setup is given in Section 5.1.1.

In the event-based setting in [25], the control input u(t) applied to the plant is given by

u(t) = (1-1()Kx(z), te{ti... ti1—1}, ®)

where K € R"*" denotes the feedback gain matrix and {(i) € {0,1} };cn, is a binary-valued process
that is used for indicating success/failure of packet exchange attempts. Specifically, /(i) = 0 indicates
that the packet exchange attempt at time #; is successful, whereas [(i) = 1 indicates that either the
packet sent from the plant or the packet sent from the controller failed to be delivered at time ¢;. If there
are many packet exchange failures, the overall system can become unstable. This is because, when
there is a failure, the system is governed by the unstable open-loop dynamics.

Notice that for the wireless networked control system depicted in Figure 1 (left), transmission
failures happen due to jamming attacks [26]. For multi-hop networked control systems (Figure 1, right),
packets are attempted to be transmitted over multi-hop networks, and packet exchange failures happen
due to drops by one or more of the malicious nodes in the network [27].

It is also important to note that the strategy used by the attackers essentially determine which
packet exchanges fail. Most of the works in the literature consider the problem where the strategy of the
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attacker is not known a priori. Typically, certain deterministic or probabilistic models are considered to
characterize how frequent the attacks happen. In Sections 3 and 4, we discuss such characterizations.

In the state-feedback control problem, Amin et al. [34] explored finite-horizon optimal control
of a discrete-time linear plant under DoS attacks where timings of DoS can be random or arbitrary
given that the total number of attacks in the horizon is bounded. Lai et al. [35] considered scenarios
where a bound on the number of consecutive DoS attacks is known. Furthermore, in [26,36,37], we
investigated the effects of jamming attacks by exploring physical wireless channel models based on
Signal to Interference plus Noise Ratio (SINR).

In addition to the state-feedback control, the discrete-time output-feedback control problem
has also been considered by taking into account the effects of DoS attacks. Specifically,
Cetinkaya et al. [38], Wakaiki et al. [39] and Liu et al. [40] considered observer-based control ideas.
In particular, Cetinkaya et al. [38] and Liu et al. [40] developed event-triggered controllers.
The difficulty in the event-triggered output-feedback control problem is that the state information
cannot be used for control purposes and for characterizing the event-triggering conditions.
Observer-based quantized output-feedback control problem is investigated in [39], where a
quantizer with dynamically varying ranges is utilized and sufficient convergence conditions are
obtained. In addition to those results, optimal output-feedback control problem was considered
by Zhang et al. [41] and Befekadu et al. [42] for systems with DoS attacks and noisy measurements.
Furthermore, in [43], a game-theoretical approach is taken for an output-feedback networked control
problem over multiple-channels that are subject to jamming attacks.

For discrete-time multi-hop networked control systems, there are several results (see, e.g.,
Cetinkaya et al. [27], Smarra et al. [44], D'Innocenzo et al. [45], D'Innocenzo et al. [46]). The multi-hop
network characterization in our work [27] is based on a probabilistic approach that takes into
account both non-malicious and malicious failures in the network (see Section 4.2). On the
other hand, Smarra et al. [44], D'Innocenzo et al. [45] and D’Innocenzo et al. [46] utilized a different
characterization where the information flow in the network for a given scheduling and routing protocol
is characterized through difference equations. For this network setup, Smarra et al. [44] proposed
methods for designing network weights as well as controller and observer gains by taking into account
potential packet losses. Moreover, D’'Innocenzo et al. [45] and D'Innocenzo et al. [46] proposed methods
for detecting and isolating malicious nodes that intentionally delay packets or stop forwarding them.
In addition, malicious nodes that inject false data can also be handled within the framework of [45,46].

2.1.2. Continuous-Time Setting

In [47,48], researchers considered event-based remote control of a plant described by a linear
continuous-time system

=.
—~

~
~—

I

Ax(t) 4+ Bu(t), x(0) =xp, t>0, 4)
y(t) = Cx(t). (5)

The state of the plant is measured at times tg, t1, tp, ... € [0,00) and transmitted on the network
to the controller. The control input applied at the plant side is kept constant between each successful
transmission over the network. In particular, the input u(t) at the plant-side is given by

u(t) = Kx(typ)), (6)

where k(t) denotes the index of the last successful transmission time. Notice that, in the control
framework in [47,48], the control input at the plant side is not set to 0, when control data packet
transmissions fail.

The framework developed in [47] allows resilient control update mechanisms. As we discuss
further in Section 5.1.1, the intervals between consecutive transmission attempt times f, t1, f2, ... are
designed to depend on the presence/absence of attacks. For instance, if the transmission attempt at time
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ty faces an attack, then the next transmission is attempted shortly afterwards, whereas, if the attempt
at time f is successful, the next attempt can be made after a longer duration. Similar resilient control
setups are provided in the discrete-time setting in [25,38].

In [47,48], researchers provide a stability analysis approach for the closed-loop state-feedback
control system in Equations (4) and (6) by utilizing bounds on the average duration and the frequency
of DoS attacks. The characterization of attacks through average duration and frequency bounds is
further discussed in Section 3.1.

The analysis approach in [47,48] does not require the strategy of the attacks to be known,
and, moreover, the attacks can be time- or state-dependent. We also note that there are several
works where periodic DoS attacks with unknown average duration and frequency are considered.
In particular, Shisheh Foroush and Martinez [49] provided a detection-based control approach for
periodic attacks, where the periodic strategy of the attacker can be learned so that transmission times
are selected to avoid overlapping with the attack times.

In the case of output-feedback control problem, the utility of several different control frameworks
under DoS attacks is investigated in [50-52]. As we further discuss in Section 5.1.1, Feng and Tesi [50]
and Feng and Tesi [51] provided new architectures to limit the capabilities of attackers. Moreover,
Lu and Yang [52] considered the case where multiple sensors make output measurements (ith sensor
attempts to send the ith output measurement y;(t) = C;x(t) over the ith channel).

In [53,54], the effect of DoS attacks on nonlinear systems is explored. Specifically, De Persis and
Tesi [53] investigated the state-feedback control problem, and, moreover, Dolk et al. [54] explored
dynamic event-based output-feedback controllers for stabilization. In [55], a linearization approach
is developed for stabilizing nonlinear systems. There, it is mentioned that, when DoS attacks are
sufficiently strong, the trajectories of the state may leave the linearization region, which may in turn
cause instability due to the nonlinearity of the dynamics. For the case where the system dynamics
involve unknown nonlinear functions, An and Yang [56] proposed adaptive controllers to guarantee
boundedness of the state under DoS attacks.

Networked distributed control of a large-scale system is explored in [57]. There, the subsystems
of the large-scale system utilize a shared network for the transmissions of their corresponding
measurement and control input packets. To mitigate the effects of DoS, Feng et al. [57] proposed
a transmission strategy that switches between event-based transmissions and a Round-robin protocol.

The performance of periodic and event-triggering networked control approaches under different
types of jamming attacks was investigated in [58].

Additionally, frequency regulation problems in power networks under DoS attacks are considered
in [59,60]. In both studies, the nodes in the power network are assumed to communicate over insecure
communication channels that are subject to DoS attacks. In the problem formulation in [59], nonlinear
dynamics are explored. Moreover, the researchers propose an event-based control approach in [60].

In [61], researchers considered networked control problem under DoS attacks and data-rate
constraints, where state measurements are quantized through a dynamic quantization scheme.

We note that, among the different control approaches used for networked control systems under
DoS attacks, event-triggered control (see, e.g., [25,38,48,54,58], and the references therein) appears to
be the most commonly considered approach. We discuss the resiliency of event-triggering approaches
against DoS attacks further in Section 5.1.1.

2.2. Networked State Estimation Problem

A remote state estimation problem over a network that is subject to DoS attacks is considered
in [62]. There, the researchers explore a discrete-time linear plant given by

x(t+1) = Ax(t) +w(t), (7)
y(t) = Cx(t) +o(t), ®)
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where x(t) € R" and y(t) € R, respectively, denote the state and output vectors; and w(t) € R” and
o(t) € R", respectively, denote noises that are described by stochastic processes with zero-mean at
each time instant ¢.

The networked state estimation framework in [62] is shown in Figure 2. In particular, a sensor
at the plant side is assumed to be able to compute a local estimate £5(t) € R” based on output
measurements y(t). For this purpose, a Kalman filter is utilized. At certain time instants, the estimate
®s(t) is sent over a communication channel to a receiving node representing a remote estimator.

| Plant | Sensor f-.— _»:COIIIIIluIll(T‘dthIl channels_ | _ »| Estimator
. subject to DoS attacks i

Figure 2. Operation of networked state estimation subject to DoS attacks.

As the receiving node may not have a direct access to the state estimate £g(t) at all time instants, it
keeps its own estimate £(t) of the state. If a new state estimate from the sensor is received, the receiving
node sets its estimate value to the newly obtained value (i.e., £(t) = £5(t)). In the case where there
is no transmission or the transmission fails due to DoS attacks, the receiving node cannot obtain any
information. In that case, previously available state estimate is used together with the plant dynamics
to obtain a predicted value by setting £(¢) = A%(t —1).

Li et al. [62] considered a finite horizon estimation problem, where T € N denotes the horizon. In
this problem, a performance indicator

T
)= %E [llx(t) = £(B)IP] + (1 = @)B[[|x(T) — 2(T)|*] ©)

with a scalar & € [0,1] is used. By setting &« = 1, Jo(T) = J1(T) represents the average estimation
error variance, and by setting &« = 0, J,(T) = Jo(T) corresponds to the final estimation error variance
obtained at the end of the horizon.

In the problem formulation in [62], the sensor decides whether to transmit the data £5(¢) or not,
and similarly the attacker decides whether to attack the channel or not at each time t. To identify
the worst-case attack scenarios as well as the best transmission strategies, Li et al. [62] proposed
game-theoretic characterizations, where the performance indicator J,(T) is taken into account both
by the sensor and the attacker. We explain these game-theoretic characterizations in a more detailed
way in Section 3.2. In those characterizations, the number of transmissions by the sensor and the
number of attacks by the attacker in a given horizon T are assumed to be constrained by certain scalars
that are less than T. In [62], the optimal transmission and attack strategies are discussed for the case
with constraints.

For scenarios where the sensor attempts transmission at each time step, closed-form optimal
attack strategies that maximize J;(T) and Jo(T) are obtained in [63,64]. The work in [63] also presents
a variation of the problem of finding worst-case attack scenarios. In this variation, the attacker has
additional constraints, which are proposed to explore strategies of an attacker that does not want to
get detected by an intruder detection system.

The state estimation problem over wireless channels with SINR-based models have been discussed
in [65,66]. Furthermore, Ding et al. [67] considered a network setup with multiple wireless channels.
All three works explore game-theoretic and optimization-based analysis approaches. In particular,
the sensor and the attacker are considered to be the players of a game. In the setting in [65,66], the
players attempt to optimize not only the timing but also the signal and the interference power levels
of transmissions and attacks. In the multi-channel estimation problem considered in [67], the sensor
aims to optimally select the wireless channels that will be used to transmit packets, and, moreover, the
attacker wants to optimally select the channels that will be blocked. For the state estimation problem
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with multiple sensors and multiple channels, the optimal strategies of the attacker are also discussed
in [68].

We note that estimation problems under different attack types have also been studied. For instance,
Guo et al. [69] investigated optimal false data injection attacks in state estimation problem. Furthermore,
Guan and Ge [70] explored state estimation under jamming attacks as well as false data injections and
developed a threshold-based detection method.

2.3. Multi-Agent Consensus Problem

The consensus problem for a multi-agent system under jamming attacks is considered in [71-73].
The multi-agent system in those works consists of 1 agents that possess scalar dynamics. In particular,
the evolution of the ith agent’s state is described by

() =ul(t), t>0, (10)

where x'(t) € R is the state and u/(t) € R is the local control input for agent i.

Inter-agent communication topology of the multi-agent system is characterized with an undirected
graph G = (V, &), where the nodes V = {1,...,n} represent the agents and the edges £ C V x V
represent the communication links between agents.

The goal in [71-73] is to develop control and communication rules to guarantee practical consensus
under jamming attacks. In practical consensus, agents states [ x!(t) x2(t) --- x"(t) | converge
to a vector x* € R" that belongs to a consensus set D,

Dgé{xE]R":‘ Z(xj—xi)
JENT

<e ic v}, (11)

where ¢ > 0 represents a predetermined required level of closeness between agents and N C V
denotes the neighbors of agent i, that is, the set of agents that share a communication link with agent i.

For this problem formulation, Senejohnny et al. [71] and Kikuchi et al. [72] considered the attack
setup shown on the left-hand side of Figure 3. In this setup, the jamming attacker can target all
communication links at once. Specifically when there is an attack, none of the agents can communicate
with each other. In the control approach in [71,72], each agent i € V tries to communicate with its
neighbors at certain times denoted by tf), til,. ... Specifically, at time t}'(, agent i sends a packet to its
neighbors to request their states. In the case where there is no jamming attack at that time, all neighbors
receive this packet and they respond by sending back their states. Those states are then used by agent
for constructing a ternary control input (i.e., u'(t) € {—1,0,1}) for achieving consensus.

. /
\‘ /. (( Jamming Attacker
© ®

Figure 3. Multi-agent consensus in the presence of jamming attackers: (Left) single jamming attacker

causes transmission failures on all inter-agent communication links; and (Right) multiple jamming
attackers cause failures on different links).

For designing communication attempt times t}, ti, . .., Senejohnny et al. [71] used a self-triggering
approach, where communication is attempted by each agent i only when a triggering condition holds.
For achieving consensus, a restriction on the average duration and the average frequency on the
attacks is imposed. These duration and frequency restrictions are discussed in Section 3.1, and they
follow the attack characterization proposed by De Persis and Tesi [48]. It is shown in [72] that the
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restriction on the attack frequency can be removed when the agents utilize randomization in designing
the communication attempt times. The utility of this randomization approach is further discussed in
Section 5.2.1.

Recently, Senejohnny et al. [73] explored the multi-agent consensus problem under the attack
setup shown in Figure 3 (right). In this setup, there are multiple jamming attackers that can target
individual communication links.

We note that the consensus problem depicted in Figure 3 (left) is also explored for multi-agent
systems with multi-dimensional dynamics in [74]. More recently, Nugraha et al. [75] considered
a game-theoretical formulation of multi-agent systems under jamming attacks that can target
individual links.

One of the key issues in studying the control, estimation, and consensus problems under
denial-of-service attacks is that the attacker’s actions cannot be known a priori. To account for
the uncertainty in the way the attacks may be generated, researchers have proposed several
modeling approaches. These approaches can be classified into three groups: (1) deterministic
approaches; (2) game-theoretic, optimization-based approaches; and (3) probabilistic approaches.
In Sections 3 and 4, we discuss these approaches in detail.

3. Deterministic and Game-Theoretical Approaches to Denial-of-Service Attack Modeling

In this section, we provide an overview of deterministic and game-theoretical approaches
proposed in the literature for modeling denial-of-service attacks. We present several models and
discuss their efficacy for addressing the networked control problems mentioned in Section 2.

3.1. Deterministic Attack Models with Average Duration and Frequency Constraints

In [47], the authors proposed a model that allows DoS attacks to happen in an arbitrary fashion
as long as the total duration of attacks in a given time interval is upper-bounded by a deterministic
function of the length of that interval.

In the continuous-time setting of this model, the timing of the attacks can be characterized as
follows. First, two sequences {ay > 0}rcn, and {7 > O}ycn, are used for denoting the starting times
and durations of attack intervals. As we illustrate in Figure 4, the kth attack interval starts at time a;
and lasts for 7 units of time. It is assumed that a;, 1 > a; + T so that different attack intervals are
not overlapping.

DoS DoS DoS
—e * » - —e— )
0 ao ap+T10 @ a1 +T1 a2 ap+ T
Time [t]

Figure 4. Sequence of DoS attack intervals. Transmission attempts that occur in any of the DoS attack
intervals (represented with pink regions) fail.

This model fits well into scenarios with jamming, where the attacker may be emitting very strong
jamming signals during the intervals [ay, a; + T;]. Note that, when a packet transmission time ¢;
overlaps with any attack interval (i.e., t; € Ugen, [ar, ar + T¢]), then there will be a transmission failure
at that time.

To model capabilities of the attacks, the notion of total attack duration is used. Specifically, for
any time interval [, t] C [0, 00), the set A(T,t) C [7, ] is used for denoting the times that the network
faces DoS attacks, i.e.,

A(T, 1) 2 Uken, [ak, ax + o] N [, 4], (12)

and |A(7,t)| is used for denoting the total duration of the attacks in the same interval.
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Note that, in the case where DoS attacks cover the entire time span, we have |.A(0, t)| = ¢t for
all t > 0. In such cases, communication on a network is not possible, and hence, control, estimation,
and consensus goals cannot be achieved over such networks.

Typically, attackers may have constraints that prevent them from attacking at all times.
For instance, in the case of jamming attacks, emitting powerful interference signals is costly and
attackers with limited energy resources cannot conduct attacks at all time instants. Note also that the
constraints may be imposed by the attacker who wants to avoid being detected. Strategic attackers
may want to keep away from attacking continuously at all times to avoid detection.

The model in [47] takes into account such constraints by considering the following assumption.

Assumption 1. There exist scalars xkp > 0 and pp € [0,1) such that
A0, 8)] < xp+ ppt, t>0. (13)

It follows from Equation (13) that limsup, . |.A(0,t)|/t < pp. This indicates that the scalar pp
represents an upper-bound on the average ratio of attack durations in long intervals. If, for instance,
pp = 0.5, then the total attack duration in the long run does not exceed 50% of the total time. In
the case where the first attack interval starts at time a9 = 0, Equation (13) implies a bound on the
attack interval length 19 as 1) < xp/ (1 — pp). Thus, the scalar xp in Equation (13) can be selected for
modeling initial capabilities of the attacker.

In [47,59], Assumption 1 is utilized in analyzing stability properties of networked control systems.

In [48], attackers with additional attack frequency constraints are considered. In particular,
the following assumption characterizes attacks that have frequency constraints.

Assumption 2. There exist scalars kg > 0 and pg € [0,1) such that
Z(0,t) <xg+ppt, t>0, (14)
where (7, t) € Ny denotes the number of attack intervals in the time frame [T, t].

The scalar pp in Equation (14) provides an upper-bound on the frequency of attacks in the long run.
To achieve stabilization of networked control systems with periodic transmissions, attack frequency
needs to be bounded by a scalar pr small enough. To see this, first consider periodic transmission
attempts at every A units of time. A strategic attacker who knows the transmission period A can
concentrate his/her attacks to pinpoint the periodic transmission times with attacks that have very
short durations (which satisfy Assumption 1). Thus, for such settings, all transmission attempts may
fail if pp > 1.

In [48], it is mentioned that Assumptions 1 and 2 do not suffice when one considers system
dynamics with disturbance. This is because, under Assumptions 1 and 2, the attacker is allowed
to attack continuously for arbitrarily long intervals as long as Equations (13) and (14) are satisfied.
The attacker can achieve this by initially waiting for a long duration. This scenario is particularly
dangerous for systems with disturbance, because even though the control packets may successfully
be delivered in the initial attack-free period, the state never reaches zero due to disturbance. When
the attack-free period ends, the attacker can attack continuously and cause the state to grow to very
large values. To avoid such issues, De Persis and Tesi [48] proposed further restrictions of the average
attack duration and the average attack frequency so that the maximum length of a continuous attack is
bounded. These new restrictions are described by the inequalities

|A(T,1)] < xp + pp(t — 1), (15)
I(t,t) < xp+pp(t = 7), (16)



Entropy 2019, 21, 210 11 of 29

which are required to be satisfied for all T > 0 and ¢ > 7. Notice that Equations (15) and (16) imply
Equations (13) and (14), but not vice versa.

In [48,50,51], average duration and frequency conditions in Equations (15) and (16) are utilized
for modeling attacks in a networked control problem.

It is shown in [48] that asymptotic stabilization with an event-triggered controller can be achieved
under any attack strategy that satisfies Assumptions 1 and 2 with sufficiently small scalars pp and pr.
In particular, the sufficient condition given in [48] for asymptotic stability is

A*pr+pp < w,

where w > 01is a scalar that depends on system dynamics, and A* > 0 is scalar that upper-bounds the
intervals between network transmission instants. It is shown in [48] that this condition guarantees
input-to-state stability for systems with disturbance on the condition that pp and pp satisfy Equations
(15) and (16) (in addition to satisfying Equations (13) and (14)). The authors of [50,51] considered
periodic sampled-data controllers and showed that stability condition in this case can be made less
conservative by using predictor and buffer mechanisms (see also Section 5.1.2). As noted in [48,50,51],
xp and «p used in the inequalities in Equations (13) and (14) (or Equations (15) and (16)) affect bounds
on state trajectories and the performance, but they do not affect the stability properties of linear systems.
In the case of nonlinear systems, xp and x play a role also in stability properties. In particular, xp
and «p are utilized in [55] for determining the initial capabilities of the attacker and for obtaining
conditions of stabilization with a controller that is designed through a linearization approach.

For the multi-agent consensus problem discussed in Section 2.3, [71,73] utilized the attack
characterization with the conditions in Equations (15) and (16). It is observed in [72] that, with
randomized transmissions, consensus in multi-agent systems can be achieved if the average attack
duration is restricted as in Equation (15) regardless of the attack frequency.

In the discrete-time setting, a similar modeling approach can be utilized. The attack intervals can
be defined similarly through sequences {a; € Ny }ien, and {7, € No}yen,. In particular, the kth attack
interval is given by {ay, a; +1,...,a; + T — 1}. Again, it is assumed that ay 1 > a; + 7. Furthermore,
average duration and frequency restrictions in Equations (13) and (14) as well as Equations (15) and (16)
can be imposed in a similar way. For discrete-time networked control problems, Cetinkaya et al. [25]
and Wakaiki et al. [39] considered average duration and average frequency restrictions in obtaining
sufficient conditions of stabilization over networks under DoS attacks.

We note that there are other deterministic modeling approaches such as periodic DoS attacks
considered in [49]. In particular, Shisheh Foroush and Martinez [49] modeled DoS attacks in a general
way as a pulse width modulated (PWM) signal. In this model, the attacker repeats cycles of jamming
and sleeping. Furthermore, in the special case of periodic jamming, each cycle consists of T} seconds of
jamming that is followed by Tg seconds of sleeping. Shisheh Foroush and Martinez [49] considered the
setup where both Tj and Ts are unknown in the networked control problem. In addition, constraints
on attacks were considered previously in a finite horizon problem by Amin et al. [34]. There, attacks
can happen at arbitrary time instants given that the total number of attacks does not exceed a threshold
for a given finite time horizon. As we further discuss in Section 3.2, such constraints have also been
used in game-theoretic approaches.

3.2. Game-Theoretic and Optimization-Based Approaches for Attack Modeling

Game theory provides a natural framework for studying cyber security of control systems under DoS
attacks and has been explored in many works (see, e.g., Li et al. [62], Li et al. [66], Ding et al. [67], Alpcan
and Basar [76], Gupta et al. [77], Bhattacharya et al. [78]). Through a game-theoretic approach, researchers
have obtained optimal DoS attack and defense schemes in certain problem settings. In what follows, we
discuss some of the approaches in those works.
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3.2.1. Constraint-Based Models with Binary Actions

In several studies that deal with DoS attacks, the actions of the attacker and the defender are
represented with binary variables corresponding to the choices between attacking and not attacking
and similarly between defending and not defending.

For example, Li et al. [62] considered the finite-horizon state estimation problem discussed in
Section 2.2, where binary variables Ag(t) € {0,1} and A(t) € {0,1} are used for indicating the
decisions of the sensor and the DoS attacker, respectively. If, Ag(t) = 1, then the state estimate £5(¢) is
attempted to be transmitted over the communication channel at time . Moreover, the presence of an
attack that causes a transmission failure at time ¢ is represented by A (t) = 1.

Notice that, if the attacker and the defender do not have any constraints, it may be ideal for both
players to act at every time instant (i.e., Ag(t) = Ax(t) = 1forall t € N). In [62], researchers considered
scenarios where both the attacker and the sensor have constraints represented by

1=

T
vs(t) < Ng, Y Aa(t) < Ny, (17)
t=1

t=1

where T € N is the time horizon of the estimation problem, and Ng and Ny are positive scalars that are
strictly less than T. It is essential for the players to choose the best timing for their actions. To identify
the worst-case attack scenarios as well as the best transmission strategies, Li et al. [62] proposed
game-theoretic formulations, where a game is played by the sensor and the attacker. The goal of the
defender is to minimize the cost in Equation (9) so as to minimize the estimation error, whereas the
attacker wants to maximize Equation (9). For various constrained attack problems, closed-form optimal
attack strategies Ap(1),Aa(2),...,Aa(T) that maximize J;(T) and Jo(T) are obtained in [63,64].

A constraint on the total number of attacks in a given time horizon was considered also
by Amin et al. [34] for a networked control problem under DoS attacks. Constraints similar to
Equation (17) may characterize energy limitations of a jamming attacker. We note that, besides the
formulation with constraints, there are also other formulations where the jamming energy is a part of
the cost function of attacker (see, e.g., [76]). The effect of energy-related jamming costs was investigated
by Zhu et al. [79], who considered a noncooperative game for analyzing the actions of a group of
non-malicious nodes together with a malicious node that is capable of jamming and eavesdropping.

In addition to the energy constraints in Equation (17), the attacker may have additional constraints.
In [63], some additional constraints are proposed to explore strategies of an attacker that does not want
to get detected by an intruder detection system. It is discussed in [63] that a detection mechanism can
check the number of transmission failures in the last 7p € N time steps and release an alarm if the
failures go above a threshold dp € N. To avoid being detected by such a detection system, the attacker
chooses a strategy that satisfies

k+TD

Y. Aa(t) <dp, ke{0,1,...,T—1p}. (18)
t=k+1

Notice that under Equation (18), the number of attacks in every consecutive 1p time steps does
not exceed dp. An extension of this constraint to infinite-horizon problems resembles the constraints
discussed in Section 3.1.

3.2.2. SINR-Based Models

Recently, a few works considered Signal to Interference plus Noise Ratio (SINR) in modeling of
the effect of jamming attacks to wireless communication channels (see, e.g., [66,80]). In those works,
the probability of a packet transmission error depends on the Signal to Interference plus Noise Ratio
(SINR), which is the ratio of the power of transmitted signal to the sum of the attacker’s interference
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power and the power of the channel noise. If the power of transmitted signal is small or interference
and noise have large powers, then an error becomes highly likely.

In [66], researchers investigated the estimation problem over a wireless channel with an
SINR-based model. In this model the sensor chooses a power level ps(t) € [0, c0) for transmitting the
estimate £5(t). In addition, the jamming attacker chooses an interference power pa (t) € [0, 00) at time

t. The power values pg(t) and pa (t) affect the SINR given by pAFEi)(iZUZ , where 02 denotes the power of

channel noise. The probability of a successful transmission at time ¢t depends on SINR and is given by

ps(t)
1‘2Q< "‘pA<t>+rﬂ>’

where Q(x) £ ﬁ /. ;o e=/2ds, and & > 0 is a parameter that depends on the wireless channel
properties. Notice that successful transmission probability is affected by power levels pg(t) and pa ()
used by the sensor and the attacker.

In [66], optimal strategies of the sensor and the attacker are explored. In particular, first,
a finite-horizon problem similar to the one in [62] is considered. The goal of the attacker is to
find an optimal strategy pa (1), pa(2),..., pa(T) that maximizes a utility function while satisfying an
energy constraint

T
=1

where Py > 0. In particular, the attacker’s utility is chosen as T];(T) with J,(+) given by Equation (9).
The sensor’s utility function is considered to be the additive inverse of the utility of the attacker.
Moreover, the energy constraint for the sensor is given by

T
Y ps(t) =P,
=1

where Ps > 0. A game-theoretic approach is taken in [66] to investigate optimal sensor and attack
strategies. In [64], researchers considered a similar problem and provides an analysis on the optimal
attack strategies pa (1), pa(2),..., pa(T) that yield the worst-case scenario in terms of the estimation
performance. Optimal interference power levels and their effects were explored by Zhang et al. [80],
who considered several settings of attack capabilities. In particular, Zhang et al. [80] considered both
the case where the attacker can eavesdrop the acknowledgement messages and the case where the
attacker has no knowledge of whether the attack is successful. In the case of infinite-horizon problems
with an SINR-based formulation, Li et al. [66] showed that a Q-learning algorithm can be used by the
sensor to obtain optimal strategies for selecting transmission powers.

A game with SINR-based formulation for wireless networked control systems was also considered
by Yang et al. [81]. The players in the game are: (1) the user who decides the power of transmissions
from the controller to the plant; and (2) the jamming attacker who decides the jamming interference
power. In particular, Yang et al. [81] explored a Stackelberg game, where the user is the leader and acts
first; the action of the user is then followed by that of the jamming attacker. In the problem setting
in [81], the utilities of the user and the attacker depend directly on the SINR. They are expressed as
%, where L, 17, and f are fixed positive constants representing channel properties, ¢ > 0 is the
background channel noise, and P € [0,00) and ] € [0, o), respectively, denote the transmission power
of the user and interference power of the attacker. The cost of transmission and the cost of jamming for
one unit of power are given respectively by the positive scalars E and C. Moreover, the utilities of the
user and the jammer are, respectively, given by
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LyP

. LnP
Vuser (P, ]) = 1 B+

= 5oz EP Viemmer(P,])

CJ.

In this formulation, the optimal strategy of the jamming attacker for a given transmission power P
is denoted by J*(P) and is obtained by finding | € [0, o0) that maximizes Vjammer (P, J). Then, based on
the jamming attacker’s optimal strategy, the user’s best strategy is obtained in [81] through solving
the problem

maximize W P, J*(P)).
Pe(0,00) User( ]( ))

A Stackelberg game was also utilized by Liu [82] to investigate optimal attack and defense
strategies in a multi-channel estimation problem. In this problem, a number of sensors acquire
measurements of a plant and attempt to transmit these measurements to a remote receiver over
insecure wireless channels. Each channel may be subject to a jamming attack and the transmission
failure probabilities are characterized through an SINR formulation. In [82], two cases with incomplete
information are considered: (i) the defender knows the probability of a possible attack and the total
jamming power used on the wireless channels when there is an attack; and (ii) the defender knows the
probabilities of possible attacks on each channel with the corresponding power levels.

In the context of multi-agent systems, Nugraha et al. [75] explored a game-theoretical formulation,
where a game between a jamming attacker and a defender is considered by extending the infrastructure
network modeling approach in [83]. In this game, the jamming attacker’s goal is to optimally choose
communication links to attack, whereas the defender wants to recover those links. To this end, a new
quantitative network connectivity notion is introduced in [75] to find optimal attack and defense
strategies for scenarios where the attacker wants to decrease the connectivity by attacking certain
communication links, whereas the defender wants to increase it by reestablishing the connection on
the attacked links. In the problem, both players are assumed to have energy constraints that vary in
time based on the previous actions of the players.

4. Probabilistic Approaches to Models of DoS Attacks and Non-Malicious Transmission Failures

In Section 3, we looked at deterministic and game-theoretic DoS attack models and analysis
techniques. Our goal in this section is to discuss probabilistic approaches for modeling and analyzing
the effects of DoS attacks. In particular, we focus on networks with wireless channels and multi-hop
transmissions. For such networks, DoS attacks may not be the only source of failures, as transmissions
may also fail due to non-malicious reasons [17,18]. For instance, wireless channels face unintentional
interference, channel noise, and fading issues. Moreover, non-malicious issues such as link errors
and congestion cause failures in multi-hop networks. In networked control systems, the transmission
failures due to non-malicious issues are typically modeled through the use of stochastic processes
such as Bernoulli processes [30,84] and Markov processes [31,32]. In [25], we observed that both
non-malicious transmission failures and malicious DoS attacks as well as their combinations can be
modeled through a probabilistic approach.

The probabilistic approach in [25] is developed upon tail-probability bounds for the binary-valued
processes that describe the occurrences of transmission failures on a network. In what follows, we first
explain this probabilistic approach and illustrate its generality by considering non-malicious failures
and DoS attacks on a network. Then, in Sections 4.1 and 4.2, we consider its utility in wireless channel
and multi-hop network modeling.

Consider the binary-valued process {I(i) € {0,1} };cn, discussed in Section 2.1.1. This process is
used for indicating the status of packet transmissions, where /(i) = 1 represents a failure and /(i) = 0
represents a successful transmission at time ¢;. To describe the effects of certain non-malicious and
malicious failure models in a unified manner, in [25,27], we investigated classes of binary-valued
transmission failure indicator processes that describe networks where the number of failures in the
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long run is bounded in a probabilistic sense. First, for a given scalar p € [0, 1], consider the class A, of
binary-valued processes given by

00 t—1
A2 {l:l(i) € {0,1},ie Ny Y P|Y 1(i) > pt <°°}- (19)
t=1 i=0

Notice that the inequality } ;> ; P [ o 1() > pt] < oo describes a condition on the tail probability
P[L 2f;é 1(i) > p] (i.e., the probability of the tail event where the ratio } 2f;é 1(i) of transmission
failures exceeds p). Under this condition, the average number of failures is guaranteed to be
bounded in the long run. In particular, a consequence of the Borel-Cantelli lemma [85] is that
limsup,_, % 25;6 I(i) < p, almost surely, for every I € A,. For the network control system discussed
in Section 2.1.1, it is shown in [25] that the closed-loop system becomes stable if | € A, for a sufficiently
small p.

It was further noted by the authors of [25] that classes A, with different p values can be used to
characterize binary-valued transmission failure indicators that are associated with networks that face:
(1) non-malicious transmission failures; (2) malicious DoS attacks; and (3) combination of non-malicious
and malicious issues.

In particular, to model non-malicious transmission failures, a time-inhomogeneous Markov chain
{Ir(i) € {0,1} };cn, can be considered with initial distributions ¢, € [0,1], g € {0,1}, and time-varying
transition probabilities pg,: No — [0,1], 4,7 € {0, 1}, satisfying

PlIir(0) = q] = 8y,

PlIR(i+1) = rllx(i) = 4] = pye(i), i€ No. 20)

The following result shows that, if the probabilities pg 1 (i) and pj 1 (i) of transition towards the
failure state 1 are bounded by a scalar p; € (0,1), then Ig belongs to the failure class A, for p values
larger than p;.

Proposition 3 ([25]). Suppose po1(i) < p1 and p1,1(i) < p1, for i € Ng, where p; € (0,1). Then, Ix € A,
forany p € (p1,1].

To model DoS attacks through the class A, consider a network with a single DoS attacker and
let I5 (i) € {0,1} denote the possible actions of the attacker, where 5 (i) = 1 represents an attack and
I5(i) = 0 represents the absence of an attack. In certain scenarios, the DoS attacker has complete
control of the network, and thus the values of /(i) can be solely decided by the actions of the attacker.
In such scenarios, [(i) = I5(i). If [z (i) = 1 for all i € Ny, then it means that all packets on the network
fail to be transmitted. In the networked control problem, to achieve stabilization, some constraints on
Ia(+) were considered by Cetinkaya et al. [25] through the following assumption.

Assumption 4. There exist scalars kp > 0and pa € [0,1) such that for every t € N,

t—1
Y IA(i) < xa+pat, (21)
i=0

holds almost surely.

Assumption 4 is similar to Assumption 1 in the sense that the inequality in Equation (21) places a
restriction on the total number attacks by a certain ratio of the total number of transmission attempts.
The scalar pp in this inequality is an upper-bound on the long-run average number of times the
attacker attacks the network. As pointed out in [25], in the case of jamming, this scalar can be used for
characterizing the energy use of the attacker and it is also related to the jamming rate mentioned in [86].
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Notice that, in the context of jamming attacks, the formulation here corresponds to reactive jamming,
where the attacker knows about the transmission times and directly attacks the network at those times.

It is mentioned in [14] that, in reactive jamming, the attacker monitors the channel and attacks it
when a transmission is detected. This approach differs from active jamming attacks where the attacker’s
goal is to simply prevent the use of a communication channel even if the channel is not currently used.
Furthermore, as mentioned in [87], there are also situations where the attacker can decide to attack
based on the content of packets. Specifically, in selective jamming attacks discussed in [87], a part of
the content of the packet being transmitted can become available to the attacker who can then use
this information to decide whether to send jamming signals to cause failure in the delivery of this
packet. A similar malicious behavior is also seen in multi-hop networks where malicious nodes can
drop certain packets based on their content [88].

Notice that the characterization in Assumption 4 provides a model based on a constraint on
the total number of failures due to DoS attacks and it does not describe particular attack strategies.
In this sense, it differs from the probabilistic attack models (Bernoulli- and Markov-modulated cases)
considered in [34,42], where the attack strategies are described through probability distributions.

The following result from [25] shows that DoS attack indicator processes {/A (i) € {0,1}}icn,
satisfying Equation (21) belong to the class A, for p € (pa, 1].

Proposition 5 ([25]). Suppose {Ia (i) € {0,1} }icn, satisfies Assumption 4 with pa € [0,1). Then, Ix € A,
forany p € (pa, 1]

Interestingly, the combination of non-malicious transmission failures and malicious DoS attacks
can also be modeled with processes that belong to the class A, for certain values of p. To see this,
first let the failure indicator process {I(i) € {0,1} };cn, be given by

1, IR()) =1orlx(i) =1, )
1(i) :{ R(i) =T or Ia(i) i € Np. 22)

0, otherwise,

The following result covers two cases: (1) non-malicious failures and DoS attacks occur
independently, i.e., Ir(-) and I (-) are independent processesl and (2) the DoS attack strategy of the
attacker may depend on non-malicious failures in the network, i.e., Iz(-) and 5 (-) are not independent.

Proposition 6 ([25]). Consider a time-inhomogeneous Markov chain {Iz(i) € {0,1}}cn, with transition
probabilities that satisfy pgo(i) < po and p,1(i) < py, for i € Ny, where pg, p1 € (0,1). Moreover, consider
the process {15 (i) € {0, 1} }ien, satisfying Assumption 4 with ps € [0,1). If Ig(-) and I (-) are independent
processes and p1 + popa < 1, then I(-) given by Equation (22) satisfies | € A, for p € (p1 + popa,1]. If, on
the other hand, Ig(-) and I (-) are not independent processes and p1 + pa < 1, then 1(-) given by Equation
(22) satisfies | € N\, for p € (p1+ pa,1].

The proof of this result utilizes a key lemma (see Lemma A.1 in [25]), where Markov’s inequality
is used for obtaining Chernoff-type tail probability bounds for the term P {Zf;(l) 1(i) > pt} . In the
literature, Chernoff-type bounds are essential in obtaining concentration inequalities for sums of
random variables (see Section 1.9 in [89], Chapter 27 in [90], and [91]).

Notice that in the case where the DoS attack strategy of the attacker may depend on non-malicious
failures in the network, I € A, holds for larger values of p indicating that the average number of failures
in the long run can be larger in that case. Ranges of p values associated with different transmission
issues are illustrated in Figure 5.
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Figure 5. Ranges of p values for the class A,. The ranges are different, when different transmission
issues are considered in the network.

4.1. SINR-Based Probabilistic Jamming Models

The authors showed in [26] that the probabilistic approach to characterization of DoS attacks
proposed in [25] is also useful for modeling jamming attacks in wireless channels. In particular,
transmission failures caused by an energy-constrained jamming attacker can be described by utilizing
an SINR-based model similar to those in [66,80,82]. Specifically, Cetinkaya et al. [26] explored a
networked control problem where the transmission power of the control input packets and the power
of the channel noise are fixed constants. On the other hand, the interference power of the jamming
attacker is allowed to depend on time and represented by the process {v(i) € [0,0)};cn,. The
likelihood of a transmission failure at a given time ¢; depends on the interference power v(7) of the
attacker. If v(i) is large, then a transmission failure becomes more likely.

Our work [26] utilizes a Borel-measurable, nondecreasing function p: [0,00) — [0, 1] to describe
the probability of failures. This function is used in the characterization of the transmission failure
indicator I(i) as

1) £ 1[r(i) < p(o(i)], (23)

where r(7) is a random variable that is uniformly distributed in [0, 1] for each i € Ny. It is important to
observe that Equation (23) implies

PlI(i) = 1fo(i) = 8] = p(8), (24)

that is, the conditional failure probability given that the jamming attacker sets the interference power
to ¥ € [0,00) is represented by p(8). It is assumed that r(0),7(1),... in Equation (23) are mutually
independent so that failures occurring at different times are conditionally independent given the jamming
interference powers at those times. In other words, forevery t) < tp < --- <f, k€N,

B

PlI(t) =1, I(te) = 1o(t) = 01, ,0(t) = 0] = [ [PI(t:) = Lo(t;) = 9].
i=1

In this setup, I(-) becomes a Bernoulli process with transmission failure probability
PI(t) = 1] = p(9),if v(-) is constant with v(i) = ¢,i € Ny.
Note that the function p(-) depends on SINR. For instance, if we consider the wireless channel
2
setup in [66] (see Section 3.2.2), we set p(v) = ZQ( a—* ) where Q(x) £ [Zezds,a >0,

v+02 27
and € (0,00) and 02 € (0, 1) are, respectively, the transmission power and the power of the channel

noise in the SINR —&

v+02’
The energy constraints of the attacker are captured in [26] by means of introducing the following

assumption, which places a bound on the average jamming interference power.
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Assumption 7. There exist scalars x; > 0 and Ty > 0 such that
t—1
P[Y o(i)<x+7t] =1, teN (25)
i=0

In this assumption, 7j > 0 characterizes the long-run upper-bound on the average interference
power that can be utilized by the attacker. Moreover, x; > 0 determines the attacker’s initial capabilities.
More specifically, limsup, ., 25;3 v(i) < 7}, almost surely. Furthermore, } Zf;é v(i) < ? + 9y for
the first t transmission attempts. In [37], we considered a more restricted version of Assumption 7
to study the joint effects of jamming interference and disturbance in networked control systems.
The following result shows that, under Assumption 7, the failure indicator process I(-) defined in
Equation (23) belongs to the class A, for certain values of p.

Theorem 8 ([26,36]). Let p: [0,00) — [0, 1] be a continuous, nondecreasing, and concave function such that
p(v) > p(v) for v € [0,00). Suppose that the transmission failure indicator 1(-) is given by Equation (23),
where the jamming interference power process {v(i) € [0,00) };cn, satisfies Assumption (7) with vy > 0. Then,

L€ Agforp € (p(ay), 1]

Theorem 8 indicates that the probabilistic characterization through the class A, can also be utilized
for wireless channels with SINR-based jamming models. Notice that the term p(7;) provides the lower
bound of the range of p for which I € A, holds. Here, p is a concave function that upper-bounds
the transmission failure probability function p (see Figure 6 for an example), and 7y is the upper
bound of average jamming interference power. Theorem 8 is proved in [26] for the setup where the
processes {r(i) € [0,1]};en, and {ov(i) € [0, 0)};cn, are mutually independent. In the networked
control problem discussed in Section 2.1.1, this assumption restricts the strategies of the attacker so
that they are independent of the state and the control input information. Our recent work [36] shows
that Theorem 8 also holds when {r(i) € [0,1]};cn, and {v(i) € [0, 00) };cy, may depend on each other.
The dependent case allows state-dependent attack strategies. In [36], a state-dependent attack strategy
that maximizes the expected state norm in a rolling-horizon fashion is considered.

-
e
-

0.4 .

0'2"/ ' oo
004 — »(v)

Attacker’s interference power v

Figure 6. The transmission failure probability function p and a concave upper-bounding function p for
an example wireless channel under jamming attacks.

4.2. Multi-Hop Network Models

In addition to SINR-based jamming models, the probabilistic characterization through the class
/A, can be employed for modeling transmission failures in multi-hop networks. A multi-hop network
(similar to those considered on the right diagram in Figure 1) can be represented by a directed
acyclic graph G £ (V, &), where V is the set of nodes, and £ C V x V is the set of edges. Note that
V and &, respectively, represent the set of communication devices and the set of communication
links. On a multi-hop network, data packets are transmitted over paths, which are sequences of
non-repeating edges. Specifically, a path P from a node v; € V to another node v, € V is given as
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P = ((01, v2), (v2,03), ..., (vh_1, vh)). Notice that there may be multiple paths between two nodes,
and, moreover, those paths may be utilized in transmission of the same data.

It is shown in our previous work [27] that the class A, can be utilized in modeling failures on
individual links as well as paths and entire graphs. Specifically, in [27], a network G with source vp
(corresponding to the plant) and sink v (corresponding to the controller) ia considered (see Figure 7).
The paths between nodes vp and v¢ are identified as Py, P, .. ., P‘g‘, where |G| denotes the total
number of paths. Moreover, the individual links on the ith path are denoted as P; 1, Pi», ..., Pi,|7>i|/
where |P;| is the number of links on path P;. Transmission failures on those links can be represented

. . . 4. Pii .. .
by binary-valued failure indicator processes I;,” (-). Similarly, overall failures on each path P; can
be represented with an indicator process Ip, (+), and, moreover, the failures of transmission between

nodes vp and vc on network G can be represented with a binary-values indicator process Ig. Notice
Pi Pi 7>i, P;
that Ig(£) = Lp, (£) Alp, () A+ - Al (£) and I, (£) = 1" (£) VIR (8) V- VI 70 (1),

Path Py
‘ - Packet-dropping malicious nodes

I:‘ Regular nodes

Figure 7. A multi-hop network between the plant (vp) and the controller (v¢c). State measurement
packets on this network are transmitted over two paths P; and P,, which are both subject to malicious
packet-dropping attacks.

The following result is obtained in [27] to show that the class A, can be used for characterizing
the failure indicators for each individual link as well as the paths that include those links.

Proposition 9 ([27]). Suppose 177;’_7" € Ap,, jEAL,...,|Pil}, where p?’j €[0,1andje {1,...,|Pi|}
i ppi/ i

. 7)1' Pi,' . Pi 'P,-’-
satisfy E]‘.:l‘ pp, <L Then, lp, € Ny, with pp, £ Z;:l‘ [
The next result shows that the overall failures on a network G can be characterized with the class
A, where the p value is identified as the minimum of pp, obtained for each path P; on the network §.

Proposition 10 ([27]). Suppose lp, € App, for each path P; where pp, € [0,1]. Then, Ig € Ny, with

A .
PG = Mgy |G|} OP;-

In [27], we present additional results, where more specific models for non-malicious failures and
DoS attacks can be utilized in characterization of the network. It is important to note that in [27], we
provide different methods to handle transmission failures due to data corruption and those due to
packet dropping. In wireless multi-hop networks, data-corruption can be due to jamming attacks on the
communication links, whereas packet-dropping issues are typically due to malicious nodes conducting
blackhole or grayhole attacks (see [9]) and non-malicious routing protocols to avoid congestion.

5. An Overview of Attack-Resilient Control and Communication Techniques

In this section, we provide an overview on some of the recently developed control and
communication techniques that aim to achieve resiliency against DoS attacks. These techniques
rely on the modeling and analysis approaches discussed in previous sections.
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5.1. Resilient Control Approaches

In what follows, we discuss event-triggered control schemes as well as predictor and buffer-based
control frameworks.

5.1.1. Event-Triggered Control

In the literature, one of the most common control strategies used against denial-of-service attacks is
the event-triggered control. In the design and the analysis of event-triggered control schemes, the attack
models presented in Sections 3 and 4.1 are utilized.

In particular, for the continuous-time networked control problem discussed in Section 2.1.2,
De Persis and Tesi [48] provided an event-triggered control mechanism that achieves asymptotic
stabilization under any attack strategy that satisfies Assumptions 1 and 2. In their approach, a
transmission of the state information is triggered when the error between the current state x(f) and the
previously transmitted state exceeds a certain threshold.

It is mentioned in [48] that the event-triggering approach requires continuous monitoring of the
state. Specifically, there is a need to continuously monitor the state x(t) to check if the triggering
condition is satisfied or not. To avoid continuous monitoring, self-triggering approach is helpful. In
the self-triggering approach proposed in [48], the predicted value of the state is used for calculating
the next transmission time f;, 1. Notice that under DoS attacks, some of the transmissions may fail.
The triggering approach in [48] takes into account the status of transmissions. If, for instance, the
transmission attempt at time f; fails, then the next transmission is attempted shortly afterwards.
If, on the other hand, the transmission at time #; is successful, the next transmission can be made after
a longer duration. The parameters of the triggering schemes in [48] are designed to ensure that the
overall control system is stable. Specifically, Lyapunov-function techniques are utilized for obtaining
sufficient conditions concerning the event-triggering parameters that ensure global asymptotic stability
under DoS attacks.

An interesting resilient event-triggered control strategy is proposed in [49]. In one of the scenarios
considered in that work, jamming attacks on a communication channel happen periodically where the
attacker repeats cycles of jamming and sleeping. For such attacks, control and transmission strategy
in [49] can identify the transition times between jamming and sleeping states of the attack; thus, it
allows selection of times where the communication is guaranteed to be successful. As a result, number
of transmission attempts is further reduced.

In addition, event-triggered control of a discrete-time networked control system (see Section 2.1.1)
is explored in our previous works [25,38]. There, a Lyapunov-like function is utilized for determining
the triggering time instants. Specifically, consider V: R" — [0, ) given by V(x) £ xTPx, where P > 0.
The network transmissions are attempted at times ty = 0, and t;, i € N, given by

foq 2 min{t E{T+1,T+2,...}:t>t;+0 or V(Ax(t) + Bu(t;)) > ‘BV(x(ti))}, (26)

where 6 € Nand 8 € [0, 1) are parameters of the event-triggered controller. The triggering condition
V(Ax(t) + Bu(t;)) > BV(x(t;)) guarantees that V(x(t)) stays within certain limits after a successful
transmission at time ¢;. As indicated in Theorem 11, the scalar § can be chosen so that when the
transmission attempt at time ¢; is successful, then the closed-loop system shows stable behavior and
the state goes inside a level set {x € R": V(x) = BV (x(t;))} at the next time instant. This is illustrated
in Figure 8 (left). Furthermore, the next transmission event is triggered only when the state is predicted
to leave this level set. For the example case shown Figure 8 (right), a transmission event is triggered
at time t; + 3. If, on the other hand, the transmission at time #; is unsuccessful (see Figure 8, right),
another transmission may be triggered in the next time instant if V(Ax(t; +1) 4+ Bu(t;)) > BV (x(t;)).
Notice that in this case the state trajectory indicates unstable behavior due to lack of control input in
the system.
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For the probabilistic network characterizations discussed in Section 4, sufficient stability
conditions under the event-triggered control framework in [25] are provided in the following result.

Theorem 11 ([25]). Consider the linear dynamical system in Equation (1). Suppose that the transmission
failure indicator {1(i) € {0,1} }ien, satisfies | € A, with scalar p € [0, 1]. If there exist a matrix K € R™*", a
positive-definite matrix P € R"*", and scalars B € (0,1), ¢ € [1,00) such that

(A+BK)'P(A+ BK) — BP <0, (27)
ATPA — gP <0, (28)
(1-p)Inp+plng <0, (29)

then the event-triggered control law in Equations (3) and (26) quarantees almost sure asymptotic stability of the
zero solution x(t) = 0 of the closed-loop system dynamics.

[ ]
>
“‘. z(t; + 1)
T+ 2)(ti+1) v(ti) z(t;)
3)
{2:V(z) = BV (2(t:)}
{z:V(z) = V(z(t:)}
Successful transmission Failed transmission

Figure 8. Illustration of the event-triggering approach in [25] for the cases of successful and failed
transmissions at time #;. A transmission is triggered at time f;;1 when the state is predicted to
make the move indicated with red dotted lines. In the case of successful transmissions (Left),
the state is guaranteed to stay inside the level set {x € R": V(x) = BV(x(t))} in between two
event-triggering instants.

The scalars § € (0,1) and ¢ € [1, o) in the conditions in Equations (27) and (28) of Theorem 11
characterize upper bounds on the growth of the Lyapunov-like function V(x) = xT Px, when the system
evolves with the closed-loop dynamics (corresponding to a successful transmission) and open-loop
dynamics (corresponding to a transmission failure). Notice that since § < 1and Ing < 0, if p is
sufficiently small, then Equation (29) holds indicating stability. Based on the conditions of Theorem 11,
our work [25] also provides a method for designing the scalar § and the positive-definite matrix P that
are utilized in the event-triggering condition in Equation (26). The proof of Theorem 11 is based on a
technique similar to that used for obtaining upper bounds of top Lyapunov exponents (see [92,93]) of
stochastic dynamical systems. In [28], we provided a less conservative analysis approach based on a
lifting technique. There, the stability of the system is checked by solving a linear programming problem.

5.1.2. Control Frameworks with Predictors and Buffers

To mitigate the effects of DoS attacks in an output-feedback networked control problem, Feng
and Tesi [51] introduced a controller with a predictor and an impulsive observer. In that work, the
output y(t) of the system in Equations (4) and (5) is measured periodically and transmitted over a
network that faces DoS attacks. Moreover, the control input packets are assumed to be transmitted
over a secure network.

In [51], the system dynamics involve disturbance, and the transmitted output measurements
can be noisy. The observer and the predictor at the controller side are designed in a way to ensure



Entropy 2019, 21, 210 22 of 29

that accurate state estimates are obtained at the controller side after a certain number of successful
transmissions. In particular, in the case without disturbance and noise, the state estimate at the
controller matches the actual state if # number of consecutive output measurements can be received at
the controller side, where y € {1,...,n} is the observability index of the pair (e*4, C) with A denoting
the output measurement/transmission period. When y consecutive measurements are not available,
the knowledge of the system dynamics is utilized in the predictor to predict future state values.

For this framework, it is shown in [51] that the closed-loop system stability can be preserved
under any attack strategy satisfying the constraints in Equations (15) and (16), if the scalars pp, pr in
those constraints also satisfy pp + Apr < 1 — (1 — 1) Apg. It is important to note that this condition is
independent of the choice of control gain. Note also that if instead of the output measurements, the
state measurements are sent to the controller (i.e., = 1), then the condition takes the form

This inequality shows that the predictor based approach guarantees stability regardless of the
dynamics of the open-loop and the closed-loop systems.

When the control input packets are transmitted over channels that also face DoS, the right-hand
side of the condition in Equation (30) is replaced by a term that depends on system dynamics. The work
in [50] considers such scenarios, where DoS attacks affect the delivery of both control and measurement
packets. There, a buffer is utilized at the plant side. The controller at each time sends the current control
input together with future control inputs. When there is no DoS attack, the transmitted control input
packets are placed in the buffer so that they can be utilized later when the attacker becomes active and
blocks transmissions. It is shown in [50] that for sufficiently large buffer sizes, the closed-loop stability
can be guaranteed for attacks that satisfy the condition in Equation (30).

5.2. Resilient Communication Techniques

Besides the event-based communication approaches discussed in Section 5.1.1, there are a few
other communication techniques specifically developed for achieving resiliency in multi-agent
consensus as well as in networked state estimation problems. In what follows, we provide an overview
of those protocols.

5.2.1. Self-Triggered and Randomized Communication Techniques in Multi-Agent Consensus

In [71,73], the authors explored the multi-agent consensus problem in Section 2.3, where the
network is subject to jamming attacks. In those works, one of the deterministic attack models discussed
in Section 3.1 is utilized, and a self-triggered communication rule is developed. The utility of the
self-triggered approach is that with self-triggering, inter-agent communications are asynchronous and
agents are not required to possess synchronized clocks. Furthermore, the self-triggered communication
technique provides resiliency against a large class of attack strategies.

In the self-triggered communication technique, the (k + 1)th communication attempt time . 4 for
the agent i is determined based on the information available to agent 7 at time t;. If the i agent knows
its neighbors’ values at time t,, then it uses this information in designing the next communication
attempt time t;; 41+ If, on the other hand, no information is available at t;; (due to jamming attacks),
the ith agent sets the waiting time until #; | ; to be a fixed duration.

The minimum interval between consecutive communication attempts of all agents is given in [71]
by A* > 0. Itis noted in [71] that consensus can be achieved under any attack strategy subject to the
constraints in Equations (15) and (16) with scalars pp and pr that satisfy

pp + A%pp < 1. 31)

The inequality in Equation (31) guarantees that the average duration and the average frequency of
attacks are sufficiently small. Note that, if the attacker can attack at a frequency that is larger than the
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frequency of communication attempts (i.e., pp > é), then the attacker may be able to block all attempts
of communication by the agents. The reason is that the attacker may actually be knowledgeable on the
self-triggered mechanism used by the agents for deciding the times #;. This would allow the attacker
to attack the network directly at those instants for very short durations. In such cases, the attacker can
preserve energy and satisfy Equation (15) for arbitrarily small pp.

To achieve resilient consensus against attacks with high frequency, [72] proposed a randomized
communication strategy. The key idea in the randomized setting is that the agents pick their
communication times randomly (see Figure 9). In particular, each agent i, first picks a deterministic
interval length A! > 0. Then, for each k € Ny, the communication attempt time t;c is selected as
a random variable that is uniformly distributed in the interval [kA?, (k + 1)A?).

145 ] 1 i
Agent 1 M= I } } ———>
—5 Al K 2AL T
fig 117 t2
Agent 2 : F—— — : >
s AT a7, 3A?
Agent 3 | - —t >
DoS DoS 2° DoS
Attacker +—e . ’ o oo »
0 ag ap+ 71 a1 a1+ T a2 ag+ 1o
Time [t]

Figure 9. Illustration of the randomized communication protocol, where each agent attempts
communicating with its neighbors at random time instants. At time instants denoted inside rectangles
with green dashed borders, the communication attempts can avoid DoS attacks.

Randomized transmissions prevent the attacker to know about future communication attempt
times of agents. It is shown in [72] that consensus in the randomized communication setting is achieved
if the attack constraint in Equation (15) holds with pp that satisfy

op < 1. (32)

In other words, the randomized communication approach guarantees consensus under any attack
strategy that is only constrained in its average duration as in Equation (15) regardless of its frequency.

5.2.2. Fake Acknowledgement Messages in State Estimation

In a networked state estimation problem, an interesting communication technique was considered
by Ding et al. [65]. In the problem formulation, Ding et al. [65] considered an estimator that attempts
to transmit state estimates to a remote receiver over an insecure wireless channel. The decision to
attempt transmission or not is made by the estimator in a stochastic fashion by setting a probability
value 65(t) € [0,1] such that a transmission attempt at time f is made with probability 65(t).

When a transmission attempt is made at time ¢, it is not guaranteed that it will be successful due
to the jamming attacks on the channel. The likelihood of a transmission failure is determined based on
the power level of the jamming interference signal emitted to the wireless channel by the attacker at
that time instant.

The goal in [65] is to minimize the time-averaged variance of the estimation error. To this
end, Dingetal. [65] proposed the idea of generating a fake acknowledgement message sequence
{¢(t) € {0,1}};en. Instead of sending real acknowledgements, the receiving node follows the
fake acknowledgement sequence and sends back to the sensor acknowledgement messages that
are possibly misleading for the attacker. For instance, if ¢(t) = 1, the receiving node sends a positive
acknowledgement indicating that a packet is successfully received, even if no packet is received at
time t. Under certain assumptions on the jamming interference powers, the work [65] derives the
optimal transmission attempt probabilities {65(t) } ;< as well as the optimal fake acknowledgement
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message sequence {¢(t)};cn that minimizes the time-averaged variance of the estimation error. It is
shown that fake acknowledgements improve the estimation performance.

5.2.3. Design of Routing Protocols to Ensure Security Against DoS

As discussed in [94,95], denial-of-service can be a big problem in the delivery of packets
in multi-hop networks. To increase the resilience of multi-hop networks against attacks, several
works proposed routing protocols. In particular, for the case of mobile ad hoc networks (MANET),
where the network topology is time-varying, the authors of [12,96,97] developed routing protocols
that can avoid certain attacks. In the protocol developed in [12], each node keeps a list of weights
for its communication links, and these weights are utilized for detecting faulty /attacked links and
discovering reliable communication paths. Sanzgiri et al. [96] showed that authentication based
techniques with cryptographic certificates can be utilized for detection of malicious and faulty nodes.
Moreover, Bianchi et al. [97] proposed a routing mechanism that is based on identifying potentially
cooperating malicious nodes that launch blackhole attacks in a multi-hop network. In the context of
multi-hop networked control, the detection of malicious nodes and their isolation is explored in [45,46].

We note that, in addition to the attack-resilient control and communication techniques discussed
above, there are also a few works that focus on denial-of-service attack detection in control systems.
In particular, the authors of [63,98] discussed threshold-based attack detection mechanisms, and the
analysis of transmission failure patterns to distinguish strategic attacks and non-malicious failures
was explored by Cetinkaya et al. [26]. In addition, Ali et al. [99] recently considered methods from
information technologies for detecting and mitigating distributed DoS attacks against networked
control systems.

6. Conclusions

In this paper, we present an overview of the literature on denial-of-service attacks in control
systems. In particular, we present a list of problems considered by researchers in the fields of
networked control, networked state estimation, and multi-agent consensus. We provide a discussion
on deterministic and game-theoretic approaches to modeling attacks on networks. We then focus
on a probabilistic approach for characterizing the attacks in wireless channels as well as multi-hop
networks. The notion of constraints can be considered as a common theme that connects the different
modeling approaches. In particular, the cost of attacks and the energy available to the attacker play a
role in most of the derived models. We discuss the utility of these models for analyzing the security of
existing systems as well as for developing new attack-resilient control and communication techniques.

It appears that the detection problem for DoS attacks can be an interesting future research topic in
control-system studies. Thus far, this problem has been explored in only a few works, and we think
that some of the techniques from information technologies can be useful in investigation of DoS attack
detection and mitigation problems in control systems if the dynamical properties of the system can
also be taken into account.

As more and more control systems are expected to incorporate wireless technologies, it seems
that the risk of DoS will also increase, making cyber-security of control systems against DoS an even
more important research field.
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