o ey z
<@ sustainability ﬂw\p\py

Article

An Adaptive Emergency First Intelligent Scheduling
Algorithm for Efficient Task Management and
Scheduling in Hybrid of Hard Real-Time and Soft
Real-Time Embedded IoT Systems

Sehrish Malik 10, Shabir Ahmad 1@, Israr Ullah 10, Dong Hwan Park 2 and DoHyeun Kim Lx

1 Computer Engineering Department, Jeju National University, Jeju-si 63243, Korea;

serrym29@gmail.com (S.M.); shabir@jejunu.ac.kr (S.A.); israrullahkk@yahoo.com (I.U.)
Electronics and Telecommunications Research Institute, Daejeon-si 34129, Korea; dhpark@etri.re kr
* Correspondence: kimdh@jejunu.ac.kr; Tel.: +82-64-754-3658

check for
Received: 6 March 2019; Accepted: 9 April 2019; Published: 12 April 2019 updates

Abstract: Industrial revolution is advancing, and the augmented role of autonomous technology and
embedded Internet of Things (IoT) systems is at its vanguard. In autonomous technology, real-time
systems and real-time computing are of core importance. It is crucial for embedded IoT devices
to respond in real-time; along with fulfilling all the constraints. Many combinations for existing
approaches have been proposed with different trade-offs between the resources constraints and tasks
dropping rate. Hence, it highlights the significance of a task scheduler which not only takes care of
complex nature task input; but also maximizes the CPU throughput. A complex nature task input
is when combinations of hard real-time tasks and soft real-time tasks, with different priorities and
urgency measures, arrive at the scheduler. In this work, we propose a custom tailored adaptive
and intelligent scheduling algorithm for the efficient execution and management of hard and soft
real time tasks in embedded IoT systems. The proposed scheduling algorithm aims to distribute
the CPU resources fairly to the possibly starving, in overloaded cases, soft real-time tasks while
focusing on the execution of high priority hard real-time tasks as its primary objective. The proposal
is achieved with the help of two intelligent measures; Urgency Measure (UM) and Failure Measure
(EM). The proposed mechanism reduces the rate of tasks missed and the rate of tasks starved, by
utilizing the free CPU units for maximum CPU utilization and quick response times. We have
performed comparisons of our proposed scheme based on performance metrics as percentage of task
instances missed, number of tasks with missed instances, and tasks starvation rate to evaluate the
CPU utilization. We first compare our proposed approach with multiple traditional and combined
scheduling approaches, and then we evaluate the effect of intelligent modules by comparing the
intelligent FEF with non-intelligent FEF. We also evaluate the proposed algorithm in contrast to the
most commonly-used hybrid scheduling scheme in embedded systems. The results show that the
proposed algorithm out performs the other algorithms, by significantly reducing the task starvation
rate and increasing the CPU utilization.

Keywords: Real-time tasks; task scheduling; embedded IoT systems; periodic tasks; event-driven tasks

1. Introduction

Lately, manufacturing has been observed to be alive with quite a lot of new fields e.g., the
4th industrial revolution, connected devices, industry 4.0, connected factories, smart factories, and
Internet of Things (IoT) embedded devices. Nowadays we are standing on the verge of technological
insurgency that is going to change our ways of living and working. This change, with the revolution

Sustainability 2019, 11, 2192; doi:10.3390/su11082192 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0003-2312-4420
https://orcid.org/0000-0002-8788-2717
https://orcid.org/0000-0001-5548-1743
http://www.mdpi.com/2071-1050/11/8/2192?type=check_update&version=1
http://dx.doi.org/10.3390/su11082192
http://www.mdpi.com/journal/sustainability

Sustainability 2019, 11, 2192 2 of 21

in industry 4.0, will be dissimilar to anything human beings have experienced earlier in terms of
its complexity and efficiency. The number of IoT applications is accelerating in many areas; mainly
smart cities, smart factories, smart homes, healthcare surveillance, smart industrial control, and smart
environment monitoring. With the drastic increase in smart applications and the generation of tons
of data every second, decision making is of vital importance in smart machines and systems [1].
Recent advancements in autonomous technology and embedded systems make real-time systems and
embedded IoT devices a prominent area of research and development. In real-time embedded devices,
software and hardware systems are subjected to many constraints and these embedded devices need
to respond within specified time constraints or deadlines. Hence, the embedded devices should be
facilitated with smart decision-making capabilities at the task scheduler; so that scheduler can best
decide the order of tasks to be run and the best use of available resources.

Real time systems are either hard real-time systems or soft-real time systems. If the tasks in the
system have firm deadlines the system is considered a hard real-time system with the strict constraint
of tasks executing before their deadline. If the tasks in the system have soft/flexible deadline then the
system is referred to as a soft real-time system. Some examples of hard real-time system are avionics,
nuclear power plants systems, and anti-lock braking systems for automobiles; while some examples
for soft-real time system are multimedia streaming and automated windshield wipers. [2].

1.1. Task Scheduler and Scheduling Policy

A task scheduler, for a hard or soft real-time embedded device system, arranges algorithms
according to a stated order of tasks execution. A scheduling algorithm determines the way tasks are to
be processed by the scheduling system. For a real-time scheduling system, in generic conditions, a
deadline, description, and an identifier are attached to each task. The elected scheduling algorithm
decides how to assign priorities to a particular task. Preemptive and non-preemptive scheduling
algorithms are commonly used algorithms in scheduling analysis. A real-time system might consist of
event-driven tasks, periodic tasks or a combination of both. Periodic tasks have regular arrival times
while event-driven tasks have irregular arrival times.

The objective of the real-time task scheduling is to determine an order of running these tasks on
the processor. Scheduling is performed by a module called scheduler, which mainly aims to maximize
the throughput and fairness while minimizing the mean waiting and response time of the tasks. When
implementing a scheduler, it becomes very hard to ensure all these requirements at a single time. If
the real-time system is a hard real-time system, then the task’s deadline becomes one of the most
important factors, as a task must complete before its deadline. Other priorities might include a task’s
period, arrival time, slack, or any user-defined priority. Hence, in the real-time systems, the task
scheduling mainly focuses on scheduling the tasks based on their priorities. To achieve this purpose, a
scheduling policy is designed for any given scenario [3,4]. It is not always possible to meet the required
deadline; hence further verification of the scheduling algorithm must be conducted or a scheduling
policy must be defined. A scheduling policy is an approach which delves into the arrived set of tasks at
the processor and selects the best candidate for execution; depending on different priority factors. The
goal of scheduling the algorithms can diverge from situation to situation; there are many scheduling
algorithms proposed in the literature, each having its own set of goals. These goals include fairness,
efficiency, response time, and throughput. Fairness among tasks can be designated as giving the equal
share of CPU’s unit time to all the current or existing tasks queued to be scheduled. Allocating CPU
resources to the tasks, with respect to total workload and priorities associated with the tasks at the
current time, are also some of the factors considered under fairness of the task scheduler.

In priority-based scheduling policies, an important concept is to avoid task starvation. Starvation
can be defined as preventing a task from completing its execution for a longer time because the CPU
resources are allocated to some other task. A best scheduler is one, which also competes to save the
lower priority tasks from the starvation along with taking care of all the priorities. Hence, we can
conclude that, the primary objective of a scheduling algorithm is to decide the order in which tasks are

Sustainability 2019, 11, 2192 3of 21

to be executed at the processor so that minimum number of tasks is deprived of the CPU resources
while maximum of the defined goal is achieved. A scheduler may aim at one or more of many goals,
depending on the scenarios and scheduling priorities.

1.2. Challenges in Embedded lIoT Systems

The term RT-IoT is getting recognition in embedded IoT systems [2,5], as it refers to real-time
systems in IoT. RT-IoT devices often have limited resources and require control tasks to be executed
within milliseconds. A RT-IoT system can be soft real-time system, hard real-time system or a
combination of both. In scenarios where an RT-IoT embedded system has input tasks with deadlines
of both natures, as hard deadline tasks and soft deadline tasks, then the system can be termed as a
hybrid of hard and soft real-time IoT embedded systems.

When the sensing interval is too short and scheduler gets bombarded with periodic sensing data
tasks or a series of events occur back to back and the scheduler gets bombarded with loads of event
driven tasks. In such cases, in embedded IoT systems the tasks with soft deadlines are often starved
due to heavy load at the scheduler end. Since IoT systems have limitations in terms of processing,
memory and storage. As loT systems are constrained with limited resources, hence allocation of
separate scheduling servers is not always an affordable option.

Therefore, a scheduler, that allocates its resources in a best possible manner in emergency cases
and puts best effort in avoidance of unnecessary starvations of tasks with soft deadline, is very crucial.

1.3. Solution Approach

We aim to design a scheduling algorithm for such hybrid RT-IoT system, where our proposed
scheduling mechanism aims to meet the deadline for hard real-time tasks efficiently while making its
best effort to minimize any delay/loss in execution of soft-real time tasks in heavy load scenarios.

In this paper work, we present a scheduling algorithm which proposes a novel solution for the
real-time task input in embedded IoT systems, giving flexible parameter setting options in UM (Urgency
Measure) and FM (Failure Measure), in order to consider all the system constraints for embedded lIoT
systems of different nature, and minimizing the starvation rate of the tasks. The proposed scheduling
algorithm is adaptive and flexible; it makes best effort to meet the real-time deadlines, gives priority to
the high-priority tasks, while also focusing to avoid starvation of the low priority tasks. Our proposed
algorithm makes use of basic ANNs for optimal prediction of next step of processor in task scheduling
and for using available resources wisely.

The rest of the paper is structured as follows. In Section 2, we present the literature review. In
Section 3 we present the proposed methodology for the hybrid real-time task scheduler for embedded
IoT systems. Section 4 we present the simulation and implementation of our scheduling visualization
toolkit. Section 5 performs the comparisons analysis and Section 6 presents the discussions section.

2. Related Work

2.1. Traditional Scheduling Approaches for Real-Time and Non-Real Time Systems

There are many basic traditional scheduling algorithms with each offering some priority-based
scheduling. The most simple and fair policy for non-complicated scenarios is First Come First Serve
(FCFS) or First In First Out (FIFO). It queues the processes in the order they arrive at the processor
and are executed accordingly. Many human services follow this approach, e.g. on cashier counters
in department stores or shops, serving of food at the restaurants, or taking orders [6]. Shortest Job
First/Next (SJF or SJN) is another simple approach, its main idea is to queue the tasks with one with
the least estimated execution time first and so on. To implement this strategy, we should have the
knowledge of execution time of each job in advance [7]. Highest priority first policy is a way to first
assign priorities to the jobs and then execute accordingly. The one with the highest priority will be
executed first. The scheduler will arrange the processes in the ready queue in order of their priority and

Sustainability 2019, 11, 2192 4 of 21

also the lower-priority processes get interrupted by new arrived higher-priority processes. Least Laxity
First (LFF) is a dynamic priority assignment scheme. It executes the jobs by calculating the remaining
times and relative deadline of each job. It calculates the laxity for each job, which can be defined as the
difference between deadline and remaining execution time. The Modified Least-Laxity-First (MLLF)
scheduling algorithm proposes to reduce the number of context switches in the LLF, aiming to achieve
high system performance. The one with minimum remaining difference at a given unit time will be
executed [8]. Round Robin (RR) is a scheduling policy in which each job is executed for a small amount
of time and then the CPU is given to the next job and this continues in a cycle. The small amount of
time to run this cycle is pre-defined [9].

Usually the inputs to real-time system are of either periodic nature or event-driven nature.
The most common approach for scheduling periodic tasks is Rate-Monotonic (RM) where tasks are
scheduled with respect to their periods while the most common approach adopted for the event-driven
tasks is Earliest Deadline First (EDF) where a task’s deadline is taken as priority; the nearer a task’s
deadline is, the earlier it should be executed. For the implementation of rate-monotonic, each job
must have a period value assigned to it as rate monotonic is a scheduling algorithm for periodic tasks.
Deadline monotonic (DM) is an alteration of rate-monotonic, in rate-monotonic the deadline value is
equal to the period value but in deadline monotonic the deadline can be smaller than the period and
deadline monotonic follows the fixed priority depending on the deadline of jobs [10-13].

2.2. Customized Scheduling Approaches for Real Time Systems

Maximum Urgency First (MUF) executes the tasks based on their criticality, giving high priority
to the tasks with maximum urgency. Urgency is defined by criticality, user priority and laxity of a
task. All the tasks in the critical set are given high critical level and executed first and tasks out of
critical set are given low critical level and executed later [14]. The behavior of classical RM and EDF is
equated in [15], as these two have the most renowned scheduling algorithms for real-time applications.
Comparison results have shown that EDF provides better CPU utilization and quick responsiveness as
compared to RM and hence a better option for embedded systems.

Time-stepped load balancing (TLS) is a real-time scheduling algorithm that generates a load
balancing schedule table, based on execution periods, for input set of time stepped simulations. With
each change in the input model set, the table is changed dynamically. TLS saves around 4% processor
resources over EDF with four times less jitter [16]. Smoothed Least Laxity First (sLLF) is an extension
of LLF which finds a threshold for a task to be completed by minimizing its laxity and maximizing the
feasibility edge. It has been proposed for deciding the charging rates for EVs (Electric Vehicles) [17].

The problem of scheduling stabilized control tasks on embedded devices is being revisited in [18].
A simple event triggered scheduler is being explored which is based on the feedback criterion, it
presents a guaranteed execution of tasks and better performance keeping the periodic execution
requirements at the same time. In embedded devices, leakage energy consumption is observed to be an
accelerating concern. In this study [19], a special tasks scheduling technique, known as procrastination
scheduling, is being introduced. As name suggests here, tasks’ execution is being delayed in order to
expand the duration of idle intervals. It also minimizes the leakage energy drain. The objective of
minimization of energy consumption for both static and dynamic; has been achieved by focusing on
the dynamic slack reclamation methods under procrastinating scheduling. The idle intervals between
tasks are elongated through dynamic procrastination.

A scheduling policy for reliable execution in autonomic systems is proposed in [20]; the proposed
technique uses different decision models and provides a demonstration of Markov decision model’s
application on a multi-threaded system model.

The work presented in [21] surveys data traffic scheduling techniques and provides a comparison
among priority queuing (PQ), first-in-first-out (FIFO) and weighted fair queuing (WFQ). The aim
of the work is to find most suitable data traffic scheduling scheme which ensures QoS (Quality of
Service) over 5G mobile networks. The work in [22] presents a data traffic slicing model, and provides

Sustainability 2019, 11, 2192 5o0f 21

comparison among various packet traffic scheduling techniques such as PQ, FIFO, and WFQ in the 5G
mobile based on the data traffic slicing model.

An autonomic fault tolerant scheduling approach for scientific workflows in cloud computing is
presented in [23]. The proposed solution provides a hybrid heuristic for scheduling problem and a
fault tolerant technique using virtual machine migration approach for tackling the task failure problem.

Many other scheduling policies are proposed in the previous works by altering the existing
ones and adding new constraints to enhance performance [24-29]. A best scheduling policy can be
one, which maximizes the benefits of all the existing scheduling approaches while minimizing the
drawbacks. In the next section we propose our designed general-purpose scheduling algorithm, which
aims to combine the best of all in order to maximize the CPU utilization.

3. Methodology for Intelligent Scheduling Algorithm

In this section, we present our proposed methodology for the proposed real-time task scheduling
in hybrid of hard real-time and soft real-time embedded IoT systems. We name our proposed scheduler
as FEF (Fair Emergency First) scheduler.

The proposed scheduling algorithm considers scenarios where some of the input tasks are of hard
deadline and some are of soft deadline. It aims to schedule IoT systems in scenarios where the system
is loaded with tasks of different nature of deadlines and different priorities.

The proposed scheduler is designed for different scenarios in IoT systems. In IoT environments,
mostly tasks data is of two types as periodic and event driven data. The periodic tasks in IoT
environment get the sensor readings, after set interval time, from the sensors installed in the smart
place and pass the readings onto the system for further processing. While the event driven tasks are
triggered in response to some set behavior. In our supposed scenarios, the event driven tasks are of
highest priority as they are one-time tasks and triggered to indicate some set abnormal behavior by the
system. In table below, we provide examples of event driven tasks from smart homes, smart vehicles
and smart health management scenarios (see Table 1).

Table 1. Example scenarios of event-driven tasks in Internet of Things (IoT) environments.

IoT Environment Emergency Nature Event Driven Tasks
Smart Homes Smoke Alert, Fire Alert, Security threat Alert
Smart Vehicles Hurdle detected, Route change alert
E-Health Fall detection, abnormal BP, abnormal heart rate

We have two input type tasks as event-driven tasks and periodic tasks sub-categorized into four
types as shown in Table 2 below along with their deadline types. Since in smart IoT environments, some
of the event-driven tasks are of emergency nature as mentioned in Table 1. These emergency nature
tasks are tagged as urgent event-driven tasks with the hard deadline. Next are the non-emergency
nature event driven tasks, which can either have soft deadline or hard deadline. Priority periodic tasks
are the tasks which arrive at the scheduler at regular interval and hold importance as they might carry
some important flow of the system. The priority periodic tasks have hard deadlines. Normal periodic
task is a task which has less priority as compared to the priority periodic tasks and has a soft deadline
most of the times but can also have a hard deadline in some scenarios. Dividing the tasks into different
types, though two sub-types might have same deadline type; helps in understanding the nature and
context of incoming task in the smart environments. Also, context-based division of task type brings
ease of understanding task dependencies based on contextual scenario learning.

Sustainability 2019, 11, 2192 6 of 21

Table 2. Input tasks type and deadline Categorization for IoT environments.

Task Type Deadline Type

Urgent Event driven task Hard deadline
Normal Event driven task Soft/Hard Deadline

Priority Periodic Tasks Hard Deadline
Normal Periodic Tasks Soft/Hard Deadline

When the sensing interval is too short and scheduler gets bombarded with periodic sensing data
tasks or a series of events occur back to back and the scheduler gets bombarded with loads of event
driven tasks. For such cases, in IoT systems the soft deadlines are often missed, and with our proposed
scheduler, we aim to best allocate the CPU resources to the available tasks while trying to minimize
high loss of soft deadlines, or starvation of any low priority task with soft deadline.

3.1. Fair Emergency First Task Scheduler

The proposed FEF scheduling algorithm, strives to run the high priority and urgent tasks first
while utilizing the free CPU chunks for other low priority tasks hence consuming the CPU time as
efficiently as possible in the given input scenarios.

We have four types of tasks defined in our system as normal event-driven tasks, urgent event-driven
tasks, normal periodic tasks and priority periodic tasks. Event-driven tasks are either normal event-driven
tasks or with urgency tags. The urgent event-driven tasks (ETs) have a default priority, as they are
triggered in high emergency cases. Normal event driven tasks are ones which should be executed any
time before deadline, while urgent event driven tasks are the tasks which should be executed as soon as
they arrive. Periodic tasks have a priority with respect to their period. The priority periodic tasks must
execute before their deadline as they have hard deadlines. Also, any task with additional urgency or a
priority task is considered with a hard deadline, and must execute on time. In ideal scenarios the scheduler
must meet all deadlines, while in overloaded scenarios the tasks with soft deadlines might starve or miss.
The proposed algorithm, FEF also makes sure to keep the priorities and urgency measures as flexible
for the user as possible; as the periodic tasks can also be prioritized over event-driven tasks, if required.
Our algorithm focuses on execution of the task by set priorities, obedience of deadlines, lowering the
starvation rate for low priority tasks with soft deadlines, and maximizing the CPU utilization (Figure 1).

Extract all arrived tasks in the queues at time Ti.
IF urgent event-driven tasks exist
Run the task with nearest deadline
ELSIF (non-urgent event-driven task exists AND there’s no periodic task) THEN
Run the non-urgent event-driven task with nearest deadline
IF (non-urgent event-driven tasks exist AND periodic tasks exist) THEN
IF (priority periodic task exists) THEN run the priority periodic task
Calculate UM
IF (UM = 0) THEN run the periodic task
ELSE mun the event-driven task
ENDIF
ELSIF (only periodic tasks are there to un) THEN
Calculate FM
IF (FM = 0) THEN
Run starving task/about to miss task
ELSE
Run the high priority periodic task
ENDIF
ENDIF
ENDIF

Update History_Log

Figure 1. Pseudo-code for Fair Emergency First (FEF) algorithm.

Sustainability 2019, 11, 2192 7 of 21

In the Figure 2 below, the running state of the tasks at the scheduler is shown. During the task
scheduling our system will have to choose which task to run depending on many existing factors at
the given time. The system can have four types of tasks and run them based on their priority and
availability order. The priority order followed is same as explained in FEF algorithm above.

! MNed taskin ready quene

High Priority Interruption

ST Ready

UET: Urgant Event Driven Task NET: Normal Evert Divean Task
PPT: Prionity Pariodic Task 5T: Starving Task

Figure 2. State diagram for task running states of Fair Emergency First (FEF) algorithm.

We have two ANN learning based components, Failure Measure (FM) and Urgency Measure (UM),
which is calculated during the running of online scheduling to help in making an informed and learned
decision by the scheduler. Figure 1 shows the flow for the proposed task scheduler FEF algorithm.

3.2. Urgency Measure (UM)

UM is calculated between the normal event-driven tasks and periodic tasks, trying to decide
whether to execute normal event-driven task first or the periodic task first.

Urgency means priority of a task to be executed at first, assuming that the task is of such urgent
nature, that it should be executed as soon as it arrives. Such tasks are to be tagged with the mark of
urgency so that scheduler can distinguish them from other tasks. The first thing to check at scheduler
is, whether the event-driven task arrived is with the urgency tag or not. If an urgent event-driven task
is arrived then scheduler runs it right away. If no urgent event-driven task is arrived then slack for the
available periodic tasks and normal event-driven tasks is calculated. Slack is the difference between
required execution time and deadline of a task. Equation 1 below is used to evaluate whether normal
event driven task should run first or a starving periodic task.

Slack (ET) >= x x (Slack(PT)) 1)

Sustainability 2019, 11, 2192 8 of 21

Where, x is set as 2 initially and learned gradually using ANNs with passage of time as the tasks flow
in the system and data history gets created. The aim is to predict a value for x which results in a safe
and beneficial distance between the slack of non-urgent event driven tasks and periodic tasks.

In the initial phase of the deployment, the system is recommended to use the value of x as 2,
which is set as a safe start after testing different starting values of x. Once the system starts receiving
data tasks, and executes them on the scheduler, the system in parallel builds its history containing time
stamp, number of tasks at current time stamp along with type and priorities, slack associated with
each task at current time stamp, and the missing rate of tasks at the current time stamp (Figure 3). The
purpose of building history log is to enable system to learn from its previous decisions. It is an effort to
make the scheduler intelligent. So, initially the system would start like any regular scheduler but with
the growth of system, the system will learn from history log based on the value x in Equation (1).

History_Log -

Time Stamp Elgi‘tcﬁdisui le—
No. of ET — Setx__ _
No. of PT
Event Slack Previous x Lrdated x
Periodic Sack

2 Trmymg DB
ET Missing Rate 15__... ANN

PT Missing Rate

Figure 3. Learning of X in Urgency Measure (UM). ET: event-driven task; PT: Preemption Threshold.

If Equation (1) is true then UM is set as 0, indicating no urgency of executing normal event-driven
tasks; else it is set as 1, indicating that normal event-driven task should be executed first else it
might miss the deadline in the longer run. When the value of UM is set to 0, gives a fair chance for
some low priority tasks to run in between, as those might miss the deadline in the longer run due to
task starvation.

3.3. Failure Measure (FM)

FM is calculated between the available periodic tasks; it helps to decide whether to run the high
priority periodic tasks first or if it is safe to run some starving low priority task. Failure measure is
calculated to make sure that if at a time “t”, scheduler runs a low priority starving task first, then it
will not cause any high priority periodic task miss its deadline eventually. For calculation of failure
measure, the scheduler will use the knowledge of all the arrived tasks at the processor along with
history logs, and does not require any information about future tasks.

High Priority Task Execution Prediction is a function which predicts, the safe execution possibility,
for all the high priority tasks in case of running the starving task first. The function uses the history log
in order to make predictions using ANNs (Figure 4).

Sustainability 2019, 11, 2192 9 of 21

I— At time Ti |
l Sum Execution Times |
History_Log 4: Farthest Deadline :
funeStamp Curmrent Sacks
Cuoverdt Factors I |
MNo.otPT | | 1 @ = __ _ __ _ _ __
Periodic Slack I ________ '|
PT Missing Rate I High Priority Tasks |
> Execution Prediction
Farthest Deadline »
Ii'ﬂumlgDB I | o1
FM Value | " bl ’

Figure 4. Prediction for high priority tasks’ safe execution.

It calculates each task’s slack, checks each task’s execution time status (execution time completed,
execution time left), and removes overlapping times to predict safe execution of each task in the future
based on the current information and history log. When considering a low priority task to run, this
function learns from history log whether running the low priority task in given constraints might fail
some high priority task in the future or not. If the function predicts that it is safe to run the low priority
task based on available information at current time £, then the function returns 1 else it returns 0. If the
function returns 1 then the value for FM is set to 0 and low priority starving tasks are executed as a
result, else the value for FM is set to 1 and high priority periodic task is executed as a result. Hence FM
value set as 0 indicates that CPU has enough resources to be allocated to the low priority starving tasks
at the given moment (Figure 5).

Extract all arrived tasks in the queues at time Ti
Sum up the execution time for all the available tasks at the current time.
Calculate the difference between current time and farthest deadline in all available tasks.

IF (|HighPrioritvTaskExecutionPrediction () = 1))

FM == ...f { Chances of failure are near to 0Learning results positive
ELSE

FM == /{ Chances of failure are near to lLearning results negative
ENDIF
IF FM =0

Execute low priority (starving) task
{f Chances of faihure are near to OLeaming results positive
ELSE
Execute high priority perdodic task
/{ Chances of failare are nearto 1Leaming results negative
ENDIF

Figure 5. Pseudo-code for Failure Measure (FM).

The output predicted by the function based on current information can also fail in case of the
arrival of some unexpected urgent tasks in the future, since, the complete knowledge of the future
tasks is not available in the real-time scheduling except for the ones already at the scheduler, periodic
tasks which repeat themselves after certain period of time and history log. For some cases it is wise to

Sustainability 2019, 11, 2192 10 of 21

keep some CPU chunks free; if system can’t afford any such loss at all. For such scenarios we have
defined a variable named “Reserved”.

Reserved is an integer value aiming to reserve a number of CPU units for an unexpected urgent
task arrival. The value is learned as the tasks in the system grow.

3.4. Preemption Bit (PB) and Preemption Threshold (PT) (Worst Case Scenario)

Now at last, we consider the worst-case scenario where majority of the tasks arriving are high
priority tasks, then according to the priority policy, a low priority task cannot preempt an urgent
event-driven tasks. So we introduce a PB (Preemption Bit) for the cases where system is overloaded
with the urgent event-driven tasks, and assuming that it is mandatory to run a periodic task after
certain amount of time even if it means interrupting the urgent event-driven task. The PB is added to
the periodic tasks, and a PT (Preemption Threshold) value is set to limit maximum starvation time in
such cases. If PB of a periodic task is 1, then once the PT is reached, the periodic task can preempt the
running task and execute itself. The value for PT can be varied depending on the load of the CPU and
nature of the periodic tasks.

4. Simulation of Proposed Scheduling Algorithm Based on Embedded Environments

In this section we present the implementation of our task scheduler and visualization tool. In
Section 4.1, we discuss the implementation setup. Section 4.2 describes the input task model. In the
Section 4.3, we present the overview of our implemented task simulation and visualization tool.

4.1. Implementation Setup

We have used python for implementing the core programming logic of the proposed task
scheduling algorithm. Python is a very popular general-purpose programming language; widely
used for developing desktop based and web-based applications. We have designed a web-based task
simulation visualization tool using flask, which is an MVC-based framework (Section 4.3). In the
experimentation phase, we have tested our built task scheduler on both, a general PC system and an
embedded IoT system (Tables 3 and 4).

Table 3. Implementation environment for Windows.

System Component Value
Operating System Windows
CPU Intel ®Core ™ i5-4570 CPU at 3.20 GHz
Primary Memory 8 GB
Programming Language Python 3

Table 4. Implementation environment for raspberry PI-embedded system.

System Component Value
Hardware Raspberry Pi 3 Model B
Operating System Raspbian
Memory 1GB
Server Flask Webserver
LED, Fan, Temperature Sensor, Humidity Sensor, Motion
Resources Sensor, Breadboard, Expansion Board, Connecting wires,
e-Health Sensor Platform
Libraries GPIO, CSVReader, Jinja Template, Bootstrap 3, HTML 5/CSS3
IDE Vim, PyCharm (Remote Access)

Programming Language Python 3

Sustainability 2019, 11, 2192 11 of 21

4.2. Input Tasks Notation

One of the most important steps is to design and implement the input model. We plan to perform
our performance analysis based on two phases. In the first phase, we custom design the input task
model, which is a combination of periodic and event-driven tasks. While for the second phase, we
generate the input task model randomly consisting on both periodic and event-driven tasks. Basic
task parameters in the input task model are arrival time, execution time, deadline, and period (for
periodic tasks). Arrival time is the time when the task arrives at the processor. Execution time is the
time, which a task needs from CPU to complete itself. Deadline is the time limit within which a task
should complete its execution. Period is a time cycle after which a task will arrive again. Table 5 shows
the criteria for the implementation of input tasks.

Table 5. Basic task parameter’s selection criteria.

Task Parameter Criteria

Period Should not be prime number ideally except a feasible one like 5, so that hyper-period is not too
long. Can pre-define a list and assign one by one or randomly e.g., {4, 5, 6, 10, 12, 15}
Deadline D=P or D=P/2
Rand (0, min (D, P)). Selecting a number between 0 and deadline of task. Execution time is greater
than 0 and less than deadline.
Start time 0

Execution Time

4.2.1. Periodic Tasks Set Notation

In the case of periodic tasks, the instances of a periodic task regularly arrive after a set period.
Periodic tasks are real-time tasks with a constraint of having the period greater than zero, which means
that after a certain amount of time the tasks instance must repeat. Usually, periodic tasks have two
states; inactive and runnable. Inactive is the state when the task has not yet arrived at the processor
and runnable is the state when the task has arrived again after a certain period and is waiting to run.

A periodic task with its ith periodic execution is denoted as following.

Tp (i) = [ID;, AT;, ET;, Dj, P;, PB] ()

Where, Tp denotes the periodic task instance, ID is the identifier of a periodic task, AT is the arrival
time of a periodic task, ET is the execution time of a periodic task, D is the deadline of a periodic
task, P is the period of a periodic task, PB is the preemption bit associated to a periodic task, PB =1
indicates periodic task can preempt the high priority tasks in case of starvation for a set PT (Preemption
Threshold), and PB = 0 indicates periodic task cannot preempt any high priority task.

4.2.2. Event-Driven Tasks Set Notation

An event-driven task is programmed to activate when an event occurs, it can handle any input at
any moment. Event-driven tasks have two sub-categories of urgent event-driven tasks and flexible
event-driven tasks, these sub-categories help in making the system more flexible. In case of urgent
event-driven tasks, tasks should be executed as soon as they arrive at the processor, they cannot wait in
the queue. On the other hand, flexible event-driven tasks can afford to wait in the queue but they must
also be executed before the deadline. Event-driven tasks have three basic states; inactive, runnable and
suspended. Inactive state is when the event to generate the task has not occurred yet, runnable state is
when the event is generated and the task is waiting to run, and suspended state is when the event
source is triggered off.

An event-driven task with its ith execution is denoted as following.

Tg (l) = [IDi, e, ATI‘, ETi, D,‘, UB,'} (3)

Sustainability 2019, 11, 2192 12 of 21

Where, T, denotes the event driven task instance, ID is the identifier of an event-driven task, e is
the event that triggers an event-driven task, AT is the arrival time of an event-driven task, ET is the
execution time of an event-driven task, D is the deadline of an event-driven task, UB is the urgency bit
of an event-driven task, UB = 1 indicates task is urgent and should be executed ASAP and UB =0
indicates non-urgent event-driven tasks.

4.3. Tasks Set

We have gathered tasks sensing data from temperature sensor, humidity sensor, motion sensor,
pressure sensor, and e-Health sensor platform for values of ECG and Pulse. The e-Health sensor
platform allows user to monitor and record real-time health data for ten different sensors installed on
it [30]. The control tasks are generated for two actuators in the system as fan and LED. In the Table 6
below, we give the tasks along with their priority tag and description.

Table 6. Tasks set.

Task Name Task Tag Description
Get Temperature Normal Periodic Task Reads the temperature value from temperature sensor.
GET Humidity Normal Periodic Task Reads the humidity value from humidity sensor.
Motion Status Priority Periodic Task Gets the motion status of set area in smart space.
Pressure Status Priority Periodic Task Gets the pressure value from sensor.
Get ECG Priority Periodic Task Gets the ECG value from e-Health platform.
Get Pulse Priority Periodic Task Gets the Pulse value from e-Health platform.
Control Fan Normal Event Driven Task Control command task for fan (E.g. turn on/ turn off)

Control command task for LED (E.g. turn on turn off/

Control LED Urgent Event Driven Task Blink for set time period)

As shown in the Figure 6, the tasks are divided into three main categories as sensing tasks,
actuator tasks and system tasks. In sensing tasks, we have tasks for getting the sensing values from
sensors which are periodic tasks. In sensing tasks, we have two normal periodic tasks as GetTemp,
GetHumid and four priority periodic tasks as MotionStatus, PressureStatus, GetECG, and GetPulse.
The two control tasks are LED control and fan control, which are generated in result to different sensing
thresholds. Fan control is normal event driven task for the given two cases and LED control is urgent
event driven task for the given four cases. The only system task is notification message, which is
normal event driven task when generated for normal event driven control tasks and urgent event
driven task when generated for urgent event driven control tasks.

4.4. Real-Time Tasks SchedulingSimulation and Visualization Toolkit

In order to simulate the scheduling and visualize the output, we have reused our previously built
task scheduling simulation and visualization toolkit [5]. It is an IoT task simulator, proved to be one
of best among the existing state-of-art scheduling and visualization tools. Our proposed scheduling
mechanism’s logic is implemented at the back end while using the referred visualization tool at front
end user interface. Figure 7 below shows the CPU timeline visualization output screen for the proposed
scheduling algorithm.

Sustainability 2019, 11, 2192 13 of 21

»| Fan Control Normal Event Driven |
GefTenp | NormalPerodicl = |
Task ol Noti Normal Event Driven Sensing Tasks
p| Notify Msg
Task | _______ -
I GetTemp :
»| Fan Control | ¥ormal Event Driven | | GetHumid |
Normal Periodic (T — _
GetHumid — = -
Task pl 1o Normal Event Driven | | MotionStatus !
Ll (ﬂ.fy_MSg Task |- 2 —_—_—_—_—_—_—_—_!
| | PressureStatus :
i‘— —_——————
e e — —
) Priority Periodic e ~
| Actustor Tasks
Fooptqlisnpde __ LT K
e ST O | S
e
e -
| | LEDControl !
GetECC PﬂmtT";l:flc'ilc || _ |
__ | S
| | Notify Msg |
Pulee | FHoTY Petiodic -
Figure 6. Tasks flow along with their category and priority tags.
Fair Emergency First
General Summary CPU Timeline
0.0~1.0 1.0~2.0 2.0~3.0 3.0~4.0 4.0~5.0
Tasks Timeline Empty task11#5728 task4#5794 task4#5794 task12#8808
5.0~6.0 6.0~7.0 7.0~8.0 8.0~9.0 9.0~10.0
task12#8688 task12#8708 task12#9551 task12#2565 task12#4423
Completed Tasks
10.0~11.0 11.0~12.0 12.0~13.0 13.0~14.0 14.0~15.0
Missed Tasks 15.0~16.0 16.0~17.0 17.0~18.0 18.0~19.0 19.0~20.0
task12#2092 task12#4896 task12#9797 task12#2388 task12#9254

Output 20.0~21.0 21.0~22.0 22.0~23.0 23.0~24.0 24.0~25.0
task12#2301 task12#9763 task12#6745 task12#9894 task12#9205

Figure 7. Web-powered visualization toolkit—CPU timeline.

5. Results Analysis

In this section we present results analysis of our proposed task scheduling algorithm in detail.
Section 5.1 is evaluated both on general purpose PC system and embedded IoT system while Sections 5.2
and 5.3 is performed only for embedded IoT system.

Our tested scenario for the smart environment task scheduling is combination of smart home
scenario and e-health scenario for the smart home residents (Figure 6). The data is taken from sensors
after set intervals, based on which the tasks are generated. The considered intervals are 10 seconds, 5

Sustainability 2019, 11, 2192 14 of 21

seconds, 1 second, 500 milliseconds, and 100 milliseconds. For the extensive testing, we have tested
the scheduler system with 100 and 500 milliseconds interval of tasks load along with event generation
of 2 seconds and 3 seconds for multiple scenarios. Our proposed algorithm FEF has two main variable
parameters as Reserved and PT, to be set depending on the system conditions or requirements. In
Section 5.1, we set Reserved = 1 for our simulations; as we wanted to use maximum slack time in order
to increase CPU utilization. While in Section 5.2, we set Reserved = 3; as here our focus is to compare
constrained embedded IoT system scenarios and we aim to keep our preemption rate lower. For the
same reasons, we have kept PT = 10 for the Section 5.1 and PT = 20 for the Sections 5.2 and 5.3.

All the tasks scheduling simulations are performed, in Sections 5.1-5.3 are, under overloaded
scenarios of tasks load; which mean the scheduler is bombarded with heavy loads of tasks arriving at
the scheduler. The aim is to evaluate the best allocation of the resources by the scheduler, in order to
execute the hard-deadline tasks within deadline and in parallel also accommodate a larger number of
soft deadline tasks in heavy load scenarios.

5.1. Comparison Analysis with Traditional Algorithms

In this section, we compare our proposed FEF scheduling algorithm with some of the traditional
and combined scheduling algorithms such as EDF, RR, LLF, DM, Quantum based (Sharing time based
on wait time, sharing time based on CPU time) scheduling, EDF based on zero laxity, POSIX 1003
Highest Priority, and MUFE.

In Figure 8, the output comparisons of missed instances for the performance analysis on the
proposed scheduling algorithm are shown. The task set is run on ten different algorithms, and our
proposed FEF scheduling algorithm. The output graph in the figure shows the percentage of task
instances missed by each algorithm for the given input. Event-driven tasks arrive once with no
repeating instances; while in the case of periodic tasks, instances are repeated after certain period and
hence percentage of total instances missed, during the simulation time, is taken out for the comparisons.
FEF shows the best results, in comparison to other algorithms, with maximum CPU utilization as it
misses minimum number of task instances in the given scenario. Some of the basic scheduling policies
seem to have very high missing rate, as they only focus on one or two parameters, instead of taking into
account all the scheduling parameters and developing scenario. For example, time sharing and CPU
sharing, strictly allocate the resources on turns without paying attention to deadlines and priorities.
Hence, in an overloaded scenario where maximum tasks’ instances missing rate could be about 68%,
as seen for some scheduling approaches in the figure below, the proposed mechanism managed to
reduce it to 21% with an intelligent handling of CPU resources. Since the scenario is of tasks’ overload
at the scheduler; the loss of instances to some extent is inevitable as load is greater than total available
capacity. A better management of tasks at the scheduler can accommodate the load in a best possible
manner; and save many tasks from missing deadlines.

Sustainability 2019, 11, 2192 15 of 21

Percentage of Tasks' Instances Missed in Overload Scenario

20

o
g 70

]

= a0
§ 50

g

E 30

s
g‘:' 20

% 10

) o

o - £y & & & X3 > ~
vﬁé OQ‘S & n"bQ ‘k-cﬂ‘ ‘5&% «:f‘f u“&s‘ cﬁs \'sé
g,@bn ‘{.é . F ¥ Ga"‘b '-9‘“ (} ,}}" \f\ ’ “E}{,
g o g @F & bg*‘ o ";«. ¢r_‘1
‘65- x & & £ g F &
S S &
& &

‘t}'@ @S" 6‘0 « & ‘i-';&

9 &+ & e Y

g & i & F

q;*"“ & 3 &

Figure 8. Percentage of total tasks’ instances missed.

In Figure 9, the comparisons of tasks’ starvation rates between the proposed FEF scheduler and
other scheduling algorithms are depicted. The starvation rate, shown in the figure above for multiple
algorithms counts the total weightage of the urgent and non-urgent event-driven tasks missed, priority
periodic tasks and normal periodic tasks which never ran even a single instance and priority periodic
and normal periodic tasks with many missed instances. Whereas, for our proposed algorithm the
starvation rate comprised of only soft deadline tasks as non-urgent event driven tasks and normal
periodic tasks. FEF shows the lowest starvation rate with an average of around 10% while the next
closest is almost double the proposed FEF scheduling algorithm. The results indicate that proposed
algorithm uses CPU time in the most careful manner, putting its best efforts to maximize output.

Comparison of Soft Real-TimeTasks' Starvation Rate in
Overload Scenario

Tasks Starvation Rate in "sage
[vl] H LA Cad s
o wm o unm g [=T B =]
. I
&
"2 I
|
“
,;.
> I
r
r 3
|
- I
~ I
|
||

& &
't‘ .Q,v a &‘ &“ ¢ &
@”ﬁb ~$’p sf & & & & F xﬁ" <«
5 o & d d o 2 &
& o X & L B > &
ol & & &~ <F F <%
P& T T
2
& ‘s"& & o ;é"
o \'F' .':SL &
& < 5 &

Figure 9. Average starvation rate comparison between FEF and other algorithms.

In the overload scenario results provided in the Figures 8 and 9, the proposed FEF scheduler,
though missed 10% of the tasks, did not miss any hard-real time task. The proposed FEF scheduler

Sustainability 2019, 11, 2192 16 of 21

makes a tradeoff between soft real time tasks and hard real time tasks in such overload scenarios, as
hard real time tasks are crucial to run on time in real-time systems.

5.2. Priority Bit’s Effect for Periodic Tasks

In this section, we observe the effect of priority bit’s addition to the periodic tasks. We test and
compare the scenarios where the processor is loaded with majority of urgent event-driven tasks. Since
our proposed algorithms gives best results in comparison to other algorithms, but worst case can be
when the processor is flooded with the urgent event-driven tasks. In such case according to basic
definitions, urgent event-driven task should be executed right away without giving any other task
a chance to execute itself. However, in the scenarios where some periodic task has to be executed
after certain time period, and has some maximum limit of being missed or delayed, we introduced
PB (Preemption Bit) for the periodic tasks. The periodic task with its PB value as 1 can run after a
starvation period of specified PT (Preemption Threshold) value.

The Figure 10a shows the output of the scenario when PB is set to 0, in comparison to the case
shown in Figure 10b where PB is set to 1. When PB is set as 0, the urgent event-driven tasks will keep
running one after another and the periodic tasks will be left starving for the CPU resources. On the
other hand, when PB is set to 1 then once the periodic task passes the threshold of starvation, processor
will preempt the urgent event-driven task and allocate the CPU resources to the periodic task with
preemption bit set as 1. Hence, for any case where some important period update is must to be made
after certain amount of time, FEF gives better options and results.

Rea-Time Task Output Without Periodic Real-Time Task Qutput With Periodic
Priority Bit Priority Bit

Perindic Perindic b rmomm

Event b -
0 10 il 30 40 50 &0 0 10 0 30 40 50 &0
CPU Timeline Output With FE=1

Event

CPU Timeline Output With PE =0
(a) (b)

Figure 10. (a) Event-driven loaded scenario without preemption bit (b) event-driven loaded scenario
with preemption bit.

5.3. Comparison Analysis with Scheduling Algorithm for Embedded Systems

In this section, we make the comparisons between our proposed intelligent FEF scheduling
algorithms with a non-intelligent FEF implementation. The proposed algorithm without machine
learning modules in UM and FM is referred as non-intelligent FEF. For the non-intelligent
implementation, we set the x in UM constant at 2 and the FM between the periodic tasks is eliminated
resulting in execution of high priority periodic task first.

The comparison of intelligent FEF with non-intelligent FEF is presented in Figure 11. It shows
the comparison of task starvation rate and average instances missed rate for task instances. We can
observe a significant increase in the starvation rate and instances missed rate for the non-intelligent
FEF. Hence, the learning modules inclusion in the proposed methodology plays a vital role in the
overall performance of the scheduler for overloaded scenarios.

Sustainability 2019, 11, 2192 17 of 21

Intelligent FEF vs. Non-Intelligent FEF

B Non-Intelligent FEF M Intelligent FEF

Task Starvation Rate

Average Instances Missing Rate

0% 5% 10% 15% 20% 25% 30% 35% 40%

Figure 11. Performance comparison of FEF with and without ANN learning module.

We also compare the proposed scheduler with commonly used combined scheduling policy for
embedded IoT systems. Most of the real-time embedded IoT systems use priority-based scheduling
algorithms such as LINUX and QNX based real-time embedded IoT systems follow scheduling
algorithms with high priority first with FIFO and RR [31]. VxWorks, a real-time operating system
designed for embedded IoT systems uses pre-emptive priority-based scheduler as default scheduler
along with option of RR scheduler and user defined custom scheduler [32]. The priority scheduler
follows 256 priority levels, same as used in Windows CE too [31]. We have implemented a combined
approach of scheduling scheme followed in embedded systems to make comparisons with our proposed
FEF scheduling scheme. The combined approach implemented is a combination of preemptive
priority-based time sliced scheduling (8256 priority levels) and in case of same priority it applies FIFO
and RR scheduling.

In Table 7 we present the comparison results, performed under heavy loads scenarios, between
proposed scheduler and hybrid priority-based scheme. The number of tasks completing within
deadline shows that how many tasks out of total successfully executed before deadline while success
rate shows the percentage of successful completion. Starvation rate minimized shows the difference of
success rate between the combined implemented approach and the proposed FEF scheduling approach.
It is evident from the comparisons that the proposed FEF scheduling scheme makes a fair effort to
increase CPU utilization and throughput.

Table 7. Comparison between combined scheduling scheme and FEF.

Priority based (8-256 priority levels)

followed by FIFO and RR Scheduling Fair Emergency First (FEF) Scheduling

Starvation Rate

No. of Tasks No. of tasks No. of tasks Minimized (%)
Completing Success Rate (%) Completing Success Rate (%)
within deadline within deadline
40 31 77.5 34 77.5 7.5
80 55 68.75 61 68.75 7.5
120 83 69.16 92 69.16 7.51
160 121 75.62 129 75.62 5
200 154 77 166 77 6
240 188 78.33 204 78.33 6.67
280 223 79.6 242 79.6 6.82
320 249 77.8 272 77.8 7.2
360 293 81.3 321 81.3 7.86

400 315 78.75 349 78.75 8.5

Sustainability 2019, 11, 2192 18 of 21

Figure 12 shows the result comparisons for worst case execution times intelligent FEF,
non-intelligent FEF and hybrid priority algorithm. Hybrid priority in the figure above refers to
the priority-based (8-256 priority levels) followed by FIFO and RR scheduling algorithm used in the
embedded systems. We can observe that the WCET for non-intelligent version is very close to the
WCET for hybrid priority, whereas the intelligent FEF scheduling algorithm has very low execution
time in such scenarios.

Worst Case Execution Time's Comparisons

w=g==Intelligent FEF Non-Infelligent FEF s Hy'brid Priority

Execution Time (ms)

560 TTTTIT T I T T T P TP I T T T T T I e T T T T eI I T T I T I T T AT T I TP T T T I T I T I T I I T T I rrIroIrTrl

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 8 89 93 97
Tasks' ID

Figure 12. Worst case execution time (WCET).
6. Discussions

Asin this work, we aimed to propose an intelligent real-time scheduling algorithm which best suits
the combination hard real-time and soft real-time embedded IoT systems. The proposed scheduling
algorithm aims to schedule the hard real-time tasks efficiently while makes its best effort to save soft
real time tasks from starvation in heavy load scenarios. Hence, the proposed scheduler is strict hard
real-time system for the hard real-time tasks input and a best effort soft real-time system for the soft
real-time tasks input.

Through our extensive literature review, we realized the importance of an adaptive and flexible
scheduling algorithm, which can take combination (hard deadline and soft deadline) real-time tasks’
set as input with different priorities and urgency factors and give the best possible solution for the
general-purpose systems as well as for the embedded IoT systems. We aim to best allocate the CPU
resources to the available tasks while trying to minimize high loss of soft deadlines, or starvation of any
low priority task with soft deadline. Hence, we proposed an algorithm, named as Fair Emergency First
(FEF) consisting of two intelligent components as Urgency Measure (UM) and Failure Measure FM).
The proposed algorithm gives first preference to the urgent and high priority tasks and at the same
time tries to save the low priority tasks from unnecessary starvation by implementing fair division of
CPU resources among all the tasks. In our proposed scheduling scheme, both the measures introduced
(UM and FM), use ANNSs to best predict the next move of the scheduler. Moreover, in our proposed
approach we also introduced factors such as Reserved, PB and PT; giving a full independence across
different system environments and constraints, to tune scheduling according to different scenarios.

For the performance analysis, we first compared our proposed approach with multiple traditional
and combined scheduling approaches, and then we evaluated the effect of intelligent modules by
comparing the intelligent FEF with non-intelligent FEF. We also evaluated the proposed algorithm in
contrast to the most commonly used hybrid scheduling scheme in embedded systems. The results
of the performance analysis show a significant reduction in the number of tasks starved in FEF as

Sustainability 2019, 11, 2192 19 of 21

compared to other algorithms as well as in the number of task instances missed in FEF as compared to
algorithms. In comparison with hybrid approach for embedded IoT systems; under strict constraint
of less preemption, a significant reduction in task starvation is observed. The proposed algorithm
provides the maximum utilization of available resources along with high performance. In scenarios,
where only the hard real-time tasks are loaded on the scheduler, the proposed would act as a firm
real-time scheduler; whereas when the proposed scheduler will be given combination inputs then
it will act as a savior for soft deadline tasks too and also put efforts in lowering the starvation rates.
Hence, our proposed intelligent scheduling algorithm is a best fit for real-time tasks scheduling in
embedded IoT systems with a combination of both hard real-time and soft-real time scenarios.

Our proposed approach uses ANNSs for better resource allocation prediction by the scheduler.
One of the limitations of the proposed approach is that it needs some time to gather enough history
logs for the training purposes. Though, the scheduler performs reasonably best at the initial stages too,
as seen in the non-intelligent implementation of the FEF algorithm. Applications where the scheduling
system is to be deployed for long periods; the addition of learning modules will be of great use with the
passage of time as the system will learn from its scheduling decisions. On the other hand, if scheduling
system is to be deployed for a brief amount of time then the system might not get enough chance to
make use of learning modules to their full potential.

Author Contributions: Data Curation, S.M.; Formal Analysis, S.M.; Funding Acquisition, D.K.; Investigation, S.A.
and I.U.; Methodology, S.M.; Resources, D.K.; Software, S.A.; Supervision, D.K.; Validation, S.M.; Visualization,
S.M. and S.A.; Project management, D.H.P,; Writing—original draft, S.M.; Writing—review and editing, I.U. and
D.K.

Funding: This work was supported by Institute for Information & communications Technology Promotion (IITP)
grant funded by the Korea government (MSIT) and ITRC (Information Technology Research Center) support
program supervised by the IITP.

Acknowledgments: This work was supported by Institute for Information & communications Technology
Promotion (IITP) grant funded by the Korea government (MSIT) (No.2017-0-00526, Development of Intelligent IoT
System capable of cooperation and learning between things in movement-free environment), and this research
was supported by the MSIT(Ministry of Science and ICT), Korea, under the ITRC(Information Technology
Research Center) support program(IITP-2019-2014-1-00743) supervised by the IITP(Institute for Information
& communications Technology Planning & Evaluation). Any correspondence related to this paper should be
addressed to DoHyeun Kim.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lytras, M.D.; Raghavan, V.; Damiani, E. Big data and data analytics research: From metaphors to value space
for collective wisdom in human decision making and smart machines. Int. J. Semant. Web Inf. Syst. 2017, 13,
1-10. [CrossRef]

2. Chen, C.Y.; Hasan, M.; Mohan, S. Securing real-time internet-of-things. Sensors 2018, 18, 4356. [CrossRef]
[PubMed]

3. Audsley, N,; Burns, A. Real-time System Scheduling. 1990. Available online: http://citeseerx.ist.psu.edu/viewdoc/
download;jsessionid=82FC9A6552D388204F29755A A44C970F?d0i=10.1.1.29.4929&rep=rep1&type=pdf
(accessed on 20 January 2019).

4. Mohammadi, A.; AKl, S.G. Scheduling Algorithms for Real-Time Systems; Tech. Rep; School of Computing
Queens University: Kingston, ON, Canada, 2005.

5. Ahmad, S.; Malik, S.; Ullah, L; Park, D.H.; Kim, K.; Kim, D. Towards the Design of a Formal Verification and
Evaluation Tool of Real-Time Tasks Scheduling of IoT Applications. Sustainability 2019, 11, 204. [CrossRef]

6. Schwiegelshohn, U.; Yahyapour, R. Analysis of first-come-first-serve parallel job scheduling. SODA 1998, 98,
629-638.

7. Arpaci-Dusseau, R.H.; Arpaci-Dusseau, A.C. Operating Systems: Three Easy Pieces. Available online:
https://www.usenix.org/system/files/login/articles/login_spring17_02_arpaci-dusseau.pdf (accessed on 11
April 2019).

http://dx.doi.org/10.4018/IJSWIS.2017010101
http://dx.doi.org/10.3390/s18124356
http://www.ncbi.nlm.nih.gov/pubmed/30544673
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=82FC9A6552D388204F29755AA44C970F?doi=10.1.1.29.4929&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=82FC9A6552D388204F29755AA44C970F?doi=10.1.1.29.4929&rep=rep1&type=pdf
http://dx.doi.org/10.3390/su11010204
https://www.usenix.org/system/files/login/articles/login_spring17_02_arpaci-dusseau.pdf

Sustainability 2019, 11, 2192 20 of 21

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Ramamritham, K.; Stankovic, J.A. Scheduling algorithms and operating systems support for real-time
systems. Proc. IEEE 1994, 82, 55-67. [CrossRef]

Oh, S.-H.; Yang, S.-M. A modified least-laxity-first scheduling algorithm for real-time tasks. In Proceedings
of the Fifth International Conference on Real-Time Computing Systems and Applications, Hiroshima, Japan,
27-29 October 1998.

Lehoczky, J.; Sha, L.; Ding, Y. The rate monotonic scheduling algorithm: Exact characterization and average
case behavior. In Proceedings of the Real-time Systems Symposium, Santa Monica, CA, USA, 5-7 December
1989; pp. 166-171.

Audsley, N.C; Burns, A.; Richardson, M.E,; Wellings, A.]. Deadline Monotonic Scheduling; University of York,
Department of Computer Science: York, UK, 1990.

Stankovic, J.A.; et al. Deadline Scheduling for Real-Time Systems: EDF and Related Algorithms; Springer Science
& Business Media: Berlin/Heidelberg, Germany, 2012; Volume 460.

Chetto, H.; Chetto, M. Some results of the earliest deadline scheduling algorithm. IEEE Trans. Softw. Eng.
1989, 15, 1261. [CrossRef]

Stewart, D.B.; Khosla, P. Real-time scheduling of sensor-based control systems. IFAC Proc. Vol. 1991, 24,
139-144. [CrossRef]

Buttazzo, G.C. Rate monotonic vs. EDF: Judgment day. Real-Time Syst. 2005, 29, 5-26. [CrossRef]

Wu, Y,; Song, X.; Gong, G. Real-time load balancing scheduling algorithm for periodic simulation models.
Simul. Model. Pract. Theory 2015, 52, 123-134. [CrossRef]

Nakahira, Y.; Chen, N.; Chen, L.; Low, S.H. Smoothed Least-laxity-first Algorithm for EV Charging.
In Proceedings of the Eighth International Conference on Future Energy Systems, Hong Kong, China, 16-19
May 2017; pp. 242-251.

Tabuada, P. Event-triggered real-time scheduling of stabilizing control tasks. leee Trans. Autom. Control 2007,
52,1680-1685. [CrossRef]

Jejurikar, R.; Gupta, R. Dynamic slack reclamation with procrastination scheduling in real-time embedded
systems. In Proceedings of the 42nd annual Design Automation Conference, Anaheim, CA, USA, 13-17
June 2005.

Tidwell, T.; Glaubius, R.; Gill, C.; Smart, W.D. Scheduling for reliable execution in autonomic systems.
In International Conference on Autonomic and Trusted Computing; Springer: Berlin/Heidelberg, Germany, 2008;
pp- 149-161.

Dighriri, M.; Alfoudi, A.S.D.; Lee, G.M.; Baker, T.; Pereira, R. Comparison data traffic scheduling techniques
for classifying QoS over 5G mobile networks. In Proceedings of the 2017 31st International Conference on
Advanced Information Networking and Applications Workshops (WAINA), Taipei, Taiwan, 27-29 March
2017; pp. 492-497.

Dighriri, M.; Lee, G.M.; Baker, T. Applying Scheduling Mechanisms Over 5G Cellular Network Packets
Traffic. In Third International Congress on Information and Communication Technology; Springer: Singapore, 2019;
pp. 119-131.

Bala, A.; Chana, I. Autonomic fault tolerant scheduling approach for scientific workflows in Cloud computing.
Concurr. Eng. 2015, 23, 27-39. [CrossRef]

Eker, J.; Hagander, P; Arzén, Ka. A feedback scheduler for real-time controller tasks. Control Eng. Pract.
2000, 8, 1369-1378. [CrossRef]

Marzario, L.; Lipari, G.; Balbastre, P.; Crespo, A. Iris: A new reclaiming algorithm for server-based real-time
systems. In Proceedings of the Real-Time and Embedded Technology and Applications Symposium, Toronto,
ON, Canada, 25-28 May 2004; pp. 211-218.

Cho, H.; Ravindran, B.; Jensen, E.D. An optimal real-time scheduling algorithm for multiprocessors.
In Proceedings of the Real-Time Systems Symposium, Rio de Janeiro, Brazil, 5-8 December 2006.

Buttazzo, G.C.; Bertogna, M.; Yao, G. Limited preemptive scheduling for real-time systems. a survey. IEEE
Trans. Ind. Inform. 2013, 9, 3-15. [CrossRef]

Huang, W.-H.; Chen, Ji.; Zhou, H.; Liu, C. PASS: Priority assignment of real-time tasks with dynamic
suspending behavior under fixed-priority scheduling. In Proceedings of the 52nd ACM/EDAC/IEEE Design
Automation Conference (DAC), San Francisco, CA, USA, 8-12 June 2015; pp. 1-6.

http://dx.doi.org/10.1109/5.259426
http://dx.doi.org/10.1109/TSE.1989.559777
http://dx.doi.org/10.1016/S1474-6670(17)51285-9
http://dx.doi.org/10.1023/B:TIME.0000048932.30002.d9
http://dx.doi.org/10.1016/j.simpat.2015.01.001
http://dx.doi.org/10.1109/TAC.2007.904277
http://dx.doi.org/10.1177/1063293X14567783
http://dx.doi.org/10.1016/S0967-0661(00)00086-1
http://dx.doi.org/10.1109/TII.2012.2188805

Sustainability 2019, 11, 2192 21 of 21

29.

30.

31.

32.

Ayele, A.A.; Rao, V.S,; Dileep, K.G.; Bokka, R.K. Combining EDF and LST to enhance the performance of
real-time task scheduling. In Proceedings of the International Conference on ICT in Business Industry &
Government (ICTBIG), Indore, India, 18-19 November 2016; pp. 1-6.

Cooking Hacks. e-Health Sensor Platform. 2015. Available online: https://www.cooking-hacks.com/
documentation/tutorials/ehealth-biometric-sensor-platform-arduino-raspberry-pi-medical (accessed on 15
December 2018).

Urunuela, R.; Déplanche, A.-M.; Trinquet, Y. Storm a simulation tool for real-time multiprocessor scheduling
evaluation. In Proceedings of the IEEE Conference on IEEE Emerging Technologies and Factory Automation
(ETFA), Bilbao, Spain, 13-16 September 2010; pp. 1-8.

Chéramy, M.; Hladik, P-E.; Déplanche, A.-M. SimSo: A simulation tool to evaluate real-time multiprocessor
scheduling algorithms. In Proceedings of the 5th International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS), Madrid, Spain, 8 July 2014.

@ © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.cooking-hacks.com/documentation/tutorials/ehealth-biometric-sensor-platform-arduino-raspberry-pi-medical
https://www.cooking-hacks.com/documentation/tutorials/ehealth-biometric-sensor-platform-arduino-raspberry-pi-medical
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Task Scheduler and Scheduling Policy
	Challenges in Embedded IoT Systems
	Solution Approach

	Related Work
	Traditional Scheduling Approaches for Real-Time and Non-Real Time Systems
	Customized Scheduling Approaches for Real Time Systems

	Methodology for Intelligent Scheduling Algorithm
	Fair Emergency First Task Scheduler
	Urgency Measure (UM)
	Failure Measure (FM)
	Preemption Bit (PB) and Preemption Threshold (PT) (Worst Case Scenario)

	Simulation of Proposed Scheduling Algorithm Based on Embedded Environments
	Implementation Setup
	Input Tasks Notation
	Periodic Tasks Set Notation
	Event-Driven Tasks Set Notation

	Tasks Set
	Real-Time Tasks SchedulingSimulation and Visualization Toolkit

	Results Analysis
	Comparison Analysis with Traditional Algorithms
	Priority Bit’s Effect for Periodic Tasks
	Comparison Analysis with Scheduling Algorithm for Embedded Systems

	Discussions
	References

