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Abstract 13 

We examine the performance of the two rank order correlation coefficients (Spearman’s rho 14 

and Kendall’s tau) for describing the strength of association between two continuously 15 

measured traits. We begin by discussing when these measures should, and should not, be 16 

preferred over Pearson’s product moment correlation coefficient on conceptual grounds. For 17 

testing the null hypothesis of no monotonic association, our simulation studies found both 18 

rank coefficients show similar performance to variants of the Pearson product-moment 19 

measure of association, and provide only slightly better performance than Pearson’s 20 

measure even if the two measured traits are non-normally distributed. Where variants of the 21 

Pearson measure are not appropriate, there was no strong reason (based on our results) to 22 

select either of our rank-based alternatives over the other for testing the null hypothesis of no 23 

monotonic association. Further, our simulation studies indicated that for both rank 24 

coefficients there exists at least one method for calculating confidence intervals that supplies 25 

results close to the desired level if there are no tied values in the data. In this case, Kendall’s 26 

coefficient produces consistently narrower confidence intervals, and might thus be preferred 27 

on that basis. However, as soon as there are any ties in the data, no matter whether this 28 

involves a small or larger percentage of ties, Spearman’s measure returns values closer to 29 

the desired coverage rates; whereas Kendall’s results differ more and more from the desired 30 

level as the number of ties increases, especially for large correlation values.   31 

 32 

 33 

Keywords: confidence interval, null hypothesis testing, Pearson’s product moment 34 

correlation coefficient, power, statistics, type 1 error 35 
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Highlights  37 

 Kendall’s and Spearman’s coefficients measure monotonic (not linear) association. 38 

 For testing the null hypothesis of no association both measures work well.  39 

 Methods are highlighted for effective confidence interval construction for both.  40 

 Ties in data do not affect hypothesis testing 41 

 Ties in the data adversely affect construction of Kendall’s confidence intervals.   42 
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Introduction  43 

It is common in statistical analysis to want to explore and summarise the strength of 44 

association between two continuously measured traits on a number of experimental units. In 45 

a recent publication (Puth, Neuhäuser & Ruxton, 2014) we argued that Pearson’s product-46 

moment correlation coefficient () can often offer an effective description of linear association 47 

even when the traditional assumption that the underlying distribution being sampled is 48 

bivariate normal is violated. Specifically we demonstrated effective methods for calculating a 49 

confidence interval for  and for testing the null hypothesis that  is equal to any specified 50 

value. However, as classically defined, the Pearson’s product-moment correlation coefficient 51 

is a parametric measure, and two nonparametric measures of association in common use 52 

are the Spearman rank order correlation coefficient  𝑟𝑠  and Kendall’s rank correlation 53 

coefficient . In 2013, 47 papers published in Animal Behaviour used Spearman’s measure; 54 

10 papers used Kendall’s measure. Of these 57 papers only five discussed the motivation for 55 

selecting the measure used rather than Pearson’s measure. Here we will discuss when such 56 

methods might be preferred over Pearson’s product-moment correlation coefficient, and 57 

which of these alternatives performs best in different circumstances. We will do this both in 58 

the context of testing the null hypothesis of no association and of calculation of a confidence 59 

interval for the population value of these measures. First we briefly define the two measures. 60 

 61 

Spearman rank order correlation coefficient (rs) 62 

The Spearman rank correlation coefficient is equivalent to Pearson’s product-moment 63 

correlation coefficient performed on the ranks of the data rather than the raw data. 64 

Specifically, assume that we measure two traits X and Y on each of n subjects. Let xi be the 65 

rank of the measurement of X taken on the ith individual; yi being defined similarly. Identical 66 

values (ties) are assigned a rank equal to the average of their positions in the ascending 67 

order of the values. Then average ranks 𝑥̅ and 𝑦̅ are equal to (n + 1)/2 and 68 
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𝑟𝑠 =

∑ {(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)}𝑛
𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1 √∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1

.
 

Simpler formulations are possible for the case where there are no ties, but this method works 69 

in generality. This formulation will yield a value -1 ≤ rs ≤ 1.The higher the absolute value of rs 70 

the stronger the association between the two variables. Positive values suggest that higher 71 

values of one variable are associated with higher values of the other variable; whereas 72 

negative values suggest that higher values of one are associated with lower values of the 73 

other.  74 

 75 

Kendall’s rank correlation coefficient () 76 

If we compare two measurement units from our sample (indexed i and j), then any pair of 77 

observations (xi,yi) and (xj,yj) are said to be concordant if the ranks for both elements agree: 78 

i.e. if both (xi > xj and yi > yj) or if both (xi < xj and yi < yj). They are said to be discordant, if (xi 79 

> xj and yi < yj) or if (xi < xj and yi > yj). If (xi = xj and/or yi = yj), the pair is neither concordant 80 

nor discordant.  81 

 82 

For a sample of size n there are n0 unique unordered pairs of observations where n0 = 83 

0.5n(n-1). Let nc be the number of these pairs that are concordant and nd the number of 84 

discordant pairs. In the simple case where there are no tied ranks then  is simply given by  85 

 86 

𝜏 =
𝑛𝑐−𝑛𝑑

𝑛0
. 87 

 88 

Where there are ties, a number of different formulations have been suggested, by far the 89 

most commonly used is termed b.  For the quantity X, there will be a number (p) of groups of 90 

unique ranks less than or equal to n. Let ti be the number of tied values in the ith group, we 91 

then define n1 as follows: 92 
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  93 

𝑛1 = 0.5 ∑ 𝑡𝑖(𝑡𝑖 − 1),

𝑝

𝑖=1

 

 94 

Note that “tied groups” with ti = 1 are possible. 95 

Similarly, for the quantity Y, there will be a number (q) of groups of unique ranks less than or 96 

equal to n. Let uj be the number of tied values in the jth group, we then define n2 as follows: 97 

  98 

𝑛2 = 0.5 ∑ 𝑢𝑗(𝑢𝑗 − 1)

𝑞

𝑗=1

, 

 99 

again, uj = 1 is possible. Then  100 

 101 

𝜏𝑏 =
𝑛𝑐 − 𝑛𝑑

√(𝑛0 − 𝑛1)(𝑛0 − 𝑛2)
. 

 102 

This formulation will yield a value -1 ≤ b ≤ 1, and this measure as well as  is interpreted in 103 

an analogous manner to Spearman’s rs. Specifically, the higher the absolute value of b the 104 

stronger the association between the two variables. Positive values suggest that higher 105 

values of one variable are associated with higher values of the other variable; negative 106 

values suggest that higher values of one are associated with lower values of the other. 107 

 108 

 109 

When might these measures be preferred over Pearson’s product-moment correlation 110 

coefficient (r) 111 

Pearson’s and the two rank correlation coefficients defined above measure different types of 112 

association. Pearson’s coefficent measures linear association only, whereas the other two 113 

measure a broader class of association: a high absolute value of Spearman or Kendall 114 
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correlation coefficient indicates that there is a monotonic (but not necessarily linear) 115 

relationship between the two variables. Sometimes scientists may have good theoretical 116 

reason for testing this broader hypothesis.  Further, the Pearson correlation coefficient was 117 

designed to work with variables measured on a continuous scale, if the variables are 118 

measured on an ordinal scale it cannot be applied; then Spearman’s or Kendall’s measure 119 

could be used instead. Finally, it may also sometimes be appropriate to use Spearman’s or 120 

Kendall’s measure over Pearson’s if this gives easier comparison with a previous study that 121 

used that method.  122 

 123 

It seems common practice in the literature to select between measures of the data on the 124 

basis of examination of the sampled data. Specifically, if the distributions of the samples of 125 

either or both of the variables deviates from normality then one of the rank measures is used, 126 

with Pearson being adopted otherwise (this approach was taken in all five 2013 Animal 127 

Behaviour papers mentioned above). However we have argued previously (Puth et al. 2014) 128 

that the robustness of approaches based on Pearson’s measure makes this approach 129 

unnecessary. Investigators should be able to decide on whether to use Pearson’s or a rank 130 

measure on the basis of the nature of the hypotheses they are interested in and how they 131 

intend to collect the data. Once the data is collected, there should be no need to switch from 132 

one measure to another on the basis of visual inspection or preliminary testing of the data. 133 

Given our discussion immediately above, researchers who have switched intended analysis 134 

on this basis should bear in mind that the Pearson and rank coefficients measure different 135 

types of association. 136 

 137 

Testing the null hypothesis of no association 138 

We explored the performance of these two alternative rank measures in a simulation study. 139 

Specifically we explored the performance of the two in terms of estimated type 1 error rate 140 

and power from samples of size n drawn from underlying distributions of specified marginal 141 

distributions of the two variables and association  between then. We used sample sizes of n 142 
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= 10, 20, 40 and 80,  values of 0.0, 0.1 and 0.5, and distributions of the two variables that 143 

were either normal, symmetric and heavy tailed, or asymmetric and heavy tailed. The details 144 

of the method used are provided in Appendix 1 and the results (based on 10,000 samples in 145 

each case) presented in tables 1-3. We utilized a nominal type I error rate () of 0.01; 146 

however recent work by Bishara & Hittner (2012) suggest that our conclusions should hold in 147 

essentially unchanged form for  = 0.05. For comparison purposes we also include the 148 

performance of two methods of implementing the Pearson product moment correlation 149 

coefficient that we have previously found to perform well. Specifically we recommended 150 

(Puth et al. 2014) the permutation test based on this measure when sample sizes are small 151 

(less than twenty) and using the RIN transformation prior to implementing the standard t-test 152 

procedure on this measure otherwise. P-values associated with Spearman’s and Kendall’s 153 

coefficients were calculated using the cor.test function of the stats package of R. For 154 

Spearman this is exact if n < 10 and an approximation to the exact P-value using the 155 

algorithm of Best & Roberts (1975) otherwise. For Kendall’s coefficient, the P-value is exact 156 

providing n < 50 and if there were no ties, otherwise it is evaluated under the assumption that 157 

under the null hypothesis  158 

3𝜏√𝑛(𝑛 − 1)

√2(2𝑛 + 5)
 

is normally distributed with mean zero and unit variance.  159 

 160 

From evaluation of tables 1-3, both Spearman’s rs and Kendall’s  preserve type 1 error rates 161 

close to the nominal 1% values throughout all combinations of distributions. There is no 162 

consistent pattern as to which measure is superior in this regard. The RIN and permutation 163 

methods associated with Pearson’s measure also provide good control of the type 1 error 164 

rate.  165 

 166 

Concerning power, our two non-parametric measures are generally inferior to either the RIN 167 

and permutation methods associated with Pearson’s measure, but generally not by a large 168 
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margin. For all methods, power to detect low levels of association ( = 0.1) are not high for 169 

any method. Comparing Spearman’s r and Kendall’s there is never a substantial difference 170 

in the power of the two measures.  When sample sizes are as low as ten, all four methods 171 

offer relatively low power even for detecting relatively large levels of association ( = 0.5).  172 

 173 

For brevity, we omit the details, but found that our qualitative conclusions above were 174 

unaffected if we rounded values to one or two decimal places prior to including them in our 175 

sample so as to create between 11 and 56% ties within samples (see Appendix 2).  176 

 177 

Calculation of confidence intervals  178 

As an alternative or complement to null-hypothesis statistical testing, we often want to 179 

present a confidence internal for the population value of the statistic under investigation. In 180 

this section, we will explore how this might be achieved for both both of our rank measures of 181 

association.  182 

Spearman’s rs 183 

The key to obtaining an effective confidence intervals for the Spearman correlation 184 

coefficient is a good estimation for its sample variance. Once this has been obtained, we can 185 

exploit the fact that Fisher’s z-transformation for a sample correlation coefficient 𝑟 is defined 186 

by 187 

 188 

 𝑧 = 0.5 ln ( 
1+𝒓

1−𝑟
 ) = tanh−1(𝑟) 189 

 190 

and converts 𝑟  into an approximately standard normally distributed value 𝑧 .  Applied to 191 

Spearman’s 𝑟𝑠 , the lower and upper limits of the  (1-)  confidence interval for the 192 

transformed value are  given by  193 

 194 

𝐿̃ = 0.5 ln ( 
1+𝑟𝑠̂,

1−𝑟𝑠̂,
 ) - 𝑧1−𝛼/2𝜎̂   and 𝑈 = 0.5 ln ( 

1+𝑟𝑠̂,

1−𝑟𝑠̂,
 ) + 𝑧1−𝛼/2𝜎̂ 195 
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 196 

where  𝑟𝑠̂ denotes the estimated Spearman correlation,  𝑧1−𝛼/2 represents the (1 −
𝛼

2
)-197 

quantile of the standard normal distribution,  and 𝜎̂ describes the standard deviation. We can 198 

then obtain the lower and upper limits (L and U) of the confidence interval for the population 199 

value of rs from the conversions below.  200 

 201 

𝐿 =  
exp(2𝐿̃)−1

exp(2𝐿̃)+1
  And U =  

exp(2𝑈)−1

exp(2𝑈)+1
 .  202 

 203 

There is no universally-agreed method for obtaining the appropriate variance to use in these 204 

calculations. One estimate of the variance (denoted Method A) by Fieller, Hartley and 205 

Pearson  (1957) is defined by 206 

 207 

  𝜎̂𝐴
2 =

1.06

𝑛−3
 ,  208 

 209 

where n denotes the sample size.  210 

 211 

The next one (Method B) was proposed by Bonett & Wright (2000) and is defined by 212 

  𝜎̂𝐵
2 =

1+
𝑟𝑠̂

2

2

𝑛−3
 .  213 

 214 

Another commonly used method  (Method C) is given by 215 

  𝜎̂𝐶
2 =

1

𝑛−2
+

|𝜉̂|

6𝑛+4𝑛1 2⁄  ,  216 

 217 

where 𝜉 =  tanh−1(𝑟𝑠̂). This method was introduced by Caruso & Cliff (1997).  218 

 219 

Here we will examine the relative performance of three alternatives. Additionally we 220 

examined two different bootstrap methods for producing a confidence interval: the BCa 221 
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method (see Efron & Tibshirani 1993 and Manly 2007 for details of this methodology), and 222 

the bootstrap variance estimation method. The latter is based on an asymptotic normal 223 

(1 − 𝛼) confidence interval of form 𝑟𝑠̂ ± 𝑧(1−𝛼 2⁄ ) ∗  𝜎̂𝐵𝑜𝑜𝑡, where 𝑟𝑠̂ is the Spearman correlation 224 

of the original data set and  𝜎̂𝐵𝑜𝑜𝑡  denotes the standard deviation of the bootstrap estimates 225 

of rs.   226 

 227 

A Monte Carlo simulation with 20,000 samples for Methods A, B & C and 1,000 samples 228 

using 1,000 resamples for the two bootstrap methods was performed for several values of ρ 229 

and n. The coverage probabilities for a 95% confidence interval using these five methods are 230 

summarized in table 4. That is, we calculated how often the 95% confidence interval 231 

calculated on the basis of a sample enclosed the specified underlying population value. 232 

Results are based on bivariate normal random variables, but will hold for any other 233 

monotonic transformation since the rank order correlation coefficient is invariant under 234 

monotonic transformations.  235 

 236 

Examination of Table 4 suggests that all five methods generally offer reasonable estimation 237 

of the confidence interval. The bootstrap methods are never sufficiently superior to justify 238 

their much higher computational costs. Method B is the best performing method for very high 239 

levels of association ( ≥ 0.9); but otherwise Method C is generally (but not always) the best 240 

performing method. Method C can perhaps be recommended, since it offers the most 241 

consistently good performance over all the scenarios we explored.  242 

 243 

 244 

Kendall’s tau 245 

For Kendall’s tau we examined four different methods to construct confidence intervals 246 

including the same two bootstrap methods as described above and two other variance 247 

estimation methods that could be used in the same Fisher-transformation approach as 248 

described previously for Spearman’s measure.   249 
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 250 

The first variance estimation (Method A) by Fieller et al. (1957) is given by 251 

  𝜎̂𝐴
2 =

0.437

𝑛−4
 . 252 

 253 

This estimation is only accurate for values of |ρ|< 0.8, therefore we considered another 254 

variance estimation (method C) given in Xu, Hou, Hung & Zou (2013), which is defined by 255 

 256 

 𝜎𝐶
2 =  

2

𝑛(𝑛−1)
[1 −

4𝑆1
2

𝜋2 + 2(𝑛 − 2)(
1

9
−

4𝑆2
2

𝜋2 )],  257 

 258 

where 𝑆1 =  sin−1 𝜌,  𝑆2 =  sin−1 𝜌

2
  and ρ denotes the correlation coefficient of the bivariate 259 

sample data and can be estimated using the relationship 𝜌̂ =  sin(
𝜋

2
𝜏).  260 

 261 

Again, a Monte Carlo simulation with 20,000 samples for the two variance estimation 262 

methods and 1,000 samples with 1.000 resamples were used for the bootstrap methods. The 263 

coverage probabilities for a 95%-confidence interval for Kendall’s tau are summarized in 264 

table 5. 265 

 266 

All four methods approach the desired 95%-coverage rate well for values of |ρ| < 0.8. As 267 

soon as ρ gets larger, only the variance estimation (C) introduced by Xu et al. (2013) 268 

provides nearly accurate values. Both bootstrap methods return values even higher than the 269 

desired 0.95, whereas the other variance estimation (A) tends to values less than 0.95, 270 

especially for small sample sizes. From this perspective, we can recommend the Fisher 271 

transformation approach combined with Method C for variance estimation as an effective 272 

way to calculate confidence intervals for Kendall’s tau. 273 

 274 

Comparing the two measures 275 

 276 
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Comparing the performance of Spearman’s rho and Kendall’s tau in confidence interval 277 

construction for bivariate normal data without ties, our results indicate that both methods 278 

seem to have at least one variance-estimation method which provides nearly accurate 279 

results for all values of ρ. To make a clearer recommendation, we explored the average 280 

width of the 95%-confidence intervals to see if there are any consistent differences between 281 

the two methods. A small width is desirable as this indicates less variation and a more 282 

precise interval estimation. We calculated the difference between the upper and the lower 283 

limits and determined the mean of these differences in order to generate the average width 284 

values. We only considered the two variance estimations which performed best: meaning 285 

that we used variance estimation (B) of Bonett & Wright (2000) for Spearman’s rho and 286 

variance estimation (C) of Xu et al (2013) for Kendall’s tau. The average width values for 287 

these two methods are summarized in Table 6. Since with increasing sample sizes the 288 

estimation values become more precise, the widths for the large sample size of n=200 are 289 

smaller than for the small sample size of n=20 no matter whether we look at Spearman’s or 290 

Kendall’s measure. But comparing the two methods, it is obvious that Kendall’s measure 291 

supplies smaller intervals for all different values of ρ and n. Based on these results for data 292 

without ties, Kendall’s measure seems preferable. 293 

 294 

Presence of ties  295 

Finally, we explore how the performance of our confidence interval estimation methods 296 

change if the data contains ties. We generated bivariate normal random variables using the 297 

method described in Appendix 1 and then rounded these random samples to one decimal 298 

place for small sample sizes (n=20, 50) and to two decimal places for large sample sizes 299 

(n=100,200). This led to different percentages of ties depending on the sample size, on 300 

average we have about 22% ties for a sample size of 20, 42% ties for a sample size of 50, 301 

12% ties for a sample size of 100 and 22% ties for a sample size of 200.  302 

 303 

Our results for the coverage probability with respect to ties are summarized in tables 7 & 8. 304 
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Table 7 presents the performance of Spearman’s rho. As with our simulations without ties, 305 

variance estimation B generally provides values closest to the nominal 0.95 for different 306 

combinations of  and n. This observation fits well to the fact that the variance estimation B is 307 

dependent on the estimated correlation and the observation that the average correlation of 308 

the original bivariate data set and the average correlation of the rounded bivariate data set 309 

are very similar. They often just show differences in the fourth or fifth decimal place.  310 

 311 

By contrast, Kendall’s b, generally provides values less than 0.95 especially for large 312 

correlation values and a high percentage of ties (n=50). This can be due to higher differences 313 

between the original correlation and the correlation of the rounded bivariate data set. There 314 

are often differences in the second decimal place between the average original correlation 315 

and the average rounded correlation estimate, especially for large values of ρ. As soon as 316 

there are ties in the data, our analysis showed that Spearman’s rho provides better coverage 317 

rates, especially for large correlation values and a high percentage of ties than Kendall’s tau.  318 

 319 

Appendix 3 shows that we draw essentially equivalent conclusions to those described above 320 

for two continuous variables if we restrict one of the variables to being ordinal with only five 321 

levels. However, previous work suggests that our conclusions do not hold if both variables 322 

are restricted to four or five levels. In this case Woods (2007) found that confidence intervals 323 

were more reliable for Kendall’s than Spearman’s measure. However, if a confidence interval 324 

for Spearman’s measure is required for data involving such restricted variables, then Ruscio 325 

(2008) suggests that bootstrapping can produce reasonably accurate confidence intervals 326 

provided n > 25.   327 

 328 

 329 

Conclusion 330 

As an alternative to Pearson’s product moment correlation coefficient, we examined the 331 

performance of the two rank order correlation coefficients: Spearman’s rho and Kendall’s tau. 332 
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Concerning hypothesis testing, both rank measures show similar results to variants of the 333 

Pearson product-moment measure of association and provide only slightly better values than 334 

Pearson if the two random samples are both non-normally distributed. Where variants of the 335 

Pearson measure are not appropriate, there is no strong reason (based on our results) to 336 

select either of our rank-based alternatives over the other for testing the null hypothesis of no 337 

monotonic association. Concerning confidence interval estimation, our analysis indicates that 338 

both of them provide at least one method concerning confidence intervals construction which 339 

supplies results close to the desired level if ties do not exist. Additionally we looked at the 340 

average width of the confidence intervals and found out that Kendall's intervals are narrower 341 

and therefore should be preferred. But as soon as there are any ties in the data, no matter 342 

whether this involves a small or larger percentage of ties, Spearman's method should be 343 

considered superior. Spearman’s measure returns values closer to the desired coverage 344 

rates whereas Kendall’s results differ more and more from the desired level as the number of 345 

ties increases, especially for large correlation values.   346 

 347 
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Appendix 1: Generation of bivariate random deviates 387 

We used the method of Headrick & Sawilowsky (1999). First we obtain the Fleishman constants a, b, 388 

c and d for both variables (say X and Y) by solving the Fleishman’s equations: 389 

a = -c 390 

𝑏2 + 6𝑏𝑑 + 2𝑐2 + 15𝑑2 − 1 = 0                                                    391 

2𝑐(𝑏2 + 24𝑏𝑑 + 105𝑑2 + 2) − 𝛾1 = 0                                                392 

24[𝑏𝑑 + 𝑐2(1 + 𝑏2 + 28𝑏𝑑) + 𝑑2(12 + 48𝑏𝑑 + 141𝑐2 + 225𝑑2)] − 𝛾2 = 0           393 

where  𝛾1 denotes the desired skewness and 𝛾2 is the desired excess kurtosis. 394 

We them determine the intermediate correlation  𝑟2 using  395 

𝑟2(𝑏1𝑏2 + 3𝑏2𝑑1 + 3𝑏1𝑑2 + 9𝑑1𝑑2 + 2𝑎1𝑎2𝑟2 + 6𝑑1𝑑2𝑟4) =  𝜌                      396 

where ρ is the desired post-correlation and 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑑1 and 𝑑2 are the calculated Fleishman 397 

constants of the two variables X and Y.  With this intermediate correlation we were able to generate 398 

standard random normal deviates of the form  𝑋̃ = 𝑟𝑍1 + √1 − 𝑟2 𝐸1  and  𝑌̃ = 𝑟𝑍1 + √1 − 𝑟2 𝐸2 , 399 

where 𝑍1, 𝐸1and 𝐸2  are normally distributed independent random variables with zero mean and 400 

unit variance. Finally we generate the desired nonnormal variables 𝑋∗ and 𝑌∗ using the Fleishman 401 

transformation equation: 𝑋∗ = 𝑎1 + 𝑏1𝑋̃ + 𝑐1𝑋̃2 + 𝑑1𝑋̃3.                                                             402 

Our code for generating bivariate nonnormal random samples is based on Zopluoglu’s R-Script 403 

(2011). We adopted his method to obtain the Fleishman constants and his idea for a method to solve 404 

the equation to find the intermediate correlation. His function to obtain the Fleishman constants is 405 

based on a Newton-Iteration with a Jacobian matrix. The only thing we corrected was the first partial 406 

derivative of the third Fleishman-equation in his Jacobian matrix. 407 

We obtained a normal distribution by using the parameters (1 = 0, 2 = 0); heavy tailed but 408 

symmetric distribution (1 = 0, 2 = 6), and heavy tailed and asymmetric distribution (1 = 2, 2 = 6).  409 
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Appendix 2:  Hypothesis testing for Spearman/Kendall with ties:  410 

We created correlated data sets with ties by generated bivariate normal random variables 411 

using the method described in Appendix 1 and then rounded these random samples to one 412 

decimal place. This gave on average the following fractions of ties (11% for n = 10, 22% for n 413 

= 20, 38% for n = 40 and 56% for n = 80). In addition, for n = 80 we repeated our analysis 414 

this time rounding to the second decimal place, producing 10% ties on average. We then 415 

performed similar analyses to those used for the untied data described in the main text. For 416 

Kendall’s measure we used the cor.test function in R used previously but also the Kendall 417 

function in the package Kendall which was designed to produce more accurate P-values than 418 

cor.test in the event of ties.  419 

 420 

Comparing Table 1 with Table A1 below, we see no strong evidence of introduction of ties 421 

leading to loss of control of type 1 error rates for all the measures considered. Comparing 422 

Table 3 with table A2, we see a similar lack of strong effect on power.   423 

Tables A1 then A2 here 424 

  425 



19 
 

Appendix 3: Results for 95%- and 99%- CI for Spearman’s correlation coefficient when one 426 

variable is restricted to only five possible values  427 

We generated samples of one variable x with length n by randomly sampling from the values  1,..,5 428 

with replacement using the sample-function in R. To recreate a correlated variable y, we used the 429 

corgen-function of the R package ecodist. This function generates a correlated variable y within the 430 

range of a given epsilon to a given (Pearson) correlation to x. In our code, we do not specify an 431 

epsilon to ensure some variation in the correlation between samples. We then explored the coverage 432 

of 95% and 99% confidence intervals calculated in exactly the same way as in the main paper: see 433 

tables A3 & A4. 434 

For 95% confidence intervals, for small correlation values (0.1 and 0.3) all methods perform 435 

well. For larger correlation values the coverage probability is higher than desired, especially 436 

for small samples sizes and medium correlation values, and for large correlation values for all 437 

sample sizes. Bootstrap methods provide values less than the desired 0.95 for high 438 

correlation values and large sample sizes ( n=200, correlation: 0.8, 0.9, 0.95)  For 99% 439 

confidence intervals, for small and medium correlation values (0.1 up to 0.7) all methods 440 

perform well with results.  For large correlations the results are still generally satisfactory 441 

but they are higher than desired.  442 

Tables A3 and A4 here  443 



20 
 

 444 

TABLES 445 

 446 

Table 1: Type-I Error Rate (α=0.01) for different sample sizes (n) and combinations of 447 

distribution shapes, evaluated for the Spearman and Kendall measures as well as 448 

Permutation and RIN (rank-based inverse normal) transform implementation of Pearson’s 449 

measure.  450 

 451 

distribution n Spearman RIN Permutation Kendall 

normal & normal 10 0.0098 0.0115 0.0105 0.0090 

 
20 0.0122 0.0113 0.0106 0.0101 

 
40 0.0093 0.0106 0.0101 0.0078 

 
80 0.0106 0.0113 0.0104 0.0096 

normal & heavy-tailed 10 0.0098 0.0115 0.0105 0.0090 

 
20 0.0122 0.0113 0.0109 0.0101 

 
40 0.0093 0.0106 0.0097 0.0078 

 
80 0.0106 0.0113 0.0106 0.0096 

normal & asymmetric- 10 0.0100 0.0105 0.0091 0.0089 

heavy-tailed 20 0.0097 0.0109 0.0109 0.0097 

 

40 0.0099 0.0104 0.0089 0.0083 

80 0.0111 0.0091 0.0085 0.0096 

heavy-tailed & 10 0.0096 0.0117 0.0090 0.0090 

heavy-tailed 20 0.0108 0.0119 0.0119 0.0101 

 
40 0.0092 0.0098 0.0105 0.0079 

 
80 0.0094 0.0097 0.0101 0.0096 

asymmetric-heavy-tailed & 10 0.0096 0.0111 0.0096 0.0091 

asymmetric-heavy-tailed 20 0.0095 0.0104 0.0095 0.0093 

 
40 0.0093 0.0098 0.0110 0.0081 

 
80 0.0098 0.0099 0.0103 0.0095 

  452 
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 453 

Table 2: Power with small effect size (ρ=0.1) for different sample sizes (n) and combinations 454 

of distribution shapes, evaluated for the Spearman and Kendall measures as well as 455 

Permutation and RIN (rank-based inverse normal) transform implementation of Pearson’s 456 

measure. 457 

 458 

distribution n Spearman RIN Permutation Kendall 

normal & normal 10 0.0127 0.0153 0.0113 0.0131 

 
20 0.0161 0.0164 0.0187 0.0136 

 
40 0.0244 0.0247 0.0251 0.0224 

 
80 0.0415 0.0459 0.0476 0.0376 

normal & heavy-tailed 10 0.0126 0.0152 0.0120 0.0132 

 
20 0.0162 0.0157 0.0190 0.0139 

 
40 0.0247 0.0254 0.0271 0.0227 

 
80 0.0450 0.0481 0.0475 0.0391 

normal & asymmetric- 10 0.0123 0.0151 0.0120 0.0141 

heavy-tailed 20 0.0173 0.0175 0.0192 0.0148 

 

40 0.0267 0.0272 0.0257 0.0244 

80 0.0495 0.0529 0.0465 0.0455 

heavy-tailed & 10 0.0129 0.0157 0.0123 0.0133 

heavy-tailed 20 0.0164 0.0184 0.0179 0.0136 

 
40 0.0261 0.0260 0.0257 0.0232 

 
80 0.0475 0.0517 0.0437 0.0411 

asymmetric-heavy-tailed & 10 0.0125 0.0146 0.0115 0.0135 

asymmetric-heavy-tailed 20 0.0179 0.0192 0.0177 0.0167 

 
40 0.0287 0.0292 0.0252 0.0274 

 
80 0.0565 0.0573 0.0395 0.0522 

  459 
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Table 3: Power with large effect size (ρ=0.5) for different sample sizes (n) and combinations 460 

of distribution shapes, evaluated for the Spearman and Kendall measures as well as 461 

Permutation and RIN (rank-based inverse normal) transform implementation of Pearson’s 462 

measure. 463 

 464 

distribution n Spearman RIN Permutation Kendall 

normal & normal 10 0.0844 0.1027 0.1204 0.0888 

 
20 0.3079 0.3326 0.3780 0.2985 

 
40 0.7159 0.7565 0.7798 0.7089 

 
80 0.9741 0.9854 0.9854 0.9744 

normal & heavy-tailed 10 0.0931 0.1099 0.1314 0.0976 

 
20 0.3385 0.3654 0.3983 0.3281 

 
40 0.7576 0.7936 0.7960 0.7512 

 
80 0.9835 0.9910 0.9878 0.9844 

normal & asymmetric- 10 0.1097 0.1219 0.1418 0.1128 

heavy-tailed 20 0.4058 0.4270 0.4138 0.3932 

 

40 0.8335 0.8551 0.8101 0.8259 

80 0.9944 0.9963 0.9914 0.9939 

heavy-tailed & 10 0.0970 0.1133 0.1302 0.1016 

heavy-tailed 20 0.3502 0.3790 0.3768 0.3435 

 
40 0.7732 0.8111 0.7573 0.7681 

 
80 0.9874 0.9910 0.9817 0.9877 

asymmetric-heavy-tailed & 10 0.1005 0.1106 0.1101 0.1009 

asymmetric-heavy-tailed 20 0.3717 0.3896 0.2880 0.3581 

 
40 0.8023 0.8148 0.6233 0.7959 

 
80 0.9916 0.9928 0.9398 0.9912 

  465 
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Table 4: containment probability values for a 95% confidence interval for Spearman’s 466 

correlation coefficient using three different variance estimation methods (A, B & C) defined 467 

in the text in combination with Fisher’s z-transformation as well bootstrap variance 468 

estimation and the BCa bootstrapping method  469 
 470 
 471 

ρ n A B C Boot Bca 

0.1 20 0.95480 0.95845 0.94850 0.929 0.955 

 
50 0.95640 0.95515 0.95250 0.943 0.962 

 
100 0.95660 0.95265 0.95230 0.941 0.956 

 
200 0.95590 0.95195 0.95220 0.952 0.950 

0.3 20 0.95420 0.95965 0.94820 0.947 0.957 

 
50 0.95030 0.95135 0.94660 0.955 0.946 

 
100 0.95195 0.95200 0.94920 0.952 0.941 

 
200 0.95460 0.95395 0.95305 0.947 0.954 

0.5 20 0.94780 0.95630 0.94225 0.928 0.948 

 
50 0.94565 0.95375 0.94630 0.941 0.943 

 
100 0.95345 0.95905 0.95420 0.944 0.941 

 
200 0.95115 0.95805 0.95360 0.940 0.950 

0.7 20 0.94135 0.95395 0.94005 0.951 0.946 

 
50 0.94140 0.95855 0.94630 0.950 0.944 

 
100 0.93995 0.95745 0.94745 0.955 0.944 

 
200 0.94090 0.96000 0.94885 0.947 0.943 

0.8 20 0.94040 0.95810 0.94120 0.966 0.955 

 
50 0.93260 0.95550 0.94055 0.949 0.947 

 
100 0.93570 0.95895 0.94585 0.944 0.953 

 
200 0.93025 0.95645 0.94265 0.954 0.956 

0.9 20 0.92830 0.95475 0.93170 0.986 0.962 

 
50 0.92505 0.95660 0.93925 0.967 0.941 

 
100 0.92125 0.95640 0.94020 0.961 0.938 

 
200 0.92040 0.95590 0.94150 0.945 0.958 

0.95 20 0.89800 0.94100 0.90965 0.993 0.967 

 
50 0.90260 0.94525 0.92625 0.989 0.944 

 
100 0.90990 0.95030 0.93470 0.978 0.938 

 
200 0.90905 0.95155 0.93630 0.966 0.941 

 472 
  473 
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Table 5: containment probability values for a 95% confidence interval for Kendall’s 474 

correlation coefficient using different variance estimation methods using two different 475 

variance estimation methods (A & C) defined in the text in combination with Fisher’s z-476 

transformation as well bootstrap variance estimation and the BCa bootstrapping method 477 
 478 
 479 

ρ n A Boot Bca C 

0.1 20 0.94795 0.948 0.968 0.95225 

  50 0.94925 0.955 0.951 0.94965 

  100 0.94845 0.946 0.951 0.95040 

  200 0.94970 0.945 0.950 0.94795 

0.3 20 0.95195 0.951 0.967 0.95535 

  50 0.94970 0.954 0.957 0.94765 

  100 0.95090 0.950 0.955 0.94970 

  200 0.95020 0.946 0.944 0.95085 

0.5 20 0.94205 0.935 0.957 0.95330 

  50 0.94960 0.948 0.962 0.95075 

  100 0.95295 0.961 0.960 0.95090 

  200 0.95330 0.951 0.952 0.95120 

0.7 20 0.93325 0.963 0.974 0.95295 

  50 0.95465 0.960 0.966 0.95025 

  100 0.95850 0.958 0.958 0.95250 

  200 0.96055 0.954 0.961 0.94980 

0.8 20 0.92335 0.971 0.988 0.94985 

  50 0.95005 0.966 0.972 0.95325 

  100 0.96015 0.959 0.961 0.94795 

  200 0.96170 0.966 0.954 0.95000 

0.9 20 0.84055 0.963 0.995 0.94630 

  50 0.92870 0.981 0.984 0.95100 

  100 0.95295 0.983 0.982 0.95395 

  200 0.96475 0.966 0.965 0.95070 

0.95 20 0.75995 0.949 0.999 0.95920 

  50 0.87450 0.977 0.992 0.94960 

  100 0.93350 0.987 0.988 0.94795 

  200 0.95630 0.974 0.980 0.95025 
  480 
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Table 6:  average width of 95%-confidence intervals using Spearman’s measure and variance 481 

estimate B and Kendall’s measure and variance estimate C 482 
 483 
 484 

ρ n Spearman Kendall 

0.1 20 0.8509 0.6295 

 
50 0.5449 0.3784 

 
100 0.3870 0.2629 

 
200 0.2744 0.1843 

0.3 20 0.8089 0.5789 

 
50 0.5143 0.3459 

 
100 0.3639 0.2398 

 
200 0.2577 0.1679 

0.5 20 0.7216 0.4796 

 
50 0.4474 0.2819 

 
100 0.3146 0.1942 

 
200 0.2215 0.1355 

0.7 20 0.5646 0.3364 

 
50 0.3336 0.1901 

 
100 0.2296 0.1289 

 
200 0.1599 0.0891 

0.8 20 0.4455 0.2507 

 
50 0.2515 0.1359 

 
100 0.1700 0.0903 

 
200 0.1174 0.0618 

0.9 20 0.2849 0.1551 

 
50 0.1462 0.0773 

 
100 0.0956 0.0491 

 
200 0.0651 0.0326 

0.95 20 0.1769 0.1004 

 
50 0.0826 0.0462 

 
100 0.0520 0.0276 

 
200 0.0346 0.0175 

 485 
  486 
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Table 7: containment probability values for a 95% confidence interval for Spearman’s 487 

correlation coefficient using data with ties generated as previously then rounded to one 488 

decimal place (for n = 20, 50) or two decimal places (for n = 100, 200).  489 

ρ n A B C Boot Bca 

0.1 20 0.95265 0.95670 0.94615 0.917 0.971 

  50 0.95340 0.95180 0.94920 0.936 0.950 

  100 0.95645 0.95260 0.95205 0.959 0.950 

  200 0.95570 0.95115 0.95160 0.950 0.958 

0.3 20 0.95340 0.95995 0.94800 0.917 0.947 

  50 0.95160 0.95330 0.94790 0.936 0.966 

  100 0.95295 0.95190 0.94950 0.947 0.950 

  200 0.95375 0.95290 0.95200 0.946 0.942 

0.5 20 0.95015 0.95810 0.94560 0.920 0.949 

  50 0.94650 0.95330 0.94670 0.936 0.952 

  100 0.94905 0.95465 0.95035 0.954 0.940 

  200 0.94705 0.95420 0.94960 0.947 0.953 

0.7 20 0.94255 0.95550 0.94115 0.939 0.946 

  50 0.94195 0.95775 0.94640 0.938 0.952 

  100 0.94305 0.96000 0.94920 0.949 0.939 

  200 0.94025 0.95795 0.94855 0.940 0.953 

0.8 20 0.94110 0.96005 0.94260 0.954 0.968 

  50 0.93230 0.95450 0.94060 0.934 0.953 

  100 0.93205 0.95565 0.94195 0.940 0.941 

  200 0.92980 0.95665 0.94340 0.950 0.955 

0.9 20 0.92555 0.95440 0.93255 0.978 0.975 

  50 0.91940 0.95325 0.93480 0.969 0.943 

  100 0.92445 0.95875 0.94215 0.965 0.942 

  200 0.92015 0.95705 0.94120 0.961 0.946 

0.95 20 0.90145 0.94035 0.91350 0.991 0.964 

  50 0.90350 0.94530 0.92525 0.978 0.947 

  100 0.90740 0.94705 0.93145 0.966 0.950 

  200 0.91140 0.95340 0.93895 0.958 0.936 
  490 
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 491 
Table 8: containment probability values for a 95% confidence interval for Kendall’s 492 

correlation coefficient using data with ties generated as previously then rounded to one 493 

decimal place (for n = 20, 50) or two decimal places (for n = 100, 200). 494 

ρ n A Boot Bca C 

0.1 20 0.94115 0.931 0.963 0.94665 

  50 0.94120 0.951 0.962 0.94205 

  100 0.94635 0.952 0.960 0.94870 

  200 0.9468 0.959 0.957 0.94775 

0.3 20 0.94075 0.933 0.965 0.94575 

  50 0.94150 0.942 0.956 0.94520 

  100 0.94845 0.954 0.956 0.95220 

  200 0.94780 0.954 0.951 0.95000 

0.5 20 0.93440 0.946 0.976 0.95110 

  50 0.94130 0.943 0.958 0.94725 

  100 0.95475 0.955 0.961 0.95140 

  200 0.95205 0.950 0.952 0.95145 

0.7 20 0.91800 0.935 0.982 0.95545 

  50 0.92315 0.914 0.958 0.94045 

  100 0.95865 0.941 0.946 0.95040 

  200 0.95930 0.951 0.961 0.95130 

0.8 20 0.88330 0.934 0.977 0.96325 

  50 0.87965 0.900 0.952 0.92925 

  100 0.95820 0.956 0.968 0.95220 

  200 0.96250 0.948 0.956 0.95085 

0.9 20 0.78065 0.887 0.984 0.97555 

  50 0.72375 0.812 0.931 0.87060 

  100 0.94530 0.971 0.982 0.95145 

  200 0.9498 0.944 0.964 0.94430 

0.95 20 0.64555 0.782 0.871 0.99545 

  50 0.49360 0.679 0.895 0.81675 

  100 0.90145 0.963 0.981 0.94670 

  200 0.90855 0.934 0.963 0.92320 
  495 
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Table A1: The same approach as table 1 except that we rounded these random samples to 496 
one decimal place; In addition, for n = 80 we repeated our analysis this time rounding to the 497 

second decimal place (shown in the last line). 498 
 499 

distribution N Spearman RIN Permutation Kendall(cor.test) 
Kendall 

(Kendall) 

normal & 
normal 10 0.0104 0.0098 0.0092 0.0065 0.0048 

  20 0.0108 0.0108 0.0113 0.0089 0.0077 
  40 0.0094 0.0102 0.0089 0.0082 0.0080 
  80 0.0111 0.0104 0.0101 0.0107 0.0106 
  80 0.0112 0.0100 0.0100 0.0110 0.0108 

 500 
 501 
 502 
 503 
 504 
 505 
 506 
 507 
 508 
 509 
 510 
 511 
 512 
 513 
 514 
Table A2: The same approach as table 3 except that we rounded these random samples to 515 
one decimal place; In addition, for n = 80 we repeated our analysis this time rounding to the 516 

second decimal place (shown in the last line). 517 
 518 

 519 

distribution N Spearman RIN Permutation Kendall(cor.test) 
Kendall 

(Kendall) 

normal & 
normal 10 0.1084 0.1033 0.1197 0.0768 0.0601 

  20 0.3179 0.3336 0.3764 0.2906 0.2776 

  40 0.7168 0.7544 0.7786 0.7038 0.6990 

  80 0.9743 0.9821 0.9845 0.9738 0.9735 

 
80 0.9745 0.9825 0.9852 0.9735 0.9732 

  520 
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Table A3: containment probability for 95% confidence interval for Spearman’s coefficient 521 

using the same approach as table 4 except that one variable is restricted to taking only five 522 

values.   523 

 524 

ρ n A B C Boot Bca 

0.1 20 0.9539 0.9585 0.9491 0.9210 0.9610 

  50 0.9570 0.9549 0.9527 0.9460 0.9650 

  100 0.9562 0.9525 0.9520 0.9470 0.9450 

  200 0.9552 0.9505 0.9507 0.9450 0.9520 

0.3 20 0.9581 0.9639 0.9528 0.9380 0.9620 

  50 0.9608 0.9613 0.9570 0.9550 0.9650 

  100 0.9595 0.9595 0.9573 0.9580 0.9500 

  200 0.9597 0.9591 0.9582 0.9480 0.9600 

0.5 20 0.9701 0.9776 0.9678 0.9390 0.9630 

  50 0.9699 0.9765 0.9706 0.9540 0.9720 

  100 0.9670 0.9741 0.9689 0.9420 0.9720 

  200 0.9579 0.9668 0.9611 0.9490 0.9540 

0.7 20 0.9838 0.9921 0.9852 0.9560 0.9730 

  50 0.9803 0.9904 0.9842 0.9370 0.9750 

  100 0.9703 0.9854 0.9769 0.9330 0.9590 

  200 0.9471 0.9695 0.9577 0.9130 0.9490 

0.8 20 0.9883 0.9950 0.9906 0.9760 0.9800 

  50 0.9852 0.9939 0.9894 0.9550 0.9710 

  100 0.9758 0.9901 0.9833 0.9310 0.9590 

  200 0.9356 0.9725 0.9547 0.8690 0.9030 

0.9 20 0.9933 0.9979 0.9949 0.9780 0.9830 

  50 0.9941 0.9986 0.9968 0.9770 0.9840 

  100 0.9848 0.9957 0.9925 0.9370 0.9490 

  200 0.9447 0.9837 0.9715 0.8380 0.8640 

0.95 20 0.9961 0.9988 0.9968 0.9920 0.9660 

  50 0.9979 0.9997 0.9993 0.9840 0.9760 

  100 0.9970 0.9996 0.9993 0.9620 0.9630 

  200 0.9832 0.9981 0.9952 0.8830 0.8890 

  525 
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Table A4: As table A3 but for a 99% confidence interval 526 

 527 

ρ n A B C Boot Bca 

0.1 20 0.9887 0.9919 0.9874 0.9650 0.9900 

  50 0.9906 0.9912 0.9898 0.9830 0.9910 

  100 0.9913 0.9901 0.9903 0.9840 0.9930 

  200 0.9926 0.9918 0.9919 0.9860 0.9910 

0.3 20 0.9909 0.9939 0.9896 0.9820 0.9900 

  50 0.9933 0.9941 0.9929 0.9820 0.9940 

  100 0.9924 0.9928 0.9919 0.9850 0.9940 

  200 0.9933 0.9929 0.9928 0.9940 0.9900 

0.5 20 0.9942 0.9968 0.9940 0.9760 0.9960 

  50 0.9952 0.9976 0.9959 0.9820 0.9960 

  100 0.9946 0.9966 0.9953 0.9880 0.9960 

  200 0.9938 0.9965 0.9949 0.9860 0.9920 

0.7 20 0.9974 0.9992 0.9977 0.9840 0.9920 

  50 0.9968 0.9993 0.9982 0.9860 0.9950 

  100 0.9953 0.9988 0.9969 0.9820 0.9930 

  200 0.9912 0.9969 0.9949 0.9710 0.9870 

0.8 20 0.9981 0.9994 0.9988 0.9900 0.9990 

  50 0.9986 0.9995 0.9991 0.9830 0.9990 

  100 0.9976 0.9998 0.9987 0.9810 0.9950 

  200 0.9921 0.9983 0.9965 0.9690 0.9830 

0.9 20 0.9989 0.9998 0.9993 0.9980 0.9970 

  50 0.9995 0.9999 0.9999 0.9960 0.9960 

  100 0.9992 0.9999 0.9998 0.9820 0.9960 

  200 0.9966 0.9996 0.9989 0.9560 0.9820 

0.95 20 0.9994 0.9998 0.9994 0.9990 0.9880 

  50 0.9999 0.9999 0.9999 0.9970 0.9980 

  100 0.9999 0.9999 0.9999 0.9960 0.9950 

  200 0.9994 0.9999 0.9998 0.9790 0.9840 
 528 


