
LOAD BALANCING OF IRREGULAR PARALLEL APPLICATIONS ON
HETEROGENEOUS COMPUTING ENVIRONMENTS

Vladimir Janjic

A Thesis Submitted for the Degree of PhD
at the

University of St. Andrews

2012

Full metadata for this item is available in
Research@StAndrews:FullText

at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/2540

This item is protected by original copyright

http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/2540

Load Balancing of Irregular Parallel

Applications on Heterogeneous Computing

Environments

by Vladimir Janjic

A thesis submitted to the

University of St. Andrews

for the degree of

Doctor of Philosophy

School of Computer Science

University of St. Andrews

16 December 2011

I, Vladimir Janjic, hereby certify that this thesis, which is approximately 80000

words in length, has been written by me, that it is the record of work carried out by

me and that it has not been submitted in any previous application for a higher degree.

I was admitted as a research student in October, 2007 and as a candidate for the

degree of Doctor of Philosophy in September, 2008; the higher study for which this is

a record was carried out in the University of St Andrews between 2007 and 2011.

Date Signature of candidate

I hereby certify that the candidate has fulfilled the conditions of the Resolution

and Regulations appropriate for the degree of Doctor of Philosophy in the University

of St Andrews and that the candidate is qualified to submit this thesis in application

for that degree.

Date Signature of supervisor

In submitting this thesis to the University of St Andrews I understand that I am

giving permission for it to be made available for use in accordance with the regulations

of the University Library for the time being in force, subject to any copyright vested in

the work not being affected thereby. I also understand that the title and the abstract

will be published, and that a copy of the work may be made and supplied to any

bona fide library or research worker, that my thesis will be electronically accessible for

personal or research use unless exempt by award of an embargo as requested below, and

that the library has the right to migrate my thesis into new electronic forms as required

to ensure continued access to the thesis. I have obtained any third-party copyright

permissions that may be required in order to allow such access and migration, or have

requested the appropriate embargo below.

The following is an agreed request by candidate and supervisor regarding the elec-

tronic publication of this thesis:

Access to printed copy and electronic publication of thesis through the University

of St Andrews.

Date Signature of candidate ...

Signature of supervisor ..

Abstract

Large-scale heterogeneous distributed computing environments (such as Computa-

tional Grids and Clouds) offer the promise of access to a vast amount of computing

resources at a relatively low cost. In order to ease the application development and

deployment on such complex environments, high-level parallel programming languages

exist that need to be supported by sophisticated runtime systems. One of the main

problems that these runtime systems need to address is dynamic load balancing that

ensures that no resources in the environment are underutilised or overloaded with

work.

This thesis deals with the problem of obtaining good speedups for irregular ap-

plications on heterogeneous distributed computing environments. It focuses on work-

stealing techniques that can be used for load balancing during the execution of irregular

applications. It specifically addresses two problems that arise during work-stealing:

where thieves should look for work during the application execution and how victims

should respond to steal attempts.

In particular, we describe and implement a new Feudal Stealing algoritm and

also we describe and implement new granularity-driven task selection policies in the

SCALES simulator, which is a work-stealing simulator developed for this thesis. In ad-

dition, we present the comprehensive evaluation of the Feudal Stealing algorithm and

the granularity-driven task selection policies using the simulations of a large class of

regular and irregular parallel applications on a wide range of computing environments.

We show how the Feudal Stealing algorithm and the granularity-driven task selection

policies bring significant improvements in speedups of irregular applications, compared

to the state-of-the-art work-stealing algoithms. Furthermore, we also present the im-

plementation of the task selection policies in the Grid-GUM runtime system [AZ06]

for Glasgow Parallel Haskell (GpH) [THLPJ98], in addition to the implementation in

SCALES, and we also present the evaluation of this implementation on a large set of

synthetic applications.

Acknowledgments

First and foremost, I would like to thank my supervisor, Kevin Hammond, for his

guidance through the whole process of my PhD studies. He was truly like an academic

father to me, and he provided a great help in turning my half-baked ideas into quality

research. I am forever indebted to him for all that he has done for me in my four years.

Special thanks go to Steve Linton who, together with Kevin, secured the funding

for my research. Without him, I would have never been able to come to St Andrews

and do what I have done.

Many people from the School of Computer Science at the University of St Andrews

provided help at various points in my studies. Philip Hölzenspies, Christopher Brown,

Edwin Brady and Max Neunhöffer read various parts of the earlier versions of the thesis

and gave very useful suggestions on how to improve it. Thanks to Alexander Konovalov

and Reimer Behredens who were, together with Christopher Brown, my officemates.

We always had that necessary balance between the serious and lighthearted air in

our office, which created a great environment for productive work. I would also like

to thank the members of Dependable System Group at the Heriot-Watt University,

especially Hans-Wolfgang Loidl and Philip W. Trinder, for very useful discussions and

feedback they gave me at various points for my research.

It would be unfair not to mention the support I had from various people from

the Faculty of Science, Unversity of Banja Luka. I would especially like to thank the

dean of the faculty, Rajko Gnjato, for ensuring financial support for my studies. I

would also like to thank my undergraduate supervisor, Nenad Mitic from the Faculty

of Mathematics, University of Belgrade, for introducing me to the area of functional

programming.

Finally, I would like to thank my wife, Rada, for great patience and support she

provided during these four years. Without her, I would have never been able to finish

the thesis, and she deserves the better half of the credits for its successful completion.

Thanks also to our toddler daughter Marija for her insightful babble during the long

evenings of work. Also, many thanks to my father Milan, mother Spomenka and

i

brother Aleksandar for the continious support they gave me.

This research is supported by European Union Framework 6 grant RII3-CT-2005-

026133 SCIEnce: Symbolic Computing Infrastructure in Europe.

ii

Contents

1 Introduction 1

1.1 Why Parallel Programming? . 1

1.2 Load Balancing and Work-Stealing in Parallel Runtime Systems 4

1.3 Irregular Parallel Applications . 5

1.4 Heterogeneous Distributed Computing Environments 7

1.5 Aim of the Thesis . 8

1.6 Contributions . 10

1.7 Thesis structure . 12

1.8 Publications . 14

2 Scheduling and Load-Balancing 17

2.1 Distributed Computing Environments 17

2.1.1 Computational Grids . 19

2.1.2 Cloud Computing . 22

2.2 Scheduling on Distributed Computing Environments 26

2.2.1 Scheduling of Bag-of-tasks Applications 27

2.2.2 Scheduling of Applications with Task Dependencies 29

2.3 Load Balancing . 33

2.3.1 Work Stealing . 34

2.4 (Parallel) Functional Programming . 39

2.4.1 Glasgow Parallel Haskell . 41

2.4.2 GUM . 41

2.4.3 Grid-GUM . 45

3 SCALES Work-Stealing Simulator 51

3.1 Overview of SCALES . 51

3.2 Applications . 53

3.3 Computing Environments . 56

iii

iv CONTENTS

3.4 Execution of Applications under SCALES 58

3.4.1 Accuracy of Simulations Under SCALES 62

3.5 Grid and Cloud Simulators . 64

3.6 Summary . 65

4 Work Stealing on Distributed Systems 67

4.1 Introduction . 67

4.2 Parallel Applications . 68

4.2.1 The Degree of Irregularity of Parallel Applications 74

4.3 Heterogeneous Distributed Computing Environments and Runtime sys-

tems . 82

4.4 Work-stealing on Heterogeneous Computing Environments 83

4.4.1 How to Choose Steal Targets 86

4.4.2 How to Respond to Steal Attempt 89

4.5 Summary . 90

5 Load-Based Topology-Aware Stealing 93

5.1 The Use of Load Information . 94

5.1.1 Load-based Work-stealing Algorithms 95

5.2 Evaluation of Load-based Work-stealing

Algorithms . 101

5.2.1 SimpleDC Applications . 105

5.2.2 The DCFixedPar Applications 122

5.2.3 Summary of Experiments . 134

5.3 Feudal Stealing . 136

5.3.1 The Feudal Stealing Algorithm 142

5.4 The Evaluation of Feudal Stealing . 148

5.4.1 The SimpleDC Applications . 150

5.4.2 The DCFixedPar Applications 152

5.4.3 Why is Feudal Stealing Better than CRS and Grid-GUM? . . . 158

5.4.4 Summary . 159

5.5 Conclusions . 161

6 Granularity-Driven Work Stealing 165

6.1 Introduction . 165

6.2 Granularity-Driven Task Selection Policies 167

6.3 Simulations Experiments . 171

CONTENTS v

6.3.1 Overview . 171

6.3.2 Applications with Variable Mean Task Size 175

6.3.3 Applications with Variable Number of Tasks 183

6.3.4 Applications with a Varying Degree of Irregularity 197

6.3.5 Computing Environments with a Hierarchy of Latencies 201

6.3.6 Applications with nested-parallel tasks 208

6.3.7 Where do the Improvements Come From? 214

6.3.8 Summary of the Simulations Experiments 215

6.4 Grid-GUM Implementation . 218

6.4.1 Implementation Details . 218

6.5 Experiments with Grid-GUM . 219

6.5.1 Differences in Simulation and Grid-GUM Setup 220

6.5.2 Experiments with the Synthetic Applications 221

6.6 Conclusions . 228

7 Conclusions 231

7.1 Contributions of the Thesis . 233

7.2 Limitations of our Approach . 236

7.3 Further Work . 237

vi CONTENTS

Chapter 1

Introduction

This thesis deals with the important topic of improving the performance of irregular

parallel applications under work-stealing load-balancing algorithms on heterogeneous

distributed computing environments. Large distributed computing environments, such

as Computational Grids, offer the promise of access to a vast amount of computing

power at relatively low cost. In order to ease application development and deployment

on such complex environments, new languages are needed that offer high-level parallel

programming constructs, while hiding most of the details of creation and management

of actual parallel tasks in applications. These languages need to be supported by auto-

matic mechanisms that distribute parallel work to the available computing resources,

in order to obtain good speedups for parallel applications. The thesis considers how to

develop new load-balancing algorithms (based on work-stealing mechanism) that can

give improved runtime performance, especially for the important, but rarely studied,

class of symbolic computing applications. The work has been tested using both a novel

simulator, and by adapting the Grid-GUM runtime system, a distributed implemen-

tation of the parallel functional language Glasgow Parallel Haskell (GpH).

1.1 Why Parallel Programming?

In the last 10 years or so, we have witnessed a real revolution in the way in which

computer applications are written. Since the beginnings of computing, the hunger

of applications for more processing power has constantly increased. For many years,

single-processor systems were able to improve in line with increasing applications’

demands, but this is not the case any more. We can see nowadays that the clock speeds

of modern processors are improving very slowly, or, in the case of some architectures,

have completely stalled or are even reduced. In order to provide more cycles for ever-

1

2 CHAPTER 1. INTRODUCTION

demanding applications, computing systems are becoming more and more parallel.

This is not the case just for high-end specialised systems (such as supercomputers).

Nowadays, even systems intended for home usage typically come in the form of dual-

or quad-core processors. We expect the trend of increasing parallelism in computing

architectures will continue for the foreseeable future, so that future systems will not

only be slightly parallel , they will be massively parallel.

All of this has had an important impact on application developers. It is no longer

possible to rely on the computing architecture alone to provide the necessary cycles

to ensure improved performance for demanding sequential applications. Consequently,

we have seen a big shift from sequential to parallel programming paradigms. How-

ever, transforming legacy sequential applications into parallel ones which give good

speedups on modern architectures is rarely an easy task, since good sequential ap-

plications often employ elaborate optimisations that usually make them inherently

sequential and, therefore, difficult to parallelise. Frequently it is easier to write a par-

allel application from scratch, than to transform an already existing sequential one.

Therefore, in order for applications to perform well on a range of current and future

architectures, programmers nowadays must think in parallel from the very early stages

of an application’s development.

Writing parallel applications, however, can be a really daunting task, especially

when it is done in low level systems (such as C+MPI [Qui03]). There are many

more things that can go wrong when writing parallel applications than when writing

sequential applications. For example, parallel application may introduce race condi-

tions, which can result in an inconsistent application behaviour or in deadlocks. Even

when we manage to produce a correct parallel application, its performance on a par-

allel machine can be worse than that of an equivalent sequential program, for example

when task sizes are too small or there are too many data dependencies between them.

Therefore, many programming languages (or the extensions to already existing lan-

guages) which simplify the writing of parallel applications have been developed. In

these systems, a programmer usually has a small set of parallel primitives which can

be used to denote functions (or expressions) that can be executed (or evaluated) in

parallel. Examples of such languages include:

• Cilk [BJK+95], an extension to the programming language C, which includes

the constructs for declaring and spawning parallel threads and constructs for

inter-thread communication.

• Javelin [NC02], a software system based on Java, designed for the development

of large-scale distributed parallel applications. Javelin includes a large number

1.1. WHY PARALLEL PROGRAMMING? 3

of constructs, which support common forms of parallel programming, such as

Single-Program-Multiple-Data (SPMD).

• GpH [THLPJ98], an extensions to the programming language Haskell [Jon03],

which includes par and seq constructs. The par construct denotes the two

expressions which should be evaluated by parallel threads, whereas seq orders

the evaluation of expressions.

These parallel languages are designed to target general parallel applications. An alter-

native is to use parallel environments that further ease parallel programming by offer-

ing even higher levels of abstraction, by hiding more of the low-level details of thread

creation and synchronisation from the programmer. The penalty paid in these envi-

ronments is that they usually restrict the kind of applications that can be developed

to those conforming to specific parallel paradigms. Examples of such environments

include:

• Satin [VNWJB10], a programming environment for Java, which targets divide-

and-conquer and master-worker parallel applications.

• Single Assignment C (SAC) [GS06], a functional programming language, which

focuses on applications based on parallel operations on arrays.

• eSkel [MCGH05], a parallel library, based on C and the MPI [GLS99] commu-

nication library, which supports parallel programming using algorithmic skele-

tons [Col89]. Algorithmic skeletons represent the abstraction of commonly-used

patterns of parallel computations, communication and interaction.

Making parallel applications easier to write, however, does not come for free. Parallel

languages and environments, that offer a high level of abstraction, usually rely on

very sophisticated runtime systems to do most of the hard work related to the parallel

execution of applications, such as creation of parallel tasks and their communication,

synchronisation and scheduling. The mechanisms that such runtime systems employ

for task scheduling, that involve decisions about what tasks will be run where, are

probably the most important to ensure good performance of parallel applications. In

this thesis, we focus on one particular aspect of task scheduling – that of load-balancing

decisions. Load-balancing methods are responsible for ensuring that the work is evenly

distributed across all nodes of a parallel machine during the application execution.

4 CHAPTER 1. INTRODUCTION

1.2 Load Balancing and Work-Stealing in Parallel

Runtime Systems

One of the most crucial things that developers of runtime systems need to consider is

how load balancing is done. In the context of runtime systems for parallel applications,

load balancing refers to transferring the parallel tasks between different nodes of a

parallel machine, in order to ensure that each node has approximately the same amount

of work to do. If the work is not equally distributed across nodes, then some of them

will be idle while others will have too much work, so we cannot hope to achieve good

speedups of parallel applications.

We assume that each node holds the parallel tasks it creates in its own task pool.

Alternatively, in shared-memory settings, there may be a common task pool to which

all nodes have access. Keeping this in mind, load-balancing methods can be classified

into two main classes, depending on who initiates the balancing:

• Sender-initiated or Work-pushing methods are those in which a node that has

more than some predefined number of tasks in its task pool automatically dis-

tributes them to other nodes. Alternatively, if a common task pool exist, when-

ever a new task is added to it, it is automatically sent to some node. All load-

balancing decisions, at each point in the application execution, are, therefore,

initiated by nodes that have multiple tasks in their pools (or that add tasks to

a common task pool).

• Receiver-initiated or Work-stealing methods are those in which nodes do not

automatically offload tasks they create to other nodes. Instead, they keep them

in their task pools and only when idle nodes (those that do not have any task to

execute) ask them for work, do they send tasks to them. If a common task pool

exist, idle nodes grab tasks from it. We can see that load-balancing decisions in

these methods are initiated by nodes that need to obtain tasks.

Both classes of load balancing methods have their advantages and disadvantages.

The main advantage of work-pushing is that it incurs less communication than work-

stealing in distributed memory settings. In order to transfer a task from node A to

node B, work-pushing just requires that node A contacts node B (e.g. by sending a

message with a task to it) whereas work-stealing requires both node B to contact node

A (e.g. by sending some kind of steal-request message) and node A to contact node B

(e.g. by sending a message with the task to it). The main advantage of work-stealing

is that overloading nodes with work is much less likely to occur. Since nodes that send

1.3. IRREGULAR PARALLEL APPLICATIONS 5

work in work-pushing do not necessarily know the load of a receiver, a situation can

happen where a node that already has many tasks to execute receives additional tasks

and becomes overloaded with work.

It is generally the case that work-stealing methods give a better overall load bal-

ance, and the penalty paid in more communication is not that significant (see, for

example, the comparison between work-stealing and work-pushing algorithms in Van

Nieuwpoort et al. [VNKB01]). Because of this, many runtime systems (e.g. Cilk, Satin,

Javelin, GpH) use work-stealing as a method for load balancing. In this thesis, we will,

therefore, assume that load balancing is done using work-stealing.

In the rest of the thesis, we will adopt the following terminology for work-stealing

in the settings where each node has its own task pool. An idle node, which needs to

obtain tasks, will be called a thief. A node, that is asked for work by a thief, will

be called a target. Note that in work-stealing it is not certain whether a target node

will have tasks to send to the thief. A target that has tasks in its task pool and that,

therefore, can send some tasks to the thief will be called a victim. A message in which

a thief asks a target for work will be called a steal attempt. A steal operation consists

of a steal attempt made to a victim, together with the message(s) where the task is

sent as a response.

1.3 Irregular Parallel Applications

The main focus of this thesis is on irregular parallel applications. Generally, there is

no universally accepted definition of what an irregular application is, i.e. what is it

that distinguishes regular from irregular applications. However, irregularity in the lit-

erature usually refers to one of two different concepts. The first one takes into account

the high-level structure of an application in terms of, for example, the data structures

used (vectors and matrices for regular applications, and pointer-based data structures,

such as sparse graphs, for irregular ones, e.g. Kulkarni et al. [KPW+07], Belloch et

al. [BHC+93]) or algorithms or parallel paradigms used (e.g. referring to applications

with a single level of parallelism as regular, and those with nested parallelism as irreg-

ular). We will call this kind of irregularity the structural irregularity of an application.

The second concept takes into the account the actual tasks that are created during

the execution of the application, seeing an application as irregular if different tasks

either: i) have different sizes; ii) generate different amounts of parallelism; or iii) have

different communication patterns (e.g. Barker and Chrisochoides [BC03], Nikolopulos

et al. [NPA01]). We will call this kind of irregularity the cost irregularity of an ap-

6 CHAPTER 1. INTRODUCTION

plication. We can see that cost irregularity focuses on lower-level issues (that is, the

level of actual parallel tasks created at execution time) than structural irregularity.

It is almost always the case that structurally irregular applications are also cost

irregular, but not the other way around. A lot of applications that have simple, regular

high-level structure create tasks with cost irregular parallelism. For example, consider

the parallel version of the sumEuler function written in GpH:

sumEuler l = sum (parMap rnf euler l)

Figure 1.1: sumEuler application

This function maps the euler totient function over the list of integers in argument

1 and then calculates the sum of the resulting list. Its high-level structure is that

of a single-level data parallel application (applying sequentially the same operation

over the list of numbers in parallel), which makes it structurally regular (Figure 1.1).

However, since the cost of applying the euler function is different for different input

values, the actual parallel tasks created during the application execution have different

sequential sizes, which makes it cost irregular.

In this thesis, we will focus solely on cost irregular applications. Therefore, when

we say “irregular” we will mean “cost irregular”. The main motivation for that is that

cost irregularity deals with lower level issues, which are more “measurable”. Rather

than just distinguishing between “regular” and “irregular” applications, we want to

be able to tell precisely how irregular the application is.

1.4. HETEROGENEOUS DISTRIBUTED COMPUTING ENVIRONMENTS 7

The main motivation for considering irregular applications comes from the area of

symbolic computations, which is targeted by the ongoing SCIEnce research

project [AZTH+08]. Symbolic computations deal with finding the exact solutions to

mathematical problems which involve symbolic objects, as opposed to operating with

approximations on numerical values in numeric computations. These computations

are typically time and/or memory consuming, and are based on irregular high-level al-

gebraic data structures with highly irregular parallelism (see the examples of symbolic

computations in Linton et al. [LHK+11] and Al Zain et al. [AZTH+08]).

1.4 Heterogeneous Distributed Computing Environ-

ments

At several points in the previous discussion, we have mentioned the concept of a

parallel machine. Rather than a physical machine, our concept of a parallel machine is

more a logical one. A parallel machine may involve a large number of geographically

distributed high-performance computing servers, connected by high-latency networks,

that have the appropriate software infrastructure that enables parallel applications to

see them as a single machine.

The parallel machines (or computing environments, as we will call them in the rest

of the thesis) that we consider consist of a set of nodes (processing elements or PEs)

with their associated memories plus the networks by which they are connected. We

assume that each PE has its own private memory, and that there is no memory that is

shared between PEs. The only means of communication between PEs is through the

exchange of messages via networks. These kinds of environments are usually called

distributed or message passing systems. Again, we emphasise that our concept of

a computing environment is a logical one, as it describes how the runtime systems

see the underlying physical hardware, rather than what this hardware is. It is per-

fectly possible to implement distributed computing infrastructures on top of a physical

shared-memory hardware. For example, in a multicore machine, PEs may correspond

to processor cores, sending a message may correspond to writing some data to a shared

memory and receiving a message may correspond to reading from the shared memory.

The main focus of the thesis is on heterogeneous distributed computing environ-

ments. In such environments, the capabilities of individual PEs (in terms of how fast

they can execute tasks), communication latencies between PEs and the amount and

type of memory associated with each PE can be different. This is the typical setup of,

for example, Computational Grids, which usually consist of a set of clusters connected

8 CHAPTER 1. INTRODUCTION

Figure 1.2: Computing environment where clusters of PEs from 5 sites from Europe,
North America, Asia, Australia and New Zealand are connected by high-latency net-
works

by high-latency networks (see Section 2.1.1 for more details about Grids). Each clus-

ter consists of a number of PEs. Computing powers of PEs in different clusters are

usually different and the communication latency between PEs from the same cluster is

usually much lower than for PEs from different clusters. See Figure 1.2 for an example

computing environment with heterogeneous communication latencies between PEs.

The main motivation for considering heterogeneous distributed computing environ-

ments is that they offer much more processing potential that tightly-coupled systems.

1.5 Aim of the Thesis

Efficient work-stealing on heterogeneous distributed computing environments is hard,

especially for irregular parallel applications. In such environments, sending stealing

related messages can be very expensive, especially when communication latency be-

tween a thief and a target is high. Therefore, it is imperative for thieves to choose

steal targets very carefully, in order not to send too many messages to the targets

that do not have any work to send. At certain phases of the execution of irregular

parallel applications, there may only be a small amount of parallelism available or all

1.5. AIM OF THE THESIS 9

available tasks may be concentrated on a small number of PEs. Locating these PEs in

a potentially large environment can be very hard, and we might end up in a situation

where thieves spend a lot of time locating work, which results in reduced applications’

speedups.

The second problem comes from the fact that tasks of irregular applications can

have different sizes and they can generate a different amount of additional tasks. We

need to be careful in deciding which tasks a victim should send to a thief, in order to

preserve the overall load balance. Sending too small tasks over high latency networks

can result in situations where communication time exceeds execution time. On the

other hand, we also need to be careful not to send too many large tasks or tasks

that generate a lot of parallelism on the same group of PEs, otherwise they may get

overloaded with work.

Further complications for work-stealing in irregular applications can come from

different communication patterns of different tasks, so we must be careful not to place

the tasks with a lot of data dependencies on PEs which communicate over high latency

networks, as the overheads in communication between these tasks can be too high.

The current state-of-the-art work-stealing algorithms do not address the problems

mentioned above in a proper way. Most of the work-stealing algorithms currently

used in runtime systems are tailored to the execution of the applications of a simple,

regular structure (such as divide-and-conquer parallel applications where every task,

up to some threshold, generates further tasks, or data-parallel applications where all

of the tasks are of approximately the same size). The other problem is that they do

not adapt very well to highly heterogeneous computing environments, especially when

a whole hierarchy of communication latencies between different PEs exists.

In this thesis, we aim to improve the current state-of-the-art work-stealing algo-

rithms to deliver better speedups for irregular parallel applications on heterogeneous

distributed environments. It, therefore, represents the first attempt to develop work-

stealing algorithms that will be especially tailored to irregular parallel applications.

Specifically, we target two main questions that arise during work-stealing:

• How should thieves choose targets for their steal attempts?

• How should victims respond to these steal attempts, i.e. what tasks should they

send as a response?

In order to answer the first question, we present a novel Feudal work-stealing al-

gorithm, which uses the information about dynamic PE loads (where by PE load we

mean the number of tasks in its task pool) in making decisions about where thieves

10 CHAPTER 1. INTRODUCTION

should send their steal attempts. Our algorithm is novel in that it uses a combina-

tion of locally-centralised and remotely-distributed methods for propagation of the

information about PE loads, informed by the communication hierarchy in the under-

lying computing environment. We show that by using this method we can obtain a

very good approximation of dynamic PE loads, and that we can significantly improve

speedups of irregular parallel applications compared to algorithms that don’t use load

information, or those that use fully distributed methods of information propagation.

To answer the second question, we focus on the information about the parallel

profiles of tasks that comprise parallel applications being executed. In particular, we

investigate how the information about task sizes can be used to improve work-stealing.

We propose different granularity-driven task selection policies that victims can use to

select the tasks that should be sent as responses to steal attempts. We show that

these policies can notably improve applications’ speedups compared to ad-hoc policies

currently used in work-stealing algorithms, which choose the tasks based on their age.

All of our algorithms are evaluated using a highly-parametrised simulator of work-

stealing on distributed systems (developed for this thesis). Furthermore, we describe

the implementation in the Grid-GUM Parallel Runtime System [AZ06] for Glasgow

Parallel Haskell of the granularity-driven task selection policies. These experiments

show both theoretical improvements in speedups that our methods bring, compared to

the state-of-the-art work-stealing algorithms used in runtime systems, as well as their

practical applicability in real systems.

1.6 Contributions

The main contributions of this thesis are

• A novel Feudal Work-Stealing algorithm for work stealing on heterogeneous com-

puting environment

Our algorithm uses information about the network topology of the underlying

computing environment, together with a combination of locally-centralised and

remotely-distributed methods for propagation of information about relative PE

loads to guide the decisions of where should PEs send steal requests. We show

that our algorithm outperforms the state-of-the-art work-stealing algorithms for

heterogeneous computing environments, and also that the relative PE load infor-

mation that can be obtained with it is more accurate than under state-of-the-art

Grid-GUM work-stealing algorithm, which uses a fully distributed method of

load information propagation.

1.6. CONTRIBUTIONS 11

• Novel policies for selecting the tasks for offloading during the work-stealing

We propose policies for selecting task(s) that will be sent as a response to steal

requests made from thieves during work-stealing. Our tasks are novel in that they

use application-specific information about task sizes in making their decisions.

Since they deal with the question of how to respond to steal requests, rather than

where to send them (which is the focus of most of the work stealing algorithms),

they are orthogonal to most of the work stealing algorithms and can, therefore,

be readily “plugged” into all of them, if the required information about task sizes

is available.

• Comprehensive evaluation of all of our work-stealing algorithms and policies us-

ing simulations

We have done a comprehensive evaluation of the algorithms proposed in this

thesis on a wide class of parallel applications and computing environments using

simulations. This has enabled us to make a conclusions about the situations (i.e.

application/computing environment combinations) for which the improvements

in speedup under our algorithms are the best (compared to other state-of-the-art

algorithms).

• Implementation of granularity-driven task selection policies in Grid-GUM

We describe the implementation of granularity-driven task selection policies in

the Grid-GUM runtime environment, and the evaluation of performance of this

implementation for a wide class of parallel applications. This shows both the

practical applicability of the proposed task selection policies and the accuracy of

our simulations, since the results we obtained for the same classes of applications

under simulations and real implementation match.

• Analysis of the usability of load information in state-of-the-art work-stealing al-

gorithms

We analyse how much the state-of-the-art work-stealing algorithms could benefit

if they have perfect information about the dynamic loads of all PEs during the

whole application execution. In other words, we investigate how much better

would they perform if a thief were to know the load of every other PE in a

system each time it needs to make work-stealing decisions. This enables us to

conclude what is the best way of using the load information in work-stealing, and

also it gives important information to the implementers of work-stealing runtime

systems on how much their algorithms would benefit if they were extended with

the usage of load information.

12 CHAPTER 1. INTRODUCTION

Additionally, the thesis also makes the following minor contributions:

• The precise definition of the degree of irregularity of an application (with respect

to task granularity)

Whereas in the literature parallel applications are classified simply as either

regular or irregular, we have developed the precise mathematical definition of

the degree of irregularity of a parallel application. This tells us exactly ’how

irregular’ the application is, and what is the impact that application irregularity

has on the performance of both currently used work-stealing algorithms, and

also the Feudal work-stealing algorithm. Using this definition, we show the very

important fact that the algorithms and policies that we propose in this thesis

bring better improvements in speedups (compared to the other state-of-the-art

work-stealing algorithms) for more irregular parallel applications.

• Highly-parametrised simulator of work-stealing

We have developed the SCALES simulator for work stealing on distributed com-

puting environments, which can simulate the execution of a wide class of par-

allel applications on different heterogeneous computing environments. SCALES

enables us to evaluate our work-stealing algorithms on a much wider class of

applications and computing environments than if we were to use only the imple-

mentation of these work-stealing algorithms in runtime systems.

1.7 Thesis structure

The structure of this thesis is as follows:

• Chapter 2 gives a general survey of heterogeneous computing environments,

focusing on Computational Grids and Clouds. We also give a survey of different

approaches that are currently used in scheduling/load balancing both on homo-

geneous and heterogeneous computing environments. We pay special attention

to the approaches that most similar to ours either in that they use work-stealing

or that they consider similar types of applications (e.g. workflow scheduling

algorithms). Additionally, this chapter gives a brief overview of parallel func-

tional programming, focusing on Glasgow Parallel Haskell (GpH) and the GUM

parallel runitme system for GpH on distributed environments. We also describe

the extension to GUM for Computational Grids, Grid-GUM, which represents

the work that is most closely related to ours. Grid-GUM serves us as a testbed

1.7. THESIS STRUCTURE 13

for the implementation of the granularity-driven task selection policies that we

consider in this thesis.

• Chapter 3 describes the SCALES work-stealing simulator for heterogeneous

distributed computing environments. SCALES was developed for the purpose

of testing the work-stealing methods considered in this thesis, and is highly

parametrizable. It enables us to simulate a wide class of parallel applications on

a wide class of computing environments, and also allows us to tune the param-

eters of the simulated runtime system, enabling simulation of different runtime

systems. We also give a brief overview of other scheduling simulators, focusing

on Grid/Cloud simulators.

• Chapter 4 describes, in more detail, the approach that we take in improving the

state-of-the-art of work-stealing algorithms, by describing in more detail the kind

of applications that we consider and the restrictions on computing environments

and runtime systems we impose. We also define an important concept of the

degree of application’s irregularity, which we heavily use in subsequent chapters.

We subsequently describe in more detail the problems that irregularity of parallel

applications pose to work-stealing on heterogeneous distributed environments,

and describe our approach to solving them. As we have mentioned in Section

1.5, we focus on two main questions, that of locating the parallel tasks, and that

of choosing a task to send as a response to steal attempt.

• Chapter 5 deals with the first of two questions we have posed. In this chap-

ter, we investigate how both static (communication latencies between PEs) and

dynamic (PE loads) information about the computing environment on which

parallel applications are executed can be used to improve the work-stealing al-

gorithms. After showing how to use this information, we show how to obtain

it. In particular, we present the Feudal Work-Stealing algorithm, which can be

used for the purpose of PEs obtaining good approximation about the dynamic

system load at each point in the application execution.

• Chapter 6 investigates the second question that we have posed. We show

that by using information about task granularity, we can make better decisions

about which tasks to offload as a response to work-stealing requests than if this

information is not present. We propose different granularity-driven task selection

policies and evaluate in which situations each of them works well. Furthermore,

we show that the amount of improvement we obtain when using task granularity

14 CHAPTER 1. INTRODUCTION

information is directly related to the degree of irregularity of parallel application

that is being considered, and that the more irregular the application is, the better

are the improvements that we can get.

• Chapter 7 concludes the thesis, by giving an overview of what has been achieved

in the thesis, reviews its contributions and points out its limitations and the ways

in which work done here could be further extended.

1.8 Publications

During the work on this thesis, we have published the following papers:

1. Vladimir Janjic and Kevin Hammond. Granularity-Aware Work-Stealing for

Computationally-Uniform Grids. In Proc. of 10th IEEE/ACM International

Conference on Cluster, Cloud and Grid Computing, CCGrid 2010, pages 123–

134. IEEE Computer Society, May 2010

Most of the material from Chapter 6 is based on this paper, where granularity-

driven task selection policies are proposed and evaluated. Chapter 6 presents

more comprehensive evaluation of these policies, and more detailed description of

their implementation in Grid-GUM. The paper, on the other hand, additionally

describes the experiments with a small set of realistic GpH applications, and

shows how can the granularity-driven task selection policies be used to improve

their speedups.

2. Vladimir Janjic and Kevin Hammond. Prescient Scheduling of Parallel Func-

tional Programs on the Grid. Draf Proc. of Intl. Symposium on Trends in

Functional Programming, TFP 2008. 2008.

In this paper, we presented the design of a dynamic prescient scheduler, based on

Grid-GUM, for irregular parallel applications on Computational Grids. It also

showed how some simple information (the number of threads created at regular

time intervals over the application execution) about the profile of a parallel

application can be used to increase the PE utilisation.

3. Vladimir Janjic, Kevin Hammond and Yang Yang. Using Application Informa-

tion to Drive Adaptive Grid Middleware Scheduling Decisions. In Proc. of the

2nd Workshop on Middleware-application Interaction, MAI 2008, pages 7–12.

ACM, 2008

1.8. PUBLICATIONS 15

In this paper, we propose a method for obtaining information about the task sizes

of an application, based on the history of previous runs of the same application.

This method is based on the Markov-chain statistical model, and it tries to

capture common patterns of task sizes that appear in multiple executions of the

same application. This method can be used for obtaining the information about

the task sizes of the applications for which task sizes depend on the particular

inputs to the application.

4. Henrique Ferreiro, Victor Gulias, Kevin Hammond and Vladimir Janjic. Re-

peating History: Execution Replay for Parallel Haskell Programs. Draft Proc.

of 23rd Symposium on the Implementation and Application of Functional Lan-

guages, IFL 2011. 2011. The final version of the paper is in preparation.

This paper outlines the technique for the execution replay of parallel Haskell

programs. This technique is useful in debugging parallel applications, as well as

in obtaining information about the profiles of parallel tasks.

16 CHAPTER 1. INTRODUCTION

Chapter 2

Scheduling and Load-Balancing on

Distributed Computing

Environments

In this chapter, we give an overview of the most popular classes of large-scale dis-

tributed computing environments that are in use today, namely, Computational Grids

and Clouds. After that, we describe scheduling methods used on these environments.

Specifically, we focus on Grid scheduling. Although we pay special attention to the

methods used for scheduling of the applications that have interdependence between

tasks, we also give an overview of scheduling of more simple, bag-of-tasks applications.

We subsequently focus on load-balancing methods, paying particular attention to the

work-stealing algorithms used in modern runtime systems. Finally, we give an overview

of parallel functional programming and, specifically, of the Grid-GUM runtime system

for Glasgow Parallel Haskell (GpH), which is used as a testbed for the implementation

of some of the load-balancing methods considered in this thesis.

2.1 Distributed Computing Environments

In general, the notion of a distributed model can refer both to the programming model

used in parallel applications and to the underlying computing environment on which

these applications are executed. When used to qualify the programming model, dis-

tributed model (or, as it is often called, a distributed-memory model) refers to an

application that consists of a collection of processes, each of which has its own pri-

vate address space, and where the only mean of process communication is message

passing. Accessing some data by message passing is typically much more expensive

17

18 CHAPTER 2. SCHEDULING AND LOAD-BALANCING

than by reading it from the private memory of a process. Applications written us-

ing C+MPI [GLS99] are typical examples of applications that conform to distributed

application model.

When used to qualify the computing environment, distributed model refers to a

collection of nodes (where nodes, in general case, can be processing elements, disks,

sensors etc.) connected by networks, where each node has its own physical memory

associated with it. The only mean of communication between nodes is by sending

messages via networks. Typical examples of distributed computing hardware systems

are Beowulf clusters [GLS03] and Computational Grids [FKT01, BFH03].

Shared-memory model refers to the applications (computing environments) that

consist of a collection of threads (processors) that share the common address space

(physical memory). The distinction between the shared-memory and the distributed

model in computing environments is not always obvious. Take, for example, a mod-

ern multicore machine. Obviously, we can see such a machine as a shared-memory

computing environment, since all of the cores have access to the shared main mem-

ory. However, since each core has its own L1 cache memory, we can also see it as a

distributed computing environment, where message passing consists of one core writ-

ing the data from its cache to the main memory (or to the L2 cache memory, if this

is shared between multiple cores) and the other core reading this data into its own

cache. Moreover, the main optimisation objectives for applications for multicore ma-

chines are very similar to these for distributed ones, i.e. to keep the data local as much

as is possible (in the local memory of a node in distributed settings, or in L1 cache on

a multicore machine).

Although, usually, distributed-memory applications are implemented on a dis-

tributed computing environments (and, similarly, shared-memory applications on a

shared-memory environments), other combinations are also possible. For example, the

GUM [THM+96] and the Grid-GUM [AZ06] runtime environments use the concept

of virtual-shared memory, which is implemented on top of distributed computing en-

vironment (see Section 2.4.3 for more details). It is also possible to run GUM and

Grid-GUM on a shared-memory machine, provided that the suitable implementation

of MPI communication library is available. In this way, we get a virtual-shared memory

application model for distributed computing environments, which runs on physically

shared-memory computing environment!

In this thesis, we will solely focus on runtime systems that conform to the distributed-

memory application model. Additionally, we will be interested in running these run-

time systems on distributed computing environments. As we have described in Section

2.1. DISTRIBUTED COMPUTING ENVIRONMENTS 19

1.4, we are interested in the computing environments where the only type of nodes are

PEs, which are capable of executing tasks. We are especially interested in large-scale

heterogeneous distributed computing environments, where computing resources from

several geographically distributed sites are connected in a single unified environment

or, alternatively, where a large number of virtual machines is distributed over a large

data centre, consisting of many computing nodes (typical setup of Clouds).

In the next two sections, we give an overview of two important classes of large-

scale heterogeneous distributed computing environments – Computational Grids and

Clouds.

2.1.1 Computational Grids

The problem that underlines the Grid concept is that of coordinated resource sharing

and problem solving in dynamic, multi-institutional virtual organisations (VOs) [FKT01,

BFH03]. Virtual organisation can be seen as a set of individuals and/or institutions

that is sharing some set of resources under strict rules that define what is shared, who

is allowed to share and under which conditions does the sharing occurs. Resources

that are shared can range from physical (networks, sensors, disks, computers etc.) to

logical ones (application, databases etc.), and can be highly heterogeneous. Grid itself

can be seen as a software infrastructure (middlewares, APIs, SDKs, protocols, inter-

faces etc.) that enables this sharing to occur. This infrastructure includes security

solutions that support managements of credentials and policies when computations

span multiple institutions, resource management protocols and services that support

secure remote access to computing and data resources and the co-allocation of multi-

ple resources, information query protocols and services that provide configuration and

status information about resources and so on [FKT01].

The term Grid is used by analogy with the electric power grid [FK04b], which pro-

vides pervasive access to electricity and has had a dramatic impact on human capabili-

ties and society. The main vision behind Computational Grid is similar - to allow users

transparent and flexible access to a vast amount of computational power and storage,

while hiding most of the “gory” details about the management of underlying resources.

The development of the Grids was, and most likely will continue to be, primarily driven

by the requirements of large scientific applications and projects [BH04].

20 CHAPTER 2. SCHEDULING AND LOAD-BALANCING

The Evolution of Grids

The beginnings of Grid computing can be traced back to the end of 1980s, with several

projects to link different supercomputing sites [RBJ03]. Early to mid 1990s mark the

emergence of Grid environments, where the main objective was to provide compu-

tational resources to a range of large high-performance applications. Representative

examples of Grid projects at this time were FAFNER [FAF] and I-WAY [FGN+03].

The objective of the FAFNER (Factoring via Network-Enabled Recursion) project was

to harness the spare cycles from workstations of users throughout the world in order

use the Number Field Sieve (NFS) method for factoring large numbers. The purpose

of the experiment was to test the security of RSA public key encryption algorithm.

I-WAY (Information wide area year) was a project conceived in 1995. Idea behind it

was to, using the existing high bandwidth networks, link many high-performance su-

percomputers and advanced visualisation environments in one large uniform system in

order to allow the execution of a range of large high-performance applications. Many

components developed during the I-WAY project (e.g. mechanisms for uniform au-

thentication, resource reservation, process creation, communication, resource schedul-

ing across different sites) served as a starting point for development of modern Grid

middlewares, for example Globus toolkit [Fos03].

From the experiences obtained with these early Grid projects emerged the second

phase of Grid evolution [RBJ03]. Inspired by the I-WAY infrastructure, the focus

of this evolution phase was development of common middlewares for Grid computing

which will better tackle the problems of hiding the heterogeneity of Grid resources, al-

lowing Grids to scale easily to millions of resources and enabling various fault-tolerance

mechanisms. The key projects that emerged from this phase were Globus and Le-

gion [GWT97] middlewares. Of these two, Globus became de-facto standard middle-

ware for Grid computing, on top of which most of the Grid systems used today are

built. We will describe Globus in more detail later.

A very important development in the second phase of Grid evolution happened

in resource scheduling area, where several schedulers and resource brokering systems

which deal with resource heterogeneity were designed. The objective of most of these

systems, such as Condor (and Condor-G) [TL04], PBS [PBS] and Nimrod/G [Buy02],

was the execution of independent, batch jobs on non-dedicated resources.

The third phase of Grid evolution added a further level of abstraction over the mid-

dleware tools developed in the second phase. The focus there was on service-oriented

model and increased usage of meta-data. Similar model was later widely adopted

with the emergence of Clouds (see Section 2.1.2). The most prominent examples of

2.1. DISTRIBUTED COMPUTING ENVIRONMENTS 21

standards developed in this phase of Grid evolution are the Open Grid Services Ar-

chitecture [FKT04] and World Wide Web Consortium set of protocols and standards

(e.g. SOAP, Web Service Description Language, Universal Description Discovery and

Integration) for describing Web services.

We can see that, through their evolution phases, Grids have evolved from very

specific, commercial, ad-hoc solutions for connecting geographically distributed work-

stations or supercomputers on relatively small scale to much more general middlewares

and standards which abstract over the resources used, offering the whole Grid infras-

tructure as a service.

Middleware for Supporting Large Parallel Applications on Computational

Grids

In this section, we briefly describe the tools that Grid infrastructure provides for sup-

porting the execution of large distributed parallel applications. The main components

of Grid infrastructure related to this are Globus toolkit and MPICH-G2 communica-

tion library.

Globus toolkit is a community-based, open-architecture, open source set of services

and software libraries that support Grids and Grid applications [FK04a]. Globus

deals with the issues of security, information discovery, resource management, data

management, communication, fault tolerance and portability. The most important

components of the toolkit, concerned with the execution of parallel applications, are:

• Grid Resource Allocation and Management (GRAM) protocol provides secure

and reliable creation and management of remote computations. Main parts of the

Globus implementation of GRAM protocol are gatekeeper process, which initiates

remote computations, job manager, which manages the remote computations and

GRAM reporter, which monitors and publishes information about the identity

and state of the local computations.

• Monitoring and Discovery Service (MDS) provides mechanisms for discovering,

accessing and publishing configuration and status information about Grid re-

sources, such as compute servers, networks and databases.

• Grid-FTP file transfer protocol, which is the extended version of the FTP proto-

col. Compared to the basic version of FTP protocol, Grid-FTP adds use of Grid

specific security protocols, partial file transfer and management of parallelism

for high speed transfers.

22 CHAPTER 2. SCHEDULING AND LOAD-BALANCING

• DUROC resource co-allocation library

Most of the components of Globus toolkit work at quite low-level, and their main

purpose is to serve as foundational blocks for higher-level middlewares and libraries,

which are used for application development and deployment on Grids.

MPICH-G2 [KTF03] is Grid-enabled implementation of MPI [GLS99] message-

passing communication library for distributed parallel applications. It is built on top

of Globus toolkit, and it takes advantage of its GRAM and DUROC components.

It includes routines both for point-to-point communication between two PEs (e.g.

MPI Send and MPI Receive set of routines for synchronous, asynchronous, block-

ing, non-blocking or buffered sending and receiving of the data), and for collective

operations over the set of PEs (e.g. MPI Broadcast). MPICH-G2 enables parallel ap-

plications written using MPI standard to be executed on Grid infrastructure without

any changes to their code.

2.1.2 Cloud Computing

Cloud computing is a relatively new branch of distributed computing that has gained

a lot of attention recently.

There is no universally accepted definition of what the Cloud computing really is.

For example, Vaquero et al. in [VRMCL09] compare over 20 different definition of

Clouds. We will adopt the definition from their work, as it strives to find the mini-

mum common denominator of characteristics of Clouds proposed by other definitions.

Therefore, we will define Clouds as large pool of easily usable and accessible virtualised

resources (such as hardware, development platforms and/or services). These resources

can be dynamically reconfigured to adjust to a variable load (scale), allowing also for

an optimum resource utilisation. This pool of resources is typically exploited by a

pay-per-use model in which guarantees are offered by the Infrastructure Provider by

means of customised Service-Level Agreements (SLAs).

USA National Institute of Science (NIST) definition of Clouds [NIS] lists essential

characteristics that Cloud model possesses:

• On-demand self-service. A consumer can unilaterally provision computing capa-

bilities, such as server time and network storage, as needed automatically without

requiring human interaction with each service’s provider.

• Broad network access. Capabilities are available over the network and accessed

through standard mechanisms, by a number of different client platforms (e.g.

mobile phones, laptops and personal digital assistants (PDAs)).

2.1. DISTRIBUTED COMPUTING ENVIRONMENTS 23

• Resource pooling. The provider’s computing resources are pooled to serve mul-

tiple consumers using a multi-tenant model, with different physical and virtual

resources dynamically assigned and reassigned according to consumer demand.

• Rapid elasticity. Capabilities can be rapidly and elastically provisioned, in some

cases automatically, to quickly scale out and rapidly released to quickly scale in.

• Measured Service. Cloud systems automatically control and optimise resource

use by leveraging a metering capability at some level of abstraction appropriate to

the type of service (e.g. storage, processing, bandwidth and active user accounts).

Just as there are many different definitions of Cloud computing, there are also

many different surveys of the state-of-the-art in Cloud research, focusing on differ-

ent aspects of Clouds (e.g. Zhang et al. [ZCB10], Rimal et al. [RCL09], Youseff et

al. [YBDS08]). There is universal agreement in all of the surveys that there is very lit-

tle standardisation in Cloud computing technologies. However, there are some common

characteristics for all Cloud systems. Architecture of a cloud computing environment

can roughly be divided into 4 layers (see Zhang et al. [ZCB10] (see Figure 2.1) :

• The hardware layer – the layer of physical resources of the cloud, including

servers, routers, switches, power and cooling systems. Cloud physical resources

mostly reside in large data centres.

• The infrastructure layer (or virtualisation layer) – this layer creates a pool of

storage and computing resources by partitioning the physical resources using

virtualisation techniques, such as VMWare [VMW] or Xen [Xen].

• The platform layer– where the infrastructure layer usually provides “raw” virtual

machines, the platform layer build on top of it, adding operating system and

application frameworks. The purpose of this layer is to provide users with higher-

level frameworks for easier application development.

• The application layer – the layer of actual cloud applications.

Depending on which of these layers is offered as a service, cloud services are usually

grouped into three categories [ZCB10]:

• Infrastructure as a Service – IaaS refers to on-demand provisioning of infrastruc-

tural resources, for example Amazon EC2 [Ama].

24 CHAPTER 2. SCHEDULING AND LOAD-BALANCING

Figure 2.1: Cloud computing architecture (see Zhang et al. [ZBC10])

• Platform as a Service – PaaS refers to on-demand provision of platform layer

resources, such as Google App Engine [Goo] framework for development of Web

applications and Microsoft Windows Azure [MSA].

• Software as a Service – SaaS refers to on-demand provisioning of applications

over the Internet, for example Salesforce.com [Sal].

Cloud Computing Products

In the following, we briefly describe some of the most prominent and successful cloud

computing products:

• Amazon Web Services is a set of cloud services, which includes the following

services:

– Amazon Elastic Compute Cloud (Amazon EC2), which allows user to create,

execute and manage server instances, which are virtual machines running on

top of XEN virtualisation engine. EC2 offers “bare” virtual machines, usu-

ally with just operating system installed, which offers users great flexibility

in installing additional software and ’shaping’ the way final machine is go-

ing to look like. EC2 also allows replicating virtual machines, by launching

their identical copies.

2.1. DISTRIBUTED COMPUTING ENVIRONMENTS 25

– Amazon Simple Storage Service (Amazon S3), which is an online web stor-

age service.

– Amazon CloudWatch, which is a tool for collecting, processing and moni-

toring of raw data from other Amazon services, such as EC2.

• Microsoft Windows Azure platform consists of three components:

– Windows Azure is a windows based environment for running applications

and storing data on servers. It supports applications built on top of .NET

framework, and also supports web applications built using ASP.NET and

Windows Communication Foundation.

– SQL Azure provides data services in the cloud based on SQL Server.

– .NET Services supports the creation of distributed applications on the

clouds.

• Google App Engine is a platform for web applications, which supports Python

and Java. Deploying code, monitoring, managing fault tolerance and launching

application instances is transparently handled by Google

Differences Between Cloud and Grid Computing

We can notice that there are a lot of similarities between Cloud and Grid computing.

Indeed, Clouds and Grids share the same vision, which is that of reducing the cost

of computation by aggregating physical resources in large, virtual supercomputers. It

is not easy to define precisely what are the differences between the two technologies,

mostly because there are no universally accepted definitions of either Grid or Cloud

computing, and also due to a fact that there is very little standardisation in the Cloud

computing field.

There is a lot of work (e.g. Foster et al. [FZRL08], Vaquero et al. [VRMCL09])

which tries to informally describe the differences between Grid and Cloud computing.

Most authors agree that there is little technical difference, except for the fact that

Clouds seem to rely much more on virtualisation of physical and logical resources than

Girds do. Most of the differences, therefore, come from the different usage scenarios

of Grids and Clouds. Foster et al. argue in [FZRL08] that currently Clouds are not

as well suited for the execution of high-performance applications as Grids are. Grids

and Clouds also have different security models, which is the consequence of the fact

that resources in Clouds are centralised within a single organisation, whereas those in

26 CHAPTER 2. SCHEDULING AND LOAD-BALANCING

Grids typically belong to different organisations. Clouds also tend to rely more on the

economic model, where the usage is paid per unit of resource.

In order, however, to be able to define more precisely the differences between the

two technologies, we will have to wait for standardisation of technologies and use-case

scenarios to emerge in Clouds.

2.2 Scheduling on Distributed Computing Environ-

ments

Casavant and Kuhl in [CK88] define a general scheduling problem as a mechanism or

policy used to efficiently and effectively manage the access to and use of a comput-

ing resource by its various consumers. Scheduling in general is concerned with the

allocation of resources to multiple applications on the same computing environment,

ensuring that certain Quality-of-Service (QoS) is achieved.

In our work, we are interested in the scheduling of tasks of a single parallel applica-

tion on a distributed computing environment, that consists of a set of PEs connected

by networks. Furthermore, we assume that all of the resources in the computing en-

vironment are fully dedicated to the execution of the application. This means that

we will ignore some of the problems that can appear in, for example, scheduling on

Computational Grids or Clouds, where resources are typically shared between mul-

tiple applications. Our focus is on the load-balancing decisions, which involve the

decisions of how the work is migrated between different PEs in the system, so that the

overall load balance is achieved. General scheduling algorithms, in addition to that,

need to make decisions about what PEs will be allocated to what applications, initial

placement of application tasks, a policy that will be used to choose what task will be

executed on a PE which has multiple tasks available etc.

Following the taxonomy in Dong and Akl [DA06] and Casavant and Kuhl [CK88],

scheduling algorithms can be classified by several criteria:

• Local vs. Global - Local scheduling is concerned with scheduling on a single

resource. Global scheduling deals with multiple resources and allocates them to

applications in order to achieve some global optimising goal.

• Static vs. Dynamic - In the static scheduling, all decisions are made at the start

of application execution. In contrast to that, in dynamic scheduling the decisions

are made ’on-the-fly’, as the application execution progresses.

2.2. SCHEDULING ON DISTRIBUTED COMPUTING ENVIRONMENTS 27

• Optimal vs. Suboptimal - Optimal algorithms make the decisions that are opti-

mal with respect to some metrics (e.g. minimum application turnaround time,

maximal resource utilisation). However, they require scheduler to have the per-

fect information about all resources and the applications it schedules. Thus, most

of the research in scheduling is directed towards finding suboptimal solutions

• Distributed vs. Centralised - In the centralised scheduling, one centralised sched-

uler is responsible for making all the scheduling decisions. In distributed schedul-

ing, the decisions are made by multiple distributed schedulers.

• Cooperative vs. Non-Cooperative - In the case of distributed scheduling, nodes

that do scheduling can make cooperative or non-cooperative decisions. In the

case of non-cooperative scheduling, individual schedulers are working autonomously

and make decisions independent on their impact on the rest of the system. In co-

operative scheduling, all schedulers are working towards a common system-wide

goal.

According to this classification, load-balancing methods that we investigate in this the-

sis can be classified as global, dynamic, distributed and suboptimal scheduling. Policies

described in Chapter 6 are non-cooperative, whereas the Feudal Work-stealing, pre-

sented in Chapter 5 is cooperative.

We will now present an overview of various scheduling methods for distributed

computing environments, before focusing on load-balancing and, more specifically,

work-stealing algorithms. Our main focus is on the Grid scheduling algorithms, since

they typically assume a large-scale and highly heterogeneous computing environments.

Dong and Akl in [DA06] give a good and comprehensive overview of the Grid

scheduling algorithms. In our discussion, we will consider two large groups of algo-

rithms: those concerned with the scheduling of bag-of-tasks applications (i.e. applica-

tions that consist of totally independent tasks, all of which are available at the start

of the application execution), and those concerned with the scheduling of applications

with task dependencies.

2.2.1 Scheduling of Bag-of-tasks Applications

There is a lot of work that is concerned with the scheduling of the bag-of-tasks applica-

tions on the Grid. Similarity to our work lies in that most of these algorithms assume

the irregularity in task sizes of an application, and they rely on the exact information

about these sizes. The main difference between the bag-of-tasks applications and the

28 CHAPTER 2. SCHEDULING AND LOAD-BALANCING

applications we consider in this thesis (see Section 4.2) is that the individual tasks in

bag-of-tasks application are assumed to be sequential, whereas we also consider appli-

cations with nested parallelism. Another important difference is that all of the tasks

of bag-of-tasks application are available at the beginning of the application execution,

so the static scheduling of these tasks may be perfectly viable. In the applications we

consider, on the other hand, only the main application task is available initially, and

the additional tasks are created dynamically during the application execution.

Armstrong et al. [AHK98] propose several simple algorithms that map tasks of bag-

of-tasks application to Grid resources, such as Opportunistic Load Balancing, which

maps the first available task to the first available PE and Limited-Best Assignment,

which assigns each task to the PE on which it has least-expected run time. Mahesh-

waran et al. [MAS+99] propose several more elaborate heuristics for the same problem:

• Min-max heuristic computes, for each task, its minimal execution time on all

PEs. After that, the smallest task is placed on the PE which will execute it

fastest, and the same procedure is repeated for the rest of the tasks.

• Max-min heuristic differs to Min-max in that, after the calculation of minimal

execution time of each task, the largest task is placed on the PE that will execute

it fastest.

• Sufferage heuristics computes what task would suffer the most (in terms of

increased execution time) if it is not placed on the PE that will execute it fastest.

After this task is found, it is placed on the PE that will execute it the fastest.

The procedure is then repeated for the rest of the tasks

Casanova et al. [CLZB00] propose the XSufferage heuristics, which is the improve-

ment of Sufferage that takes into account the fact that PEs are grouped into clusters.

XSufferage calculates what task would suffer the most if it is not placed on its most

preferable cluster (rather than the most preferable PE), and then places this task on

the PE from its most preferable cluster that will execute it fastest.

All of the heuristics described above are relatively expensive in terms of computa-

tion time they require, and therefore they work well only for applications consisting of a

relatively small number of coarse-grained tasks. In order to address the problem of ap-

plications comprising a large number of fine-grained tasks, Muthuvelu et al. [MLS+05]

propose the heuristics that groups the fine-grained tasks into groups that are placed

on the same PE. It takes into account total number of tasks, task sizes, total number

of processors and the computing capabilities of processors in order to decide on the

2.2. SCHEDULING ON DISTRIBUTED COMPUTING ENVIRONMENTS 29

grouping of tasks that will accomplish the minimal overall application execution time

and maximal utilisation of Grid resources.

Besides static methods for scheduling such applications, there are also various

methods that do dynamic scheduling, where not all of the tasks are assigned to all

PEs initially. González-Vélez and Cole [GVC10] propose the statistical method for

scheduling of divisible workloads, implemented in a task-farm algorithmic skeleton.

Divisible workload is essentially a group of totally independent tasks, which conforms

to the model of bag-of-tasks applications. The method proposed in their work, after an

initial placement of a certain portion of application tasks to available PEs, dynamically,

allocates the groups of tasks to PEs based on the performance of these PEs, and the

variability of this performance.

A lot of research from mid 80s and the beginning of 90s dealt with the problem of

scheduling the set of independent tasks to PEs, whereas assignment of tasks to PEs

is done in packets. Packet can contain more than one task, and the main question

was how many tasks to assign to a PE in one packet. We can see that this exactly

corresponds to scheduling of bag-of-tasks applications. However, this research assumes

the uniform communication latencies and computing capabilities of PEs in the com-

puting environment. Static chunking (Hummel et al. [HSF92]) assigns all tasks at the

beginning of the program execution. That is, if the initial number of tasks is n, and p

is a number of PEs in a system, then n/p tasks are assigned to each. Self-Scheduling

(Hummel et al. [HSF92]) assigns one task to each PE as soon as it gets idle (similar

to work-stealing). Fixed-Size Chunking (Kruskal and Weiss [KW85]) always assigns

tasks in chunks of equal size (where by ’size’, it is meant the number of tasks in a

chunk), and the optimal chunk size was determined to be (
√

2nh

δp
√

ln p
)2/3, where h is the

overhead in transferring a packet to the destination PE, δ is the standard deviation of

task sizes, n is the number of tasks and p is the number of PEs. A lot of other, more

complicated and computationally more expensive algorithms have also been proposed

(e.g. Bold algorithm in Hagerup [Hag97]).

2.2.2 Scheduling of Applications with Task Dependencies

The second large group of scheduling methods for heterogeneous distributed comput-

ing environments deals with the scheduling of applications where there are data or

precedence dependencies between tasks. Such applications can be represented by di-

rected acyclic graphs (DAG), which typically have weights assigned to their edges.

Nodes of a DAG represent tasks, edges denotes precedence orders between tasks, and

the weight of an edge denotes the amount of data that needs to be transferred between

30 CHAPTER 2. SCHEDULING AND LOAD-BALANCING

preceding and succeeding tasks. Most of the DAG scheduling algorithms also rely on

the accurate information about the sizes of individual tasks.

Compared to the applications we consider in this thesis, applications modelled by

DAGs typically consist of a fewer number of coarse-grained tasks, and they involve a

lot of data transfers between dependant tasks.

List scheduling heuristics assume that the tasks of a DAG are organised into priority

list and iteratively assign tasks to resources, starting from the highest-priority tasks.

Several list heuristics are compared in Grid setting in Zhang et al. [ZKK07]. Probably

the most widely used one is Heterogeneous Earliest-Finish-Time (HEFT) heuristic,

proposed in Tupcoglu et al. [THW02]. In HEFT, the priority of a task is defined as

its distance from the exit node of the DAG, and the task with the highest priority is

assigned to a PE that would compute it in the earliest time.

The most important drawback of HEFT is that it is computationally expensive.

Radulescu and Germund in [RvG99] propose a Fast Critical Path heuristics, which

avoids sorting all the task by priorities (as is done in HEFT), but instead maintains

only a limited number of tasks sorted at any given time. Additionally, it does not

consider all PEs as possible targets for a given task, but restricts the choice to either

the PE from which the last message to the given task arrives or the PE that first

becomes idle. This significantly reduces the complexity of HEFT heuristics, while

maintaining good application execution times.

Sakellariou and Zhao in [SZ04] propose a hybrid heuristics for DAG scheduling,

which partitions the input DAG into groups of independent tasks. These groups are

then scheduled using Balanced Minimum Completion Time (BMCT) heuristics for

scheduling of independent tasks. This hybrid heuristic is shown to perform very well,

and it is less sensitive to the choice of methods for obtaining the weights of tasks in

the DAG.

Darbha and Agrawal in [DA98] proposes a Task Duplication based Scheduling

(TDS), which duplicates the execution of some tasks on idle processors in order to try

to reduce the amount of communication needed for fetching the input data of some of

their successor tasks.

To avoid large overheads that occur when large amount of data is transferred

over high-latency networks, some DAG scheduling algorithms (for example, Dominant

Sequence Clustering proposed in Yang et al. [YG94]) rely on clustering of heavily-

communicating tasks, and allocating tasks from the same group to the same cluster of

PEs (or, alternatively, to the same PE).

All of the algorithms described above assume a reliable setup, where there are no PE

2.2. SCHEDULING ON DISTRIBUTED COMPUTING ENVIRONMENTS 31

failures or variations in the PE performance. Hernandez and Cole in [HC07b] propose

Grid Task Positioning with Copying facilities (GTP/c) system, which starts from the

initial schedule of DAG on a grid (obtained using list heuristics) and tries to improve

it at fixed rescheduling points during the DAG execution. GTP/c allows migration of

DAG tasks between Grid processors at rescheduling points. The decisions about task

migrations are driven by the anticipated availability of grid processors, performance of

communication links and the existence of multiple reusable copies of the same input

data for tasks that may exist as a consequence of previous task migrations. GTP/c

algorithm outperforms HEFT heuristics in the situations where grid resources vary

considerably and data transfers between tasks are intensive. These authors extend

GTP/c in [HC07a] with the rewinding mechanism, which recomputes and migrates

tasks which disrupt the forward execution of succeeding tasks. This mechanism adds

the fault tolerance to DAG scheduling, which is a very important feature in highly-

dynamic Grids where failures of nodes are frequent.

Grid Workflow Systems

It is worth mentioning here that several systems tailored to Grids exist, which provide

the whole environment for creation and execution of workflows. Workflows are essen-

tially the applications with task dependencies, that can be modelled by DAGs. Some

of these systems use DAG scheduling algorithms for mapping/remapping of tasks to

available resources.

Yu and Buyya in [YB05] give a good taxonomy for Grid Workflow systems, together

with the overview of current state-of-the-art systems.

GridFlow [CJSN03] is a workflow management system for Grids. It uses two-level

hierarchical scheduling. A workflow is submitted to global grid for execution, where

simulations are used to come up with the initial workflow schedule, where each sub-

workflow is mapped to some local grid. This ’global’ schedule can be changed due

to a dynamic nature of the Grid environment (e.g. in the case of large delays of

some sub-workflows, some parts of the workflow may be sent back to the simulator

to compute the new schedule). After the initial schedule, each sub-workflow on local

Grid is scheduled. This local scheduling takes into account granularity of tasks of a

sub-workflow to resolve conflicts (i.e. if there are multiple tasks, possibly from different

workflows, that need to executed at the same tame on the same resource). GridFlow

uses the PACE toolkit [NKP+00] to predict the performance of a workflow task on

some resource.

McCough et al. [MLD06] describe ICENI II (Imperial College e-Science Networked

32 CHAPTER 2. SCHEDULING AND LOAD-BALANCING

Infrastructure), a service-oriented architecture for workflow component composition.

In ICENI, an application is a composition of components and services defined using a

workflow language. Users can specify their workflows with a high-level of abstraction,

and ICENI II then makes the realisation of this workflow, and executes it on Grid

resources. Scheduling of workflows is static, and matches the user requirements (in

terms of, for example, time constraints on workflow makespan) with the available re-

sources. ICENI II also supports checkpointing and migration of workflow components,

as a response to, example, failure of Grid resources.

Grid Application Development Software (GrADS) project (Cooper et al. [BCC+05])

provides programming tools and an execution environment for the application devel-

opment on Grids. An important part of GrADS project is a workflow scheduler, which

resolves the application dependencies into a workflow and schedules the workflow com-

ponents. Scheduling is done by choosing over several classic heuristics (Min-max, Max-

min and Sufferage) the one that gives the minimum workflow makespan. GrADS also

supports checkpointing and migration mechanisms, which are used to reschedule the

workflow if a better schedule can be obtained at some point in its execution.

Pegasus (Planing for Execution on Grids, Deelman et al. [DBG+03]), is another

workflow management and mapping system. It is used to map abstract workflows onto

the available grid resources. This mapping is static. Jang et al. [JWT+04] propose a

resource planner, which enables Pegasus to use the Prophesy (Taylor et al. [TWS03])

performance prediction mechanism to make better decisions about resources choices.

Application-Level Scheduling

An especially interesting class of scheduling methods for applications with interdepen-

dent tasks are application-level schedulers, which are tightly coupled to the specific

application (or a class of applications). These scheduler can take advantage of the

knowledge of application structure to make very efficient task schedules.

AppLeS (Application Level S scheduling) project [BWC03] explored application-

level scheduling for Grids. There, applications are extended with self-scheduling

code for distributing and balancing the work across Grid resources. Based on that,

schedule templates for parameter-sweep (APST - AppLeS Parameter Sweep Tem-

plate [COBW00]) and master-worker (AMWAT - AppLeS Master-Worker Application

Template [Sha01]) have been developed. Scheduling in APST consists of a scheduling

of a set of independent tasks. APST scheduler sets the points in time at which the

scheduling function is invoked. At each of this points, unallocated tasks are assigned

to hosts for execution. Hosts on which tasks are executed are selected using either

2.3. LOAD BALANCING 33

self-scheduled work-queue algorithm, or some of the simple heuristics for list schedul-

ing (Min-min, Max-min, Sufferage, XSufferage), whereas the scheduler dynamically

changes the algorithm used. AMWAT scheduler lets the user choose which of the al-

gorithms from predefined set (FIXED, Self-Scheduling, Fixed-size chunking, Guided

self-scheduling, Trapezoidal self-scheduling, Factoring) to use for allocating tasks to

nodes.

González-Vélez and Cole in [GVC06] describe the mechanism for scheduling the

tasks of parallel pipeline application. The tasks represent the pipeline stages, and,

after the initial mapping on PEs, they can be dynamically remapped as a response to

the varying backload of PEs. The scheduler is incorporated into pipeline algorithmic

skeleton.

2.3 Load Balancing

Especially interesting class of scheduling algorithms for us are load-balancing methods,

which we outlined in Section 1.2. We have already classified these methods as global,

dynamic, distributed and suboptimal scheduling methods. Load-balancing methods

are especially well suited for distributed computing environments, because there is

no centralised PE that does the scheduling (hence, there is inherently some level of

fault-tolerance). Because of their principle of balancing the load between the PEs

“on-the-fly”, as the application execution progresses, these methods may be the only

solution for scheduling of applications where dependencies between tasks are not known

in advance, or where tasks are created dynamically during the application execution.

In Section 1.2, we have classified the load-balancing algorithms as either sender-

initiated (work-pushing) or receiver-initiated (work-stealing). As a reminder, in sender-

initiated algorithms a PE that has more than some predefined number of tasks in its

task pool sends one (or more) tasks to an appropriately chosen PE. In receiver-initiated

algorithms, an idle PE (a thief) asks the appropriately chosen PE (a victim) for work,

and if the target has some tasks in its task pool, it sends one (or more) of them to the

thief. Load-balancing algorithms usually differ between themselves in the way in which

a PE that receives work (in work-pushing) or that is asked for work (in work-stealing)

is chosen.

Good (if outdated) general overviews of load balancing techniques for homogeneous

systems are given in Kumar et al. [KGV94] and Shivaratri et al. [SKS92].

In what is probably the most cited paper about work-pushing, Eager et al. [ELZ86]

propose three different work-pushing algorithms:

34 CHAPTER 2. SCHEDULING AND LOAD-BALANCING

• Random, where a sender sends one task to a random PE whenever it has some

extra tasks)

• Threshold, where a sender polls a randomly selected PE, and if its task pool is

smaller than some threshold, it sends one task to it

• Shortest, where a sender polls some set of PEs and sends a task to the one which

has the shortest task queue.

Their conclusion was that Random algorithm works very well, and that the algorithms

that use load information about PEs (Threshold and Shortest) cannot notably improve

Random algorithm in homogeneous settings.

Shivartari et al. [SKS92] propose the combination between work-stealing and work-

pushing, where a PE automatically offloads tasks if the number of tasks in its task pool

reaches the upper-threshold value, and tries to steal work if the number of tasks falls

below the lower-threshold value. This algorithm outperforms both Random Stealing

and all work-pushing methods, but it relies heavily of frequent exchange of load infor-

mation between PEs, in order to decide where to look for work and where to send work.

This can be acceptable in low-latency computing environments, but is prohibitively

expensive in high-latency ones.

There is not much work in evaluating the performance of work-pushing algorithms

on heterogeneous computing environments. Van Nieuwpoort et al. [VNKB01] compare

Random work-pushing with several work-stealing algorithm (including the Cluster-

Aware Random Stealing), which we describe later. Their conclusion is that for divide-

and-conquer applications, work-stealing gives much better speedups. We, therefore, in

the rest of the thesis focus on work-stealing algorithms.

2.3.1 Work Stealing

Work stealing was first proposed in Burton and Sleep [BS81], in the context of the

execution of functional programs on a virtual tree of processors. Nowadays, it is used

in many runtime systems for the execution of parallel applications, both on shared-

memory and on distributed computing environments.

All of the work-stealing algorithms we consider in this thesis use the same base

algorithm, shown in Algorithm 1. The algorithm on the figure is executed indepen-

dently by each PE in the computing environment. A PE first tests whether it has any

tasks to execute. If it has, then it picks one of them and executes it. Alternatively, if

no tasks are available, the PE sends the steal attempt to an appropriately chosen PE.

2.3. LOAD BALANCING 35

If the PE receives a steal attempt, and if it has more than one task, it chooses one (or

more) of them and sends them to the thief that sent the steal attempt.

The simplest version of work-stealing algorithm is Random Stealing (Blumofe and

Leiserson [BL99]), where targets for steal attempts are chosen at random, and only

one task is sent as a response from victim. This algorithm works (provably) well

for a class of strict computations and on very low-latency systems. This fact, to-

gether with the fact that it uses a distributed task pool, which reduces the amount

of locking needed in shared-memory computing environments, deemed it suitable for

using in runtime systems for shared-memory architectures (such as Cilk [BJK+95] and

XWS [CKK+08] Work Stealing framework for X10 [Sar04] parallel programming lan-

guage), and also for distributed computing environments with low latency between PEs

(e.g. GUM [THM+96]). The main directions for the improvement of this algorithm on

shared-memory computing environments are to further reduce or avoid locking opera-

tions on individual task queues, for example by allowing tasks to be stolen more than

once [MVS09] and avoiding expensive task creation operations for each piece of work

executed in parallel [HYUY09]. Also, another direction for improvement is controlling

the data-locality, for example in [ABB00] with locality-guided work stealing algorithm.

Dinan et al. [DLS+09] recently showed that the Random Stealing algorithm scales

very well on large (cca 8000 PEs) low-latency distributed computing environments,

which also showed the practical applicability of Random Stealing on large-scale envi-

ronments.

On the heterogeneous distributed computing environments, however, communica-

tion latencies between some of the PEs can be very high. Steal attempts can, therefore,

Algorithm 1 Basic work-stealing Algorithm
1: repeat
2: if steal attempt received then
3: if have more than one task then
4: Choose one (or more tasks) and send them to the thief
5: else
6: Forward steal attempt to some other PE
7: end if
8: end if
9: if have a task to execute then

10: Pick a task and execute it
11: else
12: Send steal attempt to some PE
13: end if
14: until application execution finished

36 CHAPTER 2. SCHEDULING AND LOAD-BALANCING

Figure 2.2: Hierarchical organisation of managers and compute servers in Atlas system

be very expensive, and it may not be tolerable for most of them to fail due to being

sent to target that does not have any work to send back. Therefore, several algorithms

have been developed that try to make better selection of steal targets on such envi-

ronments. The most important ones, and the ones that we consider in this thesis, are

various hierarchical work-stealing algorithms, Cluster-Aware Random Stealing, Adap-

tive Cluster-Aware Random Stealing and the Grid-GUM stealing. We describe the

first three algorithms in detail below. The algorithm used in the Grid-GUM runtime

environment is described in Section 2.4.3.

Hierarchical Work-stealing Algorithms

The Atlas (Baldeschwieler et al. [BBB96]) system architecture for global computing

uses the Hierarchical Stealing algorithm. The system architecture consists of clients,

managers and compute servers. A client submits the application to the local manager,

which then finds an idle compute server where the application execution is started.

Managers and clients are organised into the tree (Figure 2.2 [BBB96]). Work-

stealing in this hierarchical settings is done in the following way. When a compute

server becomes idle, it performs random stealing in the cluster consisting of its siblings.

Compute servers also periodically send their loads to their manager. Managers balance

the load on the next level up. That is, manager waits until the whole its subtree is

empty, and then steals work for its subtree from its manager and siblings. Similarly,

when a subtree has too much work, it can allow stealing from above.

As pointed in Van Nieuwpoort et al. [VNKB01], this algorithm has two impor-

tant drawbacks. The work stolen by manager nodes is stored on them rather on the

2.3. LOAD BALANCING 37

idle nodes, so additional steal messages are needed to distribute the work to its final

destination. Also, the manager waits until the whole cluster is empty before looking

for work from its siblings. This means that the whole cluster might stall while the

manager fetches the work.

Javelin 3 (Neary and Capello [NC02]) is another system for developing large-scale

parallel applications for heterogeneous environments. It uses another form of hierar-

chical work stealing. There, hosts that execute tasks are also organised in a tree. Each

host, when it gets idle, first tries to steal tasks from its children, and, if that fails, it

tries to steal from a parent node. This algorithm achieves good work locality, but,

since it does not use the load information, large number of hosts need to be visited

in order to obtain work. For example, if a host is looking for work into some subtree,

than the whole subtree needs to be visited before search for work continues outside

of it. When large parts of an environment are idle, this sends a lot of fruitless steal

attempts. This algorithm can also suffer from stalling the whole subtree of hosts when

its root is looking for work. This is the version of Hierarchical stealing that we will

consider in comparing different work-stealing algorithms in Chapter 5.

Another hierarchical work stealing algorithm was proposed for divide-and-conquer

applications developed using MPI-2 standard (Pezzi et al. [PCM+07]). Here, system is

organised into a tree of manager and worker processes (similar to Atlas), where worker

processes are leaves of the tree. Stealing is always attempted from child to parent in

the tree. This mechanism suffers from the same drawbacks (slow work propagation

from victim to thief via intermediate managers, possibly large number of managers

visited to obtain work) as Javelin 3 work stealing.

(Adaptive) Cluster-Aware Random Stealing

Satin (Van Nieuwpoort et al. [VNWJB10]) is the system for developing divide-and-

conquer parallel applications on Grid. It is based on Java, and it uses the Cluster-

Aware Random Stealing (CRS) algorithm [VNKB01]. The idea of this algorithm is

to steal the work from nodes in local and remote clusters in parallel. Whenever a

PE becomes idle, it tries to steal some work from a node in a remote cluster. This

is done asynchronously with the local stealing: instead of waiting for the result, the

thief sets a flag and performs additional synchronous steal attempts within its own

cluster. As long as the flag is set, only local stealing will be performed. When a reply

from wide-area steal arrives, CRS resets the flag and, if the attempt was successful,

adds the acquired work to its own task queue. This algorithm is compared to other

state-of-the-art work stealing algorithms (including hierarchical ones) in [VNKB01],

38 CHAPTER 2. SCHEDULING AND LOAD-BALANCING

and it was shown to perform better on computing environments consisting of multiple

clusters where latency between different clusters is the same.

Further evaluation of this algorithm, in dynamic environments where latency and

bandwidth vary over time, is presented in Van Nieuwpoort et al. [VNMW+04]. The

conclusion there is that CRS algorithm performs less well on computing environments

where communication latencies and bandwidth between different clusters are highly

different (typical case in Computational Grids). Two improvements are proposed :

Cluster-aware Multiple Random Stealing (CMRS), where nodes can send multiple

wide-area steal requests to different clusters in parallel, and Adaptive Cluster-aware

Random Stealing (ACRS), which attempts to actively detect and circumvent slow

links. ACRS measures the time each wide-area steal attempt takes, and the chances

of sending a steal attempt to a remote cluster depend on the performance of the

WAN link to that cluster. CMRS performs even worse than CRS in scenarios with

varying latencies and bandwidths between different clusters, whereas ACRS brings

some improvements. We will consider both CRS and ACRS when comparing work-

stealing algorithms in Chapter 5. Pseudocodes for these algorithms (i.e. functions that

are executed when thief needs to choose steal target) are given in Algorithms 2 and 3

(where lat(p, C) denotes the communication latency between pe p and cluster C).

Algorithm 2 Cluster-Aware Random Stealing

1: if not remoteStealing then
2: remoteStealing = true
3: Send steal attempt to a random remote target
4: end if
5: Send steal attempt to a random local target

Algorithm 3 Adaptive Cluster-Aware Random Stealing

1: if not remoteStealing then
2: remoteStealing = true
3: for each remote cluster C do
4: P (C) = lat(thief,C)∑

D∈S
lat(thief,D)

, where S is set of all remote clusters

5: end for
6: CL = random cluster from set of all cluster with probability vector P
7: p = random PE from cluster CL
8: Send steal attempt to p
9: end if

10: Send steal attempt to a random local target

2.4. (PARALLEL) FUNCTIONAL PROGRAMMING 39

2.4 (Parallel) Functional Programming

In functional programming languages, the principal building block is the function

definition. The main program is a function which takes an input as an argument, and

returns the output as a result, and is usually defined in terms of other functions, where

high-order functions and functional composition are used as a “’glue”’. Furthermore,

functions in functional programming languages are pure, in the sense that they do

not allow side effects. They, therefore, conform to the mathematical definition of a

function by transforming one input value into exactly one output value. This is known

as a referential transparency, meaning that one expression can be replaced with the

other one as long as they have the same value. This makes the functional languages

especially suitable for mathematical reasoning and allows various optimisations for

language compilers.

The most important advantage of functional programming is ease of modular design

(Hughes [Hug90]). Two important features of functional languages that contribute to

this are high-order functions and lazy evaluation (Field and Harisson [FH88]). Lazy

evaluation is the implementation technique where an expression is evaluated only when

it is actually needed, and to the level required. Thus, for example, if we have a function

f (x,y) = 2 + y in a lazy language, then the argument x of a function would never

be evaluated, since it is not mentioned in function body. Also, in a function head

which returns the head of a generic list, only the first element of the list needs to be

computed - the rest of the list is not important for this function. Lazy evaluation

technique enables programmers to express programs that use potentially infinite data

structures in easy and natural way.

Referential transparency renders functional languages very suitable for parallel pro-

gramming. Hammond and Michaelson [HM99] note several reasons why is this true:

• Ease of partitioning a parallel program. In principle, any two subexpres-

sions of functional program can be executed in parallel

• Simple communication model. Only communication channels that need to

be introduced are result of data dependencies.

• Straightforward semantic debugging. Because semantic value of a func-

tional program is independent of the evaluation order that is chosen, it doesn’t

change when it is executed in parallel.

• Absence of deadlocks. It is impossible to introduce deadlock by simply par-

allelising a functional program.

40 CHAPTER 2. SCHEDULING AND LOAD-BALANCING

Consequently, in ideal case, writing a parallel functional program should differ

from writing a sequential one ’only’ in deciding what expressions should be evaluated

in parallel (since every two of them could be evaluated in parallel). The programmer

can be relieved of the most of the low level bookkeeping issues related to parallel

threads (thread creation, communication, synchronisation, deadlock avoiding etc.).

In reality, of course, the task of writing a good parallel functional program, which

will deliver decent speedups on common parallel computing environments (such as

multicore machines, clusters of workstations or Grids) is much harder than it looks.

Expressions chosen for parallel evaluation need to be sufficiently coarse-grained and

without too many data dependencies, or otherwise more will be lost in overheads

related to the parallel evaluation (e.g. in creating threads, communication and data

marshaling/unmarshaling) than is gained from parallel evaluation of expressions.

From the design point of view, parallel functional programming languages (and

underlying runtime systems) can be classified, according to the level of control of

parallel threads they give to the programmer into three categories (Loogen [Loo99]):

• Implicit parallelism approaches relieve all (or most) of the aspects of paral-

lelism to the compiler and runtime system. They try to exploit parallelism that is

inherent in the reduction semantics or the semantics of special operations (data

parallelism). Programmer may only need to specify what expressions should be

evaluated in parallel, or, in case of data parallel languages, to use special lan-

guage constructs. Languages in this category range from fully implicit ones (for

example, pH [NA01]), which require no programmer intervention whatsoever,

to the ones which use special annotations for expressions that should be evalu-

ated in parallel (e.g. Concurrent Clean [PvEPS99] and GpH [THLPJ98]). Data

parallel languages (e.g. SISAL [Ske91], Data Parallel Haskell [CLJ+07]) which

provide special constructs for performing the same operation on many different

data sets, also belong to this category.

• Controlled or Semi-explicit approaches expose some high-level constructs

which can be used to express parallel algorithms. Parallelism is under control of

programmer through these constructs, but low level details of their implemen-

tation are hidden. To this category belong, for example, evaluation strategies

(Trinder et al. [THLPJ98]) built on top of GpH primitives for parallelism, Gold-

Fish [Jay99] and NESL [Ble96] data parallel languages, and algorithmic skeletons

(Cole [Col99]).

• Explicit parallelism approaches leave (almost) all of the control of the parallel

2.4. (PARALLEL) FUNCTIONAL PROGRAMMING 41

thread management (creating threads or processes, establishing communication

channels between them etc.) to the programmer. In this way, they offer a more

general programming model, compared to implicit and controlled approaches.

Examples that belong to this category are Caliban [KT99], Eden [BLMP97],

Scampi [S9́9] etc.

In this thesis, we will focus on implicit parallel functional language Glasgow Parallel

Haskell (GpH).

2.4.1 Glasgow Parallel Haskell

Glasgow Parallel Haskell (Trinder et al. [THLPJ98]) (GpH) is the modest extension to

the non-strict lazy pure functional programming language Haskell (Peyton Jones and

Hammond [Jon03]). It extends the Haskell language with two combinator related to

the parallel execution: par and seq.

par combinator denotes the two expressions that should be evaluated in parallel.

The expression p ‘par‘ q is semantically equivalent to q, and its dynamic effect is to

indicate that it would be useful to evaluate p by a separate parallel thread, while the

parent thread continues to evaluate q. If there is a free PE to ’grab’ this expression,

then the new thread will be created and p and q will be evaluated in parallel. However,

if all PEs are busy, then the separate thread for p may not be created at all - expression

p might be evaluated by a thread evaluating some other expression which refers to p

or, in the case that p is not needed in the rest of the program, it might not be evaluated

at all. Therefore, par should be seen only as an indication of usefulness of evaluating

two expressions in parallel rather than a requirement.

seq represents the sequential composition operation. If the p is not ⊥, the ex-

pression p ‘seq‘ q is semantically equivalent to the q, and its dynamic effect is to

evaluate p to weak head-normal form (WHNF) before returning q. If p is ⊥, then the

value of whole expression is ⊥.

2.4.2 GUM

GUM (Trinder et al. [THM+96]), which stands for “Graph reduction for a Unified

Machine”, is a portable parallel implementation of GpH designed for both shared and

distributed memory systems. It is based on the GHC [JHH+92], the state-of-the-

art sequential Haskell compiler which, in turn, uses the Spineless Tagless G-Machine

(Peyton Jones [Jon92]) implementation of graph reduction. GUM extends the GHC

runtime system to deal with par and seq constructs mentioned in Section 2.4.1.

42 CHAPTER 2. SCHEDULING AND LOAD-BALANCING

Spark and Thread Management

The assumed underlying memory model in GUM is distributed-memory, where mes-

sage passing is used for communication. Each PE has its own heap, and operates

independently of all others. The basic unit of computation in GUM is a thread, pur-

pose of which is evaluating the part of the graph. GUM thread is a logical object, and

it is much more lightweight than the operating system thread. Thread is represented

by a Thread State Object (TSO) structure. TSO contains the information about

thread’s current state (whether it is runnable or blocked, its registers etc.), together

with the thread’s stack. Each PE holds its own pools of runnable and blocked threads.

In addition to that, each PE also has its own spark pool. Spark is a pointer to the part

of the graph denoted for parallel evaluation using the par construct. Thus, whenever

a thread encounters p ‘par‘ q expression in its evaluation, a spark for p is placed in

a spark pool of PE evaluating it, and the thread continues to evaluate q. Whenever

a pool of runnable threads of a PE becomes empty, it chooses a spark from its spark

pool (in a FCFS manner), turns it into a thread and starts evaluating it.

GUM uses the Random Stealing load-balancing algorithm. At the beginning of the

application execution, one PE is nominated as a main PE, and it starts evaluating the

main thread (which, in turn, evaluates the application’s main function). All other PEs

are idle. Whenever a PE is idle (i.e. it becomes a thief), it starts looking for work by

sending a FISH message to a randomly chosen target PE. If the target PE has some

sparks in its spark pool, it chooses one of them (again in FCFS manner) and offloads

it (together with some ’nearby’ graph) to the thief in a SCHEDULE message. Upon

receiving the SCHEDULE message, the thief unpacks it and adds the spark from it to its

spark pool. If the target PE does not have any sparks in its spark pool, it forwards the

FISH message to some other (again, randomly chosen) PE. The number of PEs that

a single FISH message can visit is bounded by the maxAge parameter. After maxAge

PEs are visited, and if no work is found in any of them, FISH message is returned to

the thief that initiated it.

Distributing Data

Since Haskell is a lazy programming language, GUM needs to take care that each

expression is evaluated at most once, even in parallel settings. It is possible for multiple

sparks to share the same subexpression, and if two (or more) of them are turned

into threads, care must be taken that two threads do not end up evaluating this

subexpression. This is done using two mechanisms - blackholing (if conflicting threads

reside on the same PE) and lazy data fetching (if they reside on different PEs):

2.4. (PARALLEL) FUNCTIONAL PROGRAMMING 43

• Blackholing: When a thread starts evaluating a thunk (which represents the

suspended computation), the thunk is overwritten by a black hole. If some other

thread encounters this black hole during its evaluation, it saves its state in its

TSO, attaches it to the black hole’s blocking queue and blocks. Once the eval-

uation of the original thunk is finished, the black hole is overwritten with a

normal form value, and all TSOs from its blocking queue are moved to the pool

of runnable threads.

• Lazy data fetching: In the case that one of the two sparks that share the same

subexpression is offloaded to a remote PE (and turned into a thread there), lazy

data fetching comes into the game. When a victim packs some subgraph of a

graph into a packet, in order to send it to the thief, care is taken that exactly one

copy of each thunk that is encountered in packing exists, either in the victim’s

heap, or in the packet. The other copy is substituted with a FETCH_ME closure.

FETCH_ME closures are global pointers to the data, and they contain a global

address that uniquely identifies the PE and the position in its heap where the

data resides.

The FETCH_ME closures are synchronisation points for the threads residing on

different PEs. When a thread, during its evaluation, encounters the FETCH_ME

closure, it sends the request for the corresponding data to a PE where this data

resides. This is done via FETCH message. Subsequently, the thread blocks. When

the PE holding the data receives the FETCH message, two situations can happen:

– The data may already be evaluated to normal form, in which case it is

packed (again, together with some nearby graph) and sent back to the PE

requesting it in a REPLY message.

– Alternatively, the data might be under evaluation (blackholed), in which

case the fetch request is suspended (BLOCKED_FETCH is created) and added

to the black hole’s blocking queue. Once the blackhole is updated with a

normal form value, this fetch request is unblocked and processed.

The questions of the size of a packet (in RESUME and SCHEDULE messages), and how

many thunks to put into it are investigated in Loidl and Hammond [LH97].

To summarise, each PE in GUM executes the main scheduling loop given in Algo-

rithm 4 until either the main thread finishes or some error is encountered. The overall

GUM load distribution scheme is given in Figure 2.3.

44 CHAPTER 2. SCHEDULING AND LOAD-BALANCING

Figure 2.3: GUM Load Distribution Scheme [THM+96]

Improvements to the basic GUM load-balancing mechanism

There have been various attempts to improve the basic load distribution mechanism

used in GUM. Loidl in [Loi02] considers thread and spark pool watermarks, which

represent the lower and upper limit on the number of threads/sparks that can be in

Algorithm 4 schedulingLoopStep() function

1: repeat
2: processMessages()
3: if run queue empty then
4: if have sparks in spark pool then
5: Choose spark s for local execution
6: Turn s into a thread t
7: Add t to run queue
8: else
9: d = choose a random PE

10: Send FISH message to PE d
11: end if
12: end if
13: if run queue not empty then
14: Run one of the threads in run queue
15: if thread blocked on remote data then
16: Send FETCH message
17: end if
18: end if
19: until main thread finishes or error encountered

2.4. (PARALLEL) FUNCTIONAL PROGRAMMING 45

corresponding pools. Whenever a number of threads in all of the PE’s queues is lower

than the low-watermark, the PE will try to create additional thread, even if it has

some runnable ones. Conversely, if the number of threads in thread queues is higher

than the high-watermark, the PE will not try to an additional ones, even if it has no

other thread to evaluate. Similarly, if the number of sparks in the PE’s spark pool is

less then spark low-watermark, the PE will try to steal new sparks. These mechanisms

are particularly usable in the applications where there is a danger of one PE (usually

the main one) grabbing all the sparks and turning them into threads. This can happen

if sparks share some portion of a graph which is under evaluation, so each time a new

spark is turned into a thread, this thread will block immediately, forcing a PE to create

additional threads. High-watermark for threads can prevent this situation.

In the basic GUM system, only sparks can be migrated between PEs. Du Bois et

al. in [BLT03] describe the implementation of thread migration mechanism in GUM,

which allows the migration of already started threads between PEs. This is shown to

be crucial in some situations similar to the one we described when discussing spark

and thread watermarks.

In [Loi98], Loidl investigates the usage of granularity information in making some

of the scheduling decisions in GUM. Specifically, he considers priority sparking, where

a spark for thunk is created only if its granularity is large enough, and the priority

scheduling, where the largest thread from the PE’s runnable pool is selected for evalu-

ation in each step of main scheduling loop. He shows that these mechanisms strategies

can bring improvements for some irregular parallel applications on homogeneous sys-

tems.

2.4.3 Grid-GUM

Grid-GUM [AZ06] is the extension to the GUM runtime system. Grid-GUM aims to

adapt GUM to the Grids. It is build on top of Globus [Fos03] Grid middleware and it

uses the MPICH-G2 [KTF03] implementation of MPI communication library.

The main difference between Grid-GUM and GUM lies in the work-stealing algo-

rithm used for load balancing. Grid-GUM replaces the Random Stealing algorithm

used in GUM (which performs very well on low-latency homogeneous systems, but

badly on Computational Grids) with the advanced, adaptive work-stealing mecha-

nism, based on the cheap exchange of load information between PEs and its use in

the selection of steal targets. It accounts for different latencies between the PEs and

different PE computing capabilities, and tries to adapt the load distribution to it. The

load-balancing algorithm is described in detail in Al Zain et al. [AZTML06] and eval-

46 CHAPTER 2. SCHEDULING AND LOAD-BALANCING

uated in Al Zain et al. [AZTML08]. Since this algorithm is important for this thesis,

as it uses the load information in making steal decisions, we now describe it in more

detail.

Grid-GUM assumes that the set of all PEs is organised into a set of clusters.

Compared to the GUM work stealing, Grid-GUM makes the following improvements :

• The fastest PE (in terms of computing capability) from the largest cluster is

nominated as the main PE. Since the assumption is that the main thread will

generate the most of the parallelism (typical situation in divide-and-conquer

and data-parallel applications), in this way it is ensured that the most work is

generated in the largest cluster.

• Grid-GUM differs between steal attempts (FISH messages) that arrive from the

same cluster and the ones from remote clusters. If the FISH arrives from the

same cluster, one spark is sent as a response in a SCHEDULE message (as is done

in GUM). On the other hand, if it originates from a different cluster, then Grid-

GUM tries to send more sparks in the single SCHEDULE message, to cover the

possibly high latency. In this case, it tries to balance the number of sparks

(relative to the PE computing capability) between the two PEs involved in the

steal operation.

• In Grid-GUM, the PEs exchange information about the load of the environment

as the application execution progresses. The load information (the number of

sparks and threads that each PE has in its pools, together with the timestamps

when this information was last updated) that a PE has is attached to each FISH

and SCHEDULE message sent by it. When some other PE receives the FISH or

SCHEDULE message, it compares the timestamps of the load information from the

message with the timestamps of its own load information, and updates the latter

one for each PE for which it received a more recent information. Conversely,

the load information in the message is also updated for all PEs for which the

PE that receives it posses more recent information. In this way, hopefully, every

PE in the environment will have the accurate information about the load of

every other PE. When a PE gets idle, it will know where it is most likely to

find some work, and it chooses the target for FISH message accordingly (see

below). It is worth noting that, since the load information is attached to FISH

and SCHEDULE messages that would be exchanged anyway, the exchange of load

information in Grid-GUM comes at almost no extra cost (except for the small

constant additional overhead in processing these two types of messages).

2.4. (PARALLEL) FUNCTIONAL PROGRAMMING 47

• Each PE also has a communication map table, which holds the current com-

munication latencies between that PE and every other PE in the environment

(again, together with the timestamps of these information). This table is con-

sulted when the PE needs to choose the destination for sending (or forwarding)

a FISH message. If the PE ’knows’ about more than one other PE that has

some work to offload, it will prefer sending a FISH message to the one which is

the nearest to it (i.e. the one for which the communication latency to it is the

lowest).

The Algorithms 5 and 6 (taken from Al Zain [AZ06]) give the pseudocodes for

the Grid-GUM scheduling loop and the function that processes the FISH message (the

central parts of Grid-GUM adaptive load balancing system).

48 CHAPTER 2. SCHEDULING AND LOAD-BALANCING

Algorithm 5 Grid-GUM schedulingLoopStep() function

1: repeat
2: processMessages()
3: if run queue empty then
4: if no sparks in spark pool > low-watermark then
5: Choose spark s for local execution
6: Turn s into a thread t
7: Add t to run queue
8: else
9: update local load info

10: calculate localRatio=localSpeed/localLoad
11: sort communication latencies om ascending order
12: for each destPE in a system do
13: calculate destRatio = destSpeed/destLoad
14: if localRatio>destRatio then
15: attach to FISH message my system load information (together with

timestamps)
16: end if
17: send FISH message to destPE
18: break
19: end for
20: if not main PE and no FISH message sent then
21: destPE = mainPE
22: attach to FISH message my system load information (together with times-

tamps)
23: Send FISH message to destPE
24: end if
25: end if
26: end if
27: if run queue not empty then
28: Run one of the threads in run queue
29: if thread blocked on remote data then
30: Send FETCH message
31: end if
32: end if
33: until main thread finishes or error encountered

2.4. (PARALLEL) FUNCTIONAL PROGRAMMING 49

Algorithm 6 Grid-GUM processFISHMessage() function

1: update communication map from FISH message
2: update system load information from FISH message
3: if spark pool non-empty then
4: calculate localRatio (=localLoad/localSpeed) and originRatio (=originLoad/o-

riginSpeed)
5: if originRatio > localRatio then
6: if originPE and localPE withing the same cluster then
7: send one spark in SCHEDULE message to originPE
8: else
9: localClusterRatio=localClusterLoad/localClusterSpeed

10: originClusterRatio=originClusterLoad/originClusterSpeed
11: calculate noSparksToSend
12: send noSparksToSend sparks to originPE
13: end if
14: else
15: if FISH exceeded age then
16: return FISH to originPE
17: else
18: for each destPE in a system do
19: calculate destRatio
20: if originRatio>destRatio then
21: send FISH (together with system load information and timestamps) to

destPE
22: break
23: end if
24: end for
25: if not mainPE and no FISH message sent then
26: send FISH (together with system load information and timestamps) to

mainPE
27: end if
28: end if
29: end if
30: end if

50 CHAPTER 2. SCHEDULING AND LOAD-BALANCING

Chapter 3

SCALES Work-Stealing Simulator

In this chapter, we present SCALES, a work-stealing simulator for parallel applications

on distributed computing environments. Section 3.1 gives an overview of SCALES.

Sections 3.2 and 3.3 describe, respectively, the applications and the computing envi-

ronments that SCALES can simulate, and Section 3.4 describes how the application

execution is simulated. Section 3.5 gives an overview of other simulators for heteroge-

neous computing environments.

3.1 Overview of SCALES

SCALES can simulate the execution of a wide class of parallel applications using dif-

ferent work-stealing algorithms. Currently, it supports Random, Hierarchical, Cluster-

Aware Random, Adaptive Cluster-Aware Random, Grid-GUM and Feudal (see Section

5.3 for more details) work-stealing algorithms. To implement a new work-stealing al-

gorithm in SCALES, we simply need to implement the functions that deal with the

selection of steal targets.

The level of abstraction provided by SCALES enables us to model applications

which conform to many parallel programming paradigms, including divide-and-conquer,

master-worker and data-parallel applications. One important restriction, however, is

that the application modelled cannot have any non-trivial data-dependencies between

the tasks forked by the same parent task. It is also possible to simulate heterogeneous

computing environments, where heterogeneity comes from different communication la-

tencies between different PE pairs as well as different computing capabilities of PEs.

Additionally, SCALES allows the tuning of overhead which certain operations take

during the application execution (such as processing messages, task creation and task

finish). This enables users to fine-tune the simulator, in order to model more accurately

51

52 CHAPTER 3. SCALES WORK-STEALING SIMULATOR

specific runtime systems.

The following figure shows the output of an example run of SCALES simulator:

> sim_crs -p SimpleDC_10_5ms -s Grid_8_8

Total time 386002

Successful/Attempted steal messages ratio 0.048302

--

Tasks executed in cluster 0 - 687

Tasks executed in cluster 1 - 506

Tasks executed in cluster 2 - 567

Tasks executed in cluster 3 - 425

Tasks executed in cluster 4 - 453

Tasks executed in cluster 5 - 465

Tasks executed in cluster 6 - 491

Tasks executed in cluster 7 - 500

For the simulation of each application execution, SCALES requires three pieces of

information:

• work-stealing algorithm being simulated (sim_crs in the above example, which

represents Cluster-Aware Random stealing)

• the file with the application model (SimpleDC_10_5ms in the above example, see

Section 4.2 for details)

• the file with the computing-environment model (Grid_8_8 in the above example,

see Section 5.2).

SCALES returns the number of time units that the application execution takes. It also

returns some statistics about the steal messages sent and the tasks executed. Precisely

which statistics are to be returned is decided by user. In the above example, we have

chosen to display the ratio between all steal messages sent and those successful in

obtaining work. We have also chosen to display the number of tasks executed in each

cluster, in order to see how evenly the load was spread across the environment.

3.2. APPLICATIONS 53

Figure 3.1: Task graph of a simple data-parallel application

3.2 Applications

In the SCALES application model, each application task consists of a list of task events.

There are two types of task events:

• RUN r event, where the task runs for r relative time units.

• FORK (t1, . . . , tn) event, where the task forks a set of child tasks {t1, . . . , tn}
and then blocks until all of them finish execution.

An application in SCALES consists of a main task, which is the only task available

at the beginning of application execution.

With this level of abstraction, we can model applications that conform to many

popular parallel programming paradigms. For example, consider a simple data-parallel

application on Figure 3.1. In this application, the main task first does the initial

computation, which takes 10ms. Subsequently, it creates 8 subtasks and then blocks.

After all of the subtasks finish execution, the main task also finishes. The sizes of

subtasks are 20ms, 100ms, 40ms, 120ms, 32ms, 55ms, 80ms and 45ms, respectively.

We can model this application with the following file:

54 CHAPTER 3. SCALES WORK-STEALING SIMULATOR

Figure 3.2: Task graph of a simple divide-and-conquer

{
RUN 10000 ,

FORK

{RUN 20000}
{RUN 100000}
{RUN 40000}
{RUN 120000}
{RUN 32000}
{RUN 55000}
{RUN 80000}
{RUN 45000}

}

Note that the time units in the above example are microseconds. The curly brackets

surround the individual tasks, and the commas separate the task events.

As another example, Figure 3.2 shows an example of a simple divide-and-conquer

application. In this application, the “divide” and “conquer” parts are trivial (i.e.

they take a negligible amount of time) and all tasks generated after the third level of

recursion is reached are sequential. Each sequential task takes 5ms to complete. This

application can be modelled by the following file:

3.2. APPLICATIONS 55

{
RUN 1 ,

FORK {RUN 1 ,

FORK {RUN 1 ,

FORK {RUN 5000}
{RUN 5000} ,

RUN 1

}
{
RUN 1 ,

FORK {RUN 5000}
{RUN 5000} ,

RUN 1

} ,

RUN 1

}
{RUN 1 ,

FORK {RUN 1 ,

FORK {RUN 5000}
{RUN 5000} ,

RUN 1

}
{RUN 1 ,

FORK {RUN 5000}
{RUN 5000} ,

RUN 1

} ,

RUN 1

} ,

RUN 1

}

Similarly to the examples shown above, we can model divide-and-conquer applications

with non-trivial “divide” or “conquer” phases, data-parallel applications with nested

parallelism, master-worker applications etc. However, one thing that we can observe

from the SCALES application model is that there is no task event that simulates the

communication between tasks. The only communication that takes place is between

56 CHAPTER 3. SCALES WORK-STEALING SIMULATOR

parent and child tasks, and this communication is implicit in the model. A child

task fetches the data from the parent task before its execution starts, and it sends

the result back after its execution ends. This restricts the applications that can be

modelled under SCALES to those that are embarrassingly parallel.

3.3 Computing Environments

In the SCALES model, a computing environment consists of a set of PEs that can exe-

cute tasks. PEs are grouped into clusters, and the clusters are connected by networks.

The communication latency between each two PEs from the same cluster is the same,

and they all have the same computing capability. In the rest of the text, we will refer

to communication latency simply as latency, since this is the only kind of latency that

we consider.

To describe the computing environment being simulated, we need to provide the

description of each cluster in it, together with the latencies between these clusters.

For each cluster, we need to provide two parameters: the number of PEs in it, and

the computing capability of its PEs. The computing capability of a PE is specified

as a real number, which denotes how many relative time units of RUN task event it

executes in one absolute time unit. Therefore, a PE with the computing capability of

2 will execute RUN 4000 event in 2000 absolute time units, whereas a PE with the

computing capability of 0.5 will execute the same event in 8000 absolute time units.

The latency between two clusters denotes the number of absolute time units it takes

to send a message from one cluster to the other. It needs to be specified for all pairs

of clusters. The latency inside a cluster (i.e. between two PEs from it) is specified as

the latency between that cluster and itself.

Consider, for example, a computing environment that consists of 8 clusters, where

each cluster is denoted by an integer. Every cluster consists of 8 PEs. The latency

inside each cluster is 0.1ms, and the clusters are split into two continental groups

of clusters – clusters 0..3 belong to the first continental group, whereas clusters 4..7

belong to the second. The latency between every two clusters that belong to the

different continental groups is 80ms. Furthermore, each PE from the first continental

group is twice as fast as any PE from the other continental group. Each continental

group is further divided into two country groups (so clusters 0 and 1 belong to the

first country group, and clusters 2 and 3 to the second, and similarly for clusters 4, 5,

6 and 7). The latency between every two clusters from the same continental group,

but different country groups, is 30ms, and the latency between every two clusters from

3.3. COMPUTING ENVIRONMENTS 57

the same country group is 10ms. This computing environment can be described by

the following file (with added comments):

8 # number o f c l u s t e r s

8 8 8 8 8 8 8 8 # number o f PEs in each c l u s t e r

1 1 1 1 0 .5 0 .5 0 .5 0 .5 # computing c a p a b i l i t i e s o f the c l u s t e r s

0 0 100 # la t ency i n s i d e c l u s t e r 0

1 0 10000 # la t ency between c l u s t e r s 1 and 0

1 1 100 # la t ency i n s i d e c l u s t e r 1

2 0 30000 # la t ency between c l u s t e r s 2 and 0

2 1 30000 # . . .

2 2 100

3 0 30000

3 1 30000

3 2 10000

3 3 100

4 0 80000

4 1 80000

4 2 80000

4 3 80000

4 4 100

5 0 80000

5 1 80000

5 2 80000

5 3 80000

5 4 10000

6 0 80000

6 1 80000

6 2 80000

6 3 80000

6 4 30000

6 5 30000

6 6 100

7 0 80000

7 1 80000

7 2 80000

7 3 80000

58 CHAPTER 3. SCALES WORK-STEALING SIMULATOR

7 4 30000

7 5 30000

7 6 10000

We can see that SCALES supports modelling of the environments that are het-

erogeneous in terms of the latencies between PEs and/or the computing capabilities

of individual PEs. However, it does not support modelling of dynamically changing

latencies between the same clusters, or the dynamic variability in the computing ca-

pability of the same PE. Additionally, it also assumes the uniform bandwidth for all

networks. Therefore, it cannot fully model highly dynamic computing environments,

such as Computational Grids. The reason for making these assumption is that we are

interested in the scenario where the whole computing environment is fully dedicated

to the execution of a single application. In this scenario, the probability of an unex-

pected congestion of networks or of variable performance of individual PEs (due to a,

say, increased backload) is low.

3.4 Execution of Applications under SCALES

In SCALES, each PE has three task queues associated with it (terminology for these

queues is adopted from the GUM runtime environment):

• Spark task queue, denoting the tasks whose execution still has not started (un-

started tasks).

• Run task queue, denoting the tasks whose execution has already started (started

tasks) and that are ready to continue execution.

• Blocked task queue, denoting the started tasks that are blocked on their subtasks.

The execution of an application under SCALES starts with the main task in the

run task queue of some random PE, and all task queues of other PEs are empty. Each

PE then independently runs the scheduling loop (described in Algorithm 7).

We will now analyse in more detail how the particular steps of the scheduling loop

are carried out. Note that the execution of a step may be interrupted if a new message

arrives to a PE, in which case the code for processing messages (described in Algorithm

8) is executed, and after that control returns to the step which was interrupted.

3.4. EXECUTION OF APPLICATIONS UNDER SCALES 59

In step 3, a PE chooses a task from its task queue that will be executed next1.

We assume that the task is chosen in Last-Come-First-Served manner, i.e. the task

that is last added to the run queue is the first one to be executed. This follows the

general principle of work-stealing algorithms. The same holds for step 19, where the

PE needs to choose a task to transfer from its spark queue to its task queue. However,

in Chapter 6, we consider other task selection policies, where the tasks at this step are

selected according to their size, rather than their age.

In step 4, a PE needs to run the next task event e. The way in which this is carried

out depends on the type of e:

• If e is a RUN r event, then the PE simply runs for r/c absolute time units,

where c is its computing capability. However, the execution of a RUN event can

1Note that, since a PE never moves tasks from the spark task queue to the run task queue if the
run task queue is nonempty, the only situation where more than one task exists in the run task queue
is if tasks are moved to it from the blocked task queue.

Algorithm 7 SCALES Scheduling Loop

1: while main task not finished do
2: if run task queue non-empty then
3: Choose a task t from the run task queue
4: Execute the first event e from the list of events of task t
5: if the execution of e was not preempted then
6: Remove e from the list of events t
7: end if
8: if list of events of t is empty then
9: Post-process the task t

10: Remove task t
11: else
12: if e was fork event then
13: Move t to the blocked task queue
14: else if e was run event then
15: Move t to the run task queue
16: end if
17: end if
18: else if spark task queue non-empty then
19: Choose a task t from the spark task queue
20: Move t to the run task queue
21: else
22: if not looking for work then
23: Look for work
24: end if
25: end if
26: end while

60 CHAPTER 3. SCALES WORK-STEALING SIMULATOR

be interrupted at any point, by the arrival of a message. In this case, if the

PE has been executing the RUN r event for s absolute time units before it was

interrupted, then the event RUN (r − c · s) replaces the event RUN r at the

beginning of the list of events of the task t.

• If e is the FORK (t1, . . . , tn) event, then the tasks t1 . . . tn are placed into the

spark task queue of the PE. The execution of a FORK event takes 0 absolute

time units, and, therefore, it cannot be interrupted. After the execution of the

FORK event, the task t that is being executed is placed in the blocked task

queue (step 13). t is unblocked (i.e. moved back to the run task queue) when

all of the tasks t1, . . . , tn finish their execution and send their results back. This

implies that we need to track down which of these tasks have finished execution.

To do this, when t is moved to the blocked task queue, we attach to it a list

of its unfinished subtasks. This list initially consists of tasks t1 . . . tn, and it is

updated either in step 10 or when a reply message arrives (see below).

In step 9, a PE (we will denote it by T) needs to post-process the task t that

has finished its execution. If the task t is the main task, then the whole application

execution is finished, and the simulation ends. Otherwise, t was forked by its parent

task t0. Let T0 denote the PE that has t0 in its blocked task queue. If T and T0 are the

same PE, then t is removed from the list of unfinished subtasks of t0. If this results in

the list of unfinished subtasks of t0 becoming empty, then t0 is moved to the run task

queue of PE T . In the case that T and T0 are not the same PE, then a reply message

that contains task t is sent from T to T0.

Algorithm 8 shows the function for processing messages. The way in which individ-

ual messages are processed depends on their types. In SCALES, there are 3 different

types of messages that a PE can receive:

• A fish message is of the form FISH o, and it is the message by which thief o asks

the target for work. The receiver responds to this message by choosing n tasks

(where n depends on the work-stealing algorithm simulated) from its spark task

queue and sending them in a schedule message to the thief o. In the case that

the receiver’s spark task queue is empty, the receiver forwards the message to

some other appropriately chosen PE (again, the way in which this PE is chosen

depends on the work-stealing algorithm simulated). Alternatively, if the fish

message has already visited MAX_PES PEs, the receiver returns it to the thief

o. MAX_PES is a parameter which depends on the work-stealing algorithm used.

In most cases, we set this parameter to be equal to the number of PEs in the

3.4. EXECUTION OF APPLICATIONS UNDER SCALES 61

environment.

• A schedule message is of the form SCHEDULE (t1, . . . , tn), where t1, . . . , tn are

tasks. This is the message sent from a victim to a thief in the case that steal

attempt is successful. The receiver of the schedule message processes it by placing

tasks t1 . . . tn into its spark task queue.

• A reply message is of the form REPLY t, where t is a task from the list of

unfinished tasks of some task t0. t0 resides in the receiver’s blocked task queue.

This message is processed by removing task t from the list of unfinished tasks of

task t0 and, if this list is now empty, placing the task t0 into the receiver’s run

task queue.

From the description of the SCALES scheduling loop, we can observe that different

work-stealing algorithms have different implementations of steps 22 and 23 of the

scheduling loop, and different implementations of the function that processes messages.

Specifically, they differ in where they forward the fish when processing FISH message

(step 7 of the processMessage function), how they decide whether a PE is stealing or

not in step 22 and where they look for work in step 23 of the scheduling loop. In

Random Stealing, for example, the fish message is forwarded to a random PE; in step

Algorithm 8 processMessage(PE pe)

1: if message is FISH o then
2: if pe’s spark task queue empty then
3: {t1, . . . , tn}=Choose tasks from pe’s spark task queue
4: Send SCHEDULE {t1, . . . , tn} message to o
5: else
6: if FISH message visited MAX PE PEs then
7: Send FISH message to an appropriately chosen PE
8: else
9: Send FISH to o

10: end if
11: end if
12: else if message is SCHEDULE {t1, . . . , tm} then
13: Place tasks t1, . . . , tm in pe’s spark task queue
14: else if message is REPLY t then
15: t0 = parent task of t
16: Remove t from to’s unfinished tasks queue
17: if to’s unfinished tasks queue empty then
18: Move t0 to pe’s run task queue
19: end if
20: end if

62 CHAPTER 3. SCALES WORK-STEALING SIMULATOR

23, a thief looks for work by sending a fish message to a random PE; and step 22

consists of testing whether a PE has any outstanding fish messages. In Cluster-aware

Random Stealing, on the other hand, the fish message is forwarded to a PE from the

same cluster. In step 23, a thief looks for work by sending a local fish message (i.e.

fish message sent to a target from the same cluster), as well a remote fish message (i.e.

fish message sent to a target from a different cluster). Remote stealing is done only if

no other outstanding remote fish message from the same thief exist. Step 22 consists

of testing whether a thief has an outstanding local fish message.

We can observe several characteristics of SCALES mechanism for simulating the

application execution. Firstly, by default the scheduling is preemptive, which means

that the execution of a task is immediately suspended when a PE receives a new

message. User can supply a command line switch, which makes the scheduling non-

preemptive. The decision of whether to use preemptive or non-preemptive scheduling

depends on the particular runtime system that we want to simulate. For example,

Grid-GUM runtime system is by default non-preemptive. A thread will stop its eval-

uation only in the cases when either garbage collection is needed, or the evaluation

has finished. However, garbage collections occur relatively frequently, so threads will

often need to stop evaluation. In this way, messages will usually be processed shortly

after they are received. Therefore, we have found out that preemptive scheduling in

SCALES better simulates the execution of applications under Grid-GUM.

The second characteristic of SCALES that we can observe is that if a target re-

ceives a fish message and if it has no work to offload, it will, in most cases, forward

that message to some other target. The alternative approach, which some runtime

systems use, is to send the fish message back to the thief. We have found out that the

former approach results in much better load balance, since many fewer stealing-related

messages need to be sent.

3.4.1 Accuracy of Simulations Under SCALES

In order to test the accuracy of simulations under SCALES, we have implemented the

tracing mechanism, which can be turned on by the -r command-line switch. With

this switch, the simulation of the application execution under SCALES produces an

extensive trace file, where all actions done by all of the PEs in the environment are

logged. This file can then be inspected (or some tool can be used to visualise the data

from it, as we have done in Section 6.3.3, where activity profiles for few applications

are showed) to make sure that the simulation is indeed accurate (e.g. that the PEs

are indeed choosing stealing targets in the way the simulated algorithm prescribes,

3.4. EXECUTION OF APPLICATIONS UNDER SCALES 63

that each PE is, at each point in the application execution, either looking for work or

executing tasks, that the PEs correctly respond to the stealing requests and so on).

Consider, for example, the execution of the divide-and-conquer application given

of Figure 3.2 on the computing environment described in Section 3.3 under Random

Stealing algorithm. The following code is the snippet of the trace file generated by

SCALES for this execution:

...

PE 0 : 2 BLOCK t:0x1001088e0 (bcnt:2)

PE 0 : 2 TASK_DESCHEDULED t:0x1001088e0 (gl:0)

PE 0 : 2 TASK_SCHEDULED t:0x10010c2f0 (gl:0)

PE 0 : 3 BLOCK t:0x10010c2f0 (bcnt:2)

PE 0 : 3 TASK_DESCHEDULED t:0x10010c2f0 (gl:0)

PE 0 : 3 TASK_SCHEDULED t:0x10010de00 (gl:0)

PE 0 : 4 BLOCK t:0x10010de00 (bcnt:2)

PE 0 : 4 TASK_DESCHEDULED t:0x10010de00 (gl:0)

PE 0 : 4 TASK_SCHEDULED t:0x10010e970 (gl:0)

PE 0 : 201 SEND_SCHEDULE t:0x100108ef0 (d:1) (sps:2)

PE 0 : 201 TASK_DESCHEDULED t:0x10010e970 (gl:4803)

PE 0 : 201 TASK_SCHEDULED t:0x10010e970 (gl:4803)

PE 0 : 301 SEND_SCHEDULE t:0x10010c940 (d:4) (sps:1)

PE 0 : 301 TASK_DESCHEDULED t:0x10010e970 (gl:4703)

PE 0 : 301 TASK_SCHEDULED t:0x10010e970 (gl:4703)

PE 1 : 301 SCHEDULE t:0x100108ef0 20006

...

The trace file shows the events where a task is blocked after forking new tasks

(BLOCK, with bcnt denoting the number of forked tasks), the events where task is

scheduled/descheduled (TASK_SCHEDULED and TASK_DESCHEDULED, with gl denoting

the remaining size of the current task event, which is 0 for FORK events), the events

where a task is moved from the spark task queue to the run task queue (SCHEDULE

event, with the task pointer and the total size of the task), the events where SCHEDULE

message is sent (with d denoting the destination of the message, and sps denoting

the number of tasks that remain in the PEs spark task queue) and so on. The fourth

column in the trace file shows the timestamp of the event.

We have done an extensive testing of the trace files for various small and large ap-

plications on small and large computing environments and we concluded that SCALES

does indeed accurately simulates the execution of these applications under work steal-

64 CHAPTER 3. SCALES WORK-STEALING SIMULATOR

ing. Furthermore, the experiments presented in Chapter 6 show the agreement of

results obtained under SCALES with the results obtained using the implementation

of the same work-stealing algorithms in Grid-GUM. We can, therefore, conclude that

SCALES can indeed be used to approximate the performance of work-stealing algo-

rithms and policies considered in this thesis.

3.5 Grid and Cloud Simulators

Several simulators exist, whose aim is to provide the testbed for implementing different

scheduling strategies on heterogeneous distributed computing environments. However,

they either do not support the highly dynamic load-balancing mechanisms or they put

more restrictions on the applications that they can model than SCALES does.

Perhaps the most widely used simulator for Grid environments is SimGrid (Casanova

et al. [CLQ08]). SimGrid represents a framework for evaluating cluster, grid and peer-

to-peer algorithms and heuristics. It includes several user interfaces – SimDag for

investigation of scheduling heuristics for applications modelled as DAGs, MSG for

studying concurrent sequential processes, GRAS which allows users to use SimGrid as

a development lab for real distributed applications and SMPI for simulation of MPI

applications. The most closely related to SCALES is SimDag. However, it targets

the static scheduling algorithms and applications that can be modelled by DAGs. Im-

plementing work-stealing algorithms in it would probably be theoretically possible,

but very infeasible, and some of the applications under SCALES model cannot be

represented by DAGs.

Another popular Grid simulator is GridSim (Buyya and Murshead [BM02]), whose

main goal is to simulate Grid economy. It allows simulation of heterogeneous resources

that belong to different administrative domains, and simulations of multiple users

executing multiple jobs that compete for these resources. GridSim does not define the

application model it uses. The basic unit of application is a sequential task, and it

can be parametrised by sequential size (in terms of the number of machine instruction

it takes), the size of input and output data and a pointer to its parent task. We can

see that this model of task is somewhat simpler that SCALES model, as tasks cannot

generate subtasks at different points of their execution. Therefore, not all applications

that can be modelled under SCALES can be modelled under GridSim.

MicroGrid (Song et al. [SLJ+00]) is a set of simulation tools which enable Globus

applications to be run in arbitrarily virtual grid resource environments. This project

focuses on the accurate simulation of computing environments, rather than on the

3.6. SUMMARY 65

simulation of different task scheduling/load balancing algorithms. Also, MicroGrid

simulates the execution of real applications, rather than application models.

Bricks (Aida et al. [ATN+00]) is another system for the evaluation of different

scheduling algorithms for global computing systems. It assumes client/server architec-

ture, where clients submit problems (tasks) that are solved by servers (PEs). Bricks

can simulate highly dynamic computing environments, where communication laten-

cies, bandwidths and server load can vary over time. However, it allows modelling of

only the bag-of-tasks applications and it assumes that the scheduling algorithms being

simulated are centralised (whereas work-stealing is distributed).

Several Cloud simulators also exist. However, they are less relevant to our work,

since scheduling in Clouds typically deals with the allocation of individual virtual

machines and their balancing over the hosts, rather than on scheduling if individ-

ual application tasks. Therefore, we will here just briefly mention some of the most

important Cloud simulators.

CloudSim (Calherios et al. [CRB+11]) extends the GridSim simulation toolkit by

providing support for modelling and simulation of Cloud-specific features, such as vir-

tualised Cloud-based data centres. CloudSim supports dynamic instantiation of virtual

machines, hosts, data centres and applications. It is, however, more oriented towards

the Cloud providers, by allowing them to simulate different policies of allocating and

scheduling of virtual machines on hosts, rather than towards the developers of runtime

systems.

GreenCloud (Kliazovich et al. [KBAK10]) is another Cloud simulator. Its main

goal is to capture details of the energy consumed by data centre components in Clouds

(servers, switches and links) as well as the details of packet-level communication pat-

terns. It also allows simulation of different workload distribution mechanisms.

3.6 Summary

In this chapter, we presented SCALES, a novel work-stealing simulator, which we use

in the rest of the thesis as a testbed for implementation of various work-stealing algo-

rithms and policies. We described the application and computing-environment models

that SCALES provide. We gave examples of how SCALES can be used to model

divide-and-conquer and data-parallel applications. We also described the mechanism

that SCALES uses to simulate the application execution. Finally, we gave an overview

of other simulators for heterogeneous distributed computing environments, and com-

pared them to SCALES.

66 CHAPTER 3. SCALES WORK-STEALING SIMULATOR

We have seen that SCALES can be used to simulate a wide class of parallel applica-

tions and computing environments. It, therefore, enables us to evaluate the algorithms

considered in this thesis much more systematically that if only their implementation

in a real runtime system is used. It also allows us to obtain reproducible results, which

are crucial for the analysis of the performance of algorithms.

Chapter 4

Work-stealing on Heterogeneous

Distributed Computing

Environments

This chapter describes in more detail the problem we aim to solve, namely, that of

efficient load-balancing during the execution of large irregular parallel applications on

heterogeneous distributed computing environments. We describe the assumptions we

made about applications (Section 4.2), computing environments and runtime systesm

(Section 4.3). We also introduce a concept of the degree of irregularity of an application

(Section 4.2.1), which is used throughout the thesis.

We assume that work-stealing is the method of choice for load-balancing. We de-

scribe two important issues that arise in work-stealing in heterogeneous environments:

choosing a good target for work stealing request, and responding appropriately to such

requests. Finally, we outline our approach to addressing these issues.

4.1 Introduction

Our main objective is to investigate the ways in which efficient load-balancing can

be done during the application execution. Good load balancing means that the work

is spread evenly across all PEs in an environment, which results in good utilisation

and, consequentially, in good speedups of parallel applications. However, achieving

a good load balance in the presence of irregularity in parallel applications, coupled

with heterogeneity in the underlying computing environment, is a very challenging

task. Because parallel tasks vary in size, achieving a good balance of work over all

the PEs is not as simple as having each node execute an identical number of tasks.

67

68 CHAPTER 4. WORK STEALING ON DISTRIBUTED SYSTEMS

Also, heterogeneity in communication latencies makes transferring work between some

nodes more time-consuming than between others. These are just some of the issues

that need to be taken into account when choosing a load-balancing method which will

deliver good speedups.

In this chapter, we describe the special class of irregular parallel applications, run-

time systems and heterogeneous distributed parallel environments, to be used in this

thesis. We then proceed to outline an approach to developing efficient load balancing

methods, and compare it to approaches used in less complex setup (e.g. load balancing

of parallel applications with regular structures).

4.2 Parallel Applications

The general model of parallel applications considered here is based on the model

found in SCALES simulator (see Section 3.2). As a reminder (see Figure 4.1), we are

considering applications consisting of a main task, which, during its execution, creates

other (possibly parallel) tasks. Each task can be described by a finite sequence of task

events, each of which is either a run event (where a task runs sequentially for a certain

amount of time) or a fork event (where a task forks a set of subtasks and waits for all

to return their results before moving to the next event).

As seen in Section 3.2, at this level of abstraction, we can model applications

that conform to the most popular parallel programming paradigms. Note, however,

the restriction that the only data dependencies that exist are between parent and

child tasks. Furthermore, data transfers between parent and child tasks happen only

before and after execution of child task. Representing applications that have more

complex data dependencies (such as, for example, applications that create some kind

of pipeline between parallel tasks) is, therefore, not possible with this model. Although

this restricts the applications we are considering to those “embarrassingly parallel”, we,

nevertheless, find our application model general enough to capture important classes

of parallel applications. Furthermore, the absence of complex data-dependencies gives

us greater flexibility in load-balancing. Under this model, each child task is tied only

to its parent task, and can be placed independently of all others. Placing two tasks

with many data-dependencies on nodes in different clusters is no longer an issue.

In most of the discussion below, we will restrict our attention to applications that

have a simplified, tree-like task structure. In such applications, tasks are of two kinds:

• nested-parallel tasks, consisting of three phases (each represented by a single

event) – an initial divide phase (represented by run event), a fork phase (where

4.2. PARALLEL APPLICATIONS 69

Figure 4.1: Task graph of an example parallel application

a set of subtasks is created, represented by a fork event), and the final conquer

phase (represented by a run event), where the results from the subtasks are

joined.

• sequential tasks, which consist of a single run event.

For each application conforming to this model, we define a set of helper functions

that enable us to describe precisely the whole structure of the application. For an

application’s nested-parallel tasks, we will define functions D and C, which map tasks

to integers, and functions Fseq and Fpar, which map tasks to sets of tasks.

For a task t, these functions denote the following:

• D(t) denotes the size (in milliseconds) of its divide phase

• Fseq(t) and Fpar(t) denote sets of sequential and nested-parallel tasks generated

in its fork phase

• C(t) denotes the size (in milliseconds) of its conquer phase.

Note that for a task t, either Fseq(t) or Fpar(t) (but not both) can be empty. For each

nested-parallel task, we define function F as F (t) = Fseq(t) ∪ Fpar(t). For sequen-

tial tasks, we define the function S, where S(t) denotes the size (in milliseconds) of

sequential task t.

70 CHAPTER 4. WORK STEALING ON DISTRIBUTED SYSTEMS

Figure 4.2: Task graph of a simple parallel application

As an example, a task tree of a simple parallel application is shown in Figure 4.2

(t0 is the main task). For this application, functions D, F , Fseq, Fpar, C and S are the

following:

• task t0 : Fseq(t0) = {t2}, Fpar(t0) = {t1}, D(t0) = 10, C(t0) = 5

• task t1 : Fseq(t1) = ∅, Fpar(t1) = {t3, t4}, D(t1) = 6, C(t1) = 20

• task t2 : S(t2) = 15

• task t3 : S(t3) = 10

• task t4 : S(t4) = 10

Assuming that t0 is the main task of an application, we can define the distance of

task t to the task t0 (denoted by d(t0, t)) in the following way:

1. d(t0, t0) = 0

2. If d(t0, t
′) = k and if t ∈ F (t′), then d(t0, t) = k + 1.

If we represent tasks of an application by nodes of a tree, where edges represent the

parent-child relationship between tasks, and the main task t0 is the root of the tree,

then d(t, t0) is the height of node t in the tree.

4.2. PARALLEL APPLICATIONS 71

Since we are dealing only with finite applications, tasks cannot be infinitely nested.

Consequently, all tasks that are at a certain distance from the main task must be

sequential. For each application, we will denote by T the maximal distance to its

main task of any nested-parallel task.

With the appropriate choices of functions D, Fseq, Fpar, C, S and parameter T , we

can model various interesting classes of divide-and-conquer and data-parallel applica-

tions. We consider these classes below.

Divide-and-conquer Applications

We can see an application conforming to the tree-like task model described above as

a divide-and-conquer parallel application, where each task solves some subproblem of

an initial problem. The initial problem is solved by the main task. Subproblems are

solved either sequentially (in the case of sequential tasks) or they are further divided

into subproblems which are solved recursively, in parallel (in the case of nested-parallel

tasks). When problems become too small (i.e. after level T in recursion is reached),

they are all solved sequentially. Some interesting, more specific examples of divide-

and-conquer applications are given in the following:

• SimpleDC – Let us make the following assumptions about functions Fpar, Fseq, D, C

and S:

– |Fpar(t)| = 2 and |Fseq(t)| = 0 for all nested-parallel tasks whose distance

from the main task is less than T , and |Fpar(t)| = 0 and |Fseq(t)| = 2 for all

other nested-parallel tasks,

– for all nested-parallel tasks t, C(t) = D(t) = K, where K is a constant

close to zero,

– for all sequential tasks t, S(t) = Cseq, where Cseq is a constant.

This gives us a simple divide-and-conquer application, where each problem is split

into two subproblems, the parts that divide the problem into subproblems and

that combine the solutions of subproblems into the solution of the problem are

trivial, and all sequential tasks have the same computational cost. We will call

this kind of application a simple divide-and-conquer application, and denote it

by SimpleDC(T,Cseq), since the whole application can be described by providing

the number of recursion levels and the size of sequential tasks. Figure 4.3 gives

the task graph for SimpleDC(3, 10) application.

72 CHAPTER 4. WORK STEALING ON DISTRIBUTED SYSTEMS

Figure 4.3: Task graph of SimpleDC(T,Cseq) application, where T = 3 and Cseq = 10.
Nested-parallel tasks are white.

• DCFixedPar – Another interesting class of applications can be obtained with

the following choices for functions Fseq, Fpar, D, C and S:

– |F (t)| = n, |Fpar(t)| = bn
k
c for some k < n (and, consequently, |Fseq(t)| =

n − bn
k
c) for all nested-parallel tasks t such that the distance from t to

the main task is less then T ; |F (t)| = n, |Fpar(t)| = 0 (and, consequently,

|Fseq(t)| = n) for all other nested-parallel tasks. We also require that,

from all tasks generated by a nested-parallel task, every k-th is itself nested

parallel;

– for all nested-parallel tasks t, C(t) = D(t) = K, where K is some constant

close to zero.

– for all sequential tasks t, S(t) = Cseq, where Cseq is some constant

This gives us a class of divide-and-conquer applications where each nested-

parallel task generates the same number of tasks, and, if its distance from the

main task is less than T , has the same ratio between sequential and nested-

parallel tasks it generates. We can see SimpleDC applications as instances of

this class of applications, with n = 2, k = 1. We will call this kind of applica-

tions the divide-and-conquer applications with fixed amount of parallelism, and

denote it by DCFixedPar(n, k, Cseq, T). See Figure 4.4 for a task graph of an

example of DCFixedPar application, where n = 6, k = 3 and Cseq = 5ms.

4.2. PARALLEL APPLICATIONS 73

Figure 4.4: Task graph of DCFixedPar(n, k, Cseq, T) application, where n = 6, k = 3,
Cseq = 5ms. Nested-parallel tasks are white.

An interesting classification of divide-and-conquer applications has been given by

Herrmann [Her01], who describes several variations of the general divide-and-conquer

pattern. These enable various compiling/runtime optimisations (such as more efficient

static task placement). Herrmann describes six hierarchical classes of the divide-and-

conquer applications. We will here describe the first three classes in the hierarchy,

since they describe the structure of the tasks structure of the applications:

1. General DC – the most general class of divide-and-conquer applications, which

covers all applications that decompose the initial problem into subproblems,

solve them independently and then combine the solutions. The only require-

ment for this class is that the subproblems are independant (i.e. they do not

have any data-dependencies). Examples of this class include the Quicksort algo-

rithm and the Maximum independent set algorithm for finding the largest set of

independent nodes in a graph.

2. DC with static schedule – applications that belong to the General DC class

and where the number of recursion levels is known beforehand (i.e. where the

recursion level can be passed as a parameter to the application). An example is

the n-queens problem.

3. DC with a static schedule and allocation – in addition to the conditions for the

DC with static schedule class, here the number of subproblems generated at each

level is known in advance. An example is the Mergesort algorithm.

74 CHAPTER 4. WORK STEALING ON DISTRIBUTED SYSTEMS

The remaining three classes consider ways in which the division of the data is done in

the divide phase of the divide-and-conquer applications. Since we ignore the issues of

data divisions and transfers, these classes are of not directly relevant to us. We can

see that SimpleDC and DCFixedPar classes of applications that we have defined here

belong to the third class, i.e. DC with a static schedule and allocation class.

Data-parallel applications

Another way of looking at an application with a tree-like structure of tasks is to see it

as a data-parallel application, which potentially has nested parallelism in it. If T (the

maximal distance of any nested-parallel task to the main task) is 0, we get a simple

data-parallel application without nested parallelism.

For T > 0, we get an application with nested parallelism, with a similar structure

as DCFixedPar applications, but where the number of sequential and nested-parallel

subtasks is not necessarily the same for each nested-parallel task. This kind of par-

allelism arises in, for example, a data-parallel application which maps some function

over some non-linear data structure (for example, a tree). For some elements of the

data structure, the function is evaluated sequentially (sequential tasks), but for others,

mapping a function over them generates further data-parallelism. One example of such

an application is the parallel implementation of the Min-Max algorithm, where a tree

of game positions is processed (by assigning a value to each position). For each posi-

tion, the positions that can follow it after the player’s move are evaluated in parallel,

until some depth of the game tree is reached, where the remaining positions are eval-

uated sequentially. Sequential tasks also correspond to the positions after which the

tree is pruned (and, therefore, no further parallelism is generated). Also, Monte Carlo

Photon Transport algorithm (Hammes and Bohm [HB95]) is an example of application

with such parallelism.

Specifically, in Chapter 6 we will be interested in single-level data-parallel appli-

cations, where task sizes are generated randomly under normal distribution with the

mean value m and standard deviation d. We will denote such an application, with n

tasks, as SimpleDataPar(n,m,d).

4.2.1 The Degree of Irregularity of Parallel Applications

In Section 1.3, we have described what does it mean for an application to be irregular,

and we have pointed out that we focus on cost-irregular parallel applications (i.e.

those applications whose parallel tasks have either different sizes, different patterns of

4.2. PARALLEL APPLICATIONS 75

communications or they generate different amounts of parallelism).

Since in our model of parallel applications, communication patterns for all tasks

are the same (i.e. every task communicates just with its parent task, and the amount

of communication is the same for all tasks), we can see that irregularity can either

arise from different tasks having different sizes or generating the different amount of

parallelism. Here, by the size of the task we mean the computational cost (measured,

for example, in milliseconds or in the number of machine instructions) of its sequential

execution (including all of its subtasks), and by the amount of parallelism it generates

we mean the number of tasks it generates in its fork phase (0 for sequential tasks).

We will focus on the irregularity in task sizes, since if the nested-parallel tasks of an

application generate different number of tasks, then it is also likely that the sizes of

these nested-parallel tasks will be different. Therefore, we can see a class of applications

which have irregularity in task sizes as a superset of those that have the irregularity

in the amount of parallelism they generate.

In the following, we will precisely define the size of a task for applications we

consider in this thesis. Assume that the task t is represented as a sequence of events

(e1, e2, . . . , en), whereas each ei is either RUN r(ei) or FORK (ti1 , ti2 , . . . , tini
), where

r(ei) is integer and ti1 , ti2 , . . . , tini
are tasks. Then the size of such task is defined in

the following way

Definition 1 (The size of a task) For a task t = (e1, e2, . . . , en), where ei is task

event, its size (Sz(t)) is defined by

1. Sz(t) =
∑n
i=1 SzEvent(ei)

2. The size of an event e is defined by

(a) If e is a run event, i.e. e = RUN x, then SzEvent(e) = x

(b) If e is a fork event, i.e. e = FORK (t1, t2, . . . , tk) where t1, t2, . . . , tk are

tasks, then

SzEvent(e) =
k∑
i=1

Sz(ti).

On Figure 4.5, we can see an example task trees of two parallel applications, where

tasks are annotated by their size. Task represented by blue squares (except for the main

task) are sequential, whereas the ones represented by white circles are nested parallel,

consisting of just one FORK event, where a set of subtasks that are its children in the

tree are generated. We can see that the size of a nested-parallel task is aggregate size

of all of the subtasks it generates.

76 CHAPTER 4. WORK STEALING ON DISTRIBUTED SYSTEMS

(a) SimpleDC application

(b) Irregular application

Figure 4.5: Task graphs of two simple parallel applications

4.2. PARALLEL APPLICATIONS 77

Having the definition of the size of a task in hand, we can now define the degree

of irregularity, the notion which tell us exactly “how different” the sizes of parallel

tasks that comprise an application are. Our goal is for the definition of the degree

of application irregularity to comply with the intuitive notion of the “amount” of

irregularity, where “more irregular” applications have tasks of more variable size and

structure.

We will start with applications that do not have nested parallelism. In these

applications, the main task generates a number of sequential child tasks. Assuming

that we denote the mean size of these child tasks by m, it seems natural to define

the degree of irregularity of such an application as a standard deviation of sizes of

child tasks from m. Regular application will have tasks of similar size, therefore their

deviation from m we be relatively small. Highly irregular application will have tasks

whose sizes differ dramatically, so their deviation from m will be larger.

However, taking only standard deviation from the mean task size as a measure

of irregularity quickly gets us into problems. For example, if two applications, one

with mean task size of 10ms, and the other with mean task size of 300ms, both have

the standard deviation of 5ms, then most of the tasks from the first application will

have sizes between 5ms and 15ms (50% difference to the mean task size), and for the

second application, most sizes will be between 295ms and 305ms (1.6% difference from

the mean task size). Under the above definition, these two application would have

the same degree of irregularity, although clearly the first one is much ’more irregular’,

since task sizes have much higher amplitude with the respect to the mean task size.

Therefore, we will define the degree of irregularity of an application with a single-level

of parallelism in the following way

Definition 2 (Degree of irregularity of application without nested parallelism)

For parallel application A without nested parallelism, let meansize(A) denote the mean

size of tasks generated by the main task, and let δsize(A) denote the standard deviation

of sizes of these tasks from meansize(A). That is, if t1, t2, . . . , tn are all subtasks of the

main task, then

meansize(A) =

∑n
i=1 Sz(ti)

n

and

δsize(A) =

√∑n
i=1 |Sz(ti)−meansize(A)|2

n
.

78 CHAPTER 4. WORK STEALING ON DISTRIBUTED SYSTEMS

Then the degree of irregularity of the application A, denoted by irr(A), is defined as

irrSize(A) =
δsize(A)

meansize(A)
.

Note that, in statistical terms, the degree of irregularity of an application is really

a coefficient of variation of the task sizes. This measure tells us how different the

task sizes of the application are. Since all of the task sizes are positive, coefficient of

variation is in this case the same as a relative standard deviation (which is defined

as | δ
mean |). Another similar statistical measure is variance-to-mean ratio (defined as

δ2

mean). However, nothing would particularly change if we used this ratio – if the

application A has smaller degree of irregularity than the application B under our

definition, it will also have smaller degree of irregularity if we use variance-to-mean

ratio as the measure of irregularity.

We now turn our attention to applications with nested parallelism. Using the same

definition of the degree of irregularity as for applications without nested parallelism

would mean that the degree of irregularity does not depend on the structure of sub-

tasks generated by the main task, but only on their sizes. Therefore, for example,

two applications on Figure 4.5 would have the same degree of irregularity, although

intuitively the application of Figure 4.5b is more irregular. Furthermore, the degree of

irregularity of both applications would be 0. On the other hand, taking the standard

deviation from the mean size of all of application’s tasks (where the sizes of sequential

tasks are accounted for also in the sizes of their parent nested-parallel tasks) would

make even simple applications, like the one on Figure 4.5a have a high degree of ir-

regularity. For that application, task sizes are 20ms, 10ms, 10ms, 5ms, 5ms, the mean

task size would be 8.57ms, deviations of task sizes from this main task size would be

11.43ms, 1.43ms, 1.43m, 3.57ms, 3.57ms, making the standard deviation 5.66ms, and,

therefore, the degree of irregularity 0.66. Similar SimpleDC applications with more

tasks (for example, the one on Figure 4.3) would have even higher degree of irregu-

larity, although their structure is identical to the one on Figure 4.5a. Intuitively we

would not call these applications irregular, since each nested-parallel tasks generates

subtasks of identical structure and size.

To circumvent the problems mentioned above, we will adopt the definition of the

degree of irregularity of a parallel application that takes into account the irregular-

ity of its individual nested-parallel tasks (including the main task). We first define

the degree of irregularity of a nested-parallel task (the definition very similar to the

degree of irregularity of an application without nested parallelism), which will tell us

4.2. PARALLEL APPLICATIONS 79

how different the subtasks generated by that task are. Then, the overall degree of

irregularity of a parallel application will be the mean degree of irregularity of all of its

nested-parallel tasks, which shows how irregular these tasks are on the average.

Definition 3 (The degree of irregularity of a nested-parallel task) Let t1, t2, . . . , tn

be all tasks generated by a nested-parallel task t in an application. Let meansize(t) de-

note the mean size of tasks t1, t2, . . . , tn and let δsize(t) denote the standard deviation

of sizes of these tasks from meansize(t). That is,

meansize(t) =

∑n
i=1 Sz(ti)

n

and

δsize(t) =

√∑n
i=1 |Sz(ti)−meansize(t)|2

n
.

Then the degree of irregularity of the task t, denoted by irr(t), is defined as

irr(t) =
δsize(t)

meansize(t)
.

Definition 4 (The degree of irregularity of an application) Let tn1, tn2, . . . , tnn

be the set of all nested-parallel tasks (including the main task) of the application A.

Then we define the degree of irregularity A, denoted by irr(A), as

irr(A) =

∑n
i=1 irr(tni)

n

We can see that the definition of the degree of irregularity of application without

nested parallelism conform to this more general definition, since in this kind of appli-

cations the only nested-parallel task is the main task, and the degree of irregularity of

the application is the degree of irregularity of its main task.

This definition conforms to the intuitive notion of irregular applications. For exam-

ple, with that definition, the SimpleDC applications have the degree of irregularity of

0, since every nested-parallel task generates the subtasks of an identical size. Consider

now the application on Figure 4.5b. We will consider the degree of irregularity of each

nested-parallel task separately:

• The main task has two subtasks, both with sizes 42ms. Therefore, all of its

subtasks are of equal size, so its degree of irregularity is 0.0.

• Task t1 has subtasks t3, t4 and t5 with sizes 8ms, 30ms and 4ms respectively.

Therefore, meansize(t1) = 42ms/3 = 14ms. The deviations from the mean task

80 CHAPTER 4. WORK STEALING ON DISTRIBUTED SYSTEMS

size of tasks t3, t4 and t5 are 6ms, 16ms and 10ms respectively, making the mean

deviation δsize(t1) =
√

130.66
3

= 11.43ms Therefore, the degree of irregularity of

task t1 is irr(t1) = 11.43/14 = 0.81.

• Similarly, for tasks t2, t4, t6, t7, t13 the degrees of irregularity are 0.09, 0, 0.73,

0.47 and 0.42, respectively.

Taking the average of the degrees of irregularity of individual nested-parallel tasks,

we get the overall degree of irregularity of an application to be 0.36. This means

that, although the application is irregular, it is not “too” irregular, since some of its

nested-parallel tasks are very regular.

We will now give a few more examples of the degrees of irregularity of some kinds

of applications we will consider in this thesis. Figure 4.6 gives the graphs of task sizes

of applications without nested parallelism, each comprising 100 tasks, with the mean

task size of 100ms. Sizes of application tasks are generated randomly, with normal

distribution. Applications have size-irregularity levels of 0.1 and 0.9. We can see that

the sizes of tasks for more irregular applications are much more variable than in the

case of more regular one. This kind of application, where the main task generates a set

of sequential subtasks, sizes of which are generated randomly with normal distribution

will be the focus of Chapter 6. We will denote the class of applications with the

mean task size of m and the degree of irregularity i, where the main task generates t

sequential subtasks, by SingleDataPar(t,m, i).

Table 4.7 gives a few examples of the degrees of irregularity for DCFixedPar ap-

plications. We can observe that for DCFixedPar(n, k, Cseq, T) applications with a

fixed value for n, if we increase k (that is, if nested-parallel tasks get sparser), we get

more irregular parallel application. This is the main motivation for introducing DC-

FixedPar applications – we want to observe the performance of various load-balancing

algorithms for applications with nested-parallelism, which have the increasing degree

of irregularity. We can also see the degree of irregularity of DCFixedPar applications

as a measure of how balanced their task tree is. For very regular applications (for

example, DCFixedPar(2,1,Cseq,T), which is the same as SimpleDC(T ,Cseq)), the task

tree is balanced. The more irregular the application is, the more unbalanced its task

tree is.

4.2. PARALLEL APPLICATIONS 81

 0

 50

 100

 150

 200

 250

 300

 350

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

T
a
s
k
 s

iz
e
 (

in
 m

s
)

Task number

Task sizes of application with the degree of irregularity of 0.1

(a) i=0.1

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

T
a

s
k
 s

iz
e

 (
in

 m
s
)

Task number

Task sizes of application with the degree of irregularity of 0.9

(b) i=0.9

Figure 4.6: Graphs of task sizes of the example SingleDataPar(100, 100, i) applica-
tions

82 CHAPTER 4. WORK STEALING ON DISTRIBUTED SYSTEMS

Application The degree of irregularity
DCFixedPar(10, 1, Cseq, D, C, 4) 0.00
DCFixedPar(10, 2, Cseq, D, C, 4) 0.163071
DCFixedPar(10, 3, Cseq, D, C, 4) 0.364778
DCFixedPar(10, 4, Cseq, D, C, 4) 0.608418
DCFixedPar(10, 6, Cseq, D, C, 4) 1.116541

Figure 4.7: The degrees of irregularity for various DCFixedPar applications

4.3 Heterogeneous Distributed Computing Environ-

ments and Runtime systems

In the heterogeneous distributed computing environments that we consider, hetero-

geneity can come from different sources:

• Different PEs can have different computing capabilities.

• Different amounts of memory can be associated to different PEs.

• Memory associated to a PE can itself be heterogeneous, in terms of different

latencies in access to different portions of it (e.g. access to the L1 cache is much

faster than access to the L2 cache, which is in turn much faster than access to

the main memory).

• Different network links can have different bandwidths and communication laten-

cies.

In this thesis, however, we focus solely on the communication latency heterogeneity –

that is, heterogeneity in latencies in network communication between different PEs.

We assume that the distributed computing environment is structured as a group of

interconnected clusters of PEs (Figure 4.8), where the communication latency between

PEs in a single cluster is both uniform and much shorter than that for PEs in different

clusters. We also assume that the latency between two fixed PEs is constant, and that

the bandwidth is infinite. We further assume that all PEs have identical computing

capability and that the amount of memory associated to all PEs is equal. Additionally,

we assume that the memory associated with each PE is uniform – a PE can access

each and every part of its memory in the same amount of time. That is, we define a

computationally uniform computing environment as a special class of heterogeneous

distributed computing environment that is heterogeneous in terms of communication

latency, but which is homogeneous in terms of the computing capability and memory

4.4. WORK-STEALING ON HETEROGENEOUS COMPUTING ENVIRONMENTS83

of each PE. This allows us to focus purely on the problem of dynamic load balancing

in the presence of heterogeneous communication latencies, without also needing to

consider relative PE performance and cost of accessing different hierarchical levels of

memory.

Concerning the runtime systems that we consider, besides the restrictions that we

have already made, namely, that runtime system is dedicated to the execution of a

single parallel application at time, and that the work-stealing is used as a method

of load balancing, we make one more important restriction with respect to the task

execution. Namely, we will assume that the migration of tasks under execution is not

possible.

We differentiate between the tasks whose execution has not already started and the

tasks under execution. The former ones are represented by some sort of task descriptor

which encapsulates enough information to start the task execution (for example, the

name and the arguments of the function that the task executes), and are typically

much more lightweight than the latter ones, which need to keep the information about

their whole state (including registers and stack). We will assume that only the tasks

whose execution has not started can be transferred between PEs. Therefore, in the

rest of the thesis, when we say that task is transferred from PE A to PE B, we mean

that just the task descriptor (created when the task is forked by its parent task) is

transferred from A’s to B’s task pool.

Note that in Grid-GUM, sparks play the role of task descriptors. Sparks are even-

tually either discarded or converted into threads, which play the role of tasks in our

discussion. Grid-GUM also supports the mechanism of thread migration, where the

whole state of the thread under evaluation can be migrated between PEs. However,

since the cost of doing this is nontrivial and depends on the thread profile, and since

we are interested in results applicable to other runtime systems as well (which may

not support this feature), we will assume that migration of tasks under execution is

not possible.

4.4 Work-stealing on Heterogeneous Computing En-

vironments

In Section 2.3.1 we reviewed the current state-of-the-art work-stealing algorithms for

heterogeneous distributed computing environments. As we have seen, most of these al-

gorithms are designed to deal with divide-and-conquer parallel applications, and their

aim is to somehow hide the costs of wide-area (WAN) communication. Some algo-

84 CHAPTER 4. WORK STEALING ON DISTRIBUTED SYSTEMS

Figure 4.8: Grid connecting 5 sites from Europe, North America, Asia, Australia and
New Zealand

rithms (e.g. Hierarchical Stealing) aim to optimise WAN communication by sending

stealing-related messages over WAN only when there is no work that could be stolen

over local-area network (LAN). Others, such as (A)CRS, aim to overlap WAN and

LAN communication, by performing remote work prefetching in parallel with local

work stealing. The common denominator for all these algorithms is that they address

only one issue that arises during the work stealing - how should a thief choose tar-

get(s) for its work stealing attempts, and they do it by preferring stealing over LAN to

that over WAN. Furthermore, most of them address this issue by taking into account

only static information about network topology (e.g. communication latencies between

PEs), and not runtime information about the PE load. Also, by assuming some com-

mon characteristics of divide-and-conquer applications (e.g. tasks created earlier in

the application execution are larger and induce more parallelism), they address some

other, equally important issues, such as what task should the victim send as a response

to the thief in more or less ad-hoc way, by always offloading the oldest task from the

victim’s task pool.

The approach that mentioned algorithms take is sensible for simpler divide-and-

conquer applications (e.g. SimpleDC). Since most of the tasks generated in such ap-

plications induce a lot of parallelism, if one PE from a cluster succeeds in stealing

4.4. WORK-STEALING ON HETEROGENEOUS COMPUTING ENVIRONMENTS85

task, that task can keep all PEs from that cluster busy for a long time. Therefore,

we do not expect that PEs will have to look for work over WAN too often, and we

also expect that most of the PEs will have some extra work to offload. Due to this,

the probability of thief finding a target with work to offload is pretty high even if the

target is chosen randomly, without trying to use the information about current PE

loads. Also, by always offloading the oldest task in victim’s task pool as a response to

steal attempt, we make sure that we send the thief the task that will create the most

work. This means that we answer the question of what task to send to the thief im-

plicitly by always offloading the task that creates the most additional parallel work. If

a PE needs to execute one of its own tasks, it executes the newest one. This preserves

locality, by executing tasks near where the data they need resides (assuming that the

data for most recently created task is still near the PE that has created it, perhaps in

its cache memory).

If we consider irregular parallel applications (for example, DCFixedPar applica-

tions, especially if function S is not constant) the situation is not that simple any

more. There, the age of the task might be unrelated to its size and the amount of

parallelism it creates. Some tasks may be sequential, and some may generate a lot

of parallelism. Also, different sequential tasks may have different sizes. This means

that not all of the PEs in an environment might have work to offload to a potential

thief, and some of them might only have very small, sequential tasks in their task pool.

Therefore, choosing the target for a steal attempt randomly, without using any load

information, might not be viable any more. Also, in some cases, locality might not

be much of an issue so it might be perfectly fine to execute some task other than the

newest one locally. All of this means that runtime systems that support the execution

of irregular parallel applications need to consider different policies for locating work

and choosing which work to send as a response to steal attempt than systems that

support only divide-and-conquer applications.

One additional drawback of the algorithms considered above is that the victim

treats all steal requests in the same way, no matter where they come from (i.e. it

chooses the same task for offloading regardless of how far does the steal request come

from). In other words, information about the network topology is only used for locating

work, and not for deciding on how to respond to steal attempt. In heterogeneous

environments, the difference in communication latencies between PEs that are nearby

(e.g. on the same multicore machine or within the same cluster) and distant (e.g. that

belong to different clusters) can be very high. In this situation, the victim might use

a different strategy when responding to a steal attempt from a ’closer’ PE than from

86 CHAPTER 4. WORK STEALING ON DISTRIBUTED SYSTEMS

a further one. It may be better to send smaller tasks to PEs that are close, in order

to save the large ones for more distant PEs. Alternatively, in some other situation,

we may want to avoid offloading tasks to distant PEs altogether, for example if closer

ones can execute them faster.

In the reminder of the thesis, we investigate how to find answers to the two crucial

questions that arise in work stealing on heterogeneous distributed systems:

• How should a thief choose the appropriate steal target?

• How should the victim respond to steal attempts that it receives (i.e. how many

and what tasks should it send as a response)?

We aim to find the answers that are applicable to a wide class of applications (rather

than just to simple divide-and-conquer ones). More details of our approach to answer-

ing the two posed questions are given in the following two sections.

4.4.1 How to Choose Steal Targets

In its simplest form, work-stealing is a fully decentralised mechanism, since each PE

makes load-balancing decisions independently of all other PEs. However, this also

means that a thief do not have any information about load of a target from which it

attempts to steal. We have already argued that, in irregular parallel applications, only

a small number of PEs might have extra work, and the thieves might struggle to find

them if they do not have any information about the system load. This is especially

an issue in large-scale computing environments. In order to find a good answer to the

question of how to choose steal targets, we, therefore, argue that it is necessary to use

some form of dynamic PE load information.

Having decided to use the dynamic PE load information, two important issues arise.

Firstly, what is the best way to use this information? In other words, assuming that a

thief knows the load of every possible target in the system, what specific target should

it choose for stealing? Is it the best to choose a random target with work, the nearest

one, or maybe the one with the highest-load? Alternatively, is it worthwhile to do local

and remote stealing in parallel, as is done in Cluster-Aware Random stealing? We

explore this issue by extending the state-of-the-art work-stealing algorithms described

in Section 2.3.1 with the perfect load information. That is, using simulations, we

consider the hypothetical scenario where thieves under these algorithms know the loads

of all other PEs, and use this information in selecting the steal targets. In Hierarchical

work-stealing, for example, a thief would avoid looking for work in its subtree if it

4.4. WORK-STEALING ON HETEROGENEOUS COMPUTING ENVIRONMENTS87

knows that no PE there has any tasks to offload. It would, instead, immediately ask

its parent for work. As another example, In Random stealing, a thief would restrict

the set of possible targets (one of which is chosen randomly) to only those PEs with

work.

Once we discover what is the best way of using load information, we need to

investigate the question of how to obtain it. That is, we need to find a way for PEs

to obtain the accurate load information during the application execution.

Grid-GUM tries to solve this problem by attaching load information to the steal

messages exchanged during the application execution (see Section 2.4.3 for more de-

tails). Initially, each PE knows only its own load. However, as steal messages are

exchanged, PEs get the information about loads of other PEs. Eventually, each PE

should have accurate information about the load of the rest of the system, and it should

know where to look for work once it becomes idle. However, this approach has several

drawbacks. Firstly, the size of each steal message is increased with the information

about the load of every PE in the environment. In large computing environments, this

might make steal messages prohibitively large. Secondly, the assumption that each PE

can have accurate information about the load of every other PE in the environment

is overly optimistic. The accuracy of load information that a PE has depends on how

often does it communicate with other PEs. An isolated PE (i.e. the one that does

not communicate with the rest of the system too often, perhaps because the rest of

the system assumes that it has no work to offload) will have inaccurate information

about the load of the rest of the system, and, conversely, the rest of the system will

have inaccurate information about its load. This PE might be heavily loaded, and an

ideal victim from which to steal work, but other PEs just will not try to steal from it,

as they assume that it has no work.

In order to address the problems with Grid-GUM work stealing, we can try a fully-

Centralised approach to keeping the load information (See Figure 4.9). This would

mean that one PE is nominated as a central load-balancing PE, and that all PEs

would periodically send the information about their load to it. Additionally, each thief

would contact the load-balancing PE in order to find out what PEs would be suitable

targets for stealing. This would enable load-balancing PE to have accurate information

about the load of other PEs, and thieves to locate victims more easily. However, in a

heterogeneous distributed computing environment, this approach is problematic for a

number of reasons, for example:

• The presence of heterogeneous and, potentially, very high communication laten-

cies makes collecting the information about the load of PEs very expensive.

88 CHAPTER 4. WORK STEALING ON DISTRIBUTED SYSTEMS

(a) Centralised Work-stealing

(b) Distributed Work-stealing

Figure 4.9: Centralised and distributed work-stealing. Grey PEs are idle, purple ones
are busy and the black PE represent the dedicated load balancing node.

4.4. WORK-STEALING ON HETEROGENEOUS COMPUTING ENVIRONMENTS89

• Load-balancing PE can become a bottleneck, due to a fact that possibly very

large number of PEs will need to communicate with it relatively frequently.

• Generally, individual PEs in distributed environments are unreliable, and may

go offline frequently. If one of the load balancing nodes goes offline, then some

mechanism that will propagate its role (together with its information about the

system load) to some other node is necessary.

We propose a novel approach which combines fully-distributed and fully-Centralised

approach to exchanging the load information between PEs. We use a fully-Centralised

approach within low-latency networks, where PEs from the same cluster send their

load information to a central load-balancing PE at regular time intervals. In this case,

the central PE will have accurate information about the load of its cluster. Over

the high-latency networks, however, we use a fully-distributed approach, where load

information is attached to steal messages that are sent anyway (similarly to Grid-

GUM), so the exchange of load information over high-latency networks does not incur

any overhead. In this way, we are hoping to have benefits of both approaches while

circumventing their major drawbacks.

4.4.2 How to Respond to Steal Attempt

To answer the question of how victims should respond to steal attempts they receive, we

use the information about the sizes of tasks in victims’ task queues to drive the decision

of what task to send to what thief. Rather than using the implicit assumptions about

characteristics of parallel tasks (such as that the age of the task corresponds to the size

and the amount of parallelism it generates), as is done in the most of the state-of-the-

art work-stealing algorithms, we assume that explicit and exact information about the

size of each of the application’s tasks is available to the runtime system. That is, we

assume that we have a perfect knowledge about parallel profiles of all tasks that might

be created at any point in application execution, and we are concerned with how this

knowledge can be exploited. In the thesis, we are not addressing the question of how

can this perfect information be obtained.

Our goal when finding the answer to the posed question is to explore we explore

the different task selection policies that use the task granularity information. We can

see these policies as functions which take as an input the set of tasks in victim’s task

queue (together with their parallel profiles), the distance (in terms of communication

latency) between the thief and the victim and possibly some information about system

90 CHAPTER 4. WORK STEALING ON DISTRIBUTED SYSTEMS

load, and as a result return a task from the task queue that should be sent from the

victim to the thief.

Although this question is related to the one we considered in the previous section,

we consider it independently, since the results we obtain in answering to this question

are independent of the way in which PE chooses its steal target. This makes results

obtained in investigating this question applicable to many different work-stealing al-

gorithms and, therefore, different runtime systems.

4.5 Summary

Since the general problem of efficient work-stealing for irregular parallel applications

on heterogeneous distributed computing environments is rather broad, in this chapter

we made some simplifying assumptions about the type of the applications we consider

(restricting the patterns of communication that can exist between application’s tasks),

heterogeneous environments on which they are executed (by assuming the uniformity

in PE processing powers, memory associated with them and bandwidth in links be-

tween them) and runtime systems that act as middlewares between applications and

computing environment (by restricting the task migration to tasks whose execution

still has not started).

In the description of applications that we consider, we have defined a key concept of

the degree of application’s irregularity. Using this concepts, rather than just classifying

applications as either ’regular’ or ’irregular’, we are able to tell exactly how much

(i.e. to what degree) irregular the application is. This enables us to compare two

applications quantitatively and determine which is more irregular. This will further

enable us to establish relationships between the performance of various work-stealing

algorithms and the irregularity of applications.

Having described the computing environments, applications and runtime systems

we consider in this thesis, we subsequently focused on two important questions that

are related to work-stealing in our settings (i.e. finding a good method of choosing

steal targets and a good method of responding to steal attempts). We pointed out how

state-of-the-art work-stealing algorithms do not address these questions properly if the

applications that are executed are irregular, and outlined our approach in exploring

the answers to them.

Each of the next two chapters deals with one of the two question we aim to an-

swer. Chapter 5 explores methods for choosing good targets for steal attempts. Our

approach is to use the dynamic PE load information, and to combine the Centralised

4.5. SUMMARY 91

and distributed methods of obtaining this information. Chapter 6 explores methods of

choosing what tasks should a victim offload as a response to steal attempt from thief,

by taking advantage of perfect information about the sizes of application’s tasks.

92 CHAPTER 4. WORK STEALING ON DISTRIBUTED SYSTEMS

Chapter 5

Load-Based Topology-Aware Work

Stealing for Heterogeneous

Distributed Computing

Environments

In this chapter, we investigate the use of information about PE loads in work-stealing.

We use a standard definition of a PE load, where it is defined as the number of

tasks in PE’s task pool. In Section 5.1, we investigate how load information can be

used to guide the decisions of choosing the steal targets. That is, we propose the

algorithms that a thief can use to choose an appropriate target, under the assumption

that it has an accurate information about the load of every PE in the computing

environment. In Section 5.2, we evaluate which of the proposed algorithms gives the

best speedup for a wide class of applications on many homogeneous and heterogeneous

computing environments. We also evaluate how much individual state-of-the-art work-

stealing algorithms, described in Section 2.3.1, could benefit from the presence of load

information.

After showing how to use the load information, we turn our attention to investigat-

ing the question of how to obtain it. In Section 5.3, we present a novel Feudal Stealing

algorithm, which is based on the Cluster-Aware Random Stealing (CRS) algorithm,

and which uses a combination of centralised and distributed methods of exchanging

information about the loads of individual PEs in order to obtain a good approxima-

tion of the load of the whole environment. In Section 5.4, we evaluate the Feudal

Stealing algorithm against Grid-GUM, which uses a fully distributed way of exchang-

ing load information, and also against the CRS and Hierarchical Stealing algorithms.

93

94 CHAPTER 5. LOAD-BASED TOPOLOGY-AWARE STEALING

In [VNKB01], Van Nieuwpoort et al. have compared the CRS algorithm with other

algorithms that we consider, and that do not use load information, on a small set of

regular divide-and-conquer applications, and their conclusion was that this algorithm

gives the best speedups in (almost) all of the cases. Our experiments have confirmed

their results. Furthermore, for irregular parallel applications, we discovered that ei-

ther (A)CRS or Hierarchial Stealing give the best speedups for all applications. We,

therefore, take these two algorithms as the best algorithms from all that do not use

load information, and use them as a baseline for evaluating Feudal Stealing. We show

that we can obtain better speedups for irregular parallel applications on heterogeneous

computing environments under Feudal Stealing than under Grid-GUM, CRS and Hi-

erarchical Stealing. Additionally, we show that the approximation of the load obtained

under Feudal Stealing is better than under Grid-GUM.

Besides the novel Feudal Stealing algorithm, this chapter also makes significant

contributions to the study of the state-of-the-art work-stealing algorithms described

in Section 2.3.1. As mentioned above, these algorithms were previously evaluated only

for very regular (i.e. SimpleDC) divide-and-conquer applications. In this chapter, we

evaluate them also for highly irregular parallel applications, which enables us to make

new conclusions about their performance. We furthermore, for the first time, evaluate

how much their performance could be increased in a hypothetical scenario where PEs

have perfect load information at each point in the application execution. This gives

a very useful insight for the developers of runtime systems that use these algorithms

into how much their runtime systems could benefit if they implement mechanisms for

the accurate estimation of PE loads.

5.1 The Use of Load Information

We have already argued in Section 4.4 that, in order to develop an efficient method

for locating the steal targets, we need to use information about the dynamic PE

loads. In this section, we investigate what is the best way to take advantage of such

an information in selecting the steal targets, and how much benefit (in terms of the

increased applications’ speedups) we can expect from that, compared to the case where

no load information is present.

Separating the issue of the use of load information from that of obtaining it enables

us to investigate the former under the assumption that perfect information is available.

By perfect load information, we mean that each PE knows exactly what the load of each

other PE is, at each point in the application execution. Investigating the applications’

5.1. THE USE OF LOAD INFORMATION 95

speedups in this settings provides an important sanity check for the issue of obtaining

the load information – if, for most of the applications, the speedups that we can

obtain with perfect load information are just marginally better than without any load

information, then the case for using load information in work-stealing would be lost.

Therefore, the questions that we aim to answer in this section are the following:

1. Assuming the presence of perfect load information, what algorithm for selecting

the targets should thieves use?

2. How much improvements in speedups we can get with the algorithms that use

perfect load information, compared to the algorithms that do not use any load

information?

3. What are particularly good or particularly bad cases for the use of load informa-

tion? In other words, for what applications and on what computing environments

do we get the best/the worst improvements in speedups with algorithms that use

the perfect load information?

5.1.1 Load-based Work-stealing Algorithms

The question of how to choose a steal target when perfect load information is present

is similar to the same question without load information. The only difference is that,

with perfect load information, a thief already knows what PEs have work to offload,

so it can restrict the set of possible steal targets it considers to only those with work

(rather than considering all PEs as possible targets). Then, the question is whether

it is the best to choose a random target with work, the nearest target with work,

whether to try stealing from local and remote targets with work in parallel in order

to do prefetching of work etc. To answer these questions, we consider extensions to

the state-of-the-art work-stealing algorithms presented in Section 2.3.1, restricting the

set of possible steal targets at each step where a thief needs to choose one to only

those that have some work to offload. We also consider two algorithms (CV and HLV)

that depend on the presence of load information and that, therefore, do not have an

equivalent that does not use load information.

In the following discussion, the algorithms we present are executed by each thief

when it needs to select the steal target. Note that we assume that in all algorithms,

only one task is sent in each steal operation. The algorithms we consider are:

• Perfect Random Stealing. In the basic version of Random Stealing, a thief

always chooses a random target from the set of all PEs in a system. In Perfect

96 CHAPTER 5. LOAD-BASED TOPOLOGY-AWARE STEALING

Random Stealing, a thief always chooses a random target from the set of all PEs

with non-zero load. See Algorithm 9.

Algorithm 9 Perfect Random Stealing

1: S:=set of all PEs that have work to offload
2: Select a random victim v from S
3: Send steal attempt to v

• Perfect Hierarchical Stealing. Recall that in Hierarchical Stealing, the set of

all PEs in the environment is organised in a PE-tree (based on communication

latencies between PEs), and that a thief first looks for work in its whole PE-

subtree, and only if no work is found there will it ask its parent for work. Whereas

this basic version always looks for work in the whole PE-subtree of the thief

before going up in the tree, in the perfect version the thief will only ask its

child for work if the child’s PE-subtree has non-zero load (that is, if any PE in

this PE-subtree has non-zero load). This child PE will then recursively repeat

the same procedure (i.e. forward the steal attempt to one of its children whose

PE-subtree has non-zero load) until the PE with work is reached. If the whole

thief’s PE-subtree has zero load, the thief will forward the steal attempt to its

parent. In this way, the thief avoids searching for work in its PE-subtrees that

do not have any work to offload. See Algorithm 10.

Algorithm 10 Perfect Hierarchical Work Stealing

1: S:=set of all thief’s children that have work to offload
2: if S is nonempty then
3: v=random PE from S
4: else if thief has parent then
5: v=thief’s parent
6: else
7: v=NULL
8: end if
9: if v!=NULL then

10: send steal attempt to v
11: end if

• Perfect Cluster-aware Random Stealing. In Cluster-Aware Random Steal-

ing (CRS), local and remote stealing is done in parallel. That is, a thief looks for

work within its own cluster in parallel with looking from work remotely. Sim-

ilarly to Perfect Random Stealing, in the version of CRS algorithm that uses

the perfect load information a thief will always send the steal attempt to a PE

5.1. THE USE OF LOAD INFORMATION 97

which has some work to offload (if such a PE exists). If the steal attempt needs

to be sent within the cluster, a random PE with work from the thief’s cluster is

selected. Otherwise, in the case of remote stealing, a random PE with work that

is outside of the cluster is selected (see Algorithm 11).

Algorithm 11 Perfect Cluster-Aware Work Stealing

1: if outsideStealing then
2: S1=set of all PEs outside of thief’s cluster that have work to offload
3: if S1 is nonempty then
4: v1=random PE from S1

5: else
6: v1=random PE outside of the thief’s cluster
7: end if
8: Send steal attempt to v1

9: outsideStealing = true
10: end if
11: S2=set of all PEs from thief’s cluster that have work to offload
12: if S2 is nonempty then
13: v2=random PE from S2

14: else
15: v2=random PE from thief’s cluster
16: end if
17: Send steal attempt to v2

• Perfect Adaptive Cluster-aware Random Stealing. Recall that in Adap-

tive Cluster-Aware Random Stealing (ACRS), when doing a remote stealing, the

probability that a thief chooses a target from some cluster is proportional to the

communication latency between the thief and that cluster (with respect to the

latencies to other clusters). In other words, the probability of thief p choosing a

target from cluster Q for remote stealing attempt is equal to lat(p,Q)∑
C∈S

lat(p,C)
, where

S is the set of all remote clusters. After the cluster is chosen, the steal attempt

is sent to a random PE from it. Therefore, thieves prefer remote stealing from

nearer clusters. In Perfect ACRS, the set of all considered clusters is restricted

to those that have some PEs with work, and, once the cluster is selected, the

steal attempt is sent to a random PE with work from it. See Algorithm 12.

• Closest-Victim (CV) Stealing. In this algorithm, a thief always chooses

the closest target with work. Note that this algorithm is similar to the perfect

version of Grid-GUM work stealing, with the difference that only one task is

transferred between thief and victim. In Grid-GUM, a thief chooses the closest

target for which it assumes (based on the load information it has, which might

98 CHAPTER 5. LOAD-BASED TOPOLOGY-AWARE STEALING

be inaccurate or outdated) that it has some work to offload. In CV stealing, the

load information that thieves have is perfect, so the closest victim that really

has some work is chosen. See Algorithm 13.

• Highest-Loaded-Victim (HLV) Stealing. In this algorithm, a thief chooses

a target with the highest load (in our case, the largest number of tasks in its

task pool). See Algorithm 14.

Note that in all of the algorithms that we consider, it can happen that a thief needs

to choose a target, but all of the targets being considered have zero load. For example,

it can happen that a thief needs to do local stealing in the CRS algorithm, but all

local targets have zero load. In this case, we have decided for Perfect CRS and Perfect

Algorithm 12 Perfect Adaptive Cluster-Aware Work Stealing

1: if outsideStealing then
2: S1=set of all remote clusters that have at least one PE with non-zero load
3: if S1 is nonempty then
4: SumLat =

∑
C∈S1

1
lat(thief,C)

5: for all C ∈ S1 do

6: prob(C) =
1

lat(thief,C)

SumLat

7: end for
8: D=random cluster from S1 (where cluster C is selected with probability

prob(C)
9: v1=random PE with work from D

10: else
11: v1=random PE outside of the thief’s cluster
12: end if
13: Send steal attempt to v1

14: end if
15: S2=set of all PEs from thief’s cluster that have work to offload
16: if S2 is nonempty then
17: v2=random PE from S2

18: else
19: v2=random PE from thief’s cluster
20: end if
21: Send steal attempt to v2

Algorithm 13 Closest Victim Work Stealing

1: v=closest PE to the thief that has some work to offload
2: if v==NULL then
3: v=random PE
4: end if
5: Send the steal message to v

5.1. THE USE OF LOAD INFORMATION 99

ACRS to behave in the same way as their basic versions (i.e. to send the steal attempt

to a random PE inside or outside of the cluster), and Perfect Random, CV and HLV

stealing to behave in the same way as basic Random Stealing (i.e. to choose the target

randomly from the set of all possible targets). Other possibilities are to delay sending

a steal attempt for some time period, until one of the targets being considered obtains

some work, or to send the attempt back to where it originated from and then the thief

that had started the stealing might decide to wait for some time and start the stealing

process again. We have also tried these possibilities, but did not observe any notable

difference in the performance of our algorithms.

Note also that, even with the perfect load information that we assume, it can

happen that a target that receives a steal attempt does not have any tasks in its task

pool. This can happen if the target’s load changes between the time a thief sends the

steal attempt to it and the time when the target receives it. In this case, we assume

that the target will forward the steal attempt to another appropriately chosen target.

In Perfect Random, Perfect Hierarchical, Perfect CV and Perfect HLV, this new target

is chosen in the same way as if the original target itself was a thief. In Perfect CRS

and Perfect ACRS, the original target will always forward the steal attempt to some

PE from its cluster. Additionally, if the steal attempt has visited some predefined

number of targets, and it did not find work in any of them, it will be returned to the

thief who started it.

Although, of course, the algorithms that we consider here do not cover all possible

work-stealing algorithms that use load information, we feel that the scope of con-

sidered algorithms is broad enough to make conclusions about the way in which the

load information is useful in work-stealing, as they cover most of the state-of-the-art

algorithms used on distributed environments.

We will compare the algorithms described above with the basic versions of Random,

Hierarchical, ACRS and CRS algorithms1. Our specific goals in this section are

1In this section we will not consider Grid-GUM, since although it uses the load information,
it works with the approximation of PE loads rather than with the perfect information. We will,
therefore, postpone considering this algorithm until the next section, where we will compare it with
Feudal Stealing.

Algorithm 14 Highest-Loaded-Victim Work Stealing

1: v=PE with the highest load greater than 0
2: if v==NULL then
3: v=random PE
4: end if
5: Send the steal message to v

100 CHAPTER 5. LOAD-BASED TOPOLOGY-AWARE STEALING

1. We want to compare the speedups obtained under the Perfect Random, Per-

fect Hierarchical, Perfect CRS, Perfect ACRS, CV, HLV, Random, Hierarchical,

CRS and ACRS algorithms for various applications on various computing en-

vironments to discover what algorithm gives the best speedups for most of the

application/computing environment combinations. This would give us the an-

swer to what is the best way to choose steal targets if the load information is

present during the application execution.

2. Additionally, we want to compare the Perfect Random, Perfect Hierarchical,

Perfect CRS and Perfect ACRS algorithms against the Random, Hierarchical,

CRS and ACRS algorithms, respectively, in order to find out how much the

speedups under each of these algorithms can be improved if the perfect load

information is used in them. This would give us the indication of how much better

performance can we expect from each individual basic algorithm we consider

(Random, Hierarchical, CRS and ACRS) if they have access to information about

the load of the environment. This is useful for the developers who must use one

of these basic algorithms in their systems, so that they can estimate whether it

would be useful to consider extending these algorithms with the mechanisms for

estimating the load information during the application execution.

Concerning the methodology of evaluating the performance of algorithms, our aim

to explore the use of perfect load information drives this decision towards the use

of simulations. In the real runtime systems on distributed computing environments,

due to the communication latency, it is generally not possible for PEs to have totally

accurate load information of the rest of the environment. Even in the case where each

PE sends its load information to some central PE (to which also all steal messages

are sent), by the time the message with load information arrives to this central PE,

the load of the PE from which the message originates might have changed. This is

especially the issue in the systems with high communication latencies. In simulations,

however, we can assume that each PE has access to some kind of global system state,

where the information about the loads of all PEs is kept. This enables the thieves to

have accurate information about the load of all possible targets at the time when they

need to decide where to send steal requests.

5.2. EVALUATION OF LOAD-BASED WORK-STEALING ALGORITHMS 101

5.2 Evaluation of Load-based Work-stealing

Algorithms

It initially appears that having load information should increase the speedups of all

applications under all work-stealing algorithms on all computing environments. After

all, if a thief has information about the load of all possible targets, then it knows

where to look for work, and it should certainly be able to obtain work faster than if

it goes looking for work blindly. Therefore, the thieves should be idle for less time,

resulting in their increased utilisation and, therefore, better applications’ speedups.

However, many cases exist where this is not the case. For example, in the evaluation

of Grid-GUM work-stealing in [AZ06], it is concluded that in homogeneous computing

environments with small latencies between PEs, having load information does not

bring much benefit to the performance of Random Stealing. Although, with load

information, many fewer steal messages are exchanged, the cost of sending individual

messages is very small (due to the low latency), so reducing the number of messages

sent does not have much impact on the speedups of parallel applications. We will

also see that even on heterogeneous environments, in the cases of applications where

parallel tasks generate a lot of additional parallelism (for example, in simple divide-

and-conquer applications), the use of load information also does not bring much benefit

to most of the algorithms we consider. In this case, since most of the PEs have a lot

of parallel tasks in their queues, randomly choosing a steal target is very likely to hit

the one with work. Therefore, it is not trivial to ask what applications under what

work-stealing algorithms could benefit from the use of load information, and on what

computing environments would the benefit be the biggest.

We will focus on the applications conforming to the tree-like model of tasks, de-

scribed in Section 4.2. Our main assumption is that the use of load information can

significantly improve the speedups of applications that generate substantially larger

number of sequential than nested-parallel tasks, i.e. which are highly irregular. Since

there are fewer nested-parallel tasks, we expect that during the execution of these ap-

plications parallel work will be concentrated on fewer PEs. Because of this, it would be

harder for algorithms that choose steal targets randomly to locate the ones with work.

Hierarchical Stealing would have even bigger problems, since there is high probability

that the whole PE-subtrees of many thieves would be idle. Therefore, we expect that

use of load information would enable PEs to spend much less time looking for work

(and, potentially, send many fewer messages over high-latency networks), hence im-

proving the speedups of applications. Our focus will, therefore, be on the SimpleDC

102 CHAPTER 5. LOAD-BASED TOPOLOGY-AWARE STEALING

and DCFixedPar applications.

We will focus mostly on applications with finer-grained sequential tasks (with re-

spect to wide-area latencies in the environment), as many more steal attempts need

to be made during the execution of these applications (due to a short time needed to

execute each sequential task) than for the ones with coarse grained tasks.

Regarding the computing environments simulated, we made two hypotheses:

1. We expected that the better improvements with load information will be obtained

on the environments consisting of larger number of PEs, since there is more

chance of non-load-based stealing going “wrong” (i.e. choosing the wrong steal

targets) in this setup. To verify the hypothesis, we have considered environments

consisting of varying number of clusters and varying number of PEs in each

cluster. We will denote by Grid(X,Y ,LANLat,WANLat) environments which

consists of X different clusters, each of which consists of Y PEs, and where the

latency between every two PEs that belong to the same cluster is LANLat, and

the latency between every two PES belonging to different cluster is WANLat.

In most of the experiments in this section, we will focus on the systems where

WANLat was set to 10ms, and the LANLat to 0.1ms. Therefore, Grid(X,Y)

will denote the environment where latency between every two clusters is 10ms

and the latency inside all clusters is 0.1ms. We have chosen these latencies to

represent the environments where communication over WAN is significantly (100

times) higher than over LAN. This choice of latencies models the environment

where different clusters from one country are linked together into a large Grid2.

2. For the environments consisting of the same number of PEs grouped in the same

number of clusters, we expected to see better improvements on environments

with higher and more-heterogeneous latencies. To verify this, we have considered

distributed environments consisting of 8 clusters, with 8 PEs in each cluster and

with various groupings of clusters based on the latency between them. See Figure

5.1 for the environments of this kind that we have considered.

We will group the results obtained with experiments into two subsections. Subsec-

tion 5.2.1 focuses on the applications which generate large amounts of parallelism. In

this subsection, we will consider the SimpleDC applications. Results for the SimpleDC

applications are further divided according to the computing environments simulated.

The first group of results evaluates the work-stealing algorithms we study on the envi-

210ms was an average latency obtained after testing the latency between servers at several insti-
tutions in the UK

5.2. EVALUATION OF LOAD-BASED WORK-STEALING ALGORITHMS 103

Comp. environment Description
WorldGrid-Hom Homogeneous system, latency between every two

PEs is 0.1ms
WorldGrid-Uni-10ms Latency between every two clusters is 10ms (Same

as Grid(8,8))
WorldGrid-2L-20ms Clusters split into two continental groups of 4

clusters each, latency between them being 20ms.
Within each continental group, latency between
every two clusters is 10ms

WorldGrid-2L-30ms Same as WorldGrid-2Levels-20ms, but with la-
tency between continental groups being 30ms

WorldGrid-2L-50ms Same as WorldGrid-2Levels-20ms, but with la-
tency between continental groups being 50ms

WorldGrid-3L-80ms-30ms Clusters split into two continental groups of 4 clus-
ter each, latency between them being 80ms. Each
continental group is split into two country groups
(with 2 clusters in each group), with the latency
between them being 30ms. Each country group
split into two site-clusters, latency between them
being 10ms (See Figure 5.2)

Figure 5.1: The WorldGrid computing environments simulated. Each environment
consists of 8 clusters, each of which consists of 8 PEs

104 CHAPTER 5. LOAD-BASED TOPOLOGY-AWARE STEALING

Figure 5.2: WorldGrid-3L-80ms-30ms

ronments with the fixed number of PEs per cluster, fixed communication latency be-

tween clusters and variable number of clusters (Grid(1,8)–Grid(8,8)), the second group

studies the environments with fixed number of clusters, fixed communication latency

between clusters and variable number of PEs in each cluster (Grid(8,4), Grid(8,6),

Grid(8,8), Grid(8,10), Grid(8,12), Grid(8,14) and Grid(8,16)), and the third group

studies the environments with fixed number of cluster, fixed number of PEs in each

cluster and variable latency between clusters (the WorldGrid environments). Subsec-

tion 5.2.2 focuses on more irregular applications, where there is not as much parallelism

as in the SimpleDC applications. In this section, our focus is on the DCFixedPar ap-

plications. Furthermore, since we have an additional parameter for these applications

(which is the degree of their regularity), in order to make the number of experiments

tractable, we restrict our attention to large computing environments with heteroge-

neous latencies. For this reason, in the experiments with the DCFixedPar applications,

we only consider the WorldGrid computing environments.

Note that, due to a degree of randomness present in all work-stealing algorithms

we consider (except for Hierarchical Stealing), it is possible even under simulations to

get different speedup for the same application on the same computing environment

under the same work-stealing algorithm. In each experiment we have, therefore, taken

5.2. EVALUATION OF LOAD-BASED WORK-STEALING ALGORITHMS 105

the average speedup over 10 executions of the same application on the same environ-

ment under the same work-stealing algorithm, except where we evaluated Hierarchical

Stealing, where only one execution was needed, since this algorithm is deterministic.

5.2.1 SimpleDC Applications

In our first experiment, we consider the SimpleDC(12,5ms) application. This is the

example of an application whose all tasks (except for the ones generated after the

threshold level in task tree is reached) are nested-parallel. Consequently, most of the

application’s tasks are coarse grained and they create a lot of additional parallelism.

This further means that most of the thieves that manage to steal tasks will create

additional parallel tasks, making them potential victims for other thieves. We, there-

fore, expect the number of potential victims to be large for most of the application

execution. Additionally, due to a coarse granularity of tasks, thieves that obtain work

are kept busy for long time. Consequences of all this are that we expect that PEs will

not have to steal very often, and even when they need to, random stealing techniques

that do not use load information will be successful in locating work. This application,

therefore, represent somewhat the worst case for the algorithms that use perfect load

information, since we did not expect to see notable improvements in speedups under

them.

Grid(1,8)–Grid(8,8) environments

Figure 5.3 shows the speedups obtained under the algorithms both with (Figure 5.3a)

and without (5.3b) perfect load information on the Grid(1,8)-Grid(8,8) environments.

Note that we have omitted the Perfect ACRS algorithm from Figure 5.3a (and also the

ACRS algorithm from the Figure 5.3b) since, because of the uniform latency between

all clusters, on these environments they are identical to Perfect CRS and CRS. From

the Figure 5.3a, we can see that for smaller number of clusters, all algorithms with

perfect load information perform similarly, but as the number of clusters increases,

Perfect CRS starts to outperform the other algorithms. This is a perfect example

of the benefit of doing local and remote stealing in parallel, since most of the times

thieves are able to obtain work locally, and the latency in prefetching work remotely

is successfully hidden by executing the locally obtained work. We can also see that all

algorithms scale well as the number of clusters in an environment increases.

From Figure 5.3b, we can see that, similarly to when perfect load information is

used, when no load information is used the CRS algorithm gives the best speedup, and

106 CHAPTER 5. LOAD-BASED TOPOLOGY-AWARE STEALING

 0

 10

 20

 30

 40

 50

 60

Grid(1,8)

Grid(2,8)

Grid(3,8)

Grid(4,8)

Grid(5,8)

Grid(6,8)

Grid(7,8)

Grid(8,8)

S
pe

ed
up

Computing Environment

Speedups of SimpleDC(12,5ms) under the algorithms with perfect load information

Work-stealing algorithm:
Perfect Random

Perfect Hierarchical
Perfect CRS

CV
HLV

(a) Perfect Load Information

 0

 10

 20

 30

 40

 50

 60

Grid(1,8)

Grid(2,8)

Grid(3,8)

Grid(4,8)

Grid(5,8)

Grid(6,8)

Grid(7,8)

Grid(8,8)

S
pe

ed
up

Computing Environment

Speedups of SimpleDC(12,5ms) under the algorithms without load information

Work-stealing algorithm:
Random

Hierarchical
CRS

(b) No Load Information

Figure 5.3: The SimpleDC(12,5ms) application on the Grid(n,8) environments

5.2. EVALUATION OF LOAD-BASED WORK-STEALING ALGORITHMS 107

-5

 0

 5

 10

 15

 20

Grid(1,8)

Grid(2,8)

Grid(3,8)

Grid(4,8)

Grid(5,8)

Grid(6,8)

Grid(7,8)

Grid(8,8)

S
pe

ed
up

 im
pr

ov
em

en
t (

in
 %

)

Computing Environment

Speedup improvements of the algorithms that use perfect load information

Work-Stealing Algorithm:
Random

Hierarchical
CRS

Figure 5.4: Speedup improvements of the algorithms that use perfect load information
over those that do not use load information for the SimpleDC(12,5ms) application on
the Grid(n,8) environments

the difference between it and other algorithms becomes bigger when more clusters are

added to the environment. An interesting point that we can observe from the figure

is that Hierarchical Work Stealing fails to scale to larger environments (in this case,

Grid(7,8) and Grid(8,8)), and we can even see that the speedups under it are worse

on the Grid(7,8) than on the Grid(6,8) environment.

From the two considered figures, we can conclude that for simple divide-and-

conquer applications, the CRS algorithm gives the best speedups both in the presence

of perfect load information and without it on computing environments where there is

a uniform latency between clusters.

Figure 5.4 shows the speedup improvements that the use of load information brings

to the SimpleDC(12,5ms) application under the Random, Hierarchical and CRS algo-

rithms for the computing environments considered on Figures 5.3a and 5.3b. In other

words, it shows the difference in speedups under Perfect Random and Random, Perfect

Hierarchical and Hierarchical, and Perfect CRS and CRS algorithms. We can observe

the following facts for the three considered algorithms:

• For the CRS algorithm, the use of load information does not bring almost any

benefit, and in the case of Grid(6,8) it even brings a marginal decrease in perfor-

108 CHAPTER 5. LOAD-BASED TOPOLOGY-AWARE STEALING

mance. The reason for this is not clear, as the difference in speedup is too small

for us to be able to investigate the reasons for it. In any case, the CRS algorithm

without any load information performs very well for the SimpleDC(12,5ms) ap-

plication, giving close-to-linear speedups on all of the environments considered

at the Figure 5.3b, so there is not much space for the improvements when load

information is added to it.

• For Random Stealing, the use of load information brings small but measurable

improvement on the computing environments comprising a larger number of clus-

ters (Grid(3,8)–Grid(8,8)), whereas for the environments comprising a smaller

number of clusters, the improvements are minimal. This shows that, although

Random Stealing performs very well for the SimpleDC applications, on larger

systems it might be worthwhile using the load information, since random selec-

tion of targets can introduce a small decrease in performance.

• For Hierarchical Stealing, we can see notable improvements when load informa-

tion is used on the environments comprising a larger number of clusters. We

can see that the improvements on Grid(7,8) and Grid(8,8) are 15% and 17%,

respectively.

From this experiment we can, therefore, conclude the following facts for the appli-

cations whose all tasks generate a lot of parallelism (except, of course, the sequential

ones at the end of execution), on the computing environments with homogeneous

latencies between clusters:

1. The CRS algorithm gives the best speedups.

2. The algorithms that use some form of random stealing, which do not use load

information, give a very good load distribution, and the applications’ speedups

cannot be notably improved when the load information is used.

3. Hierarchical Stealing can notably benefit from the use of load information, as

without it the algorithm fails to scale for the environments with larger number

of clusters.

Our conclusions for the algorithms that do not use load information generally agree

with those in Van Nieuwpoort et al. [VNKB01].

5.2. EVALUATION OF LOAD-BASED WORK-STEALING ALGORITHMS 109

 20

 30

 40

 50

 60

 70

 80

 90

 100

Gird(8,4)

Grid(8,6)

Grid(8,8)

Grid(8,10)

Grid(8,12)

Grid(8,14)

S
pe

ed
up

Computing Environment

Speedups of SimpleDC(12,5ms) under the algorithms with perfect load information

Work stealing algorithm:
Perfect Random

Perfect Hierarchical
Perfect CRS

CV
HLV

(a) Perfect Load Information

 20

 30

 40

 50

 60

 70

 80

 90

 100

Grid(8,4)

Grid(8,6)

Grid(8,8)

Grid(8,10)

Grid(8,12)

Grid(8,14)

S
pe

ed
up

Computing Environment

Speedups of SimpleDC(12,5ms) under the algorithms without load information

Work stealing algorithm:
Random

Hierarchical
CRS

(b) No Load Information

Figure 5.5: Speedups of SimpleDC(12,5ms) on Grid(8,n) environments

110 CHAPTER 5. LOAD-BASED TOPOLOGY-AWARE STEALING

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

Gird(8,4)

Grid(8,6)

Grid(8,8)

Grid(8,10)

Grid(8,12)

Grid(8,14)

S
pe

ed
up

 im
pr

ov
em

en
t (

in
 %

)

Computing Environment

Speedup improvements of the algorithms that use perfect load information

Work stealing algorithm:
Random

Hierarchical
CRS

Figure 5.6: Speedup improvements of the algorithms that use perfect load information
over those that do not use load information for the SimpleDC(12,5ms) application on
the Grid(8,n) environments

Grid (8,n) environments

Figure 5.5 shows the speedups of the SimpleDC(12,5) application on the Grid(8,n)

environments, for n ∈ {2, 4, 6, 8, 10, 12, 14}. This figure shows us how do the work

stealing algorithms scale on the environments that have an increasing number of PEs

in each cluster. We can see that, when perfect load information is used (Figure 5.5a),

all algorithms scale reasonably well on these environments. However, we can again see

(as for the Grid(n,8) environments) that the CRS algorithm outperforms all others,

and the difference between it and the other algorithms becomes bigger the more PEs

there are in the clusters. This confirms what was indicated in the previous experiment,

which is that CRS scales the best to larger environments for applications that generate

a lot of parallelism.

We can observe similar situation for algorithms without load information (Figure

5.5b). Again, the CRS algorithm scales the best as the number of PEs in clusters

increases, and the difference between it and the Random and Hierarchical Stealing

gets higher the more PEs there are in clusters.

One thing that we can observe from Figure 5.5b is a particularly bad performance

of Hierarchical Stealing, which is most of the time worse than even Random Stealing.

5.2. EVALUATION OF LOAD-BASED WORK-STEALING ALGORITHMS 111

Furthermore, Hierarchical Stealing has problems with scaling on some environments,

as we can see, for example, that it gives the same speedup on the Grid(8,10) as on the

Grid(8,12) environment. This is due to a slower distribution of work under Hierarchical

Stealing on larger environments. On larger environments, PE-trees for most of the

PEs are also larger and, consequently, it takes more time for each thief to traverse his

whole PE-tree before going up in the tree. As a result of this, at the beginning of the

application execution it takes more time for most of the thieves to reach the cluster

where the main task starts execution and where, consequently, all of the parallelism is.

These thieves will, therefore, acquire work more slowly and, more importantly, they

will steal tasks that generate less parallelism (since tasks that generate larger amounts

of parallelism will already be stolen by the PEs from the main cluster). This is the

reason for the poor scalability of Hierarchical Stealing on most of the environments

with larger number of PEs per cluster.

Overall, from this experiment we can get to the same conclusions as in the previous

one: The CRS algorithm gives the best speedups and has the best scalability of all

considered algorithms, both with and without load information.

Figure 5.6 shows the improvements in speedups that the use of perfect load infor-

mation brings to the Random Stealing, Hierarchical Stealing and CRS algorithms. For

the CRS algorithm, as in the previous experiment, we can see that the improvements

are marginal, being between 1% and 3%. For Random Stealing, we can observe more

notable improvements, especially on the environments with bigger number of PEs per

cluster, where the improvements are above 10%. This is somewhat expected, as the

more PEs are there in the environment, the more chance there is for random stealing

to go wrong, so the use of perfect load information can indeed help on these environ-

ments. For Hierarchical Stealing, we can observe very good improvements (up to 30%)

when load information is used, and that the improvements get higher as the number

of PEs per cluster increases. The previously mentioned problems of thieves spending

too much time traversing their PE-subtrees are avoided when the load information is

used, and therefore the improvements that Perfect Hierarchical Stealing brings to the

basic Hierarchical Stealing are very good on larger environments.

From the Figures 5.5 and 5.6, we can make similar conclusions for the applications

that create a lot of parallelism on the environments with different number of PEs per

cluster as for the environments with fixed number of PEs per clusters and different

number of cluster:

• On both kinds of environments, the CRS algorithm gives the best speedups both

with and without load information, and it cannot be notably improved with the

112 CHAPTER 5. LOAD-BASED TOPOLOGY-AWARE STEALING

use of perfect load information.

• For Random Stealing, on the environments with smaller number of PEs per

cluster, we get only marginal improvements. However, on the environments with

bigger number of PEs per cluster, we get notable improvements (above 10%)

when perfect load information is used.

• For Hierarchical Stealing, the use of load information seems very important, as it

brings significant improvements to the speedups, especially on the environments

with bigger number of PEs per clusters, where we have observed the improve-

ments of 20-30%.

The WorldGrid environments

Figure 5.7 shows the speedups of the SimpleDC(12,5ms) application on the WorldGrid

environments from Figure 5.1 (page 103). Again, as in the previous experiments,

Figure 5.7a shows the speedups under the algorithms that use perfect load information,

and 5.7b under the ones that do not use load information. Compared to the previous

two experiments, here all of the environments have the same number of PEs, but

different environments have different number of communication latency levels (from 1

level on WorldGrid-Hom, where the latency between all PEs is the same, to 4 levels

on WorldGrid-3L-80ms-30ms). Consequently, since the latencies between the clusters

are not uniform any more, in this experiment we also include the ACRS and Perfect

ACRS algorithms, since on these environments they will differ from CRS and Perfect

CRS.

From Figure 5.7, as we have expected, we can observe that the speedups under

all algorithms are dropping as the computing environment gets more heterogeneous.

We can again observe that the CRS algorithms gives the best performance both with

and without load information. We can also observe that, without load information,

ACRS performs slightly better than CRS on more heterogeneous environments. With

perfect information, however, CRS works slightly better. The differences are, however,

minor. Very similar performance of the ACRS and CRS algorithms can be explained

by the fact that most of the times PEs are able to obtain work locally, which means

that the latency from wide-area steal attempts is successfully hidden by executing that

work. Therefore, it does not make much difference whether thieves prefetch work (via

wide-area stealing) from closer or further clusters.

Similarly to Figure 5.4, Figure 5.8 shows the improvements that the use of perfect

load information brings to the speedups of the SimpleDC(12,5ms) application on the

5.2. EVALUATION OF LOAD-BASED WORK-STEALING ALGORITHMS 113

 0

 10

 20

 30

 40

 50

 60

 70

Hom
Uni-10m

s

2L-30m
s

2L-50m
s

3L-80m
s-30m

s

S
pe

ed
up

WorldGrid environment

SimpleDC(12,5ms) under the algorithms with perfect load information

Work stealing algorithm:
Perfect Random

Perfect Hierarchical
Perfect CRS

CV
HLV

Perfect ACRS

(a) Perfect Load Information

 0

 10

 20

 30

 40

 50

 60

 70

Hom
Uni-10m

s

2L-30m
s

2L-50m
s

3L-80m
s-30m

s

S
pe

ed
up

WorldGrid environment

SimpleDC(12,5ms) under the algorithms without load information

Work stealing algorithm:
Random

Hierarchical
CRS

ACRS

(b) No Load Information

Figure 5.7: The SimpleDC(12,5ms) application on the WorldGrid environments

114 CHAPTER 5. LOAD-BASED TOPOLOGY-AWARE STEALING

-5

 0

 5

 10

 15

 20

 25

 30

Hom
Uni-10m

s

2L-30m
s

2L-50m
s

3L-80m
s-30m

s

S
pe

ed
up

 im
pr

ov
em

en
t (

in
 %

)

WorldGrid environment

Speedup improvements of the algorithms that use perfect load information

Work-Stealing Algorithm:
Random

Hierarchical
CRS

ACRS

Figure 5.8: Speedup improvements of the algorithms that use perfect load information
over those that do not use load information for the SimpleDC(12,5ms) application on
the Grid(8,n) environments

WorldGrid environments for the considered algorithms. We can again observe that

the improvements to the CRS (and, this time, also for the ACRS) algorithm are only

marginal, except on the WorldGrid-3L-80ms-30ms environment, where the improve-

ment of Perfect CRS over CRS is 9%. The improvements for Random Stealing and

Hierarchical Stealing are much more significant, being up to 15% and 25% respectively.

Not surprisingly, for Random Stealing the improvements are higher the more heteroge-

neous computing environment is, since in the presence of higher latencies, bad random

selection of steal targets has worse impact on the application speedup. For Hierarchical

Stealing, however, there does not seem to be a clear correlation between the amount

of improvement obtained when the load information is used and the heterogeneity of

the environment. We can clearly see that the improvements on heterogeneous environ-

ments are much higher than in the case of the WorldGrid-Hom environment. However,

the improvements on all heterogeneous environments are about the same. This can

be explained by the fact that hierarchical organisation of PEs into PE-trees and sys-

tematic way of searching these trees for work (from closer to more farther PEs) in

Hierarchical Stealing successfully hides the heterogeneity in communication latencies,

5.2. EVALUATION OF LOAD-BASED WORK-STEALING ALGORITHMS 115

and, therefore, speedups under Hierarchical and Perfect Hierarchical Stealing are very

similar on all of the WorldGrid environments (except, of course, for WorldGrid-Hom).

As a consequence of this, the improvements of Perfect Hierarchical over Hierarchical

Stealing are very similar on all environments.

From the experiments with the WorldGrid environments, we can make the following

conclusions:

• The Perfect CRS algorithm gives the best speedups. On most of the environ-

ments, the speedups under the CRS and Perfect CRS algorithms are very similar.

However, on highly heterogeneous environments, Perfect CRS notably outper-

forms CRS, which means that on these environments the CRS algorithm can be

notably improved with the use of perfect load information.

• Random and Hierarchical Stealing, on the other hand, can be significantly im-

proved with the use of perfect load information. For Random Stealing, the im-

provements with perfect load information are better the more heterogeneous the

environment is, whereas for Hierarchical Stealing, this is not the case. The im-

provements there are uniform for all the heterogeneous computing environments

we have considered.

Other SimpleDC Applications

The SimpleDC(12,5ms) application is an example of the application that generates a

lot of parallel tasks (since the task tree has 13 levels, the total number of tasks in

this application is 8192) and where there are many nested-parallel tasks (half of the

tasks, or 4096 in total, are nested-parallel). Also, as we have explained before, this

application is somewhat an ideal case for the use of Cluster-Aware Random Stealing,

since, because of a lot of nested-parallel tasks, there are a lot of potential victims in the

environment and the thieves are usually able to obtain work locally, so prefetching the

work over high-latency networks, which is done in parallel with local stealing, comes

almost for free. This is the reason we did not observe any notable improvements in

speedups when the CRS and ACRS algorithms use perfect load information.

It is interesting to observe what happens for the applications of the same type, but

which generate fewer parallel tasks. In the case of the SimpleDC(T ,Cseq) applications,

this corresponds to lower level-threshold value T . Since there is less parallelism avail-

able, obtaining the work locally, while at the same time another work from remote

targets, might not be as easy as for applications with more parallelism. Additionally,

we also want to investigate what difference does the use of load information make

116 CHAPTER 5. LOAD-BASED TOPOLOGY-AWARE STEALING

on the speedups of SimpleDC applications that have coarse-grained sequential tasks.

For these reasons, we have considered the SimpleDC(10,5ms) and SimpleDC(10,30ms)

applications. These applications have fewer number of tasks than SimpleDC(12,Cseq)

(2048 compared to 8192) and, consequently, fewer nested-parallel tasks (1024 com-

pared to 4096).

Figure 5.9 shows the speedups of the SimpleDC(10,5ms) application on the World-

Grid computing environments under the algorithms both with (Figure 5.9a) and with-

out (Figure 5.9b) load information. The first thing that we can notice when comparing

the speedups of SimpleDC(10,5ms) with speedups of SimpleDC(12,5ms) (Figure 5.7 on

page 113) is that the speedups of SimpleDC(10,5ms) are lower under all algorithms on

considered computing environments. This is what we expected, since there are fewer

nested-parallel tasks in the SimpleDC(10,5ms) application, and, therefore, thieves end

up stealing more sequential tasks from victims, which means that they need to steal

more often and are idle for more time.

Concerning the performance of individual algorithms, we can see an identical sit-

uation on Figures 5.9 and 5.7. The Perfect CRS and Perfect ACRS algorithms give

very similar speedups, and they perform notably better than the other algorithms.

Without load information, on more heterogeneous environments, ACRS outperforms

all other algorithms. On more homogeneous environments, the performance of CRS

and ACRS algorithms is very similar.

Figure 5.10 shows the improvements in speedups that the perfect versions of al-

gorithms bring over the non-perfect ones for the SimpleDC(10,5ms) application on

the WorldGrid environments. We can see that the improvements for all algorithms

(except for ACRS) are better than in the case of the SimpleDC(12,5ms) application.

The improvements for Hierarchical Stealing are up to 55% on the WorldGrid-3L-80ms-

30ms environment, and we can also observe the notable improvements for the CRS

algorithm (up to 20%, again on the WorldGrid-3L-80ms-30ms environment).

Reasons for better improvements of perfect algorithms for the SimpleDC(10,5ms)

application lie in bad performance of most of the non-perfect algorithms for this ap-

plication. Specifically, since there are less nested-parallel tasks in it that in Sim-

pleDC(12,5ms), and since the thieves from the cluster where the main PE is are quicker

to obtain work when the application execution starts, the thieves from other clusters

are much more likely to obtain tasks that do not create a lot of additional parallelism.

This fact, coupled with the fact that sequential tasks are very fine grained, means

that the thieves from clusters other than the one where the main PE will usually

steal smaller chunks of work than in the case of the SimpleDC(12,5ms) application,

5.2. EVALUATION OF LOAD-BASED WORK-STEALING ALGORITHMS 117

 0

 10

 20

 30

 40

 50

 60

Hom
Uni-10m

s

2L-30m
s

2L-50m
s

3L-80m
s-30m

s

S
pe

ed
up

WorldGrid computing environment

Speedups of the SimpleDC(10,5ms) application -- Perfect load information

Work Stealing algorithm:
Perfect Random

Perfect Hierarchical
Perfect CRS

Perfect ACRS
CV

HLV

(a) Perfect Load Information

 0

 10

 20

 30

 40

 50

 60

Hom
Uni-10m

s

2L-30m
s

2L-50m
s

3L-80m
s-30m

s

S
pe

ed
up

WorldGrid computing environment

Speedups of the SimpleDC(10,5ms) application -- No load information

Work Stealing algorithm:
Random

Hierarchical
CRS

ACRS

(b) No Load Information

Figure 5.9: Speedups of the SimpleDC(10,5ms) application on the WorldGrid environ-
ments

118 CHAPTER 5. LOAD-BASED TOPOLOGY-AWARE STEALING

 0

 10

 20

 30

 40

 50

 60

Hom
Uni-10m

s

2L-30m
s

2L-50m
s

3L-80m
s-30m

s

Im
pr

ov
em

en
t i

n
sp

ee
du

p
(in

 %
)

WorldGrid computing environment

Improvements in speedups of Perfect algorithms over Non-perfect ones

Work stealing algorithm:
Random

Hierarchical
CRS

ACRS

Figure 5.10: Improvements in speedups with perfect load information of the Sim-
pleDC(10,5ms) application on the WorldGrid environments

which means that they will have to look for work more often. Also, since there is less

parallelism available, thieves are less likely to hit the target with work than for the

SimpleDC(12,5ms) application. The use of load information helps with both of these

problems. Since the thieves know exactly where to look for work, they are more likely

to obtain tasks that generate more parallelism before they are stolen by thieves from

the main cluster. Also, the thieves are much more likely to hit the targets with work if

the load information is used. As a consequence of all this, the improvements in speedup

with perfect load information are better for the SimpleDC(10,5ms) application.

We can also observe that (similar to Figure 5.8 on page 114, which shows the

improvements for the SimpleDC(12,5ms) application) the improvements for all of the

algorithms (except for ACRS) are higher the more heterogeneous computing environ-

ment is. In contrast to Figure 5.8, in this case we can also observe that the improve-

ments for Hierarchical Stealing are increasing as the computing environment gets more

heterogeneous. This is due to a less parallelism being available in the application, and

therefore thieves having to search larger portions of their PE-trees when no load in-

formation is used. For many thieves, traversing PE-tree is more expensive (in terms

of total time it takes to ask all of the targets in it for work) on more heterogeneous

5.2. EVALUATION OF LOAD-BASED WORK-STEALING ALGORITHMS 119

environments with the higher communication latencies. This problem is, of course,

avoided if perfect load information is used.

Finally, Figure 5.11 shows the speedups under the considered algorithms for the

SimpleDC(10,30ms) application on the WorldGrid computing environments. Com-

pared to SimpleDC(10,5ms), this application has coarser-grained sequential tasks.

Therefore, thieves are kept busy for longer time when they steal tasks than in the

SimpleDC(10,5ms) application, which means that they do not have to steal as often.

Consequently, we can observe much better speedups under all the algorithms than on

Figure 5.9. Additionally, if we look at the speedup improvements that the algorithms

that use perfect load information bring (Figure 5.12), we can see that the improve-

ments are smaller than in the case of SimpleDC(10,5ms), and are very similar to these

for SimpleDC(12,5ms) (see Figure 5.8 on page 114). This is due to a better perfor-

mance of the algorithms that do not use load information. Although there is less

parallelism in SimpleDC(10,30ms) than in the SimpleDC(12,5ms) application, and,

therefore, thieves can more easily miss steal victims, sequential tasks are of larger size,

so there is no danger of stealing too fine-grained tasks.

From the experiments with the SimpleDC(10,5ms) and SimpleDC(10,30ms) appli-

cations, we can make the following conclusions about the performance of considered

algorithms for applications which all tasks are nested-parallel, but which do not have

as much parallelism as the larger ones, on the environments with heterogeneous com-

munication latencies:

• As usual, the Perfect CRS algorithm gives the best speedups. For the applica-

tions with fine-grained tasks, Perfect CRS brings significant improvements over

CRS. For applications with coarse-grained tasks, the improvements are minimal.

• Random Stealing can be significantly improved with the use of load information,

both when sequential tasks are fine-grained and coarse-grained.

• The use of load information brings huge improvements (up to 60% in speedup)

to Hierarchical Stealing when sequential tasks are fine-grained. When sequential

tasks are coarse-grained, the improvements are smaller, but still significant (up

to 30% in speedup).

Summary of the experiments with the SimpleDC applications

From all of the experiments with the SimpleDC applications, we can come to the

following conclusions:

120 CHAPTER 5. LOAD-BASED TOPOLOGY-AWARE STEALING

 0

 10

 20

 30

 40

 50

 60

Hom
Uni-10m

s

2L-30m
s

2L-50m
s

3L-80m
s-30m

s

S
pe

ed
up

WorldGrid computing environment

Speedups of the SimpleDC(10,30ms) application -- Perfect load information

Work Stealing algorithm:
Perfect Random

Perfect Hierarchical
Perfect CRS

Perfect ACRS
CV

HLV

(a) Perfect Load Information

 0

 10

 20

 30

 40

 50

 60

Hom
Uni-10m

s

2L-30m
s

2L-50m
s

3L-80m
s-30m

s

S
pe

ed
up

WorldGrid computing environment

Speedups of the SimpleDC(10,30ms) application -- No load information

Work Stealing algorithm:
Random

Hierarchical
CRS

ACRS

(b) No Load Information

Figure 5.11: Speedups of SimpleDC(10,30ms) application on the WorldGrid environ-
ments

5.2. EVALUATION OF LOAD-BASED WORK-STEALING ALGORITHMS 121

-5

 0

 5

 10

 15

 20

 25

 30

Hom
Uni-10m

s

2L-30m
s

2L-50m
s

3L-80m
s-30m

s

Im
pr

ov
em

en
t i

n
sp

ee
du

p
(in

 %
)

WorldGrid computing environment

Improvements in speedup with perfect load information -- SimpleDC(10,30ms)

Work stealing algorithm:
Random

Hierarchical
CRS

ACRS

Figure 5.12: Improvements in speedups with perfect load information of the Sim-
pleDC(10,30ms) application on the WorldGrid environments

1. The best speedups for applications of this type are obtained under the CRS

algorithm, with the use of perfect load information.

2. If there is enough parallelism in application, or if sequential tasks are sufficiently

coarse grained, there is not much benefit in the use of perfect load informa-

tion in the CRS and ACRS algorithms. The basic CRS algorithm gives a very

good speedups, and these speedups can only be marginally improved if the run-

time system possesses perfect load information. In the case of applications with

smaller amount of parallelism and with finer-grained sequential tasks, however,

the use of perfect load information can increase the applications speedups up to

20% under the CRS algorithm on heterogeneous computing environments.

3. Random Stealing can be improved if the perfect load information is used for all

applications on all heterogeneous computing environments. The improvements

are more significant on large and highly heterogeneous computing environments,

and for the applications that have smaller amount of parallelism.

4. Hierarchical Stealing can be significantly improved if load information is used,

122 CHAPTER 5. LOAD-BASED TOPOLOGY-AWARE STEALING

as it enables thieves to avoid traversing large portions of PE-trees that do not

have any work. Improvements that we can get are above 15% in almost all

of the environments for all applications, and in some cases (applications with

fewer number of parallel tasks, and where sequential tasks are fine grained) we

observed the improvements of up to 55% in speedup.

5. For each considered algorithm, the improvements that perfect load information

brings are better on larger environments, that consist of more clusters, or where

clusters consist of more PEs. Also, the improvements are generally better on the

environments with more heterogeneous communication latencies.

5.2.2 The DCFixedPar Applications

The previous section considered the applications that create a lot of parallelism (i.e.

for which most of the tasks are nested-parallel). For these applications, we concluded

that the most important thing for obtaining good speedups is to do local and remote

stealing in parallel (the way it is done in the CRS algorithm). However, for the

applications whose most of the tasks are sequential, this might not be the case. Due

to a smaller number of nested-parallel tasks, work can be concentrated on fewer PEs

during the execution of such applications. Furthermore, it is not the case any more

that thieves will always steal large chunks of work. In fact, most of the times thieves

are successful in locating work, they will manage to steal only sequential tasks, that

may be fine grained. This means that, firstly, they will have to look for work more

often and, secondly, they will not obtain enough work to also keep PEs near them

busy (as was the case with the SimpleDC applications). Therefore, in order to obtain

good speedups, it might be crucial to use load information to locate steal targets as

quickly as possible, rather than looking for work blindly. We have seen an indication

of this when we considered the SimpleDC(10,5ms) application.

In order to further investigate this, in this section we consider various DCFixed-

Par applications. We assume that the “divide” and “conquer” phases of all nested-

parallel tasks are trivial and, furthermore, that all of the sequential tasks have the

same size. We assume that these sequential tasks are fine-grained, so we will fix their

size to 5ms. Therefore, we will consider the DCFixedPar(n,k,5ms,0.1ms,0.1ms,l) ap-

plications, which we will denote just by DCFixedPar(n,k,l). The reasons for these

simplifying assumptions are that we are interested in the amount of parallelism gen-

erated by different tasks, rather than the sizes of various sequential portions of these

tasks.

5.2. EVALUATION OF LOAD-BASED WORK-STEALING ALGORITHMS 123

If we fix the value of n, then for different values of k we get the applications

with different number of tasks and different ratio between sequential and parallel

tasks forked by each nested-parallel tasks. The larger k is, less nested-parallel tasks

(and more sequential tasks) are forked by each nested-parallel task. Note that the

larger the k is, less balanced the task-tree of an application is and, consequently, the

higher the degree of irregularity an application is. Therefore, if the application X is

DCFixedPar(n,k1,L) and the application Y is DCFixedPar(n,k2,L), “the application

X is more irregular than the application Y” means the same as “the application X has

a higher ratio of sequential to nested-parallel tasks”, which in turns means the same

as “k1 is less than k2”.

DCFixedPar(40,k,4)

For our first set of experiments, we will consider DCFixedPar(40,k,4) applications,

where k takes values from the set {3, 4, 5, 6, 7, 9, 11}3. The total number of tasks and

the degree of irregularity of these applications is given in Figure 5.13.

Figure 5.14 shows the speedups of the DCFixedPar(40,k,4) applications under con-

sidered algorithms on the WorldGrid-3L-80ms-50ms environment. Figure 5.14a shows

the speedups when perfect load information is used, whereas Figure 5.14b shows the

speedups without load information.

k Number of tasks The degree of irregularity
3 1237640 0.103284
4 444440 0.158401
5 187240 0.224318
6 62200 0.345560
7 31240 0.450674
9 13640 0.618618
11 4840 0.917055

Figure 5.13: The number of parallel tasks and the degree of irregularity of the consid-
ered DCFixedPar(40,k,4) applications

From the Figure 5.14b, we can observe that, for more regular applications (k from

3 to 7), the ACRS algorithm performs the best when no load information is present,

with CRS performing close to it. This is similar to what happens for the SimpleDC

applications, as it shows the benefit of doing remote and local stealing in parallel.

3Note that DCFixedPar(40,7,4) and DCFixedPar(40,8,4) are the same applications, and the same
holds for DCFixedPar(40,9,4) and DCFixedPar(40,10,4). This was the reason for omitting the cases
where k = 8 and k = 10

124 CHAPTER 5. LOAD-BASED TOPOLOGY-AWARE STEALING

 0

 10

 20

 30

 40

 50

 60

3 4 5 6 7 9 11

S
pe

ed
up

k

Speedups of the DCFixedPar(40,k,4) applications

Work-stealing algorithm:
Random

Hierarchical
CRS

ACRS
CV

HLV

(a) Perfect Load Information

 0

 10

 20

 30

 40

 50

 60

3 4 5 6 7 9 11

S
pe

ed
up

k

Speedups of the DCFixedPar(40,k,4) applications

Work-stealing algorithm:
Random

Hierarchical
CRS

ACRS

(b) No Load Information

Figure 5.14: Speedups of the DCFixedPar(40,k,4) applications on the WorldGrid-3L-
80ms-30ms Environment

5.2. EVALUATION OF LOAD-BASED WORK-STEALING ALGORITHMS 125

However, for k > 7, we can see that Hierarchical Stealing starts to outperform both

CRS and ACRS. This is due to the fact that, as k gets bigger, fewer nested-parallel

tasks are there in the application and the parallel tasks are concentrated on fewer

PEs. Therefore, we have the problem mentioned at the beginning of the section,

where thieves are unable to obtain work locally most of the time, so they need to wait

for the completion of remote steals. In most of the cases, CRS will behave similarly to

Random Stealing4. Hierarchical Stealing systematically tries stealing from closer PEs

to those that are farther and farther away from it and, in this situation, that leads to

more efficient load distribution.

Figure 5.14b shows that, in the presence of perfect load information, the Perfect

CRS and Perfect ACRS algorithms perform the best in all of the cases (even for larger

k). CV also performs very good and close to the Perfect ACRS and Perfect CRS. In this

case, there are no problems with idle PEs waiting longer than necessary to obtain work

from remote PEs, as they know where to look for work. Additionally, we can observe

a general trend of very similar performance of the CRS and ACRS algorithms, which

indicates that preferring close targets for remote stealing does not bring much benefit

if local and remote stealing are done in parallel. As opposed to this, if we compare

the Random and CV algorithms, we can observe a notably better performance of CV.

This shows that if random and local stealing are not done in parallel, then, as we can

expect, there is notable benefit in choosing closer steal targets.

Figure 5.15 shows the improvement that the use of perfect load information brings

to the speedups of considered applications on the WorldGrid-3L-80ms-30ms environ-

ment. In contrast to the SimpleDC applications, here we can observe very significant

improvements for the Random, CRS and ACRS algorithms, especially for more irreg-

ular applications. We can see that, as the applications get more irregular, the more

improvement we get with the use of load information, and for highly-irregular applica-

tion where nested-parallelism is very sparse (e.g. for k = 11), we can observe excellent

improvements in speedups of above 100%. For Hierarchical Stealing, we can observe

very small and irregular improvements. This is due to a much better performance of

Hierarchical Stealing that does not use load information for this kind of applications,

especially for higher values of k. Where not much parallelism is available, Hierarchical

Stealing is good at keeping most of the work locally (i.e. within the clusters nearby

the main cluster), since the remote thieves are much slower in obtaining work from

the main cluster. By the time the steal attempts from remote thieves reach the main

4Small difference is that in CRS when a target receives a steal from a remote thief and if it does
not have any work to offload, it will forward the steal to some other target from its own cluster (as
opposed to completely random target in Random stealing)

126 CHAPTER 5. LOAD-BASED TOPOLOGY-AWARE STEALING

cluster, most of the (sparse) parallel work will already be distributed to the PEs from

the main cluster, so remote thieves will probably obtain only smaller set of sequential

tasks. In this case, it is a better solution than distributing tasks with nested paral-

lelism to the remote thieves, since locality is lost in that way. Therefore, the fact that

in Hierarchical Stealing a lot of steal attempts are fruitless actually helps to obtain a

better application speedup.

-20

 0

 20

 40

 60

 80

 100

 120

 140

3 4 5 6 7 9 11

S
pe

ed
up

 im
pr

ov
em

en
t (

in
 %

)

k

Improvements with perfect load information for DCFixedPar(40,k,4)

Work stealing algorithm:
Random

Hierarchical
CRS

ACRS

Figure 5.15: Improvements in speedups with perfect load information for the DC-
FixedPar(40,k,4) application on the WorldGrid-2L-50ms environment

Overall, from Figures 5.14 and 5.15, we can see that on the highly heterogeneous

computing environments, for the DCFixedPar(40,k,4) applications, the best of all con-

sidered algorithms are the Perfect CRS and Perfect ACRS algorithms. We can also

see that, when there is enough parallelism in the application and where nested-parallel

tasks are sparser, they give an excellent improvements in speedups (up to 120%),

compared to the CRS and ACRS without load information. The Random Stealing

and ACRS algorithms can also be very significantly improved with the use of load

information, whereas the benefits for Hierarchical Stealing are negligible.

We have also observed that the Perfect CRS and Perfect ACRS algorithms give the

best speedups on other heterogeneous computing environments for the DCFixedPar(40,k,4)

applications. Therefore, the answer to the question of what algorithm performs the

5.2. EVALUATION OF LOAD-BASED WORK-STEALING ALGORITHMS 127

best for the DCFixedPar applications is the same as for the SimpleDC applications.

Perfect CRS and Perfect ACRS algorithms are the ones to choose, and the difference

between the two is minimal.

We will now focus on the improvements that perfect load information brings to

the speedups of each algorithm individually for the DCFixedPar(40,k,4) applications

on computing environments of increasing heterogeneity (the WorldGrid environments).

Figure 5.16 shows the improvements for Random (Figure 5.16a) and Hierarchical (Fig-

ure 5.16b) algorithms on WorldGrid computing environments. For Random Stealing,

we can clearly observe that the improvements are increasing as the degree of irregu-

larity of application increases (i.e. as k increases), and as the heterogeneity of com-

puting environment increases. The best improvements are obtained for k = 11 on the

WorldGrid-3L-80ms-30ms environment. For the Hierarchical work stealing, however,

we cannot observe a clear relationship between the amount of improvement obtained

with perfect load information and the irregularity of the application/heterogeneity of

the environment. In most of the combinations of application/computing environment,

we can observe only very small improvements (and in some cases even a small decrease

in speedup). However, for some applications with larger k on some environments, we

can observe a very good improvements of up to 40% (for example, for the DCFixed-

Par(40,9,4) application on the WorldGrid-Uni-10ms environment).

Figure 5.17 shows the improvements under CRS and ACRS algorithms. Here, we

can observe the similar situation as for the Random stealing. The improvements are

increasing as the degree of irregularity of an application increases and as the com-

puting environments get more heterogeneous. Furthermore, we can observe that the

improvements are most of the time in the range between 20-40% on more heterogeneous

environments. However, on the highly heterogeneous environments for highly irregular

applications (parameter k being greater than 7), we can observe the improvements in

speedups in the range between 60 and 120%.

DCFixedPar(100,k,4)

As a final experiment in this section, we consider the DCFixedPar(100,k,4) applica-

tions, where k takes from the set {15, 20, 25}. Compared to the DCFixedPar(40,k,4)

applications, these applications have bigger number of tasks, and the ratio between

nested-parallel and sequential tasks is even smaller. So, a vast majority of tasks will be

sequential, and only very small number will be nested-parallel, so we anticipate that

the algorithms that do not use load information will run into big problems when trying

to locate work. The number of tasks and the degree of irregularity of the considered

128 CHAPTER 5. LOAD-BASED TOPOLOGY-AWARE STEALING

3 4 5 6 7 9 11 Hom
Uni-10ms

2L-30ms
2L-50ms

3L-80ms-30ms

 0
 20
 40
 60
 80

 100
 120
 140
 160

S
pe

ed
up

 im
pr

ov
em

en
t (

in
 %

)

Speedup Improvements with perfect load information for Random Stealing

k
WorldGrid environment

 0
 20
 40
 60
 80
 100
 120
 140
 160

(a) Random Stealing

3 4 5 6 7 9 11Hom
Uni-10ms

2L-30ms
2L-50ms

3L-80ms-30ms

-20
-10

 0
 10
 20
 30
 40
 50

S
pe

ed
up

 im
pr

ov
em

en
t (

in
 %

)

Speedup improvements with perfect load information for Hierarchical Stealing

k
WorldGrid environment

-20
-10
 0
 10
 20
 30
 40
 50

(b) Hierarchical Stealing

Figure 5.16: Improvements obtained with the use of perfect load information for the
DCFixedPar(40,k,4) applications on the WorldGrid computing environments for Ran-
dom and Hierarchical Stealing

5.2. EVALUATION OF LOAD-BASED WORK-STEALING ALGORITHMS 129

3 4 5 6 7 9 11 Hom
Uni-10ms

2L-30ms
2L-50ms

3L-80ms-30ms

 0
 20
 40
 60
 80

 100
 120
 140

S
pe

ed
up

 im
pr

ov
em

en
t (

in
 %

)

Speedup improvements with perfect load information for CRS

k
WorldGrid environment

 0
 20
 40
 60
 80
 100
 120
 140

(a) CRS

3 4 5 6 7 9 11 Hom
Uni-10ms

2L-30ms
2L-50ms

3L-80ms-30ms

 0
 10
 20
 30
 40
 50
 60
 70
 80

S
pe

ed
up

 im
pr

ov
em

en
t (

in
 %

)

Speedup improvements with perfect load information for ACRS

k
WorldGrid environment

 0
 10
 20
 30
 40
 50
 60
 70
 80

(b) ACRS

Figure 5.17: Improvements obtained with the use of perfect load information for the
DCFixedPar(40,k,4) applications on the WorldGrid computing environments for CRS
and ACRS

130 CHAPTER 5. LOAD-BASED TOPOLOGY-AWARE STEALING

applications is showed in Figure 5.18.

k Number of tasks The degree of irregularity
15 155500 0.575651
20 78100 0.744058
25 34100 1.012648

Figure 5.18: The number of parallel tasks and the degree of irregularity of the consid-
ered DCFixedPar(100,k,4) applications

Figure 5.19 shows the speedups of the DCFixedPar(100,k,4) applications on the

WorldGrid-3L-80ms-30ms computing environment. We can observe similar results as

for DCFixedPar(40,k,4) applications. Again, Perfect CRS and Perfect ACRS give the

best speedups of all algorithms that use perfect load information, with CV being very

close to them. Looking at the algorithms that do not use load information (Figure

5.19b), we can observe that Hierarchical Stealing gives the best speedup for all appli-

cations. The reasons for this are similar as for the more irregular DCFixedPar(40,k,4)

applications.

Figures 5.20 and 5.21 show the improvements that the use of perfect load infor-

mation brings to the speedups of the considered DCFixedPar(100,k,4) applications on

various WorldGrid computing environments for all considered algorithms. Similarly to

the DCFixedPar(40,k,4) applications, we can observe that for the Random, CRS and

ACRS algorithms the amount of improvement increases as the k increases, and as the

heterogeneity of computing environment increases. We can also observe similar im-

provements for the DCFixedPar(100,k,4) and DCFixedPar(40,k,4) applications with

the similar degree of irregularity. For example, DCFixedPar(100,15,4) and DCFixed-

Par(40,7,4) have similar degrees of irregularity, and the improvements under Perfect

CRS for both applications increase from 0 to about 40%, as the heterogeneity of the

environment increases.

For Hierarchical Stealing, on the other side, we can again observe more or less ran-

dom improvements, although improvements are generally better for larger k and more

heterogeneous environments.

From the experiments with the DCFixedPar(100,k,4) applications, we can get more

or less the same conclusions as for the DCFixedpar(40,k,4) ones. Perfect CRS and

Perfect ACRS give the best speedups (with CV being close to them for more irregular

applications), speedups for almost all algorithms can be increased when perfect load

information is used, and the improvements are better for more irregular applications

executed on more heterogeneous computing environments.

5.2. EVALUATION OF LOAD-BASED WORK-STEALING ALGORITHMS 131

 0

 10

 20

 30

 40

 50

 60

15 20 25

S
pe

ed
up

k

The DCFixedPar(100,k,4) applications on WorldGrid-3L-80ms-30ms

Work-stealing algorithm:
Random

Hierarchical
CRS

ACRS
CV

HLV

(a) Perfect Load Information

 0

 10

 20

 30

 40

 50

 60

15 20 25

S
pe

ed
up

k

The DCFixedPar(100,k,4) applications on WorldGrid-3L-80ms-30ms

Work-stealing algorithm:
Random

Hierarchical
CRS

ACRS

(b) No Load Information

Figure 5.19: Speedups of the DCFixedPar(100,k,4) applications on the WorldGrid-3L-
80ms-30ms Grid Environment

132 CHAPTER 5. LOAD-BASED TOPOLOGY-AWARE STEALING

15

20

25Hom
Uni-10ms

2L-30ms
2L-50ms

3L-80ms-30ms

 0
 20
 40
 60
 80

 100
 120
 140

S
pe

ed
up

 im
pr

ov
em

en
t (

in
 %

)

Speedup improvements with perfect load information for Random Stealing

k
WorldGrid environment

 0
 20
 40
 60
 80
 100
 120
 140

(a) Random Stealing

15

20

25Hom
Uni-10ms

2L-30ms
2L-50ms

3L-80ms-30ms

-5
 0
 5

 10
 15
 20
 25
 30

S
pe

ed
up

 im
pr

ov
em

en
t (

in
 %

)

Speedup improvements with perfect load information for Hierarchical Stealing

k
WorldGrid environment

-5
 0
 5
 10
 15
 20
 25
 30

(b) Hierarchical Stealing

Figure 5.20: Improvements obtained with the use of perfect load information for the
DCFixedPar(100,k,4) applications on the WorldGrid computing environments for Ran-
dom and Hierarchical Stealing

5.2. EVALUATION OF LOAD-BASED WORK-STEALING ALGORITHMS 133

15

20

25Hom
Uni-10ms

2L-30ms
2L-50ms

3L-80ms-30ms

 0
 20
 40
 60
 80

 100
 120

S
pe

ed
up

 im
pr

ov
em

en
t (

in
 %

)

Speedup improvements with perfect load information for CRS

k
WorldGrid environment

 0
 20
 40
 60
 80
 100
 120

(a) CRS

15

20

25Hom
Uni-10ms

2L-30ms
2L-50ms

3L-80ms-30ms

 0
 10
 20
 30
 40
 50
 60
 70
 80

S
pe

ed
up

 im
pr

ov
em

en
t (

in
 %

)

Speedup improvements with perfect load information for ACRS

k
WorldGrid environment

 0
 10
 20
 30
 40
 50
 60
 70
 80

(b) ACRS

Figure 5.21: Improvements obtained with the use of perfect load information for the
DCFixedPar(100,k,4) applications on the WorldGrid computing environments for CRS
and ACRS

134 CHAPTER 5. LOAD-BASED TOPOLOGY-AWARE STEALING

Summary of the experiments with DCFixedPar applications

From the experiments with the DCFixedPar applications, we can make the following

conclusions about the irregular applications in which most of the tasks are sequential,

and which have smaller number of tasks that create additional parallelism:

• When load information is used, the Perfect CRS algorithm gives the best speedups

on all computing environments we considered.

• When no load information is used, CRS and ACRS give the best speedups for

more regular applications, whereas Hierarchical Stealing is the best for highly

irregular applications, as it manages to keep most of the work local to the main

cluster.

• Speedups under the Random, CRS and ACRS algorithms can be significantly im-

proved with the use of load information.The improvements for these algorithms

are better the more irregular the application is, and the more heterogeneous un-

derlying computing environment is. For highly irregular applications on highly

heterogeneous computing environments, we have observed the improvements of

up to 160%, 140% and 80% for Random, CRS and ACRS algorithms, respec-

tively.

• For Hierarchical Stealing, we did not manage to establish the relationship be-

tween the amount of improvement that the use of load information brings, and

the irregularity of an application/heterogeneity of an environment. However, in

most of the cases, we can observe at least some improvements, but also some

cases exist where the use of load information actually decreases the performance

of Hierarchical Stealing.

5.2.3 Summary of Experiments

The experiments in Sections 5.2.1 and 5.2.2 evaluated what is the best way to use load

information in work-stealing, for what applications on what computing environments

are the benefits of its use the biggest, and how much the individual state-of-the-art

work-stealing algorithms can benefit from this information.

We focused on the SimpleDC and the DCFixedPar applications (described in Sec-

tion 4.2), as our main goal was to investigate the use of load information for applica-

tions that have variable amount of parallelism and variable ratio between sequential

and nested-parallel tasks. the SimpleDC applications are the examples of very regular

5.2. EVALUATION OF LOAD-BASED WORK-STEALING ALGORITHMS 135

applications that generate a lot of parallelism, and where most of the tasks are nested-

parallel (and which, therefore, they generate further parallelism). The DCFixedPar

applications, on the other hand, can be highly irregular and, although they generate

a lot of parallelism, vast majority of their tasks can be sequential. Therefore, the

number of potential steal victims in the DCFixedPar applications at each point of its

execution is typically much smaller than for the SimpleDC applications and, therefore,

algorithms that do not use load information might struggle in locating them.

We have considered the execution of such applications on various computing envi-

ronments, from fully homogeneous (WorldGrid-Hom) to very heterogeneous (WorldGrid-

3L-80ms-30ms) environments.

Experiments in this section verified the hypothesis that the use of load information

can significantly improve the speedups of irregular applications, that have much more

sequential then nested-parallel tasks and where parallel work is concentrated on fewer

PEs.

Specifically, we made the following conclusions:

1. Whereas in the case of algorithms that do not use load information, there is

no clear ’winner’ for all considered applications (i.e. no algorithm gives the best

speedup for all applications on all computing environments), when perfect load

information is present, Perfect CRS and Perfect ACRS clearly outperform all

other algorithms for all of the combinations of applications and computing en-

vironments. We can, therefore, conclude that the CRS or ACRS algorithms

should be used for work-stealing of the applications with tree-like structure of

tasks, provided that we can find a way for runtime system to have a good ap-

proximation of the PE load. We have also observed that the performance of CRS

and ACRS algorithms is very similar, so exactly which one of them to use is not

very important. Since the implementation of CRS is simpler, and it does not

rely on the monitoring of the performance of network links, we can recommend

using CRS.

2. The use of perfect load information brings the most benefits to the execution

of parallel applications which generate significantly larger number of sequential

than nested-parallel tasks. If most of the application’s tasks have nested paral-

lelism (for example, in typical divide-and-conquer applications), then the amount

of parallelism created is large enough to keep all of the PEs busy, and the work

can be efficiently distributed with work-stealing methods that do not use any

load information.

136 CHAPTER 5. LOAD-BASED TOPOLOGY-AWARE STEALING

3. For the applications that generate significantly larger number of sequential tasks

than nested-parallel tasks, the use of load information brings the most signifi-

cant improvements under all algorithms on the highly heterogeneous computing

environments. The only exception is Hierarchical work-stealing, where there is

no clear correlation between the amount of improvement and the heterogeneity

of the computing environment.

For the applications which most of the tasks are nested-parallel (the SimpleDC

applications), significant improvements can only be observed on large comput-

ing environments (i.e. those comprising a large number of clusters, or where each

cluster comprise a large number of PEs). The exception is, again, Hierarchi-

cal Stealing, where significant improvements for this kind of applications can be

observed on all computing environments.

5.3 Feudal Stealing

Our experiments in the previous section indicated that the use of load information can

significantly improve the applications’ speedups under work-stealing algorithms. The

improvements were especially significant for more irregular parallel applications on

heterogeneous computing environments. We have also seen that the CRS algorithm

with perfect load information delivers the best speedups out of all considered algo-

rithms for all applications that we tested, on all computing environments. Of course,

in realistic runtime systems, the PEs will not have perfect load information. Instead of

that, each PE has the perfect information only about its own load. The PEs, therefore,

need to exchange load information in some way, so that each of the PEs has at least

a good approximation of the load of other PEs.

In this section, we describe a novel Feudal Stealing algorithm, which addresses

the problem of PEs obtaining an accurate load information. This algorithm uses the

same principle for choosing steal targets as the CRS algorithm, namely, it does local

and remote stealing in parallel. Feudal Stealing extends the CRS algorithm with a

combination of locally-centralised and remotely-distributed mechanisms for exchanging

information about the PE loads. In our case, locally-centralised mechanism means

that the load information is centralised within each cluster. That is, in each cluster

there is a head PE that holds the information about the load of all other PEs from

that cluster. Each PE periodically reports its load to its head PE (like in feudalism,

hence the name of the algorithm). Remotely-distributed mechanism means that head

PEs exchange their approximations of the cluster loads in a peer-to-peer way, so there

5.3. FEUDAL STEALING 137

is not a global head PE. The way in which load information is distributed between

head PEs is very similar to the Grid-GUM mechanism (see Section 2.4.3).

As described above, in Feudal Stealing, in each cluster we nominate one PE to be

that cluster’s head PE. The responsibility of the cluster head PE is to route all the

steal attempts that come inside its cluster or that go outside of it. Therefore, each

steal attempt whose target is outside of the thief’s cluster needs to be sent via the

head PE of the thief’s cluster. Similarly, each steal attempt sent outside of the target’s

cluster needs to pass through the target’s cluster head PE. In order to be able to route

steal attempts appropriately, head nodes hold information about the loads of all PEs

within their clusters, as well as the approximation of the loads of all remote clusters.

Within each cluster, each PE periodically sends its load information to its head

PE. This information is sent whenever the load of the PE changes (i.e. whenever the

length of its task pool changes). Alternatively, to prevent the case where the head PE

is flooded with the messages notifying it of the changes in PE loads (for applications

with fine-grained tasks), we introduce the minimal amount of time between the two

successive load information messages sent from one PE 5. In this way, the head PE

will have more-or-less accurate information about the load of individual PEs from its

cluster.

Assuming that all cluster head PEs hold the approximation of the load of all other

clusters, work-stealing proceeds in the following way. As in the CRS algorithm, each

PE has the remoteStealing flag (initially set to false), which denotes whether the

PE is currently doing remote stealing or not. Whenever a PE becomes idle, it starts

looking for work locally (within the same cluster) and remotely (if remoteStealing

flag is not set) in parallel. When a PE starts looking for work remotely, it sets its

remoteStealing flag to true.

Local stealing is done in the same way as in the CRS algorithm, namely, randomly

without using the head PE’s load information. Remote stealing proceeds in the fol-

lowing way. Assume that thief t0 from cluster C0 is looking for work remotely. t0 first

sends the remote-steal message to the head PE h0 of cluster C0. h0 then checks its its

approximation of the load of other clusters, and based on it chooses the head PE h1 of

some remote cluster C1 and forwards the remote-steal message to it (see Figure 5.22).

Once h1 receives this message, it checks the load of PEs from its own cluster (cluster

C1). Depending on this load, two situations can happen:

• PE v1 with non-zero load exists in cluster C1. The remote-steal message is

5This is, of course, only relevant to the implementation of the algorithm in the real runtime systems,
as in simulations we ignore the overheads in processing messages, and, therefore, overloading of head
node with messages cannot occur.

138 CHAPTER 5. LOAD-BASED TOPOLOGY-AWARE STEALING

Figure 5.22: Sequences of local and remote steal messages exchanged in Feudal Steal-
ing. Blue arrows denote remote-steal messages, whereas the red ones denote local-
steals. Black squares denote tasks that PEs hold, and the arrow with black square
denotes the steal message that is carrying a task.

then forwarded to v1, which becomes a victim. v1 responds to the remote-steal

message by sending a task to h0, which then forwards it to the thief t0. The task

is sent via h0 (and not directly to t0) for the reasons that will become clear later.

• All PEs from cluster C1 have zero load. In this case h1 checks its approximation

of the loads of other clusters, and chooses the head PE h2 of some cluster C2. It

then forwards the remote-steal message to h2.

The stealing proceeds in this way until either a PE with non-zero load is found, or some

predefined number of clusters is visited. In the latter case, the remote-steal message

is returned back to thief t0 (via head PE h0), which then sets its remoteStealing flag

to false.

The way in which a head PE selects the remote cluster to which to send the remote-

steal message depends on its approximation of the load of other clusters and the load

of a cluster where the remote-steal message was initiated from. Assume that the load

of the cluster where remote-steal was initiated from is l. The three cases can happen:

1. At least one cluster with load higher than l exist. Assume that {C1, C2, . . . , Cn}
is the set of all clusters whose load is higher than l. Then one of these clusters

5.3. FEUDAL STEALING 139

is chosen randomly, and the probability that cluster Ci is chosen is proportional

to its load.

2. No cluster with load higher than l exists, but one or more clusters with non-zero

load exist. Assume {D1, D2, . . . , Dn} is the set of all clusters with non-zero load.

Then one of the clusters from this set is chosen randomly, where, again, the

probability that cluster Di is chosen is proportional to its load.

3. All clusters have zero load. In this case, choose a random cluster.

In the first two cases, the probability that a cluster is selected is proportional to its

load. For example, if the head PE of the cluster has information that the load of

cluster C1 is 20, and the load of cluster C2 is 100, then the probability that cluster C1

is chosen is 20/120, and that cluster C2 is chosen is 100/120.

The head PEs update their load information in a similar way it is done in the

Grid-GUM algorithm. Every remote-steal message contains, for each cluster in the

environment, the approximation of its load, together with the timestamp when this

approximation was obtained. Each head PE that receives such a message compares the

timestamps from the message with the timestamps of its own approximations of loads

of other clusters. If, for some cluster, the approximation in the message is more recent,

the head PE updates its own approximation (together with its timestamp) for this

cluster. Conversely, if, for some cluster, the approximation that PE has is more recent

that the one from the message, then the approximation from the message (together

with its timestamp) is updated. This is illustrated on Figure 5.23. Initially, when

remote-steal message is initiated from the thief, timestamps for the approximation of

each cluster are set to 0.

The mechanism of attaching the load approximation to the remote-steal messages

enables head PEs to have more accurate information about loads of other clusters.

Also, this is the reason why a victim does not send the task directly to the thief, but

rather to the head PE of its cluster. Sending the task to the head PE enables it to

update its load approximation from the message. The overhead in sending the task

via the head PE is just in sending one additional message within a cluster. Since we

assume that the communication latency with clusters is low, this overhead is not high.

Comparison Between Feudal and Grid-GUM Work-stealing

Since Feudal work-stealing bears many similarities with the Grid-GUM algorithm, it

is natural to compare these two algorithms. We can note several advantages of Feudal

algorithm:

140 CHAPTER 5. LOAD-BASED TOPOLOGY-AWARE STEALING

(a) On receiving the remote-steal

(b) After processing the remote-steal

Figure 5.23: Updating the approximation of load info in the remote-steal message, and
in cluster head PE

5.3. FEUDAL STEALING 141

• Smaller steal messages – In Grid-GUM, each steal message contains the load of

every PE in the environment. In Feudal Stealing, load information is attached

only to the messages related to the remote stealing. Furthermore, only the

information about loads of the entire clusters (and not of the individual PEs from

them) is attached to the message. This has an important advantage in that the

steal messages are generally smaller under Feudal Stealing, especially on large-

scale computing environments that comprise of a large number of PEs. In these

environments, the steal messages that Grid-GUM sends may be prohibitively

large, since they contain the information about the load of every PE in the

environment. This might be an issue when such messages are sent over network

links with limited bandwidths.

• Less sensitive to the small changes in loads of individual PEs – In Feudal Steal-

ing, the head PEs only hold the information about the loads of the entire clusters

(as opposed to the Grid-GUM mechanism, where all PEs holding the informa-

tion about the load all other PEs). In other words, the decisions about from

where to steal in Feudal Stealing are based on the approximation of the load of

entire clusters, and, by sending the remote-steal message to the cluster’s head

PE, stealing is attempted from the cluster as a whole (rather than from the in-

dividual PEs from it). This makes the stealing less sensitive to the changes in

load of individual PEs.

For example, if the load of the PE p (from the cluster P) drops to zero in Grid-

GUM, many thieves might not be informed of this immediately and, therefore,

they might unsuccessfully attempt stealing from p. In Feudal Stealing, on the

other hand, there may still be other PEs from P with non-zero load. Therefore,

if a thief tries to steal from the cluster P (because it assumes that it has non-zero

load), the problem only appears if the drop in load of p made the load of the

whole cluster to be zero.

• PEs cannot get isolated – In Feudal Stealing, each PE at regular intervals re-

ports its load to the head PE of its cluster. This eliminates the possibility of a

PE becoming isolated if it does not communicate with the rest of the environ-

ment. Consequently, there is less chance for the PEs to have seriously outdated

information about the load of some PE.

• More accurate load information – In Feudal Stealing, only head PEs hold the

load information. This means that less PEs need to exchange load information

and, therefore, higher is the chance that these PEs will have an accurate load

142 CHAPTER 5. LOAD-BASED TOPOLOGY-AWARE STEALING

information. In addition, since each remote stealing message needs to pass via

at least two head PEs, head PEs will very frequently receive these messages, and

will have their load information updated very frequently.

Of course, nothing comes for free. The most important drawback of Feudal Steal-

ing, compared to Grid-GUM, is its semi-centralised nature, which makes it less fault-

tolerant. Additionally, more communication is involved in Feudal Stealing, which

makes it more prone to central PEs being overloaded with communication. This is the

price that needs to be paid in order to have more accurate load information.

5.3.1 The Feudal Stealing Algorithm

Algorithms 15 - 20 give the pseudocodes for the most important parts of the Feudal

Stealing algorithm. Algorithm 15 shows the pseudocode for the peIdle function, which

is executed whenever a PE becomes idle. Idle PE sends a local-steal message with age

parameter set to 0 to some local PE (chosen via a call to choosePE() function) (lines

17–23). If the idle PE does not have any outstanding remote-steal messages, it also

sends a remote-steal message to its cluster head PE (which will route it appropriately)

(lines 1–16). Of course, if the idle PE itself is the head PE, it immediately sends the

message to a head PE of some remote cluster, and attaches to it its approximations

of the loads of all clusters and the timestamps when these were obtained (lines 9–13).

In the discussion below, we will refer to the PE that created the remote-steal

message as the thief that initiated the remote-steal message

Algorithms 16 – 18 show the pseudocodes for the functions executed when a PE

receives the steal message. Note that there are two kinds of steal messages – one that

contains a task as a part of it (equivalent to the SCHEDULE message in Grid-GUM) and

the one that does not. The steal message that does not contain a task (i.e. whose task

attribute is NULL) is the one looking for work. Steal message with the task attached to

it is the one that has found work, and needs to be returned to the thief who initiated

it.

Algorithm 16 shows what happens when a PE p receives a local-steal message. The

function is split into the three cases:

1. The local-steal message was initiated by p (lines 1–4). This means either that

the message has found some work (in which case, the work is added to the p’s

task pool), or that no work has been found after visiting MAX_LOCAL_AGE PEs.

In either case, the message does not get forwarded any further.

5.3. FEUDAL STEALING 143

2. The local-steal message was not initiated by p, and p has some tasks in its task

pool (lines 5–8). In that case, p chooses one task from its task pool, attaches it

to the local-steal message and forwards this message to the thief that initiated

it

3. The local-steal message was not initiated by p, and p does not have any tasks

in its task pool (lines 10–15). p then first increases the age of the steal message,

and then checks whether the age exceeds the maximal allowed age for local-steal

messages (MAX_LOCAL_AGE). If it does, the message is returned to the thief that

initiated it. Otherwise, the message is forwarded to some random PE from the

same cluster.

Note that in the algorithm, we have assumed that a single global parameter

Algorithm 15 Feudal Stealing – peIdle(PE pe) function

1: if (!remoteStealing) then
2: remoteSteal = new (StealMessage)
3: remoteSteal.type = REMOTE STEAL
4: remoteSteal.originatingCluster = pe’s cluster
5: remoteSteal.originatingPE = pe
6: remoteSteal.age = 0
7: remoeSteal.task = NULL
8: if (pe is a head PE of its cluster) then
9: nextTarget = choosePE (REMOTE)

10: for all clusters do
11: remoteSteal.loadInfo[cluster].time = pe.loadInfo[cluster].time
12: remoteSteal.loadInfo[cluster].load = pe.loadInfo[cluster].load
13: end for
14: else
15: nextTarget = cluster’s head PE
16: end if
17: send remoteSteal to nextTarget
18: remoteStealing = true
19: end if
20: localSteal = new (StealMessage)
21: localSteal.type = LOCAL STEAL
22: localSteal.age = 0
23: localSteal.originatingPE = pe
24: localSteal.task = NULL
25: localTarget = choosePE (LOCAL)
26: send localSteal to localTarget

144 CHAPTER 5. LOAD-BASED TOPOLOGY-AWARE STEALING

MAX_LOCAL_AGE exists for all clusters, which denotes the maximal amount of hops

the the steal message is allowed to travel before being returned to the thief that ini-

tiated it. The purpose of this parameter is to prevent overloading the environment

with steal messages in the situation where no extra work exist on any PE. In the

implementations of Feudal Stealing, MAX_LOCAL_AGE can, rather than a constant, be a

function of cluster size, so that more hops are allowed to be made for larger clusters.

Algorithm 16 Feudal Work Stealing – processLocalStealMessage(PE p, StealMessage
message) function for head and non-head nodes

1: if message.originatingPE == p then
2: if message.task != NULL then
3: add message.task to p’s task pool
4: end if
5: else if p has tasks in its task pool then
6: taskToSend = choose a task from p’s task pool
7: message.task = taskToSend
8: send message to message.originatingPE
9: else

10: message.age++
11: if message.AGE < MAX LOCAL AGE then
12: nextTarget = choosePE (LOCAL)
13: else
14: nextTarget = message.originatingPE
15: end if
16: end if

The way in which a remote-steal message is processed depends on whether the PE

who receives it is a head PE of a cluster or not. Algorithm 17 shows what happens

when the non-head PE p receives a remote-steal message. A non-head PE can receive

remote-steal message only from the head PE of its cluster. We can see that the code is

similar to the case where local-steal message is received. Again, there are three cases:

1. The remote-steal message was initiated by p (lines 1–5). This case is the same

as when local-steal message is received, except that also remoteStealing flag is

set to FALSE.

2. The remote-steal message was not initiated by p, and p has some tasks in its task

pool (lines 6–9). Again, this case is almost the same as for local-steal message,

except that the message is forwarded to the head PE of the thief initiated it,

rather than directly to the thief.

3. The remote-steal was not initiated by p, and p does not have any task in its task

5.3. FEUDAL STEALING 145

pool (lines 10–11). In this case, the message is forwarded to the head PE of p’s

cluster. We can see that here, as opposed to the case where local-steal message is

received, the age parameter of the message is not increased. Whereas for local-

steal messages, the age parameter denotes the number of PEs visited by that

message, for remote-steal it denotes the number of clusters visited. Therefore,

only when remote-steal message is forwarded from one cluster to the other is the

age attribute increased.

One can ask how can the case 3 even happen, if the remote-steal message was forwarded

to p from its head PE. Head PE that receives the remote-steal message is supposed to

forward it to some PE from its cluster only in the case that this PE has some work to

send. In the case 3, however, the remote-steal message was forwarded to the PE that

does not have any work. This can happen if the head PE has inaccurate information

about the load of the PE from its cluster, so it chooses p under the wrong assumption

that it has work to offload.

Algorithm 17 Feudal Work Stealing – processRemoteStealMessage(PE
p,StealMessage message) function for non-head nodes

1: if message.originatingPE == p then
2: remoteStealing=false
3: if message.task != NULL then
4: add message.task to the p’s task pool
5: end if
6: else if p has tasks in its task pool then
7: taskToSend = choose a task from the p’s task pool
8: message.task = taskToSend
9: send message to the head PE of p’s cluster

10: else
11: send message to the head PE of p’s cluster
12: end if

The case when a PE that received the remote-steal message is a head PE of a

cluster is more complicated. This is due to the fact that all remote-steal messages

pass through the cluster head PEs (in order for the remote-steal messages and head

PE’s approximation of load information to be updated), even if the head PEs are not

directly involved in steal operation. Therefore, as opposed to the non-head PEs, the

head PEs need also to act as routers both for messages that have some work attached

to them, and also for the messages that are still looking for work. Pseudocode for

this case is given in Algorithm 18, where the head PE p receives the remote-steal

message. Firstly, the approximation of the load information from the message and

146 CHAPTER 5. LOAD-BASED TOPOLOGY-AWARE STEALING

the approximation that p owns are synchronised. This is done in updateLoadInfo()

function. After that, five cases are separated:

1. The remote-steal message was initiated by p (lines 1–6). This case is the same

as for the non-head PEs.

2. The remote-steal message was not initiated by p, but the message age is above

the allowed limit (lines 7–8). This means that the message is on its way to the

thief who initiated it. Since as soon as the message age limit gets reached, the

message is forwarded to the head PE of the thief’s cluster (see case 5), it must

be that p is from the same cluster as the thief. Therefore, p just needs to forward

the remote-steal message to the thief who initiated it.

3. The remote-steal message was not initiated by p, the message did not reach its

age limit, and the message contains a task (lines 9–14). This is the case where

the message is on its way to the thief who initiated it. This also means that p is

the head PE of the thief’s cluster, so p just forwards the message to the thief.

4. The remote-steal message was not initiated by p, the message did not reach its

age limit, it does not contain a task and p has some tasks in its task pool (lines

15–18). In this case, one of the tasks is selected and attached to the message,

and the message is sent to the head PE of the thief’s cluster.

5. The final case is the same as case 4, except that p does not have any tasks in

its task pool (lines 20–31). In this case, p first checks its approximation of the

load of PEs from its cluster. If this approximation tells it that at least one PE

with non-zero load exists in the cluster, the message is forwarded to the clus-

ter’s most heavily loaded node. Otherwise, If no PE with non-zero load exists

in p’s cluster, the message needs to be forwarded to the head PE of some other

cluster. In this case, the message age is increased, and if it has reached the limit

(MAX_VISITED_CLUSTERS), it is sent back to the head PE of the thief. Alterna-

tively, if the message has not reached its age limit, p checks its approximation of

the load of remote clusters, and chooses the one to which to forward the message

via call to the choosePE() function. Finally, the message is forwarded to the

head PE of the chosen cluster.

Algorithm 19 shows the function that is used to choose a destination PE to which

to send (or forward) the steal message. It differentiates between local-steal and remote-

steal messages by accepting the locality parameter. In the case of the local-steal,

5.3. FEUDAL STEALING 147

the destination is chosen randomly. In the case of the remote-steal, it must be that the

PE that has invoked the choosePE function is the head PE of some cluster (since if the

non-head PE of a cluster receives the remote-steal message, it will either forward it to

the thief, or to its head PE, but will never have to invoke the function for choosing a

PE). In this case, the head PE checks its approximation of the load of other clusters,

and splits the set of all remote clusters into three groups: ones with the load higher

than the load of a thief’s cluster; ones with lower, but on-zero load; and ones with

zero load. If the first group is non-empty, a random cluster is chosen from it (with

Algorithm 18 Feudal Work Stealing – processRemoteStealMessage(PE
pe,StealMessage message) function for head nodes

1: updateLoadInfo (pe,message)
2: if message.originatingPE == pe then
3: if message.task != NULL then
4: add message.task to pe’s task pool
5: end if
6: remoteStealing=false
7: else if message.age == MAX VISITED CLUSTERS then
8: send message to message.originatingPE
9: else if message.task != NULL then

10: if message.originatingCluster == pe.cluster then
11: send message to message.originatingPE
12: else
13: send message to message.originatingCluster head node
14: end if
15: else if pe has tasks in its task pool then
16: taskToSend = choose a task from pe’s task pool
17: message.task = taskToSend
18: send message to message.originatingCluster head node
19: else
20: if node with non-zero load in pe’s cluster exists then
21: nextTarget = node with highest load in pe’s cluster
22: else
23: message.age++;
24: if message.age < MAX VISITED CLUSTERS then
25: nextTarget = choosePE (REMOTE)
26: else
27: nextTarget = message.originatingCluster head node
28: end if
29: end if
30: send message to nextTarget
31: end if

148 CHAPTER 5. LOAD-BASED TOPOLOGY-AWARE STEALING

probabilities of clusters being chosen proportional to their loads, so the clusters with

higher loads are more likely to be chosen). If the first group is empty, a random cluster

from the second group is chosen (following the same principle for selection based on

their load as in the previous case). Finally, if the first two groups are empty, a random

cluster from the third group is chosen.

Algorithm 19 Feudal Work Stealing – choosePE(Locality locality, PE p, int origi-
natingLoad) function

1: if locality == LOCAL then
2: target = choose a random PE from p’s cluster
3: else
4: noHighLoadTargets = 0
5: noLoadTargets = 0
6: for all clusters c such that c != p.cluster do
7: if p.loadInfo[cluster].load > originatingLoad then
8: noHighLoadTargets++
9: add c to highLoadTargets

10: else if p.loadInfo[cluster].load > 0 then
11: noLoadTargets++
12: add c to loadTargets
13: end if
14: end for
15: if noHighLoadTargets > 0 then
16: targetCluster = choose one of the clusters from highLoadTargets
17: else if noLoadTargets > 0 then
18: targetCluster = choose one of the cluster from loadTargets
19: else
20: targertCluster = choose a random cluster
21: end if
22: targetNode = targetCluster’s head PE
23: return targetNode
24: end if

Finally, Algorithm 20 shows how the synchronisation of the approximations of loads

is done between the one attached to the remote-steal message (message.loadInfo),

and the one which a head PE P has. (p.loadInfo).

5.4 The Evaluation of Feudal Stealing

In this section, we evaluate the performance of Feudal Stealing for the applications and

computing environments we considered in Section 5.2. Our main goal is to discover

whether the applications’ speedups under Feudal Stealing relate to the speedups under

5.4. THE EVALUATION OF FEUDAL STEALING 149

CRS and Hierarchical Stealing, for which we saw that they are the best algorithms of

those that do not use any load information. Additionally, we want to compare Feudal

Stealing with Perfect CRS (in order to investigate the difference in speedups when

perfect and approximate load information are used in the same base work-stealing al-

gorithm) and with Grid-GUM Stealing (in order to compare our approach of obtaining

the approximation of system load to the fully-distributed one used in Grid-GUM).

Regarding the Grid-GUM stealing algorithm, a big difference between it and the

other algorithms we consider is that in Grid-GUM a victim transfers more than one

task to a thief in a single steal operation. This is not a usual approach in work-stealing

on distributed environments, since the steal messages can get prohibitively large, which

can have very negative impact on the environments with limited bandwidth. Addi-

tionally, in the applications where some of the tasks generate additional parallelism

(the kind of applications we consider in this chapter), transferring more than one task

in a single steal operation can result in too much work being transferred to the thief

and in overall load imbalance. In fact, we will see that for only one application (DC-

FixedPar(100,25,4)) does Grid-GUM give a better speedup than Perfect CRS, which

transfers only one task in each steal operation.

Our main focus in this section is on the applications we already considered in

Section 5.2, for which there was a notable difference between the speedups obtained

under the CRS and the Perfect CRS algorithms. For these applications the use of load

information seems very important, and we want to test how good job of approximating

the PE loads does Feudal Stealing do. Therefore, we will pay special attention to the

DCFixedPar(40,k,4) and DCFixedPar(100,k,4) applications. However, in order to do

a ’sanity check’ and make sure that Feudal Stealing does not notably degrade the

performance of the applications where the use of load information does not seem

important, we will start with investigating the SimpleDC applications.

Algorithm 20 Feudal Work Stealing – updateLoadInfo(PE pe, StealMessage message)
function

1: for all clusters do
2: if message.loadInfo[cluster].timeStamp < p.loadInfo[cluster].timeStamp then
3: message.loadInfo[cluster].timeStamp = p.loadInfo[cluster].timestamp
4: message.loadInfo[cluster].load = p.loadInfo[cluster].load
5: else
6: p.loadInfo[cluster].timeStamp = message.loadInfo[cluster].timestamp
7: p.loadInfo[cluster].load = message.loadInfo[cluster].load
8: end if
9: end for

150 CHAPTER 5. LOAD-BASED TOPOLOGY-AWARE STEALING

 0

 10

 20

 30

 40

 50

 60

Hom
Uni-10m

s

2L-30m
s

2L-50m
s

3L-80m
s-30m

s

S
pe

ed
up

k

The SimpleDC(12,5ms) application on the WorldGrid computing environments

Work-stealing algorithm:
Perfect CRS

Feudal Stealing
CRS

Grid-GUM

Figure 5.24: Speedups of SimpleDC(12,5ms) application on WorldGrid computing
environments

5.4.1 The SimpleDC Applications

In our first experiment, we consider the SimpleDC(12,5ms) and SimpleDC(10,5ms)

applications on the WorldGrid computing environments.

Figure 5.24 shows the speedups of the SimpleDC(12,5ms) applications under the

work-stealing algorithms we are interested in. We have omitted Hierarchical Stealing

from the comparison of speedups, as we have seen in Section 5.2.1 that it constantly

performs worse than CRS. We can observe that Feudal Stealing gives a very similar

speedups to Perfect CRS and CRS. Interestingly, the speedups under Feudal Stealing

are slightly worse on more heterogeneous environments that those of CRS. The dif-

ferences are, however, only minor, so there is no significant penalty in using Feudal

Stealing. We can also observe that all variants of the CRS algorithm are significantly

better than Grid-GUM.

Figure 5.25 shows the speedups of the SimpleDC(10,5ms) applications. For these

applications, in Section 5.2.1 we have observed more notable improvements in the

speedups of the Perfect CRS over the CRS algorithm. On Figure 5.25 we can see that

the speedups under the Feudal and the CRS algorithms are very similar, and that

5.4. THE EVALUATION OF FEUDAL STEALING 151

 0

 10

 20

 30

 40

 50

 60

Hom
Uni-10m

s

2L-30m
s

2L-50m
s

3L-80m
s-30m

s

S
pe

ed
up

WorldGrid environment

The SimpleDC(10,5ms) application on the WorldGrid computing environments

Work-stealing algorithm:
Perfect CRS

Feudal Stealing
CRS

Grid-GUM

Figure 5.25: Speedups of the SimpleDC(10,5ms) application on the WorldGrid com-
puting environments

152 CHAPTER 5. LOAD-BASED TOPOLOGY-AWARE STEALING

 0

 10

 20

 30

 40

 50

 60

3 4 5 6 7 9 11

S
pe

ed
up

k

The DCFixedPar(40,k,4) applications on WorldGrid-3L-80ms-30ms

Work-stealing algorithm:
Perfect CRS

Feudal
CRS

Grid-GUM
Hierarchical

Figure 5.26: Speedups of the DCFixedPar(40,k,4) applications on the WorldGrid-3L-
80ms-30ms environment

Feudal Stealing is only very slightly better. Again, similarly to Figure 5.24, we can see

that the Grid-GUM stealing performs notably worse than all variants of CRS stealing.

From the experiments with the SimpleDC applications, we can conclude that Feu-

dal stealing does not bring notable improvements to the speedups of applications,

compared to the CRS stealing, if the applications are very regular and have a lot of

parallelism. However, it also does not decrease the performance of these applications

notably, so it is as good choice for them as is the CRS stealing, and certainly better

choice than the Grid-GUM algorithm.

5.4.2 The DCFixedPar Applications

We now turn our attention to more irregular parallel applications, where nested-parallel

tasks generate more sequential than nested-parallel tasks. As we have mentioned

before, our special focus will be on the combinations of applications and computing

environments for which the Perfect CRS gave notably better speedups than CRS in

Section 5.2.

Figure 5.26 shows the speedups for the DCFixedPar(40,k,4) applications on the

WorldGrid-3L-80ms-30ms environment, for k ∈ {3, 4, 5, 6, 7, 9, 11}. We have observed

that for these applications, especially for higher values of k, there is a notable difference

5.4. THE EVALUATION OF FEUDAL STEALING 153

 0

 10

 20

 30

 40

 50

 60

Hom
Uni-10m

s

2L-30m
s

2L-50m
s

3L-80m
s-30m

s

S
pe

ed
up

Computing Environment

The DCFixedPar(40,9,4) application on the WorldGrid environments

Work-stealing algorithm:
Perfect CRS

Feudal
CRS

Grid-GUM
Hierarchical

Figure 5.27: Speedups of the DCFixedPar(40,9,4) application on the WorldGrid envi-
ronments

in speedups under the CRS and Perfect CRS algorithms. On this figure, we also include

Hierarchical Stealing, as this algorithm showed to perform the best from all algorithms

that do not use load information for highly-irregular applications. We can observe that

for more regular applications (smaller values of k), the CRS and Feudal algorithms

give almost identical speedups, and that both are significantly better than Hierarchical

Stealing. Since there is a lot of parallelism in these applications, and there are a lot

of possible steal victims, the use of load information with Feudal Stealing does not

bring notable improvement (in fact, it even decreases the speedups slightly). However,

for more irregular applications (for k = 7, 9, 11), we can observe that Feudal Stealing

notably outperforms CRS, and that the applications’ speedups get very close to the

ones obtained under the Perfect CRS algorithm. Feudal Stealing does not, however,

outperform Hierarchical Stealing for these applications, but the speedups under these

two algorithms are very similar. We can also observe that the Grid-GUM stealing is

better than CRS for more irregular applications, but is constantly worse than both

Perfect ACRS and Feudal Stealing.

From Figure 5.26, we have observed that the more irregular the application is,

more difference there is in speedups under the Feudal and CRS algorithms (in favour

154 CHAPTER 5. LOAD-BASED TOPOLOGY-AWARE STEALING

3 4 5 6 7 9 11Hom
Uni-10ms

2L-30ms
2L-50ms

3L-80ms-30ms

-10
 0

 10
 20
 30
 40
 50
 60
 70
 80
 90

S
pe

ed
up

 im
pr

ov
em

en
t o

f F
eu

da
l o

ve
r

C
R

S
 (

in
 %

) Comparison of Feudal Stealing and CRS for the DCFixedPar(40,k,4) applications

k
WorldGrid environment

-10
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

Figure 5.28: Improvements of Feudal Stealing over CRS for the DCFixedPar(40,k,4)
applications on the WorldGrid environments

of Feudal Stealing). A similar trend can be observed if we consider the heterogeneity

of underlying computing environment for fixed (irregular) applications. That is, for a

fixed application, the more heterogeneous the computing environment on which it is

executed is, the more improvements in speedup does the Feudal stealing bring to CRS.

For example, Figure 5.27 shows the speedups of the DCFixedPar(40,9,4) application

on the WorldGrid environments. We can again observe that Feudal Stealing performs

better than CRS, and the difference in the performance between the two algorithms

(in terms of the percentage of speedup improvement that Feudal Stealing brings to

CRS) gets bigger the more heterogeneous the computing environment is. We can also

observe that Feudal Stealing outperforms Hierarchical Stealing for all environemnts,

except for WorldGrid-3L-80ms-30ms. The Grid-GUM stealing is constantly better

than CRS, but is notably worse that both Feudal Stealing and Perfect CRS.

Figure 5.28 shows the speedup improvements of Feudal Stealing over CRS for

all of the DCFixedPar(40,k,4) applications on all of the WorldGrid environments we

considered. We can observe that, for more regular applications, the improvements are

very small. In many cases, CRS even gives slightly better speedups. However, for

highly irregular applications (k being 7, 9 or 11), we can observe a sharp increase in

the improvements, especially on more heterogeneous environments. For example, for

5.4. THE EVALUATION OF FEUDAL STEALING 155

 0

 10

 20

 30

 40

 50

 60

15 20 25

S
pe

ed
up

k

The DCFixedPar(100,k,4) applications on WorldGrid-3L-80ms-30ms

Work-stealing algorithm:
Perfect CRS

Feudal
CRS

Grid-GUM
Hierarchical

Figure 5.29: Speedups of the DCFixedPar(100,k,4) applications on the WorldGrid-3L-
80ms-30ms environments

DCFixedPar(40,11,4) applications on the WorldGrid-3L-80ms-30ms environment, we

can observe the speedup improvement of 90%.

Finally, we consider the DCFixedPar(100,k,4) applications, for k ∈ {15, 20, 25}. As

a reminder, these applications are highly irregular, they have many more sequential

than nested-parallel tasks and a very large number of tasks.

Figure 5.29 shows the speedups of the considered algorithms on the WorldGrid-3L-

80ms-30ms computing environment. Interestingly, we can observe here that for k = 25

the Grid-GUM stealing gives a better speedup that Perfect CRS. This application

is the example of the situation where sending more than one task in a single steal

operation brings very good benefits to the load balancing. Nested-parallel tasks in

this application create a lot of subtasks (100), but most of these are sequential (96

sequential, as opposed to 4 nested-parallel). Therefore, a PE that executes the nested-

parallel task will have a large number sequential tasks in its task pool. A thief that

steals from this PE will, under the Grid-GUM stealing, steal half of its tasks. Since

most of the stolen tasks are sequential, the thief will not steal too much work and the

benefit of stealing multiple tasks is that the PEs close to this will be able to obtain

work from it. This does not happen under Feudal Stealing or Perfect CRS, where the

thief would steal just a single (probably sequential) task.

156 CHAPTER 5. LOAD-BASED TOPOLOGY-AWARE STEALING

 0

 10

 20

 30

 40

 50

 60

15 20 25

S
pe

ed
up

k

The DCFixedPar(100,k,4) applications under Grid-GUM-One-Task and Feudal

Work-stealing algorithm:
Grid-GUM-One-Task

Feudal Stealing

Figure 5.30: Speedups of the DCFixedPar(100,k,4) applications on the WorldGrid-
3L-80ms-30ms environments under Grid-GUM-One-Task (the version of Grid-GUM
stealing where only one task is transferred in one steal operation) and Feudal Stealing.

To see that the number of tasks sent on a single steal operation is really the

reason for better performance of the Grid-GUM stealing, compared to Feudal Stealing,

Figure 5.30 compares the speedups of the DCFixedPar(100,k,4) applications on the

WorldGrid-3L-80ms-30ms environment under the Grid-GUM-One-Task stealing and

Feudal Stealing. The Grid-GUM-One-Task stealing is identical to the Grid-GUM

stealing, except that only one task is sent in one steal operation. We can clearly see

that Feudal Stealing outperforms this version of the Grid-GUM stealing. From this

we can conclude that the decisive factor for better performance of the pure Grid-GUM

stealing on Figure 5.29 indeed is sending more than one task in one steal operation.

As for the comparison between Feudal Stealing, CRS and Hierarchical Stealing on

Figure 5.29, we can again observe that the Feudal stealing gives much better speedups

than CRS, and that the speedups under it are very close to the ones under Perfect CRS.

We can also observe that Feudal Stealing and Hierarchical Stealing perform about the

same, with Hierarchical Stealing being slightly better for k = 25 (for the application

with the highest degree of irregularity).

Similarly to the experiments with the DCFixedPar(40,k,4) applications, we also

want to observe how does the performance of Feudal Stealing changes, compared to

Perfect CRS, CRS and Hierarchical Stealing, for a fixed application as the computing

5.4. THE EVALUATION OF FEUDAL STEALING 157

 0

 10

 20

 30

 40

 50

 60

Hom
Uni-10m

s

2L-30m
s

2L-50m
s

3L-80m
s-30m

s

S
pe

ed
up

Computing Environment

The DCFixedPar(100,25,4) application on the WorldGrid environments

Work-stealing algorithm:
Perfect CRS

Feudal
CRS

Grid-GUM
Hierarchical

Figure 5.31: Speedups of the DCFixedPar(100,25,4) application on the WorldGrid
environments

environment on which it is executed gets more heterogeneous. Figure 5.31 shows the

speedups of the DCFixedPar(100,25,4) application on different WorldGrid computing

environments. We can see similar results as in the case of the DCFixedPar(40,k,4)

application. When the heterogeneity of the environment increases, the speedup dif-

ference between Feudal Stealing and the CRS increases in favour of Feudal Stealing.

Also, Feudal Stealing outperforms Hierarchical Stealing on all environments, except

for WorldGrid-3L-80ms-30ms.

Finally, Figure 5.32 shows the improvements of Feudal Stealing over CRS for all of

the DCFixedPar(100,k,4) applications on all of the WorldGrid environments that we

considered. We can observe that the improvements are increasing both as the applica-

tion irregularity increases (when computing environment is fixed) and as the hetero-

geneity in the computing environment increases (for a fixed application). Therefore,

the best speedup improvements (of 70%) can be observed for highly-irregular appli-

cations (e.g. DCFixedPar(100,25,4)) on very heterogeneous computing environments

(e.g. WorldGrid-3L-80ms-30ms).

158 CHAPTER 5. LOAD-BASED TOPOLOGY-AWARE STEALING

 15

 20

 25Hom
Uni-10ms

2L-30ms
2L-50ms

3L-80ms-30ms

-10
 0

 10
 20
 30
 40
 50
 60
 70

S
pe

ed
up

 im
pr

ov
em

en
t o

f F
eu

da
l o

ve
r

C
R

S
 (

in
 %

) Comparison of Feudal Stealing and CRS for the DCFixedPar(100,k,4) applications

k
WorldGrid environment

-10
 0
 10
 20
 30
 40
 50
 60
 70

Figure 5.32: Improvements in speedups of Feudal Stealing over CRS for the
DCFixedPar(100,k,5ms,0.1ms,0.1ms,4) applications on the WorldGrid environments

5.4.3 Why is Feudal Stealing Better than CRS and Grid-

GUM?

The main motivation for developing the Feudal Stealing algorithm was to make better

selection of targets when stealing is done over high-latency networks. Stealing within

a cluster in Feudal Stealing is done in the same way as in CRS. Our main hypothesis

was that the percentage of successful remote-steal attempts (i.e. those where a thief

and a target are from different clusters) will be much higher under Feudal Stealing,

and that this will be the reason for its better performance for applications where there

is a small number of nested-parallel tasks, therefore, the thieves are unable to obtain

work locally most of the time.

To see that our hypothesis holds, we have measured the percentage of successful

remote-steal attempts under all of the algorithms we considered in this section for the

DCFixedPar(40,k,4) and DCFixedPar(100,k,4) applications. Figures 5.33 and 5.34

give us the insight into this. As expected, the Perfect CRS algorithm has the highest

percentage of successful remote steal attempts. The fact that this percentage is not

100 comes from the fact that, when no target has load higher than 0, a thief will

attempt stealing from a random target, which, of course, might not have any work to

send. The next best percentage is for Feudal Stealing. We can see that this percentage

5.4. THE EVALUATION OF FEUDAL STEALING 159

 0

 20

 40

 60

 80

 100

3 4 5 6 7 9 11

P
er

ce
nt

ag
e

of
 s

uc
ce

ss
fu

ll
re

m
ot

e-
st

ea
l a

tte
m

pt
s

k

The DCFixedPar(40,k,4) applications on WorldGrid-3L-80ms-30ms

Work-stealing algorithm:
Perfect ACRS

Feudal Stealing
CRS

Grid-GUM

Figure 5.33: Percentage of the successful remote-steal attempts under Perfect CRS,
Feudal Stealing, CRS and Grid-GUM for the DCFixedPar(40,k,4) applications on the
WorldGrid-3L-80ms-30ms environment

is above 50% even for very irregular applications with very few nested-parallel tasks

(e.g. DCFixedPar(40,11,4)). Additionally, we can see that Feudal Stealing makes

many more successful remote-steal attempts than either CRS or Grid-GUM. We can

also see on both figures that the difference in percentages of successful remote steal

attempts between the Feudal stealing and CRS and Grid-GUM gets higher the more

irregular the application is. Finally, we can also conclude that Feudal Stealing does a

much better job of estimating the PE loads than Grid-GUM does, since many more

remote-steal attempts are successful under it.

5.4.4 Summary

In this section we presented the evaluation of Feudal Stealing for irregular parallel

applications on the WorldGrid computing environments (described in Figure 5.1, page

103). We have showed that Feudal Stealing gives better speedups for more irregular

applications than either the CRS algorithm (on which it is based, and which does not

use any load information) or the Grid-GUM stealing. For more regular applications,

Feudal Stealing performs approximately the same as CRS, and only in a few cases

does it give a slightly worse speedup. We can, therefore, conclude that it is worthwhile

160 CHAPTER 5. LOAD-BASED TOPOLOGY-AWARE STEALING

 0

 20

 40

 60

 80

 100

15 20 25

P
er

ce
nt

ag
e

of
 s

uc
ce

ss
fu

ll
re

m
ot

e
st

ea
l a

tte
m

pt
s

k

The DCFixedPar(100,k,4) applications on WorldGrid-3L-80ms-30ms

Work-stealing algorithm:
Perfect ACRS

Feudal Stealing
CRS

Grid-GUM

Figure 5.34: Percentage of successful remote steal attempts under the Perfect CRS,
Feudal Stealing, CRS and Grid-GUM for the DCFixedPar(100,k,4) applications on
the WorldGrid-3L-80ms-30ms environment

using Feudal Stealing instead of CRS – the improvements in speedups for more irregular

parallel applications over CRS are very good (up to 90%), whereas the speedups for

regular applications are very similar between the two algorithms.

Additionally, we showed that the speedup difference between Feudal Stealing and

CRS is larger the more heterogeneous computing environments is. This shows that

the heterogeneity of the computing environment also plays an important role in the

decision in which of these two algorithms to use.

A comparison between Feudal Stealing and Hierarchical Stealing has shown that

Feudal Stealing gives better speedups both for less irregular applications (on all envi-

ronments) and for highly-irregular applications on less heterogeneous computing en-

vironments. The only cases where Hierarchical Stealing slightly outperforms Feudal

Stealing are highly-irregular applications on highly-heterogeneous computing environ-

ments. However, even in these cases, the differences in speedups between the two

algorithms are not big. Therefore, we can recommend using Feudal Stealing instead

of Hierarchical Stealing, except in the cases where highly-irregular applications need

to be executed on highly-heterogeneous environments, and where small improvements

in speedups that Hierarchical Stealing can give are crucial.

Our main assumption was that the use of load information in Feudal Stealing

5.5. CONCLUSIONS 161

notably increases the chances of the thieves obtaining work from the remote targets

in fewer attempts. We showed that the percentage of successful remote steal attempts

under Feudal Stealing is much higher than under CRS or the Grid-GUM stealing.

This shows that the Feudal stealing has exactly those benefits that we predicted – the

ability to quickly obtain work over high latency networks, with few steal attempts.

5.5 Conclusions

In this chapter we attempted to answer the question of how to choose steal targets

during the execution of irregular parallel applications. Our main assumption was that

the use of dynamic information about PE loads can help in answering this question.

We split the problem of using the load information to drive stealing decisions into two

parts.

The first part deals with the issue of the most appropriate way of choosing steal

targets, under the assumption that perfect (i.e. totally accurate) load information is

present in the runtime system. We have investigated which algorithm for selecting

the targets should thieves use in this settings. Additionally, we have investigated how

much would the state-of-the-art work-stealing algorithms used in modern runtime sys-

tems (described in Section 2.3.1) benefit from the presence of perfect load information.

Since these algorithms were previously evaluated only for very regular applications (i.e.

simple divide-and-conquer ones) on more homogeneous computing environments, the

questions of how would they perform for highly irregular applications on highly het-

erogeneous computing environments, and whether they could benefit from the load

information was open. In order to address both of these issues, in Section 5.2 we

performed a number of experiments using different regular and irregular parallel ap-

plications on different computing environments

Our conclusions in the first part of the chapter were the following:

• The best way to use load information is to do stealing locally (within a cluster)

and remotely (outside of a cluster) in parallel, and to choose random steal targets

with work. We named this algorithm for choosing the targets the Perfect CRS

algorithm, since it is essentially the CRS algorithm with added perfect load

information.

• Of all the algorithms that we considered, when no load information is used

the CRS algorithm gives the best speedups for most of the irregular parallel

applications. However, for highly irregular applications, Hierarchical Stealing

162 CHAPTER 5. LOAD-BASED TOPOLOGY-AWARE STEALING

outperforms it. On the other hand, when load information is added to the

algorithms that we considered, the CRS algorithm performs the best for all

these applications on all computing environments.

• All of the state-of-the-art work-stealing algorithms were able to benefit from the

use of load information. This is especially the case for highly irregular parallel

applications, where we have noted a significant improvement in their speedups

with the use of load information. The improvements were especially significant

on highly heterogeneous computing environments. The only exception was the

Hierarchical Stealing algorithm, where we did not observe a clear correlation

between the amount of improvement obtained with the use of load information

and the heterogeneity of the computing environment.

After demonstrating that load information can indeed be useful in work-stealing,

in the second part of this chapter we focused on the way in which an accurate ap-

proximation of this information could be obtained during the application execution.

In Section 5.3 we presented the Feudal Stealing algorithm. This algorithm uses the

same principle as CRS for selecting steal targets. In addition, it uses a combination of

locally-centralised (i.e. within the cluster) and remotely-distributed ways of exchang-

ing information about PE loads. The main goal of the exchange of load information

is for PEs to obtain a reasonable estimation of the load of other PEs during the ap-

plication execution. We can see Feudal Stealing as an “approximation” of the Perfect

CRS algorithm in realistic conditions, where perfect load information is not available.

In Section 5.4 we evaluated Feudal Stealing for the same set of applications consid-

ered in Section 5.2. We compared it with the Perfect CRS, CRS, Hierarchical Stealing

and Grid-GUM algorithms. We showed that Feudal Stealing gives better speedups

than either CRS or Grid-GUM, especially for highly irregular applications, for which

we concluded in Section 5.2 that the use of load information is crucial. For these

applications, the speedups under Feudal Stealing are close to those that were obtained

under Perfect CRS. Furthermore, we showed that Feudal Stealing has a much higher

percentage of successful remote (i.e. wide-area) steals than either CRS or Grid-GUM.

This shows that its way of approximating the load information is better than the

mechanism used in Grid-GUM. We also showed that Feudal Stealing gives speedups

that are approximately the same as under Hierarchical Stealing for highly-irregular

applications on highly-heterogeneous computing environments, and that are better

than speedups under Hierarchical Stealing for all other applications and computing

environments.

5.5. CONCLUSIONS 163

In the next chapter, we turn our attention to the question of how victims should

respond to the steal requests from thieves.

164 CHAPTER 5. LOAD-BASED TOPOLOGY-AWARE STEALING

Chapter 6

Granularity-Driven Work Stealing

In this chapter, we consider the question of how a victim should respond to a steal

attempt from a thief, i.e. what task to send as a response. We assume that the run-

time system has information about the sizes (as defined in Section 4.2.1) of all tasks

of the application being executed. In Section 6.2, we propose several task selection

policies that victims can use to choose the tasks they send to the thieves. In addition

to information about the task sizes, these policies also rely on information about the

network topology of the underlying computing environment. In Sections 6.3 and 6.4,

we present the evaluation of these policies using both simulations and their implemen-

tation in Grid-GUM. We evaluate the extent to which the applications’ speedups can

be improved under the policies we propose, in comparison to the trivial FCFS task

selection policy, which is used in most of the state-of-the-art work-stealing algorithms.

Most of the material in this chapter was published in Janjic and Hammond [JH10].

6.1 Introduction

In the previous chapter, we have considered the question of where thieves should look

for work during the application execution. To ensure that thieves are not idle for a

long time, it is important to select the stealing targets smartly. We have seen that the

strategy to do remote and local stealing in parallel seems to be the best choice for a

wide range of parallel applications, especially if PEs have a good approximation of the

loads of the PEs in the computing environment. However, we have thus far ignored

another very important question that arises during work-stealing – namely, if a victim

has more than one task in its task pool, what task should it send as a response to the

thief’s steal attempt. Sending the “right” task to the thief can make that thief, and

possibly neighbouring PEs as well, busy for a long time, thus eliminating the need for

165

166 CHAPTER 6. GRANULARITY-DRIVEN WORK STEALING

them to look for work more often. This results in increased utilisation of thieves and,

consequently, in the better speedups.

We proceed to investigate different policies for selecting the tasks to be sent as

responses to the steal attempts. These policies also deal with selection of tasks that

PEs should execute next (once the tasks currently being executed finish or are blocked).

The situation where a PE has finished task execution and needs to choose the next

task to execute constitute a special case of steal operation, where the PE steals a task

from itself.

The most basic task selection policy is First-Come-First-Served (FCFS), where the

victim always chooses the oldest task from its task pool, either for execution or to be

sent to a thief. To consider any other policy only makes sense if the application’s tasks

are sufficiently “different” in some way, and if there is a difference in cost of sending

different tasks to different PEs. In other words, the application needs to have a non-

zero degree of irregularity, and the computing environment needs to be heterogeneous

to some extent.

All the work-stealing algorithms proposed in literature assume that FCFS is the

best task selection policy to use when the thief and the victim are different, and

Last-Come-First-Served (LCFS) when the thief and the victim are the same. This

approach seems natural for simple divide-and-conquer applications, as the data locality

is preserved (since PEs execute the tasks most recently created tasks and whose data

is still found in cache memory). The remote thieves in this case receive large chunks

of work, as older tasks tend to be larger that the newer ones.

We can see that the FCFS-LCFS policy described above uses some implicit as-

sumptions about the tasks that comprise the application being executed, such that,

the older the task is, the larger it is, and the more parallelism it creates. While this is

generally the case for the SimpleDC applications, in the case of the DCFixedPar ap-

plications, for example, we see that some of the older tasks might be sequential, while

some of the newer tasks might have a lot of parallelism. For irregular SingleDataPar

applications, task size is unrelated to age. Yet another drawback of the FCFS-LCFS

policy is that it does not distinguish between thieves that are at different distances (in

terms of communication latency) from the victim. The oldest task will be sent to the

thief regardless of whether it belongs to the same cluster as the victim or not. This

may not always be the best solution.

For our purposes, we assume that the runtime system has a good approximation

of the size of each parallel task in the application. We propose novel policies that use

this information to make better task selection decisions. The approximation of the

6.2. GRANULARITY-DRIVEN TASK SELECTION POLICIES 167

task size need not be perfect. We do not have to know the exact sizes of tasks, we

only need to be able to compare two tasks, and determine which one is the larger.

Since the problem of selecting the task to execute or to send to the thief is orthog-

onal to the problem of selecting the stealing targets, the policies that we propose here

are not specifically tied to any of the work-stealing algorithms considered in Chapter

5. In other words, our policies can be readily “plugged” into any of these algorithms.

This makes the results and the conclusions that we obtain in this chapter very general

and applicable to a wide class of runtime systems.

6.2 Granularity-Driven Task Selection Policies

Figure 6.1: A computationally-uniform Grid

Since our focus is on computationally uniform distributed computing environments,

the main problem for work-stealing that comes from the environment side is the pres-

ence of different communication latencies between a victim and different thieves. Con-

sider the example computing environment on Figure 6.1, where a cluster that comprise

168 CHAPTER 6. GRANULARITY-DRIVEN WORK STEALING

8 PEs, located in St. Andrews, is connected to the similar cluster in Timisoara, Ro-

mania. We can observe that a steal attempt can arrive to a victim from three different

latency levels:

1. same-PE level – When a PE finishes executing a task (or when the executed

task gets blocked on communication), it needs to choose one of the tasks from

its task pool and execute it. As we have already mentioned before, we can see

this as a special case of stealing, where a thief is attempting to steal from itself.

The latency between the thief and the victim in this case is zero.

2. same-cluster (local, LAN) level - When a victim receives a steal attempt from a

thief that is in the same cluster. We assume that in this case the latency between

the thief and the victim is low, but that it is still higher than in the previous

case.

3. remote-cluster (remote, WAN) level - When a victim receives a steal attempt

from a thief from the remote cluster. In this case, we assume that the latency

between the thief and the victim is much higher than in either of the previous

two cases.

In this example, we distinguish between only two levels of communication latencies

in the environment – one between PEs in the same cluster and one between PEs in dif-

ferent clusters. Of course, in the environments consisting of many clusters, the latency

between various clusters can be highly different (take, for example, more heterogeneous

WorldGrid environments we studied in Chapter 5). In addition, some clusters might

consist of multicore machines1, and the latency between different cores on the same

machine is much lower than the latency between different machines. Therefore, both

the same-cluster and remote-cluster levels can themselves consist of several different

levels of latencies. However, most of the time it is enough to consider just two levels,

since usually the latencies in the remote-cluster level are a few orders of magnitude

higher that the latencies in the same-cluster level, and the differences between the

latencies inside the individual levels are not too significant.

Consider what happens during the execution of parallel applications we consider in

this thesis on distributed environments. At the beginning of the execution, the main

task (possibly after some initial sequential computation) creates a set of child tasks

and then blocks until all child tasks finish execution and (if they are offloaded) send

their results back. These child tasks can, of course, create their own child tasks. If a

1In our setup, we consider each core of a multicore machine to be a separate PE

6.2. GRANULARITY-DRIVEN TASK SELECTION POLICIES 169

task is stolen from the PE that is executing its parent task, it needs to be transferred

to the thief. In our simulated environment, each task can fit into a single message.

In realistic runtime-systems, however, depending on the size of the data that needs

to be transferred in order to execute the task, the task transfer may involve sending

multiple messages from the victim to the thief. In the case of Grid-GUM, since data

fetching is done lazily, the task transfer may involve the exchange of multiple FETCH

and RESUME messages, which increases the overhead in task transfer. After the task

finishes execution on the thief, its result needs to be sent back to the victim. Again,

in realistic runtime systems, this may involve sending multiple messages, and in the

case of Grid-GUM, the exchange of the series of FETCH-SCHEDULE messages is needed.

From the discussion above, we can see that executing a task on some PE, other

than the one where its parent task is, involves possibly large overheads. However, in

many cases these overheads are constant, no matter how large (in terms of the task

size, as defined in Section 4.2.1) the task is. Therefore, sending a large task from

a victim to a thief has the same overhead as sending a small one. The question is

whether we can use this fact, plus the knowledge about the sizes of application tasks

to select different tasks at different latency levels in order to better hide the WAN

latency (maybe at the expense of increasing the number of messages sent over LAN).

When the tasks sizes are not known (or approximated) in advance of the execution,

we can use the same policy which is generally used for the divide-and-conquer applica-

tions – First-Come-First-Served (FCFS) policy at the same-cluster and remote-cluster

levels, and Last-Come-First-Served (LCFS) at the same-PE level. The last task that

a PE creates will be the first one to be executed on it, and the first task that the PE

creates will be the first one to be sent to a thief. In the following discussion, we will

refer to this policy simply as FCFS, and we will use it as a baseline against which we

will compare more advanced policies.

Assuming, however, that we have a-priori information about the size of every task,

we can instead organise the task pool into a priority list ordered by task sizes and then

use different selection policies at different latency levels. We will consider the following

granularity-driven task selection policies for the three different latency levels:

170 CHAPTER 6. GRANULARITY-DRIVEN WORK STEALING

• Small-Small-Large (SSL). When responding to a steal attempt from the same-

PE or the same-cluster level, select the smallest task. At the remote-cluster

level, select the largest one. The rationale for this policy is that a victim wants

to reserve as many large tasks as possible for the remote thieves, to compensate

for the high communication costs that they will incur. The victim also wants to

keep the remote thieves busy for a longer period than the PEs from the same

cluster, so that they request work less often. This means that they would need to

send fewer messages over high-latency networks, in the case that they repeatedly

need to steal from the same victim. In this way, we aim to both improve the

CPU utilisation and to decrease the number of messages sent (at least, the ones

sent over high-latency networks), compared to the basic FCFS policy.

• Small-Large-Large (SLL). Choose the smallest task only for the same-PE

level, and select the largest task for all other levels. The rationale for preferring

this policy to SSL is that the only important thing when answering to a steal

attempt is to send the large task, and that it does not matter whether the

attempt comes from the same or different cluster. The goal here is only to avoid

the overheads of offloading too small tasks, and not to save the largest ones for

more remote PEs. Using this policy, the PE that creates parallel tasks should,

therefore, execute all or most of the small tasks and only large tasks should ever

be offloaded. This is the policy that is implicitly used in all algorithms considered

in Section 2.3.1, as for the simple divide-and-conquer applications it is the same

as the FCFS policy.

• Large-Large-Large (LLL). Always choose the largest task. This is the greedy

approach, where we try to get the largest task executed as soon as possible (i.e.

as soon as there is an idle PE to execute it). Smaller tasks are left to be executed

later.

• Large-Large-Small (LLS). Choose the smallest task for the remote-cluster

level, and the largest one for the same-PE and same-cluster levels. In this way,

we hope that the PEs nearby the victim will execute all large tasks, and by the

time they finish, the remote PEs will finish executing the small tasks and send

their results back. This, perhaps counter-intuitive, policy is actually optimal

when the number of tasks altogether is approximately the same as the number

of PEs.

Note that we are not trying to achieve load balance in such a way that each PE

will execute approximately the same number of tasks, since for irregular applications

6.3. SIMULATIONS EXPERIMENTS 171

executed on heterogeneous environments, this kind of balance would result in very

poor runtimes. Rather, our goal in most policies is to send large amounts of work to

the remote PEs, so that they will execute a smaller number of large tasks. In this way,

we expect to achieve a better balance of actual work across the entire environment,

and also to minimise the impact of the communication costs.

The main assumption for the granularity-driven task selection policies is that there

exists the irregularity in the sizes of the tasks that comprise the application that is

executed. Since we have introduced the precise definition of the degree of irregularity of

parallel application in Section 4.2.1, we can precisely relate the amount of application

irregularity to the improvement that the granularity-driven task selection policies bring

to the FCFS one.

In the remainder of the chapter, we investigate (using both the SCALES simulator

and the implementation in Grid-GUM) the extent to which the proposed granularity-

driven task selection policies can improve the speedups of irregular applications on

heterogeneous computing environments, when compared to the FCFS policy. We also

investigate the correlation between some characteristics of an application (namely, the

number of application tasks, their mean task size and the degree of irregularity of

the application) and the improvements that these policies bring. This enables us to

observe for which kind of applications is it worth using granularity-driven task selection

policies, and what are the limits on improvements in speedups that we can achieve.

6.3 Simulations Experiments

6.3.1 Overview

The purpose of the simulation experiments was to evaluate the extent of the improve-

ments in speedups that the granularity-driven task selection policies bring to a wide

range of irregular parallel applications. This shows us whether the knowledge of the

sizes of tasks that the application comprise can play an important role in its load

balancing on heterogeneous computing environments.

In most of the experiments, our focus will be on the SingleDataPar(t,m,d) appli-

cations (see Section 4.2). As a reminder, these applications comprise a master task,

which immediately generates a number of sequential child tasks (with random sizes

under the normal distribution, with the mean task size m and the standard deviation

d), and then blocks until all of the child tasks complete their execution. After all of

the child tasks send their results back to the master task, the master task finishes.

Since in this case all of the parallelism is created on one PE, we can assume that the

172 CHAPTER 6. GRANULARITY-DRIVEN WORK STEALING

thieves always tries to steal from this PE (in the rest of the discussion, we will call this

PE the main PE). We, therefore, do not need to pay attention to where the thieves

look for work. Wrong decisions of this kind can interfere with the results we are trying

to obtain, since the poor speedup of the application can also come from the wrong

selection of steal targets.

Note that, for fixed values of t,m and d, SingleDataPar(t,m,d) represents a class

of applications, rather than a single application (as was the case, for example, for

DCFixedPar(n,k,Cseq,t), which represented a unique application). Different applica-

tions that belong to the same SingleDataPar(t,m,d) class may have tasks of different

sizes, but they all share the same mean task size, standard deviation and the number of

tasks. This further means that if we execute two different applications that belong to

this class, we will likely get different speedups. Therefore, for each experiment where

we consider the speedup for a particular class of SingleDataPar applications, we have

taken the average speedup of 100 different applications that belong to that class.

For the completeness of the discussion, we also consider some examples of the

applications with nested parallelism (the DCFixedPar applications). For this kind

of applications, we will assume that the underlying work-stealing algorithm used is

Cluster-Aware Random Stealing with the perfect knowledge of dynamic PE loads

(Perfect CRS, described in Section 5.1.1). As we have seen in Chapter 5, this algo-

rithms makes the best decisions about where to send the steal attempts of all the ones

we considered, so it makes sense to use it as a base for the granularity-driven task

selection policies for applications with nested parallelism. Note that here, for fixed

values of n, k Cseq and t, the DCFixedPar(n,k,Cseq,t) is the unique application. How-

ever, task distribution under Perfect CRS work-stealing algorithm can be different in

different executions of the same application, due to some degree of randomness. We

have, therefore, similarly as for the SimpleDataPar application, in each experiment

taken an average speedup over 100 exeucutions of the same application.

For the SingleDataPar(t,m,d) applications, we will consider each of the three appli-

cation parameters (as a reminder, t is the number of application tasks, m is the mean

task size, and d is the degree of irregularity) separately, and observe what impact

different values of each of them have on applications’ speedups under the granularity-

driven task selection policies. Our aim is, therefore, not only to investigate whether

the granularity-driven task selection policies can improve speedups of parallel appli-

cation, but also for what applications are improvements the best/worst and also what

policy is the best for what kind of applications

Concerning the computing environments that we study, in most of the experi-

6.3. SIMULATIONS EXPERIMENTS 173

ments we consider the environments consisting of just two clusters connected through

a very high-latency network, since these kind of architectures (having two different

latency levels) correspond the best to the task selection policies we investigate. Dif-

ferent environments that we consider will, therefore, differ in the number of PEs

they consist of and the inter-cluster and inside-cluster latencies. Similarly to the

environments considered in Section 5.2, we will denote this kind of environments by

Grid(2,n,LANLat,WANLat), where n is the number of PEs in each cluster, LANLat

is the communication latency between PEs in the same clusters, and WANLat is the

communication latency between clusters. Again, for the completeness of discussion,

we will also consider how our approach scales to more heterogeneous environments,

where more than two latency levels exist.

Concerning the actual execution of applications, the setup of the SCALES simulator

assumes that the scheduling is preemptive – that is, as soon as a victim receives a steal

attempt, it will stop the execution of its currently executed task (if any), respond to

the steal attempt, and then continue the execution. If a child task is executed on the

same PE as its parent, there will be no communication costs. If, instead, it is offloaded

to a different PE, then we assume that it will be packed, together with all of the data

it needs for its execution, into a single message. When the child task completes, we

again assume that its result, which needs to be sent to the PE where its parent task

resides, can fit into one message. We will, therefore, have a fixed communication cost

of two messages for each task transferred between PEs. This accurately models the

eager work-stealing mechanism that has been implemented in many systems (Cilk,

Satin, Javelin 3 etc.).

In the following discussion, for the applications with a single level of parallelism

executed on two-cluster environments, we will adopt the following terminology. The

main PE will refer to the PE where the main task is executed, the main cluster to the

cluster where the main PE is, and the remote cluster to the other cluster (See Figure

6.2). For the environments comprising more than two clusters, remote cluster will

refer to any cluster other than the one to which the victim that is currently considered

belongs.

We now list the hypotheses we wanted to test about the performance of granularity-

driven task selection policies:

• For parallel applications with a larger number of tasks, either the SSL or the SLL

policy will bring the best speedup - Intuitively, for the applications with a large

number of tasks, the strategy to save the largest tasks for PEs in the remote

cluster should prove to be better than a greedy strategy to execute the largest

174 CHAPTER 6. GRANULARITY-DRIVEN WORK STEALING

Figure 6.2: Snapshot of the execution of an application on the example environment
that comprise two clusters, with 4 PEs in each cluster

task as soon as possible. In this way, the PEs from the remote cluster should

spend less time in trying to obtain work, therefore increasing their utilisation.

Consequently, we expected that the SSL or the SLL policy will bring the best

speedups for applications that have enough parallel tasks. For smaller appli-

cations, LLL or LLS might as well be the policies to choose, as their greedy

approach might be better in the short term.

• Increases in speedups under the SSL and the SLL policy over the FCFS one

come from better utilisation and a fewer number of steal attempts sent from the

PEs from the remote cluster - If, indeed, the SSL and the SLL policies show

to be better than FCFS, then it will be due to a fact that the PEs are overall

better utilised. For the applications with a single level of parallelism, this should

come from the better utilisation of the PEs from the remote cluster, since larger

tasks are executed on them, so their ratio between the “useful time” (the time

spent in task execution) and the “idle time” (the time spent in looking for work)

should be significantly better than under the FCFS policy. On the other hand,

the utilisation of the PEs from the main cluster can drop under the SSL policy

6.3. SIMULATIONS EXPERIMENTS 175

(compared to FCFS), as smaller tasks get to be executed there. However, since

the communication latency between the PEs from the main cluster is low, they

are able to obtain work quickly, so, except for the applications with extremely fine

grained tasks, we do not expect that the drop in utilisation will be significant. In

other words, the increase of utilisation of the PE from the remote cluster should

be far greater than the decrease of utilisation of the PEs from the main cluster.

• The granularity-driven task selection policies will have more impact on the execu-

tion of applications with finer grained tasks - We assumed that if the application’s

tasks are sufficiently coarse-grained, it becomes unimportant what task is chosen

for offloading at what latency level. In this case, even with very high latencies,

the cost of transferring a task over the network (and sending its result back)

becomes negligible, as it is significantly lower that the cost of task’s sequential

part. On the other hand, for the applications with finer grained tasks, if the task

granularity is not taken into account when decisions are taken about what tasks

to send to the thieves, bad cases can happen where very fine grained tasks are

transferred over high latency network, and where the costs of their transfer are

far greater than the cost of their sequential execution. Therefore, we assumed

that the granularity-driven task selection policies (except for the LLS one) will

prevent these bad cases from happening, therefore improving the speedups of

applications with finer-grained tasks.

• The more irregular parallel application is, the better improvements can granularity-

driven task selection policies bring - Applications with a lower degree of irregular-

ity will have tasks of similar size, so we do not expect for the granularity-driven

task selection policies to have a big impact on the speedups of this kind of ap-

plications. We only expect that the improvements will be notable if task sizes

are sufficiently variable. Furthermore, the more different the sizes are, the bigger

difference is between offloading the “right” and the “wrong” tasks. As a con-

sequence, we expected that the improvements under the granularity-driven task

selection policies will increase as applications’ degree of irregularity increases.

6.3.2 Applications with Variable Mean Task Size

In our first set of experiments, we focus on investigating the performance of the

granularity-driven task selection policies for highly irregular parallel applications that

comprise a large number of tasks. We observe how do the speedups under all considered

policies change as the mean task size of the application changes.

176 CHAPTER 6. GRANULARITY-DRIVEN WORK STEALING

The results that we present in this section are not sensitive to the particular two-

cluster environment we consider. We will, therefore, focus on the environment where

each cluster consists of 8 PEs, the inter-cluster latency is 30ms, and the latency inside

clusters is 0.1ms. Similarly to the WorldGrid-2L-30ms environment considered in the

previous chapter, this environment simulates connecting two clusters from different

countries from the same continent. Unless we specify otherwise, this will be the default

environment we consider in all of the simulation experiments. That said, we also

present the results for other two-cluster environments, and we will devote a separate

section for investigating how do the granularity-driven task selection policies scale on

the environments consisting of more than two clusters.

We assume a single level of parallelism in applications. For all tested applica-

tions, we fix the degree of irregularity to be 0.9. In most of the experiments, we

will fix the number of tasks in an application to be 100 per PE (which makes up

to 1600 tasks for our default environment). That is, most of the time we consider

SingleDataPar(1600,m,0.9) applications, where m is variable. We will also consider

some applications with larger number of tasks. However, we will see that the results

we present here are not sensitive to the number of tasks that an application comprise,

as long as there are enough tasks.

Figure 6.3 shows the speedups obtained under all of the granularity-driven task se-

lection policies, plus the FCFS policy, for the SingleDataPar(1600,m,0.9) applications

with various values of m (mean task size). From the figure, we can observe that the

SSL, SLL and LLL policies bring improvements to applications’ speedups, compared to

when the FCFS policy is used. We can also observe that the SSL policy gives the best

speedups and that the LLS one is constantly the worst. We can, therefore, conclude

that for these applications, the SSL policy is the best one and that the information

about the task sizes can improve the applications’ speedups, compared to when no

such information is present (under the FCFS policy).

Figure 6.4 shows the improvements in speedups that the best policy (SSL) brings

over the FCFS one for the applications considered in Figure 6.3. We can see that the

improvements are mostly notable (above 10%) for the applications with finer-grained

tasks. This fact agrees with our hypothesis that the better improvements under the

granularity-driven task selection policies can be obtained for the applications with

finer-grained tasks. For the applications with coarse-grained tasks, the improvements

become smaller, but are still measurable. This is expected, since for these applications,

even the smallest tasks are still quite large, so the overheads in their offloading are

not too notable, and therefore reserving the large tasks for the PEs from the remote

6.3. SIMULATIONS EXPERIMENTS 177

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 1 20 40 60 80 100 120 140 150

S
pe

ed
up

Mean task size (in ms)

Speedups of the SingleDataPar(1600,m,0.9) applications on Grid(2,8,0.1ms,30ms)

Task selection policy:
FCFS

SSL
SLL
LLL
LLS

Figure 6.3: Speedups of the SingleDataPar(1600,m,0.9) applications on the
Grid(2,8,0.1ms,30ms) computing environment

cluster does not make much difference for overall PE utilisation and the applications’

speedups. Another thing that we can observe is that the SSL policy is always better

than FCFS, which means for the applications considered here, the information about

the task sizes is always useful at least to some extent.

From Figure 6.3, we can observe that the LLS policy performs the worst of all the

policies that we consider, for all applications. This is somewhat expected, since for

larger applications, it does not seem useful to save small tasks for the PEs from the

remote cluster. Still, it is useful to consider the difference between speedups obtained

under the best (SSL) and the worst (LLS) policy, for this is a kind of a best-case

scenario for the use of information about the task sizes. This comparison shows us the

difference in speedups obtained under the policies that make the best and the worst

decisions about what tasks to send where. Some applications may create tasks whose

sizes follow some particular pattern (where, for example, the tasks created earlier are

smaller), so selecting the tasks under the FCFS policy may correspond to the LSS (the

policy we do not consider here) or the LLS policy. Figure 6.5, therefore, shows the

178 CHAPTER 6. GRANULARITY-DRIVEN WORK STEALING

 0

 2

 4

 6

 8

 10

 12

 14

 1 20 40 60 80 100 120 140 150

Im
pr

ov
em

en
t i

n
sp

ee
du

p
of

 S
S

L
ov

er
 F

C
F

S
 (

in
 %

)

Mean task size (in ms)

Comparison of the SSL and FCFS poliies for the applications from Figure 6.3

Figure 6.4: Improvements in speedups that the SSL policy brings over the FCFS one
for the SingleDataPar(1600,m,0.9) applications

speedup improvements (in percentages) that the SSL policy brings over the LLS one

for the applications considered on Figure 6.3. We can see that the improvements are

between 20% and 30% for the applications with finer-grained tasks (with the mean

task size of up to 80ms), and between 10 and 15% for the applications with coarse-

grained tasks. This shows that we can obtain significant improvements in speedups if

we use information about the task sizes in the right way.

Very similar results to the ones presented in Figures 6.3 – 6.5 hold for other comput-

ing environments which consist of two clusters that communicate over a high-latency

network. The only difference is that the same speedups are obtained for the appli-

cations with larger mean task size in the case of environments with higher latency

between clusters. Also, as we can expect, the applications’ speedups are generally

lower when the latency between clusters is higher. For example, Figure 6.6 shows the

results equivalent to these on Figure 6.3 for the Grid(2,8,0.1ms,60ms) (Figure 6.6a)

and Grid(2,8,0.1ms,90ms) (Figure 6.6b) environments. We can observe almost iden-

tical behaviour of the granularity-driven task selection policies as on Figure 6.3 – for

6.3. SIMULATIONS EXPERIMENTS 179

 0

 5

 10

 15

 20

 25

 30

 1 20 40 60 80 100 120 140 150

Im
pr

ov
em

en
t i

n
sp

ee
du

p
of

 S
S

L
ov

er
 L

LS
 (

in
 %

)

Mean task size (in ms)

Comparison of the SSL and LLS policies for the applications from Figure 6.3

Figure 6.5: Improvements that the SSL policy brings over the LLS one for the
SingleDataPar(1600,m,0.9) applications

the applications with smaller mean task size, all of the considered policies give similar

speedups, but as the mean task size of the applications increase, the SSL policy out-

performs all other policies; the SSL, SLL and LLL policies outperform the FCFS one,

and the LLS policy is constantly the worst one. We can, however, observe that the

mean task size after which SSL starts to outperform FCFS (and other policies) gets

slightly larger as the inter-cluster latency is increased.

Similarly, when we investigate the environments where the latency between clusters

is the same as in our default environment (30ms), but which have higher latency inside

clusters, we get more or less the same results. Figure 6.7 shows the results equivalent

to these on Figure 6.3, but for the Grid(2,8,0.5ms,30ms) environment. Again, we can

observe almost identical results as on Figure 6.3.

Finally, we briefly show how do the granularity-driven task selection policies per-

form on the environments with larger number of PEs. We will postpone more detailed

analysis of the scalability of these policies to Section 6.3.5. Here, we show (Figure 6.8)

the speedups of the same set of applications as on Figure 6.3 on yet another two-cluster

180 CHAPTER 6. GRANULARITY-DRIVEN WORK STEALING

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 1 20 40 60 80 100 120 140 150

S
pe

ed
up

Mean task size (in ms)

Speedups of the SingleDataPar(1600,m,0.9) applications on Grid(2,8,0.1ms.60ms)

Task selection policy:
FCFS

SSL
SLL
LLL
LLS

(a) Inter-cluster latency 60ms

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 1 20 40 60 80 100 120 140 150

S
pe

ed
up

Mean task size (in ms)

Speedups of the SingleDataPar(1600,m,0.9) applications on Grid(2,8,0.1ms.90ms)

Task selection policy:
FCFS

SSL
SLL
LLL
LLS

(b) Inter-cluster latency 90ms

Figure 6.6: Speedups of the SingleDataPar(1600,m,0.9) applications on the
Grid(2,8,0.1ms,60ms) and Grid(2,8,0.1ms,90ms) environments

6.3. SIMULATIONS EXPERIMENTS 181

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 1 20 40 60 80 100 120 140 150

S
pe

ed
up

Mean task size (in ms)

Speedups of the SingleDataPar(1600,m,0.9) applications on Grid(2,8,0.5ms,30ms)

Task selection policy:
FCFS

SSL
SLL
LLL
LLS

Figure 6.7: Speedups of the SingleDataPar(1600,m,0.9) applications on the
Grid(2,8,0.5ms,30ms) environment

environment, where one cluster consists of 8 PEs and the other cluster consists of 16

PEs. Figure 6.8a shows the speedups when the main task is executed in a smaller (8

PEs) cluster, and the Figure 6.8b when it is executed on a larger (16 PEs) cluster. We

can again observe the similar behaviour of the considered policies as on Figure 6.3,

with the SSL policy giving the best speedups. However, we can see on Figure 6.8b

that, in the case of the application’s main task being executed on a larger cluster, the

improvements that the SSL policy brings over FCFS are smaller. This is due to the

fact that, under both policies, less tasks get to be offloaded to the PEs from the remote

cluster (since the main cluster is larger, it will get much more work than the remote

one) and, therefore, there is less chance for the SSL policy to bring improvements. We

can also observe that there is very little difference between the SLL and LLL policies

there – the difference is even smaller than on Figure 6.3. This is again due to the fact

that the PEs from the main cluster execute more tasks than on the environment where

both clusters consist of 8 PEs. This means that the main PE itself executes less tasks,

so there is not much difference in whether it executes large or small tasks.

182 CHAPTER 6. GRANULARITY-DRIVEN WORK STEALING

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 1 20 40 60 80 100 120 140 150

S
pe

ed
up

Mean task size (in ms)

Speedups of the SingleDataPar(1600,m,0.9) applications

Task selection policy:
FCFS

SSL
SLL
LLL
LLS

(a) The main task executed on the smaller cluster

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 1 20 40 60 80 100 120 140 150

S
pe

ed
up

Mean task size (in ms)

Speedups of the SingleDataPar(1600,m,0.9) applications

Task selection policy:
FCFS

SSL
SLL
LLL
LLS

(b) The main task executed on the bigger cluster

Figure 6.8: Speedups of the SingleDataPar(1600,m,0.9) applications on a two-clusters
environment, with the latency between clusters being 30ms, and the latency inside
clusters being 0.1ms. Cluster 1 consists of 8 PEs, whereas Cluster 2 consists of 16
PEs.

6.3. SIMULATIONS EXPERIMENTS 183

All of the applications that we have considered so far had the same number of

tasks (100 per PE, which gives a total of 1600 tasks). However, no significant changes

in the performance of the policies can be observed if we look at the applications

with larger number of tasks. For example, Figure 6.9 shows the results equivalent to

these on Figure 6.3 for the SingleDataPar(4800,m,0.9) and SingleDataPar(8000,m,0.9)

applications. We can see that the relations between mean task size and performance

of task selection policies is similar to the one on Figure 6.3, except that the speedups

are generally higher (due to a larger number of parallel tasks).

Taking into account all of the experiments we have conducted in this section, we

can make several conclusions about the performance of the granularity-driven task

selection policies, when applied to highly irregular applications with a large number

of tasks:

1. All of the granularity-driven task selection policies (except for LLS) bring im-

provements in the applications’ speedups, when compared to the FCFS one. We

can note the average speedup improvements of 10-20%, and up to 30% in the

best case. It is always the case that the granularity-driven policies are better

than the FCFS one.

2. The best policy to use is SSL.

3. Generally, the strategy to leave the large tasks to the PEs in the remote cluster

works the best. We can see significant improvements (up to 30%) with the

policies that use this strategy (SSL, SLL, LLL) when compared to the LLS policy,

which aims to execute the larger tasks locally and the smaller ones remotely.

4. Saving the largest tasks for the PEs from the remote cluster (under the SSL

policy) brings small (but measurable) improvements compared to when only

large (but not necessarily the largest) tasks are saved (in the case of the LLL

and SLL policies).

5. The improvements that the granularity-driven task selection policies bring are

bigger for the applications with finer-grained tasks.

6.3.3 Applications with Variable Number of Tasks

In the previous section we have seen that the SSL task selection policy gives the best

speedups for the applications with a larger number of tasks, no matter what the task

granularity is. We have also seen that the improvements that this policy brings over

184 CHAPTER 6. GRANULARITY-DRIVEN WORK STEALING

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 1 20 40 60 80 100 120 140 150

S
pe

ed
up

Mean task size (in ms)

Speedups of the SingleDataPar(4800,m,0.9) applications on Grid(2,8,0.1ms,30ms)

Task selection policy:
FCFS

SSL
SLL
LLL
LLS

(a) 4800 tasks

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 1 20 40 60 80 100 120 140 150

S
pe

ed
up

Mean task size (in ms)

Speedups of the SingleDataPar(8000,m,0.9) applications on Grid(2,8,0.1ms,30ms)

Task selection policy:
FCFS

SSL
SLL
LLL
LLS

(b) 8000 tasks

Figure 6.9: Speedups of the SingleDataPar(4800,m,0.9) and
SingleDataPar(8000,m,0.9) applications on the Grid(2,8,0.1ms,30ms) environment

6.3. SIMULATIONS EXPERIMENTS 185

FCFS are in the range of 10-15% for most of the applications. In this section, we

investigate how do the considered policies perform for the applications with a smaller

number of tasks. We will again consider only highly-irregular applications (with the

irregularity degree of 0.9). All of the applications we consider will be divided into three

groups, based on the mean task granularity. Applications with very-fine grained tasks

will be represented by the applications with the mean task size of 5ms, applications

with fine-grained tasks by the applications with the mean task size of 30ms, and

applications with coarse-grained tasks with the applications with the mean task size

of 150ms. Again, as in the previous section, in most of the experiments we will consider

our default computing environment, which is Grid(2,8,0.1ms,30ms).

 3

 4

 5

 6

 7

 8

 9

 10

16 160 320 480 640 800 960 1120 1280

S
pe

ed
up

Number of tasks

Speedups of the SingleDataPar(t,5ms,0.9) applications on Grid(2,8,0.1ms,30ms)

Task selection policy:
FCFS

SSL
SLL
LLL
LLS

Figure 6.10: Speedups of the SingleDataPar(t,5ms,0.9) applications on the
Grid(2,8,0.1ms,30ms) environment

Figure 6.10 shows the speedups of the SingleDataPar(t,5ms,0.9) applications, where

t is variable, under all of the considered task selection policies, executed on the

Grid(2,8,0.1ms.30ms) environment. We can observe that the speedups are generally

very variable. There is, however, certain regularity in the variations of speedups under

individual task-selection policies. We can observe, for all policies, repeating phases

186 CHAPTER 6. GRANULARITY-DRIVEN WORK STEALING

where the speedups first increase as the number of tasks in the applications increases,

then reach the peak and after that, as the number of tasks in the application is further

increased, start to decrease. This behaviour is especially notable for the applications

with smaller number of tasks. The reason for this is as follows.

In the applications that we consider in this experiment, the task sizes are very

small (relative to the communication latency between clusters), which means that

the overall execution times of applications are also very small. Since the overheads

of offloading tasks to the PEs from the remote cluster are very high (relative to the

task sizes), speedups of these applications are very sensitive to the task placement

decisions. When the application execution is approaching its end, a wrong decision

about sending just one task from the main cluster to the remote cluster can create

a perfect load imbalance, where the whole main cluster sits idle, waiting for a small

task to be transferred to the remote cluster, executed there, and its result to be sent

back to the main cluster. Taking into account that, on our default environment, the

overhead in offloading a task to the remote cluster is 60ms, and that the mean task

size is 5ms, it can happen that the decision to offload a single task to the remote

cluster adds about 65ms to the application execution time, the same amount of time

as if approximately 10 more tasks are executed on each PE in the main cluster! 2

This is the reason for the variations in the application speedups - under a fixed policy,

for applications with a certain number of tasks, the described bad situation does not

happen as PEs from the main cluster manage to grab last application tasks, and they

do not have to wait for the remote PEs. However, when more tasks are added to the

application, the remote PEs manage to grab some tasks near the end of the application

execution, the described bad situation occurs and speedups start to decrease. Adding

further tasks to the apllications again utilizes the PEs from the main cluster near the

end of execution, and speedups again start to increase.

To illustrate this problem, consider Figure 6.11, which shows the activity pro-

files of example SingleDataPar(128,5ms,0.9) and SingleDataPar(160,5ms,0.9) appli-

cations under the SSL policy. We can see on Figure 6.10 that, for the SingleData-

Par(128,5ms,0.9) applications, local maximum of speedup is obtained, while for Sin-

gleDataPar(160,5ms,0.9), local minimum is obtained. On Figure 6.11, the horizontal

bars represent the utilization of individual PEs in the environment during the applica-

tion execution, where the green parts are periods when the PE is busy executing tasks,

and the red parts are periods where the PE is idle. For the SingleDataPar(128,5ms,0.9)

application, we can observe that the PEs from the main cluster are not idle for long

2Note that this happens also for the applications with larger tasks, it is not reflected as badly on
the applications’ speedups as for the applications with smaller tasks.

6.3. SIMULATIONS EXPERIMENTS 187

(a) Activity profile under the SSL policy for SingleDataPar(128,5ms,0.9)

(b) Activity profile under the SSL policy for SingleDataPar(128,5ms,0.9)

Figure 6.11: Execution profiles of example SingleDataPar(128,5ms,0.9) and SIn-
gleDataPar(160,5ms,0.9) applications under the SSL task-selection policy on the
Grid(2,8,0.1ms,30ms) environment

188 CHAPTER 6. GRANULARITY-DRIVEN WORK STEALING

time at the end of application execution. They have tasks to execute while the main

PE is waiting for the remote PEs to send the results of the tasks they execute, so most

of the PEs from the main cluster are idle just for the last 10ms or so of the application

exeution. For the SingleDataPar(160,5ms,0.9) application, on the other hand, we can

see that PE 13 manages to obtain a task near the end of the application execution,

and that all of the PEs from the main cluster get idle very shortly after the transfer

of this task is started. PEs from the main cluster then need to wait for this task to

be transferred to PE 13, to be executed there, and for its result to be sent back to the

main PE (PE 0). This results in most of the PEs from the main cluster being idle in

the last 60ms of the application execution. This, of course, significantly decreases the

overall application speedup, since the total application execution time is 174ms.

-10

 0

 10

 20

 30

 40

 50

 60

16 160 320 480 640 800 960 1120 1280

Im
pr

ov
em

en
t i

n
sp

ee
du

p
of

 S
S

L
ov

er
 F

C
F

S
 (

in
 %

)

Number of tasks

Comparison of the SSL and FCFS policies for the applications on Figure 6.10

Figure 6.12: Improvements in speedups that the SSL policy brings over FCFS for the
SingleDataPar(t,5ms,0.9) applications on the Grid(2,8,0.1ms,30ms) environment.

From Figure 6.10 we can observe that for the applications comprising a smaller

number of tasks, all of the policies give similar speedup. As the number of tasks

increases, the SSL and SLL policies start to outperform other policies. We can also

observe that, in most of the cases, SSL performs better than SLL. For the applications

6.3. SIMULATIONS EXPERIMENTS 189

that comprise more than 700 tasks, SSL becomes a clear winner. Therefore, we can

conclude that in most of the cases of applications with very-fine grained tasks, the

SSL policy is the best one to use. However, in order to get the best performance for

applications with any number of tasks, it would be necessary to have some kind of an

adaptive policy, which would dynamically switch between the SSL and SLL policies,

and in some situations altogether prevent offloading tasks outside of the cluster where

they reside. We do not consider these improved policies in this thesis, as we leave this

as a future work.

Figure 6.12 shows the speedup improvements that the SSL policy brings over FCFS

for all applications considered on Figure 6.10. Again, we can observe the very variable

results for the applications with smaller task sizes. In some cases, we can note the

improvements of up to 50% in speedup, but in some other cases (for some applications

with a very small number of tasks), the FCFS policy is actually better than SSL. As

the applications get larger (i.e. when they comprise more tasks), the improvements

that SSL policy brings become more regular, being between 10 and 20% for most of

the applications.

Similarly to what we have done in the previous section, it would be useful to

observe the speedup improvements that the best policy (SSL) brings over the worst

one (LLS), to get the indication of how much improvements can we get in the best

case, when the applications create tasks following a particularly “bad” pattern for

FCFS policy. However, in the case of the applications with fine-grained tasks, we can

see that speedups under the LLS policy are very similar to the ones under FCFS, so

comparison between SSL and LLS would look very similar to the Figure 6.12. We will,

therefore, omit this comparison for this class of applications.

Figure 6.13 shows the speedups of the applications with the mean task size of 30ms.

For the applications comprising a small number of tasks, we can see a similar situation

as on Figure 6.10. The speedups are variable, but the SSL policy gives the best

speedups for most of the applications. When the number of tasks in the application is

larger than 160, the SSL policy clearly outperforms all others. We can also see that,

for the applications comprising a larger number of tasks, we get much less variations

in speedups, since placing a few tasks on wrong PEs does not have as bad impact on

application’s speedup as in the case of applications with very-fine grained tasks.

Figure 6.14 shows the speedup improvements that the SSL policy brings over both

the FCFS and the LLS policy for the applications considered on Figure 6.13. We can

observe that the improvements over the FCFS policy (Figure 6.14a) are in the range of

10-15% for the applications comprising a larger number of tasks. Again, as on Figure

190 CHAPTER 6. GRANULARITY-DRIVEN WORK STEALING

 6

 7

 8

 9

 10

 11

 12

 13

16 160 320 480 640 800 960 1120 1280

S
pe

ed
up

Number of tasks

Speedups of the SingleDataPar(t,30ms,0.9) applications on Grid(2,8,0.1ms,30ms)

Task selection policy:
FCFS

SSL
SLL
LLL
LLS

Figure 6.13: Speedups of the SingleDataPar(t,30ms,0.9) applications on the
Grid(2,8,0.1ms,30ms) environment

6.12, the speedup improvements for applications comprising a smaller number of tasks

are highly variable, ranging from -6% to 28%. When we compare the SSL with the LLS

policy (Figure 6.14b), we can observe that the improvements are between 25 and 30%

for almost all of the applications (again, the exceptions are applications comprising a

very small number of tasks).

Figure 6.15 shows the speedups of the applications with the mean task size of

150ms. Here, we can see that for applications comprising a smaller number of tasks,

the LLL and SLL policies notably outperform all others, and for the applications com-

prising a larger number of tasks, the SSL policy gives the best speedups. This indicates

that, for highly irregular applications with coarse-grained tasks, that comprise a small

number of tasks, the greedy strategy to try to execute the largest task as soon as

possible is the best one.

Figure ??, similarly to Figure 6.14, shows the improvements that the SSL policy

brings over the FCFS and LLS ones. We can observe that the improvements in both

cases are small (around 5% over FCFS, and around 5-10% over LLS, except for the ap-

6.3. SIMULATIONS EXPERIMENTS 191

-10

-5

 0

 5

 10

 15

 20

 25

 30

16 160 320 480 640 800 960 1120 1280

Im
pr

ov
em

en
t i

n
sp

ee
du

p
of

 S
S

L
ov

er
 F

C
F

S
 (

in
 %

)

Number of tasks

Comparison of the SSL and the FCFS policies for the applications on Figure 6.12

(a) Improvements of SSL over FCFS

-15

-10

-5

 0

 5

 10

 15

 20

 25

 30

16 160 320 480 640 800 960 1120 1280

Im
pr

ov
em

en
t i

n
sp

ee
du

p
of

 S
S

L
ov

er
 L

LS
 (

in
 %

)

Number of tasks

Comparison of the SSL and the LLS policies for the applications on Figure 6.12

(b) Improvements of SSL over LLS

Figure 6.14: Improvements in speedups under the SSL policy over FCFS and LLS for
the SingleDataPar(t,30ms,0.9) applications on the Grid(2,8,0.1ms,30ms) environment

192 CHAPTER 6. GRANULARITY-DRIVEN WORK STEALING

 8

 9

 10

 11

 12

 13

 14

 15

16 160 320 480 640 800 960 1120 1280

S
pe

ed
up

Number of tasks

Speedups of the SingleDataPar(t,150ms,0.9) applications on Grid(2,8,0.1ms,30ms)

Task selection policy:
FCFS

SSL
SLL
LLL
LLS

Figure 6.15: Speedups of the SingleDataPar(t,150ms,0.9) applications on the
Grid(2,8,0.1ms.30ms) environment

plications comprising a very small number of tasks), but still measurable. In addition,

since we have observed that, for the applications comprising a smaller number of tasks,

the LLL and SLL policies are the best (and the speedups under these two policies are

very similar most of the time), Figure 6.17 shows the speedup improvements that the

LLL policy brings over FCFS for these applications. We can observe that in this case

the improvements are notably better (for the applications comprising up to 100 tasks,

improvements are between 15 and 30%) than in the case of the SSL policy.

From all of the experiments in this section, we can conclude that the SSL policy

gives the best speedups for all the applications we have considered, except for the ones

that comprise a small number of tasks, and where tasks are very-fine or very-coarse

grained. In the case of the applications with very fine-grained tasks, the application

execution times under all of the policies are very small, so any policy is probably a

good choice. For the applications with coarse-grained tasks, it is worthwhile to use

the LLL or the SLL policy instead of the SSL one, provided that the number of tasks

in an application is small.

6.3. SIMULATIONS EXPERIMENTS 193

-15

-10

-5

 0

 5

 10

 15

 20

16 160 320 480 640 800 960 1120 1280

Im
pr

ov
em

en
ts

 in
 s

pe
ed

up
 o

f S
S

L
ov

er
 F

C
F

S
 (

in
 %

)

Number of tasks

Comparison of the SSL and the FCFS policies for the applications on Figure 6.14

(a) Improvements of SSL over FCFS

-20

-15

-10

-5

 0

 5

 10

 15

16 160 320 480 640 800 960 1120 1280

Im
pr

ov
em

en
t i

n
sp

ee
du

p
of

 S
S

L
ov

er
 L

LS
 (

in
 %

)

Number of tasks

Comparison of the SSL and the LLS policies for the applications on Figure 6.14

(b) Improvements of SSL over LLS

Figure 6.16: Improvements in speedups under the SSL policy over FCFS and LLS for
the SingleDataPar(t,150ms,0.9) applications on the Grid(2,8,0.1ms,30ms) environment

194 CHAPTER 6. GRANULARITY-DRIVEN WORK STEALING

 0

 5

 10

 15

 20

 25

 30

16 48 80 112 144 176 208 240

Im
pr

ov
em

en
t i

n
sp

ee
du

p
of

 L
LL

 o
ve

r
F

C
F

S
 (

in
 %

)

Number of tasks

Comparison of the LLL and the FCFS policies for the applications on Figure 6.14

Figure 6.17: Improvements in speedups under the LLL policy over FCFS for the
SingleDataPar(t,150ms,0.9) applications on the Grid(2,8,0.1ms.30ms) environment

To see why, for the applications comprising a smaller number of tasks, the SLL

policy outperforms the SSL one, we can note the following. For these applications,

using the SLL policy means that the main PE grabs the smallest tasks, the PEs from

the main cluster grab the largest ones (since they will be the first ones to obtain work

from the main PE), leaving the medium ones to the PEs from the remote cluster. In

this way, the application execution does not get stalled when the PEs from the main

cluster do not have any work to do, and the main PE is waiting to obtain the results

of large tasks that are being executed on the remote cluster. This problem occurs

under the SSL policy, as under that policy the PEs from the main cluster will quickly

finish executing the smallest tasks, and these PEs will not have any work to do while

the PEs from the remote cluster are executing larger tasks (similar situation that we

have already described when discussing the performance issues of the policies for the

applications with very-fine grained tasks).

This can be seen on Figure 6.18, which shows the activity profiles of an example

SingleDataPar(48,150ms,0.9) application. We can see that in the case of the SSL

6.3. SIMULATIONS EXPERIMENTS 195

(a) SSL activity profile

(b) SLL activity profile

Figure 6.18: Profiles of run of an example SingleDataPar(48,150ms,0.9) application
under the SSL and SLL task selection policies

196 CHAPTER 6. GRANULARITY-DRIVEN WORK STEALING

policy, the PEs from main cluster (PEs 0-7) finish executing small tasks (at time of

about 240ms) and are then idle at the end of the application execution, while the PEs

from the remote cluster (PEs 8-15) are executing larger tasks and sending their results

back. We can also see that this does not happen in the case of the SLL policy. The PEs

from the main cluster will grab fewer large tasks at the beginning of the application

execution, which means that, at the end of the execution, the main PE will still have

tasks to offload to both the main and the remote cluster. Furthermore, the tasks that

get sent to the remote cluster at the end of the application execution are not large, so

less time is spent in waiting for their completion and sending their results back. This

results in speedup which is about 20% better than in the case of the SSL policy. This

is, perhaps counter-intuitive, the situation where sending the largest tasks to the PEs

from the remote cluster is not necessarily the best thing to do.

For the applications comprising a larger number of tasks, the benefits of keeping

the PEs from the remote cluster busy for more time (so that they need to look for

work over high-latency network less often), by sending them the largest tasks, far

outweighs the potential drawbacks of the PEs from main cluster being idle at the

end of application execution. Therefore, for this kind of applications, the SSL policy

performs better than both the SLL and the LLL one.

To summarise our findings from the experiments presented in this section, we can

conclude the following:

1. For all of the applications that we have considered, except for those comprising a

small number of tasks, the SSL policy gives the best speedups for all mean task

sizes. The speedup improvements that this policy brings over the FCFS one are

similar to those noted for the applications comprising a larger number of tasks

in the Section 6.3.2 – between 10% and 20% on the average, and 20-30% in the

best case.

2. For the applications comprising a smaller number of tasks, there is no clear

winning policy. In the case of the applications with coarse-grained tasks, the

best policies are SLL and LLL. For the applications with fine-grained tasks, all

of the granularity-driven task selection policies (except for the LLS one, which

is constantly the worst one) give the similar speedup.

3. Except in the case of the applications that comprise very small number of very-

fine grained tasks, it is always the case that the best granularity-driven task

selection policy gives the better speedup than the FCFS policy. Therefore, ex-

cept in the mentioned case, having information about the task sizes is always

6.3. SIMULATIONS EXPERIMENTS 197

beneficial.

4. In order to develop a single granularity-driven task selection policy that will give

the best speedups for all applications, it is necessary to develop an adaptive

policy, which will dynamically switch between the SSL, SLL and LLL policies.

It would use SSL policy whenever the number of remaining parallel tasks in the

application is above some application-specific threshold, and when it falls below,

it would switch to either SLL and LLL, or even to FCFS in the case when the

number of remaining tasks is very small, and they are all very-fine grained.

6.3.4 Applications with a Varying Degree of Irregularity

One of the purposes for introducing the definition of the application’s degree of ir-

regularity in Section 4.2 was to test the hypothesis that the granularity-driven task

selection policies bring better speedup improvements (compared to the policies that

do not use information about the task sizes) for more irregular applications. So far,

we have only studied very irregular applications, with the degree of irregularity being

0.9. In this section, we investigate how the speedup improvements that granularity-

driven task selection policies bring change as the degree of irregularity of an application

increases from 0.0 to 0.9.

Similarly to Section 6.3.3, we will consider three main classes of applications :

the applications with mean task size of 5ms (the applications with very fine-grained

tasks), 30ms (the applications with fine-grained tasks) and 150ms (the applications

with coarse-grained tasks). For each type of application (with the fixed mean task size,

the number of tasks and the degree of irregularity), we tested 100 different applications

with randomly generated task sizes to obtain minimal, average and maximal speedup

improvements (in percentages) that the granularity-driven task selection policies bring

over FCFS. For all of the experiments in this section, we assume that the applications

are executed on our default computing environment (Grid(2,8,0.1ms,30ms)).

Figure 6.19 shows the speedup improvements that the SSL policy brings over FCFS

for the applications with very-fine grained tasks (SingeDataPar(1600,5ms,d), where d

varies from 0.1 to 0.9). The three bars in the figure show the minimal (red), the average

(green) and the maximal (blue) speedup improvement obtained over 100 applications

of the same type (i.e. with the same mean task size, the degree of irregularity and

the number of tasks). We can observe that the SLL policy brings improvements to

the speedups for all considered applications. We can also clearly observe that, as the

application irregularity increases, the minimal, average and maximal speedup improve-

198 CHAPTER 6. GRANULARITY-DRIVEN WORK STEALING

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Im
pr

ov
em

en
t i

n
sp

ee
du

p
of

 S
S

L
ov

er
 F

C
F

S
 (

in
 %

)

The degree of irregularity

The SingleDataPar(1600,5ms,d) applications

Min-imp
Avg-imp
Max-imp

Figure 6.19: Improvements that the SLL policy brings over FCFS for the
SingleDataPar(1600,5ms,d) applications on the Grid(2,8,0.1ms,30ms) environment

ments that the SLL policy brings all increase from 2-4% (for the applications with the

degree of irregularity of 0.1) up to 10-13% (for the applications with the degree of

irregularity of 0.9). We can also see that in most of the cases, the improvements are

pretty uniform – there is not much difference between the minimal, average and the

maximal improvement. This indicates that there are no especially good or especially

bad cases of applications of this particular kind for the SSL policy – the improvements

it brings over FCFS are more or less constant for all applications.

Figure 6.20 shows the improvements in speedups that the SSL policy brings over

FCFS for the SingleDataPar(1600,30ms,d) applications, where d again varies from

0.1 to 0.9. Again, we can see that the minimal, average and maximal improvements

are constantly increasing as the application’s irregularity increases, and that there

is even less difference between the minimal, average and maximal improvement than

on Figure 6.19. The same conclusion we get when we observe the applications with

coarse-grained tasks, shown on Figure 6.21, where the SingleDataPar(1600,150ms,d)

applications are considered. Although the improvements here are more modest than

6.3. SIMULATIONS EXPERIMENTS 199

 2

 4

 6

 8

 10

 12

 14

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Im
pr

ov
em

en
t i

n
sp

ee
du

p
of

 S
S

L
ov

er
 F

C
F

S
 (

in
 %

)

The degree of irregularity

The SingleDataPar(1600,30ms,d) applications

Min-imp
Avg-imp
Max-imp

Figure 6.20: Improvements that SLL brings over FCFS for
SingleDataPar(1600,30ms,d) applications on Grid(2,8,0.1ms,30ms) environment

in the previous two cases, we can still see that they are increasing as the application’s

degree of irregularity increase.

Finally, Figure 6.22 shows the improvements for the applications that comprise

a smaller number of tasks (48 in this case), with the mean task size of 150ms. In

the Section 6.3.3, we have observed that, for this kind of applications, the SLL and

LLL policies give the best speedups. On Figure 6.22 we, therefore, compare the LLL

and FCFS policies. As on the previous figures, here we can also observe that the

improvements are increasing as the application’s degree of irregularity increases. We

can also observe a bigger difference between the average and the maximal speedup

improvements that the best policy (in this case, LLL) bring over FCFS than in the

case of Figures 6.19, 6.20 and 6.21, especially for more irregular parallel applications.

Again, this is due to the applications comprising a smaller number of tasks being more

sensitive to task placement decisions, and therefore FCFS can perform especially badly

for some of them. LLL policy is less prone to offloading the ’wrong’ tasks to the PEs

from the remote cluster for this kind of applications, because typically these PEs will

200 CHAPTER 6. GRANULARITY-DRIVEN WORK STEALING

 1

 2

 3

 4

 5

 6

 7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Im
pr

ov
em

en
t i

n
sp

ee
du

p
of

 S
S

L
ov

er
 F

C
F

S
 (

in
 %

)

The degree of irregularity

The SingleDataPar(1600,150ms,0.9) applications

Min-imp
Avg-imp
Max-imp

Figure 6.21: Improvements that the SLL policy brings over FCFS for the
SingleDataPar(1600,150ms,d) applications on the Grid(2,8,0.1ms,30ms) environment

receive smaller tasks (as opposed to, possibly large, random tasks under the FCFS

policy), which is the right decision for this type of applications.

From the experiments in this section, we can clearly conclude that the granularity-

driven task selection policies bring better speedup improvements (compared to the

FCFS one) for more irregular applications.

For the applications comprising a larger number of tasks, we can also conclude that

there is not much variability in improvement that these policies bring when we consider

different applications which have the same mean task size, the number of tasks and

the degree of irregularity (i.e. the minimal, average and maximal improvements when

different applications are considered are more or less the same). In other words, the

amount of improvement is not dependent on the actual task sizes, but rather just on

the mean task size and the degree of irregularity (together with the number of tasks,

of course). This further means that we do not need to know all of the details about

all of the tasks of the application being executed in order to be able to estimate how

much improvement can we get with the granularity-driven task selection policies. We,

6.3. SIMULATIONS EXPERIMENTS 201

-5

 0

 5

 10

 15

 20

 25

 30

 35

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Im
pr

ov
em

en
t i

n
sp

ee
du

p
of

 L
LL

 o
ve

r
F

C
F

S
 (

in
 %

)

The degree of irregularity

The SingleDataPar(48,150ms,0.9) applications

Min-imp
Avg-imp
Max-imp

Figure 6.22: Improvements that the LLL policy brings over FCFS for the
SingleDataPar(48,150ms,d) applications on the Grid(2,8,0.1ms,30ms) environment

rather, need to know just the application’s overall parallel profile, in terms of how

different its tasks are and what the mean task size of the application is.

For the applications comprising a smaller number of tasks, there are bigger differ-

ences between the minimal, average and maximal improvement that the best policy

(LLL) brings over FCFS (although, as we have noted before, all of them are better

the more irregular the application is). This means that for this type of applications,

we cannot precisely estimate what improvements we will get from the mean task size

and the degree of irregularity alone, although we still know that the improvements are

going to be significant, especially for more irregular applications.

6.3.5 Computing Environments with a Hierarchy of Latencies

So far, we have only considered the computing environments that comprise two clus-

ters, connected by a high-latency network. We will now investigate how do the

granularity-driven task selection policies perform for the environments comprising mul-

tiple clusters, where the latencies between all clusters are not uniform. We will consider

202 CHAPTER 6. GRANULARITY-DRIVEN WORK STEALING

Comp. environment Description
WorldGrid-Hom Homogeneous system, latency between every two PEs

is 0.1ms
WorldGrid-Uni-10ms Latency between every two clusters is 10ms (Same as

Grid(8,8))
WorldGrid-2L-20ms Clusters split into two continental groups of 4 clusters

each, latency between them being 20ms. Within each
continental group, latency between every two clusters
is 10ms

WorldGrid-2L-30ms Same as WorldGrid-2Levels-20ms, but with latency
between continental groups being 30ms

WorldGrid-2L-50ms Same as WorldGrid-2Levels-20ms, but with latency
between continental groups being 30ms

WorldGrid-3L-80ms-30ms Clusters split into two continental groups of 4 cluster
each, latency between them being 80ms. Each con-
tinental group is split into two country groups (with
2 clusters in each group), with the latency between
them being 50ms. Each country group split into two
site-clusters, latency between them being 10ms (See
Figure 5.2)

Figure 6.23: The WorldGrid computing environments simulated. Each environment
consists of 8 clusters, each of which consists of 8 PEs

the same example environments that we used when evaluating the usability of perfect

load information in work-stealing, in Section 5.2. As a reminder, Table 6.23 lists the

considered environments.

In our first experiment, we focus on the applications with a fixed degree of irregu-

larity, a fixed number of tasks and variable mean task size (i.e applications considered

in Section 6.3.2). Figure 6.24 shows the speedups for the SingleDataPar(4800,m,0.9)

applications on the WorldGrid-2L-50ms and WorldGrid-3L-80ms-30ms computing en-

vironments. We can observe a similar behaviour of all of the considered policies on

both figures – the SSL policy constantly gives the best speedups, and the LLS one

gives the worst. These results are very similar to the ones that we obtained for the

same class of applications on various two cluster environments (Section 6.3.2).

Very similar results to these shown on Figure 6.24, in terms of the relations between

speedups under different policies, can also be obtained for other WorldGrid computing

environments. Nothing particularly changes as the latency between clusters change –

the SSL policy gives the best speedups, followed by the SLL and LLL policies. The

FCFS policy gives worse speedups that the SSL, SLL and LLL policies, but also is

6.3. SIMULATIONS EXPERIMENTS 203

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

1 20 40 60 80 100 120 140 150

S
pe

ed
up

Mean task size (in ms)

The SingleDataPar(4800,m,0.9) applications on the WorldGrid-2L-50ms environment

Task selection policy
FCFS

SSL
SLL
LLL
LLS

(a) WorldGrid-2L-50ms

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 20 40 60 80 100 120 140 150

S
pe

ed
up

Mean task size (in ms)

The SingleDataPar(4800,m,0.9) applications on WorldGrid-3L-80ms-30ms

Task selection policy
FCFS

SSL
SLL
LLL
LLS

(b) WorldGrid-3L-80ms-30ms

Figure 6.24: Speedups of SingleDataPar(4800,m,0.9) applications on WorldGrid-2L-
50ms and WorldGrid-3L-80ms-30ms computing environments

204 CHAPTER 6. GRANULARITY-DRIVEN WORK STEALING

 0

 5

 10

 15

 20

 25

 30

1 20 40 60 80 100 120 140 150

Im
pr

ov
em

en
t i

n
sp

ee
du

p
of

 S
S

L
ov

er
 F

C
F

S
 (

in
 %

)

Mean task size (in ms)

Comparison between the SSL and the FCFS policies for the applications on Figure 6.23

Computing Environment:
WorldGrid-Uni-10ms
WorldGrid-2L-30ms
WorldGrid-2L-50ms

WorldGrid-3L-80ms-30ms

Figure 6.25: Improvements that SLL brings over FCFS for SingleDataPar(4800,m,0.9)
applications on various WorldGrid environments

constantly better than LLS. We do not show these results here. Instead, we will

focus on the amount of speedup improvement that the SSL policy brings on various

WorldGrid environments, to observe how does this change as the environment gets

more heterogeneous.

Figure 6.25 compares the speedup improvements under the SSL policy over the

FCFS one for the applications considered on Figure 6.24, on various WorldGrid com-

puting environments. We can clearly observe that the improvements are increasing

as we consider more heterogeneous environments with higher communication laten-

cies (except for the applications with very-fine grained tasks, in which case the better

improvements are on more homogeneous environments). For the kind of applications

we are considering here (i.e. single-level data parallel applications), however, the main

reason for better improvements on more heterogeneous environments is the presence

of higher communication latencies in them. Since tasks only get transferred between

the main cluster and the other clusters, the fact that the latencies between different

clusters are different does not have significant impact on the performance of task se-

6.3. SIMULATIONS EXPERIMENTS 205

 0

 5

 10

 15

 20

 25

 30

1 20 40 60 80 100 120 140 150

Im
pr

ov
em

en
t i

n
sp

ee
du

p
of

 S
S

L
ov

er
 F

C
F

S
 (

in
 %

)

Mean task size (in ms)

Comparison of the SSL and FCFS policies for the applications on Figure 6.23

Computing Environment:
WorldGrid-3L-80ms-30ms

WorldGrid-Uni-80ms

Figure 6.26: Improvements that SLL brings over FCFS for the
SingleDataPar(4800,m,0.9) applications on the WorldGrid-3L-80ms-30ms and
WorldGrid-Uni-80ms environments

lection policies. We can see that on Figure 6.26, which compares the improvements of

the SSL policy over FCFS for the WorldGrid-3L-80ms-30ms and WorldGrid-Uni-80ms

(the environment that consists of 8 clusters, where the latency between all clusters

is 80ms) environments. Although the WorldGrid-3L-80ms-30ms environment is more

heterogeneous, we can observe better improvements on the WorldGrid-Uni-80ms envi-

ronment, since communication latencies between the main cluster and other clusters

are higher there.

Very similar results can be obtained when we consider the applications with the

fixed mean task size and the degree of irregularity, and variable number of tasks. For

example, Figure 6.27 shows the speedup improvements that the SSL policy brings over

FCFS for the SingleDataPar(t,30ms,0.9) applications on the WorldGrid environments.

We can observe that for the applications that comprise a smaller number of tasks, the

best improvements are obtained for more homogeneous environments. This is some-

what expected, since for more heterogeneous environments with higher communication

206 CHAPTER 6. GRANULARITY-DRIVEN WORK STEALING

-5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

64 640 1280 1920 2560 3200 3840 4480

Im
pr

ov
em

en
t i

n
sp

ee
du

p
of

 S
S

L
ov

er
 F

C
F

S
 (

in
 %

)

Number of tasks

Comparison of the SSL and FCFS policies for SingleDataPar(t,30ms,0.9)

Computing Environment:
WorldGrid-Uni-10ms
WorldGrid-2L-30ms
WorldGird-2L-50ms

WorldGrid-3L-80ms-30ms

Figure 6.27: Improvements that SLL brings over FCFS for SingleDataPar(t,30ms,0.9)
applications on WorldGrid environments

latencies, the applications’ tasks are too fine grained (relative to the communication la-

tencies), and this resembles the case of applications with a small number of fine grained

tasks (considered in Section 6.3.3, Figure 6.10), where we have seen that the SSL pol-

icy does not bring notable improvements to the FCFS one. However, as the number

of tasks in the application increases, we can clearly observe that the improvements are

better on more heterogeneous environments with higher communication latencies than

on more homogeneous environments.

From these experiments, we can conclude that the granularity-driven task selection

policies give better speedup improvements on larger computing environments, where

the communication latencies between the clusters are higher.

Experiments from this section show that the SSL policy is also the best granularity-

driven task selection policy for the computing environments with multiple levels of

communication latencies. We may also want to consider the refinements of the SSL

policy for these environments. Instead of just one SSL policy, which sends small tasks

to thieves from the same cluster, and large tasks to thieves from the remote clusters,

6.3. SIMULATIONS EXPERIMENTS 207

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 20 40 60 80 100 120 140 150

S
pe

ed
up

Mean task size (in ms)

Speedups under the SSL(k) policies of SingleDataPar(4800,m,0.9) applications

SSL policy:
SSL(1)
SSL(2)
SSL(3)
SSL(4)

Figure 6.28: The performance of the SSL(k) policies for SingleDataPar(4800,m,0.9)
applications on WorldGrid-3L-80ms-30ms computing environment

we can consider the SSL(k) policies, where k is a distance between a victim and a

thief (in terms of communication latency levels) after which large tasks are sent as

responses to the thieves steal attempts. If the distance between the victim and the

thief is less than k, the smallest task from the victim’s task pool is sent to the thief.

For example, in WorldGrid-3L-80ms-30ms, for each victim there are 5 different

levels of communication latency to which thieves can belong: same-PE (level 0, with

latency 0ms), same-cluster (level 1, with latency 0.1ms), same-country-cluster (level 2,

with latency 10ms), same-continent-cluster (level 3, with latency 30ms) and different-

continent-cluster (level 4, with latency 80ms). SSL(0) corresponds to the LLL policy

and SSL(1) to SSL. Under the SSL(2) policy, the victim would send the smallest task

to a thief that belongs to the same cluster, or to the cluster which is in the same

country, and the largest task to thieves that belong to clusters from different countries

or continents.

The question we can ask is can we get better speedups than under the SSL(1) policy

if we consider the SSL(2), SSL(3) or SSL(4) policies. Note that SSL(4) corresponds

208 CHAPTER 6. GRANULARITY-DRIVEN WORK STEALING

to SSS policy, which we do not consider in this thesis.

Figure 6.28 gives us some insight into the performance of the various SSL(k) poli-

cies. It compares the speedups obtained for the applications considered on the Fig-

ure 6.24 on the WorldGrid-3L-80ms-30ms computing environment, under the SSL(1),

SSL(2), SSL(3) and SSL(4) policies. We can see that the SSL(1) policy clearly out-

performs all other SSL policies, and that, as we increase the level after which large

tasks are sent to thieves, we get worse speedups. We can, therefore, conclude that the

SSL(1) policy is indeed the best policy, and that the small tasks from the victim’s task

queue should be reserved only for very near (in terms of communication latency) PEs.

From the experiments presented in this section, we can make the following conclu-

sions:

1. The granularity-driven task selection policies perform well for the larger envi-

ronments with heterogeneous latencies between clusters (e.g. the WorldGrid-3L-

80ms-30ms environment). The relations between the performance of individual

task selection policies is very similar on the environments with the heteroge-

neous latencies between clusters as is on the environments where these latencies

are uniform.

2. Better improvements under the granularity-driven task selection policies can be

obtained on the environments with the higher latencies between clusters. The

cost of transferring tasks between clusters is much higher on these environments,

and therefore we get bigger benefits of using the information about task sizes in

order to make good decisions about what tasks to send where.

3. The SSL policy is the best one for almost all of the applications that we consid-

ered. Furthermore, the extensions to the basic SSL policy for more heterogeneous

environments (SSL(k) policies, which consider different “distance” between a vic-

tim and a thief after which large tasks are sent as a response to steal attempts)

do not bring any improvements to the basic SSL policy. Therefore, the SSL

policy is the best one to use on the environments with heterogeneous latencies

between clusters.

6.3.6 Applications with nested-parallel tasks

So far we have only considered the applications with a single level of parallelism.

These applications comprise a main task, which generates a set of sequential subtasks.

However, there is no reason why we could not employ the same reasoning behind the

6.3. SIMULATIONS EXPERIMENTS 209

granularity-driven task selection policies also to the applications with nested paral-

lelism, where some (or all) of the tasks generated by the main task are nested-parallel.

Recall that the task size in the case of nested-parallel tasks is the sum of the sizes of

all of its subtasks. This mean that large tasks are also likely to generate more subtasks,

so, if we decide to send large tasks to the PEs from remote clusters, it means that we

are also likely to send to them the tasks that generate more parallelism. In addition to

the benefit of keeping a single remote thief, to which such task is sent, busy for longer

time, this also has an added benefit in the fact that more PEs from the thief’s cluster

will be able to obtain work locally (since the thief itself will create additional tasks).

This, therefore, means that, if we assume that Cluster-Aware Random Stealing is used

as a base work-stealing algorithm, these PEs will not need to wait for the completion

of the remote steal attempts in order to obtain work. Therefore, we expected that

reserving larger tasks to the PEs from remote clusters will have even bigger impact on

the speedups of the applications with nested parallel tasks.

In this section, we investigate the speedup improvements that the granularity-

driven task selection policies bring to the various DCFixedPar applications (most of

which we already considered in Section 5.2). Recall that in the DCFixedPar(n,k,Cseq,

D, C, l) application, each nested-parallel task (including the main task) creates n

subtasks. Of these subtasks, each k-th is itself nested-parallel, and the others are

sequential. After level l in the task tree of application is reached, all tasks gener-

ated by the nested-parallel tasks are sequential. As in Section 5.2, we focus on the

applications where each nested-parallel task has trivial ’divide’ and ’conquer’ phases,

and where the size of each sequential task is 5ms. We will, therefore, abbreviate by

DCFixedPar(n,k,l) the application that corresponds to DCFixedPar(n,k,5ms,0.1ms,0.1ms,l).

Considering different DCFixedPar applications enables us to observe the perfor-

mance of the granularity-driven task selection policies for the applications that have

higher and lower density of nested-parallel tasks (and, therefore, higher and lower

degree of irregularity).

For our first experiment (Figure 6.30), we considered the DCFixedPar(40,k,4) ap-

plications on the WorldGrid-3L-80ms-30ms computing environment, where k ranges

from 3 to 11. These applications generate a large number of parallel tasks, and consid-

ering different values of k enables us to observe the performance of granularity-driven

task selection policies as the number of nested-parallel tasks gets sparser and, therefore,

higher the degree of irregularity of an application is. See Table 6.29 for the number of

tasks and the degree of irregularity of each of the DCFixedPar(40,k,4) application we

considered. Note that for k = 7 and k = 8 (and, likewise, for k = 9 and k = 10) we

210 CHAPTER 6. GRANULARITY-DRIVEN WORK STEALING

k Number of tasks The degree of irregularity
3 1237640 0.103284
4 444440 0.158401
5 187240 0.224318
6 62200 0.345560
7 31240 0.450674
9 13640 0.618618
11 4840 0.917055

Figure 6.29: The number of parallel tasks and the degree of irregularity of the consid-
ered DCFixedPar(40,k,4) applications

 0

 10

 20

 30

 40

 50

 60

3 4 5 6 7 9 11

S
pe

ed
up

k

Speedups of the DCFixedPar(40,k,4) applications

Task selection policy:
FCFS

SSL
SLL
LLL
LLS

Figure 6.30: Speedups of the DCFixedPar(40,k,4) applications on the WorldGrid-3L-
80ms-30ms computing environment

get an identical application, therefore we omit the cases where k = 8 and k = 10 from

the Figure 6.30.

From Figure 6.30, we can observe that for smaller values of k (i.e. for more reg-

ular applications) all of the task selection policies perform similarly, giving the same

speedups. However, as k increases (and, therefore, the applications become more ir-

6.3. SIMULATIONS EXPERIMENTS 211

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

3 4 5 6 7 9 11

Im
pr

ov
em

en
t i

n
sp

ee
du

p
of

 S
S

L
ov

er
 F

C
F

S
 (

in
 %

)

k

Comparison of the SSL and FCFS policies for the DCFixedPar(40,k,4) applications

Figure 6.31: Improvements that the SSL policy brings over FCFS for the DCFixed-
Par(40,k,4) applications on the WorldGrid-3L-80ms-30ms computing environment

regular), we can observe that the granularity-driven task selection policies start to

notably outperform the FCFS policy. We can also observe that all of the granularity-

driven task selection policies (except, again, for the LLS policy, which gives the worst

speedups of all considered policies) give about the same speedup. The SSL policy is

very slightly better than the SLL, and SLL is slightly better than LLL. All of these

policies give a very good speedups. This indicates that, for the applications with

nested-parallel tasks, the crucial decision is to reserve large tasks to the thieves from

remote clusters, and additionally reserving small tasks for local thieves brings only a

marginal additional benefit in speedup.

Figure 6.31 shows the speedup improvements that the SSL policy brings over FCFS

for the applications considered on Figure 6.30. We can observe a very good improve-

ments (up to 42%) for more irregular applications. Furthermore, we can observe that,

similarly to the applications with only a single level of parallelism we considered in

the previous sections, the improvements under the SSL policy are increasing as the

application’s irregularity increases.

212 CHAPTER 6. GRANULARITY-DRIVEN WORK STEALING

k Number of tasks The degree of irregularity
15 155500 0.575651
20 78100 0.744058
25 34100 1.012648

Figure 6.32: The number of parallel tasks and the degree of irregularity of the consid-
ered DCFixedPar(100,k,4) applications

 0

 10

 20

 30

 40

 50

 60

15 20 25

S
pe

ed
up

k

Speedups of the DCFixedPar(100,k,4) applications

Task selection policy:
FCFS

SSL
SLL
LLL
LLS

Figure 6.33: Speedups of the DCFixedPar(100,k,4) applications on the WorldGrid-3L-
80ms-30ms computing environment

Next, we consider the applications where each nested-parallel tasks generates more

subtasks than in the case of the DCFixedPar(40,k,4) applications, but where the

nested-parallel tasks are sparser. As an example of this kind of applications, we will

consider the DCFixedPar(100,k,4) applications, where k takes values 15, 20 and 25.

The number of tasks and the degree of irregularity of each of the applications of this

kind is given in Figure 6.32. Figure 6.34 shows the speedups of these applications

under all of the task selection policies that we consider. We can observe similar results

as on Figure 6.30 – all of the granularity-driven task selection policies (except for LLS)

6.3. SIMULATIONS EXPERIMENTS 213

 0

 10

 20

 30

 40

 50

 60

 70

15 20 25

Im
pr

ov
em

en
t i

n
sp

ee
du

p
of

 S
S

L
ov

er
 F

C
F

S
(in

 %
)

k

Comparison of the SSL and FCFS policies for the DCFixedPar(100,k,4) applications

Figure 6.34: Speedup improvements that the SSL policy brings over FCFS for the
DCFixedPar(100,k,4) applications on the WorldGrid-3L-80ms-30ms computing envi-
ronment

give a very similar speedups, and they all notably outperform the FCFS policy. The

SSL policy is again very slightly better than SLL and LLL, but the difference between

all three policies is minimal.

Figure 6.34 shows the improvements that the SSL policy brings over FCFS for the

applications considered on Figure 6.33. Again, we can observe that the improvements

are increasing from 22% up to 68% as the value of k increases from 15 to 25.

From the experiments with the applications with nested-parallel tasks, we can

conclude the following facts:

1. The granularity-driven task selection policies can significantly improve the speedups

of the applications that have nested-parallel tasks, provided that they are irreg-

ular.

2. All of the granularity-driven task selection policies (except for the LLS one) give

very similar speedups. This indicates that the crucial decision for all policies

214 CHAPTER 6. GRANULARITY-DRIVEN WORK STEALING

is to reserve the large tasks for the thieves from remote clusters, as this is the

common denominator for SSL, SLL and LLL policies.

3. The amount of the speedup improvements that these policies bring is bigger than

for the applications with only a single level of parallelism. We have observed

the improvements of up to 68% for irregular DCFixedPar applications, and the

typical improvements for irregular applications are above 20%.

4. The speedup improvements that the granularity-driven task selection policies

bring to the FCFS one are better for more irregular applications with nested-

parallel tasks.

6.3.7 Where do the Improvements Come From?

In Sections 6.3.2 – 6.3.6, we have observed that the granularity-driven task selection

policies bring improvements to the speedups for most of the applications with a high

degree of irregularity. Our hypothesis was that the policies that send large chunks

of works to more remote thieves will manage to keep these thieves busy for more

time, and, consequently, they will have to look for work less often. To see that this

is really the reason for the improved speedups of irregular applications, we now con-

sider the execution of an example SingleDataPar(1000,30ms,0.9) application on the

Grid(2,8,30ms,0.1ms) environment. Figure 6.35 shows the utilisation of all PEs in the

environment. That is, it shows how much of the total execution time are PEs spending

in executing tasks. The PE utilisation is on the scale from 0.0 (meaning that a PE

spends no time in executing tasks) to 1.0 (meaning that a PE spends all time in task

execution). We compare the PE utilisation under the SSL and FCFS policies. All

parallelism is created on PE 1 (the main PE), PEs 2-8 belong to the main cluster and

PEs 9-16 belong to the remote cluster. We can see that the utilisation of the PEs

from the main cluster is about the same for SSL and FCFS policies. However, the

utilisation of the PE from the remote cluster is increased from between 0.3 and 0.4

(under FCFS) to between 0.5 and 0.6 (under SSL). This is just what we predicted, as

the PEs from the remote cluster spend less time in looking for work and more time in

task execution under the SSL policy than under the FCFS one.

Figure 6.36 shows the number of tasks executed on each PE in the environment,

for the same application, under the FCFS and SSL policies. We can see that under the

SSL policy, the PEs from the main cluster execute a larger number of smaller tasks,

compared to the FCFS policy, and that the PEs from the remote cluster execute a

smaller number of larger tasks. This means that the the PEs from the remote cluster

6.3. SIMULATIONS EXPERIMENTS 215

spend less time in obtaining work, which explains why their utilisation is increased

under the SSL policy.

Figure 6.35: Utilisation of PEs under the FCFS and SSL policies for an example
SingleDataPar(1000,30ms,0.9) application on the Grid(2,8,30ms,0.1ms) environment.

6.3.8 Summary of the Simulations Experiments

In Sections 6.3.2 – 6.3.7, we have presented a comprehensive evaluation of the granularity-

driven task selection policies for a wide class of applications on various heterogeneous

computing environments. Taking into account all of the experiments conducted there,

and with respect to the hypotheses we described in Section 6.3.1, we can make the

following conclusions about the granularity-driven task selection policies:

1. The granularity-driven task selection policies bring the improvement for most of

the parallel applications, compared to the policies that do not use any information

about applications’ task sizes. The improvements are higher the more irregular

the application is. – For almost all of the applications considered in Sections 6.3.2

216 CHAPTER 6. GRANULARITY-DRIVEN WORK STEALING

Figure 6.36: Number of tasks executed on PEs under the FCFS and SSL policies for
an example SingleDataPar(1000,30ms,0.9) application on the Grid(2,8,30ms,0.1ms)
environment.

– 6.3.7, both on the computing environments consisting of only two clusters (Sec-

tions 6.3.2 – 6.3.4) and on the larger environments with a hierarchy of latencies

(Section 6.3.5), we have noted at least some improvements in the speedups when

information about the sizes of tasks that the application comprise is used in

work-stealing. The only case where the granularity-driven task selection policies

did not bring improvements in speedups, compared to the FCFS policy, is for

applications that comprise a very small number of very-fine grained tasks. For

these applications, however, the execution times are very small, so any task se-

lection policy is a good choice. Therefore, there are virtually no cases where the

use of information about the sizes of application’s tasks notably degrades the

application’s performance.

Furthermore, we have shown that the improvements that the granularity-driven

task selection policies bring increase as the applications’ degree of irregularity

increases, both for the applications with a single level of parallelism (Section

6.3. SIMULATIONS EXPERIMENTS 217

6.3.4) and for the applications with nested parallelism (Section 6.3.6).

2. The SSL policy gives the best speedups for almost all of the applications – Both

for the single-level data parallel applications that have variable task granularity

(Sections 6.3.2 and 6.3.5) and variable number of tasks (Sections 6.3.3 and 6.3.5)

and for the applications with nested parallelism (Section 6.3.6), we have observed

that the best speedups of all considered task selection policies are obtained under

the SSL policy. The only case where this policy did not give the best speedups

were the applications that comprise a small number of tasks, and where tasks

are either very-fine or very-coarse grained (Section 6.3.3). For these applications,

the SLL and LLL policies outperform the SSL one. Therefore, we can conclude

that for almost all of the applications, the SSL policy is the one to choose.

3. The SSL, SLL and LLL policies outperform the LLS one for all of the applications

that we have considered – In almost all of the cases, the performance of the SSL,

SLL and LLL policies is similar. The LLS policy performs much worse than all

of the other granularity-driven policies, and worse than even the FCFS one in

almost all of the cases. This shows that the reasoning to leave the small tasks

for the PEs from the remote clusters, which works the best for applications with

a very small number of tasks, is not applicable to larger applications.

4. The granularity-driven task selection policies have more impact on the speedups of

the applications with finer grained tasks. – We have seen in Section 6.3.2 that the

speedup improvements that the granularity-driven task selection policies bring

to the FCFS one are more notable for the applications with finer-grained tasks.

For the applications with coarser-grained tasks, the overheads in transferring the

tasks even over high-latency networks are negligible compared to their sequential

sizes, so all of the policies give very similar speedups. Still, even for this kind of

applications, the granularity driven task selections bring small, but measurable,

improvement over the FCFS policy in the applications’ speedups.

5. The reason for the speedup improvements that the SSL, SLL and LLL policies

bring to the FCFS one are that these policies are able to keep thieves that are

farther away from victims busy for longer time, eliminating their need to look

for work more often – This was shown in Section 6.3.7, for the applications

comprising a larger number of tasks, with only a single level of parallelism. We

have seen that the utilisation of the PEs closer to the main PE (which generates

all of the parallelism) might slightly decrease under the SSL policy, compared to

218 CHAPTER 6. GRANULARITY-DRIVEN WORK STEALING

the FCFS one (the reason for that being that they execute smaller tasks than in

the case of FCFS policy). However, this is outweighed by much better utilisation

of the PEs from the remote cluster.

6.4 Grid-GUM Implementation

In this part of the chapter, we describe and evaluate the implementation of the

granularity-driven task selection policies in the Grid-GUM runtime environment. As

a reminder (see Section 2.4.3), Grid-GUM differentiates between sparks, which are

heap pointers to the closures which represent unevaluated expressions, and threads,

which are actual units of computation that evaluate expressions in parallel. Sparks

are very lightweight, and every PE has its own spark pool, where sparks that point to

the closures from that PE’s heap are kept. When a PE gets idle, it converts one of the

sparks from its spark pool into a thread, and starts evaluating it. The steal operation

in Grid-GUM involves transferring one or more sparks from the victim’s to the thief’s

spark pool. Relating this to our simulation setup, we can see sparks as tasks whose

execution has not yet started, so they can be transferred between PEs, and threads as

tasks whose execution has started and that are, therefore, immovable. Task selection

policies, therefore, decide on which spark is transferred from the victim’s to the thief’s

spark pool in steal operation.

In order to make our results more generally applicable, we assume that only one

task is transferred in each steal operation, as this is the case in most of the parallel

runtime systems. Therefore, in our Grid-GUM implementation, we also restrict the

number of sparks offloaded in a single steal operation to just one.

In this section, we present the evaluation of the SSL, SLL, LLL and LLS task

selection policies for managing spark pools. We have tested these policies on a set of

synthetic applications (i.e. artificially generated applications with controllable thread

sizes and the number of sparks). The purpose of these experiments was to mimic the

applications considered in the simulation setup and in that way to observe the relation

between the results obtained using the simulations and the real implementation for

the same classes of applications on the same computing environments.

6.4.1 Implementation Details

The information about the sizes of the threads created from the sparks during the

application execution is obtained using profiling. For each application, we assign a

unique name for each spark that might be created during the application execution.

6.5. EXPERIMENTS WITH GRID-GUM 219

This name is then used in a runtime system as an identifier of a thread created from

that spark. We have profiled the same application over several runs on a parallel

machine to record the time each thread spends in computation. This information is

then used as an approximation of the size of the thread that will be created from its

spark.

Assigning names to sparks is done by using a parWithName combinator, which is

similar to par but, in addition, passes the name of the spark to the runtime system.

That is, parWithName name p q creates a spark for the expression p, puts it into a

spark pool and assigns a name name to it. We have used this combinator to extend the

Strategies module, to include the strategies that assign names for the sparks that

they create. For example, in addition to parList strat (which applies strat strategy

to each element of a list in parallel), we also have parListWNames prefix strat

strategy, which gives a name (starting from 0, prefixed with prefix) to each spark

created from an application of a strategy strat to a list in parallel3. In this way, by

using different values for prefix for different strategic applications, we can assign a

unique name for each spark created in the application, even if it has various (possibly

nested) strategic applications.

As an example, the following code has two nested parMap applications:

res = f [[10,2],[23,6],[15,8]]

where

f = parMapWNames "top:" g rnf

g = parMapWNames "bot:" someFun rnf

A spark resulting from the application of someFun 10 (which is sparked as a part of

the evaluation of g [10,2]) will have the name top:0bot:0, someFun 2 will have

name top:0bot:1, someFun 23 will have name top:1bot:0 and so on.

6.5 Experiments with Grid-GUM

In this section, we evaluate the performance of the granularity-driven task selection

policies in Grid-GUM. As we have mentioned before, the main purpose of these experi-

ments is to compare the results obtained in the simulation experiments, which ignored

a lot of additional overheads that might be present in realistic runtime systems, with

the ones done with the real implementation of the granularity-driven task selection

policies in the realistic runtime system. In addition to exploring how do these policies

3This, of course, gives rise to various other list strategies (such as parMapWNames) that use
parListWNames as its base strategy

220 CHAPTER 6. GRANULARITY-DRIVEN WORK STEALING

perform in realistic settings, this also has the purpose of testing the validity of the

results obtained under the simulations, i.e. to observe whether ignoring all overheads

except for the ones that come from the communication latencies in the environment

gives us a good estimation of the performance of the various task selection policies for

work-stealing.

Since Grid-GUM is built on top of ghc 4.06 sequential Haskell compiler, we have

used this compiler as a baseline for our results. In other words, sequential runtimes

of parallel applications are obtained under ghc 4.06, when all of the par and seq

combinators are removed from the application code.

6.5.1 Differences in Simulation and Grid-GUM Setup

Compared to the simulation setup, where the only overheads in the application execu-

tion came from the communication latencies in the underlying computing environment,

in Grid-GUM there are some additional overheads that can have notable impact on the

applications’ speedups. Some of the overheads that we have ignored in the simulations

include:

• Time to create (or process) a message in the simulation setup was assumed to

be 0 (i.e. negligible). This might not be the case with Grid-GUM. For exam-

ple, packing the subgraph of a spark into MPI buffers and unpacking it at the

destination site can add non-negligible overheads in processing FISH, SCHEDULE,

FETCH and REPLY messages. In addition to that, there are also overheads in

sending each message, due to an internal operation of the implementations of

MPI libraries.

• Thread creation (as well as the destruction when the thread finishes evaluation),

which involves initialisation/destroying of a TSO structure, adds a small over-

head to each thread created during the application execution in Grid-GUM. This

overhead was also assumed to be 0 in simulations.

• On-demand data fetching can introduce additional overheads in the transfer of

the data needed for the thread evaluation to a remote destination, since more

than one message might be needed for this. Depending on the size of the spark’s

subgraph, the number of thunks in that subgraph and the policy of thunk of-

floading, not all of the data needed for thread evaluation might be sent in a single

SCHEDULE message to the destination PE. Additional FETCH (and corresponding

REPLY) messages may be needed to fetch the additional data.

6.5. EXPERIMENTS WITH GRID-GUM 221

• In addition, due to on-demand data fetching, once the thread finish evaluation,

it does not send the result back automatically to the PE where its spark was

originally created. In other words, threads do not send their results back to the

PEs that hold their parent threads. Instead, the parent thread request this data

via the FETCH message, and the result is then sent back to it via REPLY message.

Depending on the size of the result, many FETCH and REPLY messages need to be

exchanged in order to send the whole result back to the parent thread.

• Garbage collection, which can in some cases significantly contribute to the exe-

cution time of an application, was completely ignored in simulations.

Due to these overheads, we expected the speedups of applications under Grid-GUM

to be to some degree different than of the models of equivalent applications under the

simulations.

As we have mentioned before, one additional thing that was ignored in the simu-

lations were the data-dependencies between threads. In GpH, the data-dependencies

are synchronisation points between threads. Thus, if a thread needs a value that is

being computed by some other thread, it will block (after sending FETCH message)

and will remain blocked until the value it needs is computed and sent to it. Since the

applications that we consider here are embarrassingly parallel, ignoring the overheads

in thread synchronisation will not have a significant impact on the speedups of the

Grid-GUM applications.

6.5.2 Experiments with the Synthetic Applications

This section describes the experiments and the results that we have obtained with the

synthetic applications. These are the artificial applications that we have created to

compare how do the improvements that the granularity-driven task selection policies

bring for Grid-GUM compare to the ones obtained under simulations in Section 6.3.

All experiments were performed on an environment consisting of two 8-core Intel Xeon

servers, running CentOS Linux. In order to obtain a heterogeneous communication

setup, we have introduced additional message latency between multicore machines

using the netem kernel module, giving a total latency between different servers of

30ms. The latency between the cores within the same server was 0.1ms. This gives

us the identical environment to Grid(2,8,0.1ms,30ms), which was used in most of the

simulation experiments.

In order to eliminate the degree of randomness in our results, each application

we test was executed 100 times under Grid-GUM on the computing environment we

222 CHAPTER 6. GRANULARITY-DRIVEN WORK STEALING

consider, and the average speedup was taken as representative.

Our focus is on the applications without nested-parallelism, resembling the Single-

DataPar applications. These applications consist of a single parMap application of a

function to a list of numbers. The number of sparks created in the application is equal

to the length of a list. The function f applied to elements of a list in parMap is chosen

so that the time to compute f(x) sequentially is approximately x milliseconds.

In our settings, we have measured that the time it takes for pfib 20 to be evaluated

is approximately 1ms, so the function we have used is

f 0 = 0

f x = fib 20 * 0 + f (x-1)

In section 6.5.1, we have pointed out to some of the differences in the simulation and

the Grid-GUM setup (i.e. additional overheads present in Grid-GUM). It is also worth

noting that, having ignored the overheads in task creation and sorting the task pool, in

non-nested data-parallel applications under the simulations, the main task creates all

child tasks immediately at the start of the execution. Therefore, when steal message

arrives to the main PE, all parallel tasks are readily available. In Grid-GUM, however,

there are certain overheads in creating sparks and, in the case of the granularity-driven

task selection policies, in sorting the spark pool each time a new spark is added to

it. This means that it takes non-trivial amount of time to actually create all sparks

and organise them (according to their sizes) in the spark pool, even if all of them are

created right at the beginning of the execution of the main thread. This further means

that a FISH message may arrive to the main PE before it has created all the sparks.

Since scheduling in Grid-GUM is preemptive, the FISH message is processed almost

immediately, which means that only currently available sparks are considered in task

selection policies. This means that the granularity-driven task selection policies will

choose the smallest or the largest currently available spark, which might not be the

largest or the largest spark altogether, as is the case in simulations. Therefore, the

decisions of what spark will be sent to what thief might differ for identical applications

in the simulations and in Grid-GUM.

Out of all Grid-GUM overheads mentioned in Section 6.5.1, the overhead of the

main thread having to collect the results of its sparked subthreads presents the biggest

problem for the kind of applications we are considering here. Since the applications

consist of large number of tasks, some (or all) of which can be very fine grained, the final

phase where only the main thread is active and it is collecting the results can, due to

high latencies to the remote PEs, easily take most of the time of application execution.

We have measured that, with applications that create thousands of fine-grained sparks,

6.5. EXPERIMENTS WITH GRID-GUM 223

the phase of collecting the results can take about 75% of total application execution

time.

To solve this problem, we have, for the purpose of data-parallel applications, mod-

ified the Grid-GUM runtime system so that, upon completion, the result of a thread is

automatically sent back to the PE where thread’s spark was originally created. That

is, if the thread is created from the stolen spark, we remember the spark’s top level

closure (which is initially THUNK, but is eventually updated to a normal form value),

and when the thread finishes, we pack the subgraph of this closure and send it back to

the original victim. This eliminates the need of a thread which created the spark to

collect its result via FETCH-RESUME message exchange. Consequently, the long results

collecting phase is eliminated.

As we did in the simulation experiments, here we have also considered the appli-

cations with different degrees of irregularity, different numbers of tasks and different

mean task sizes.

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

5 20 40 60 80 100 120 140 150

S
pe

ed
up

Mean task size (in ms)

Grid-GUM speedups of the applications with various mean task size

Task selection policy
FCFS

SSL
SLL
LLL
LLS

Figure 6.37: Speedups under Grid-GUM for applications with variable mean task size,
1600 tasks and the degree of irregularity of 0.9

224 CHAPTER 6. GRANULARITY-DRIVEN WORK STEALING

 0

 5

 10

 15

 20

5 20 40 60 80 100 120 140 150

Im
pr

ov
em

en
t i

n
sp

ee
du

p
of

 S
S

L
ov

er
 F

C
F

S
 (

in
 %

)

Mean task size (in ms)

Comparison of the SSL and FCFS policies in Grid-GUM -- variable mean task size

Figure 6.38: Improvements in speedups of SSL over FCFS for applications with variable
mean task size, 1600 tasks and the degree of irregularity of 0.9

Applications with a Variable Mean Task Size

Figure 6.37 shows the relative speedups obtained for the applications with 1600 tasks,

variable mean task size and the degree of irregularity of 0.9. These applications cor-

respond to the SingleDataPar(1600,m,0.9) applications considered in Section 6.3.2.

Therefore, we can compare the results from Figure 6.37 with the results on Figure 6.3.

Note that the measurements done here exclude the time needed for system initialisa-

tion (which can have substantial impact on absolute speedup in the case of smaller

applications).

We can notice similar results Figures 6.37 and 6.3. The SSL policy gives the best

speedups for almost all of the applications considered on Figure 6.37; the SSL, SLL

and LLL policies outperform FCFS policy, and the FCFS policy outperforms the LLS

one. We can, however, also notice some differences between the compared figures.

We can see that, under Grid-GUM, the SSL, SLL and LLL policies give very similar

speedups for the applications that have coarse-grained tasks.

Figure 6.38 shows the improvements in speedups of the considered applications that

6.5. EXPERIMENTS WITH GRID-GUM 225

the SSL policy brings over the FCFS one. Again, when we compare the results on this

figure with the ones for the similar class of applications under simulations (see Figure

6.4 on page 178), we can observe similar improvements. The speedup improvements

are higher for the applications with finer-grained tasks, and they become small (but

still measurable) for the applications with coarse-grained tasks.

Applications with variable number of tasks

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

16 160 320 480 640 800 960 1120 1280

S
pe

ed
up

Number of tasks

Grid-GUM speedups of the applications with various number of tasks

Task selection policy:
FCFS

SSL
SLL
LLL
LLS

Figure 6.39: Speedups under Grid-GUM for the applications with variable number of
tasks, mean task size of 30ms and the degree of irregularity of 0.9

Next, we consider the applications with a variable number of tasks. Experiments

done here are equivalent to the ones done in Section 6.3.3. Figure 6.39 shows the

speedups under Grid-GUM of applications with the mean task size of 30ms, the degree

of irregularity of 0.9 and with a variable number of tasks (the results equivalent to those

on Figure 6.13 under simulations, for the SingleDataPar(t,30ms,0.9) applications).

When we compare Figures 6.39 and 6.13, we can see generally the same results in

terms of the relations between the performance of the granularity-driven task selection

policies: the SSL policy gives the best speedups on both figures, granularity-driven

226 CHAPTER 6. GRANULARITY-DRIVEN WORK STEALING

 0

 5

 10

 15

 20

 25

 30

 35

 40

16 160 320 480 640 800 960 1120 1280

Im
pr

ov
em

en
t i

n
sp

ee
du

p
of

 S
S

L
ov

er
 F

C
F

S
 (

in
 %

)

Number of tasks

Comparison of the SSL and FCFS policies in Grid-GUM -- various number of tasks

Figure 6.40: Improvements in speedups of SSL over FCFS for applications with mean
task size of 30ms, the degree of irregularity of 0.9 and variable number of tasks

task selection policies (except for the LLS one) outperform the FCFS one, and LLS

is the worst policy. We can also see that the performance of SSL and LLL policies

is pretty similar on both figures. However, one thing that we can notice is that the

differences in the speedups between the SSL policy on one side and the SLL and LLL

policies on the other are smaller on Figure 6.39 than on Figure 6.13.

Figure 6.40 shows the speedup improvements that the SSL policy brings over the

FCFS one under Grid-GUM, for the applications considered on Figure 6.39. The

improvements are in the range between 10% and 20% most of the time, and between

20% and 35% for the applications with smaller number of tasks. We can observe that

these improvements are better than in the case of simulations (see Figure 6.14 on page

191 for the equivalent simulations results).

The small differences between the simulations and the Grid-GUM implementation

results can be explained by the fact that various overheads in task creation/offloading

present in Grid-GUM (see Section 6.5.1), that we have ignored in simulation, have

the most impact when the tasks are offloaded remotely, over high-latency networks.

6.5. EXPERIMENTS WITH GRID-GUM 227

Therefore, since the overheads in sending tasks to the PEs from remote clusters are

higher in Grid-GUM than in the case of simulations, the improvements that we get

by reducing the number of tasks executed remotely (under the SSL, SLL and LLL

policies) are better than in simulations. Also, since the main source of improvement is

reserving large tasks for remote offloading, the additional benefit of saving the largest

ones (i.e. the benefit of SSL over SLL and LLL) is not that big.

Applications with variable degree of irregularity

 0

 2

 4

 6

 8

 10

 12

 14

 16

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Im
pr

ov
em

en
t i

n
sp

ee
du

p(
in

 %
)

Degree of irregularity

Comparison of the SSL and FCFS policies in Grid-GUM -- variable degree of irregularity

Improvements:
Min-imp
Avg-imp
Max-imp

Figure 6.41: Improvements in speedups of SSL over FCFS for applications with mean
task size of 30ms, 1600 tasks and variable degree of irregularity

Figure 6.41 shows the improvements that SSL policy brings over the FCFS for

applications with mean task size of 30ms, comprising 1600 tasks and having a variable

degree of irregularity. Similarly to the experiments from Section 6.3.4, we can observe

that minimal, average and maximal improvements are increasing as the applications’

degree of irregularity is increasing. Therefore, it is also the case for Grid-GUM imple-

mentation that the granularity-driven task selection policies give better improvements

for more irregular parallel applications. However, comparing Figure 6.41 and Figure

228 CHAPTER 6. GRANULARITY-DRIVEN WORK STEALING

6.20, we can observe that the differences between minimal, average and maximal im-

provements are higher in the case of Grid-GUM implementation, than in the case of

the simulations.

Despite some differences in the performance of the granularity-driven task selection

policies under the Grid-GUM implementation and under simulations, which are a

consequence of some additional overheads present in Grid-GUM, we can conclude that

our simulations give a very good estimation of what granularity-drive task selection

policy works the best for what applications, and of the improvements that we can get

with the use of these policies when they are implemented in realistic runtime systems.

6.6 Conclusions

In this chapter, we proposed four simple policies that use information about the task

sizes of an application in making decisions about what task to send as a response

to a steal attempt. We demonstrated that these policies can bring improvements to

the speedups of irregular parallel applications executed on heterogeneous computing

environments. The policies considered in this chapter distinguish between three levels

of communication latency in underlying computing environment (same-PE, local and

remote levels) and they do not rely on the precise knowledge of application task sizes

(in terms of, for example, the number of clock cycles) They only assume that it is

possible to compare two tasks, and to decide which one of them is larger (in terms of

its sequential size, as defined in Section 4.2.1.

We have considered four granularity-driven task selection policies: SSL (Small-

Small-Large), SLL (Small-Large-Large), LLL (Large-Large-Large) and LLS (Large-

Large-Small), which choose the smallest (or the largest) available task to send as a

response to a steal attempt, depending on the latency level of the thief. Each of these

policies has a different strategy for improving the applications’ speedups:

• SSL - reserve all the largest tasks for execution on remote clusters, in order to

send more work less often to remote PEs

• SLL - only send large tasks and execute all of the small ones on the PE where

they are created. We assume that it is only worth sending large chunks of work,

and all other work should be executed where it is created.

• LLL - greedy approach. We try to execute the largest task as soon as possible.

• LLS - execute the large tasks on the PE where they are created, or within the

same cluster. By sending only the small tasks, we hope that they will be executed

6.6. CONCLUSIONS 229

quickly and that their results will be sent back before the large tasks are executed

within the cluster they were created on.

To evaluate the effectiveness of task selection policies, we have measured the im-

provements that they bring to the speedups of parallel applications, compared to

the simple FCFS policy that does not need any granularity information. This policy

chooses the tasks for offloading in FCFS manner, and tasks for local execution in LCFS

manner. Our main focus was on the applications with only a single-level of parallelism

(SingleDataPar applications), but we also considered the examples of applications with

nested parallelism (DCFixedPar applications). SingleDataPar applications we consid-

ered differed in the number of tasks they comprise, their mean task size and the degree

of irregularity, and DCFixedPar ones differed in the number of tasks generated and

the degree of irregularity. The granularity-driven task selection policies were tested

using both simulations and their implementation in the Grid-GUM runtime system.

No single policy performs the best for all applications, but SSL policy is the best

one in vast majority of cases. Only for applications comprising a smaller number of

tasks, and whose tasks are coarse grained does the SLL policy outperform SSL. The

improvements in speedups obtained with the usage of granularity-driven task selection

policies (compared to the basic FCFS one) are in the range of 10-30% most of the time

for applications with a single-level of parallelism. For the applications with nested-

parallelism, we have observed even better improvements (up to 68% for more irregular

applications). We have also observed that the improvements are better the more

irregular parallel applications are (i.e. higher the degree of irregularity they have).

The results from simulations were confirmed when synthetic Grid-GUM applica-

tions with similar characteristics were considered on the example heterogeneous com-

puting environment. This also proved the practical applicability of the granularity-

driven task selection policies.

230 CHAPTER 6. GRANULARITY-DRIVEN WORK STEALING

Chapter 7

Conclusions

The main goal of this thesis has been to improve the state-of-the-art in work-stealing

algorithms, in order to obtain good speedups for irregular parallel applications on

distributed heterogeneous computing environments. Our approach has been to focus

on two main questions:

• Where should thieves look for work during the application execution? Good

methods for selecting the stealing targets would enable thieves to obtain work

quickly once they are idle, which would contribute to the good PE utilisation

and, consequently, good application speedups.

• How should victims respond to steal attempts? Sending the appropriate chunks

of work to the thieves would contribute to the better balance of work across the

computing environment, avoiding situations where a small set of PEs grabs most

of the work.

We can say that the goal of the thesis has been achieved, with some limitations on

the kinds of applications and computing environments that we have considered. We

have developed the algorithms that are especially tailored to provide good answers to

the two posed questions for highly irregular applications. We have shown that sig-

nificant improvements in speedups can be achieved with our algorithms for irregular

applications on heterogeneous distributed computing environments, compared to the

current state-of-the-art work-stealing algorithms. Furthermore, we have shown that

speedup improvements are larger the more irregular the application and the underly-

ing computing environment are. We have also shown that our algorithms do not bring

notable decrease in the performance when used for regular applications or on homoge-

neous computing environments. Only a few cases exist where the speedups under our

231

232 CHAPTER 7. CONCLUSIONS

algorithms are slightly worse than the ones obtained under the state-of-the-art ones,

but the decrease in speedups in these cases showed to be only minor.

Where should thieves look for work during the application execution?

In Chapter 5 we focused on the first of the two posed questions. Our approach in

tackling the problem of locating the stealing targets that have work was to use infor-

mation about the dynamic PE loads, as well as static information about the network

topology. We first investigated methods for selecting the stealing targets, under the

assumption that perfect load information is available. We have discovered that the Per-

fect Cluster-aware Random Stealing (Perfect CRS) algorithm gives the best speedups

for all considered applications on all considered computing environments. This al-

gorithm uses a method for target selection from the Cluster-aware Random Stealing

(CRS) algorithm, where local (i.e. within a cluster) and remote (i.e. outside the clus-

ter) steals are attempted in parallel. Perfect CRS differs from CRS in that a target is

randomly selected from the set of PEs that have work, and that are inside (for local

stealing) or outside (for remote stealing) of the thief’s cluster, as opposed to randomly

selecting a target from the set of all PEs inside/outside of the thief’s cluster in CRS.

We have subsequently focused on the setting where perfect load information is not

available and where some approximation of load information needs to be obtained.

For this purpose, we have developed a novel Feudal Stealing algorithm, which uses

CRS as its base. Feudal Stealing extends CRS with a method of exchanging load

information between PEs, such that each PE either has a good approximation of the

load of all clusters in the environment, or, alternatively, it knows what nearby PE

holds this approximation. We have showed that, for highly irregular applications,

Feudal Stealing gives speedups that are very close to those under Perfect CRS, in

which perfect load information is used.

Chapter 5, therefore, provided the accurate method for estimating dynamic PE

loads during the application execution and showed that the best way to take advantage

of accurate load information is to do local and remote stealing in parallel.

How Should Victims Respond to Steal Attempts?

In Chapter 6 we focused on the second question posed. We have developed four

granularity-driven task selection policies that a victim can use to decide which task

to send to a thief, based on the latency of the communication link to the thief and

the sizes of tasks from the victim’s task pool. We showed that our policies bring

improvements in speedups for irregular applications on heterogeneous computing en-

7.1. CONTRIBUTIONS OF THE THESIS 233

vironments, compared to the ad-hoc policies (which select tasks based on their age)

that are used in the current state-of-the-art work-stealing algorithms.

7.1 Contributions of the Thesis

The contributions made in this thesis are as follows:

A novel Feudal Stealing algorithm for heterogeneous distributed computing

environments

We have developed a novel Feudal Stealing algorithm, which uses the CRS algorithm

as its base. In addition to the basic mechanism for selecting stealing targets taken

from CRS, Feudal Stealing uses a combination of locally-centralised and remotely-

distributed information propagation mechanisms to obtain a good approximation of

the load of the computing environment. In each cluster in the environment, one PE is

nominated as a head PE, and this PE holds information about the load of the whole

cluster. Cluster load information between head PEs is exchanged in a fully-distributed

way. This enables the head PEs to have fully accurate information about the loads of

the PEs from their clusters, as well as a good approximation of the loads of the other

clusters. Due to this, the head PEs are able to appropriately route the steal attempts

that go outside or come inside of their clusters.

We have shown that, for irregular parallel applications, Feudal Stealing outper-

forms both the CRS algorithm (which is considered the best of all the work-stealing

algorithms used in current runtime systems) and the Grid-GUM algorithm, which uses

a fully distributed information propagation mechanism. We have also shown that the

speedups obtained under Feudal Stealing are very close to the ones obtained under

the CRS algorithm with perfect load information. This shows a high accuracy of the

dynamic load information obtained under Feudal Stealing.

Novel policies for selecting the tasks for offloading during the work-stealing

We have developed the novel granularity-driven task selection policies, which use in-

formation about the sizes of tasks from the victims’ task queues, together with the

information about network topology of the underlying computing environment, to de-

cide what tasks to send to thieves. We have showed that our task selection policies

can significantly improve the speedups of parallel applications, compared to the ad-hoc

policies currently used in work-stealing algorithms, which select the tasks according

to their age, and without any knowledge of their parallel profiles.

234 CHAPTER 7. CONCLUSIONS

Comprehensive evaluation of all of our work-stealing algorithms and policies

using simulations

Using simulations, we have conducted a comprehensive evaluation of the algorithms

and policies proposed in this thesis on a wide class of parallel applications and com-

puting environments. This has enabled us to show that the algorithms and policies we

proposed indeed give good improvements in speedups over the state-of-the-art work

stealing algorithms for irregular parallel applications. Furthermore, we have showed

that speedup improvements of our algorithms and policies over the state-of-the-art

algorithms are larger the more irregular the applications are. Finally, we have shown

that the algorithms and policies tailored to the irregular applications on heterogeneous

computing environments also perform good for regular applications on homogeneous

computing environments, which means that there are virtually no situations where

their use can decrease the applications’ speedups.

Implementation of granularity-driven task selection policies in Grid-GUM

We have implemented the granularity-driven task selection policies in the Grid-GUM

runtime environment for Glasgow Parallel Haskell, and we have conducted the evalua-

tion of the performance of this implementation for a wide class of parallel applications.

The benefits of this were twofold. Firstly, we have shown the practical applicability

of these policies, since their performance in the real implementation was as good as

it was in the simulations. Secondly, we have shown the accuracy of our simulations,

since the improvements under the granularity-driven task selection policies obtained

for real applications were very similar to the ones for the models of similar applications

under the simulations.

Analysis of the usability of load information in state-of-the-art work-stealing

algorithms

The state-of-the-art work-stealing algorithms presented in Section 2.3.1 were previ-

ously evaluated only for simple divide-and-conquer parallel applications. The estab-

lished fact was that CRS gives the best speedups for these applications. We have

extended the evaluation of these algorithms to highly irregular parallel applications

and to highly heterogeneous computing environments. Furthermore, for the first time,

we have analysed the scenario in which these algorithms have access to perfect in-

formation about dynamic loads of the PEs in the computing environment, at each

point in the application execution. We have evaluated how much the applications’

7.1. CONTRIBUTIONS OF THE THESIS 235

speedups under each of these algorithms can be increased when perfect load informa-

tion is present. This enabled us to estimate how useful it would be to extend each

algorithm with a mechanism for estimating PE loads.

Our evaluation showed that the amount of improvement that can be obtained de-

pends on the algorithm used. The performance of some algorithms (e.g. CRS and

Adaptive CRS) can be improved with the use of load information only for highly

irregular applications on highly heterogeneous computing environments, whereas for

others (Hierarchical and Random Stealing) it can be improved for all combinations of

applications and computing environments, except for very regular applications on ho-

mogeneous computing environments. We have also discovered that the CRS algorithm

gives the best speedups for all applications on all computing environments, in the case

that it has access to perfect load information.

The benefits of our findings are twofold:

• They give a recommendation for the developers of new work-stealing runtime

systems to use the CRS algorithm for irregular parallel applications, assuming

that they can incorporate mechanisms for obtaining a good approximation of

dynamic PE loads in their systems.

• It gives an estimation of how much speedups can be improved with the use of

load information under the individual state-of-the-art work-stealing algorithms

we considered in this thesis. This can be useful for the developers of work-

stealing runtime systems that use one of the algorithms we considered. The

developers can estimate how much improvement in the applications’ speedups

can be obtained under the algorithm they use, should they decide to use load

information.

The precise definition of the degree of irregularity of an application (with

respect to task granularity)

We have proposed precise definitions of the degree of irregularity of parallel appli-

cations, based on the sizes of their tasks. The proposed definitions covered both the

applications without nested parallelism (Definition 2) and the applications with nested

parallelism (Definition 4). Compared to the usual approach in the literature, where the

applications are regarded simply as either regular or irregular, our definitions enable

us to compare two irregular applications and decide which one of them is more irreg-

ular. We have used these definitions to make a correlation between the effectiveness

of work-stealing algorithms and the irregularity of an application.

236 CHAPTER 7. CONCLUSIONS

Highly-parameterizable simulator for work-stealing on heterogeneous com-

puting environments

We have developed the SCALES simulator, which simulates the execution of parallel

applications on heterogeneous computing environments under different work-stealing

algorithms. This is the first simulator that specifically targets work-stealing on het-

erogeneous computing environments and it can, therefore, be used to evaluate the ef-

fectiveness of work-stealing algorithms for a wide class of applications on a wide class

of computing environments. It can serve as an ideal testbed for a new work-stealing

algorithm before its implementation is attempted in a realistic runtime system, as this

is usually a major task.

7.2 Limitations of our Approach

Most of the limitations of our work come from the specific restrictions we have placed

on the types of applications, computing environments and runtime systems that we

considered. Specifically, we can point to the following limitations:

• We considered only the embarrassingly parallel applications

A very important restriction on the kind of applications that we considered was

that they were embarrassingly parallel. We did not evaluate Feudal Stealing

or granularity-driven task selection policies for the applications that have non-

trivial data dependencies, but we anticipate that there could be problems during

their execution if tasks that need to communicate often are placed on the PEs

connected by a high-latency network. Since Feudal Stealing and the granularity-

driven task selection policies consider the placement of each task independently

of all other tasks, they can run into the aforementioned problem.

• The only kind of heterogeneity in the computing environment that we considered

was the presence of the different communication latencies between the different

PEs

In distributed computing environments, especially on Computational Grids, het-

erogeneity can come from different computing capabilities of PEs and a different

amount and type of memory associated with them. Additionally, rather than

being static, computing capabilities of PEs and communication latencies (and

also bandwidths, which we did not consider in this thesis) in the network links

can vary over the course of the application execution. We did not address the

7.3. FURTHER WORK 237

heterogeneity in computing capabilities and the variability in the performance

of network links in this thesis.

Note that some other kinds of heterogeneity in the computing environment can

be modelled as dynamic heterogeneity in communication latencies and comput-

ing capability. For example, in Computational Grids and Clouds, computing

resources may not be dedicated to one application, and PEs may have a dy-

namically varying background load. However, changes in the background load

can be represented as dynamically varying computing capabilities of PEs, where

a capability of a PE decreases when background tasks are added to it. Also,

limited bandwidth of a communication link can be modelled as the dynamically

changing communication latency of that link, where the link latency increases if

too large messages are sent over it.

• We did not consider runtime systems that allow task migration

Besides stealing tasks whose execution has not started, we can also allow thieves

to steal tasks whose execution has already started (i.e. we can allow task migra-

tion). Most of the work-stealing runtime systems do not support task migration,

as it can be prohibitively expensive, and this was the reason for not considering

task migration mechanism in this thesis. However, the Grid-GUM runtime sys-

tem allows task migration, and it has been showed that this can dramatically

increase the speedups of some applications (see Du Bois et al. [BLT03]).

• We assumed that only one task is transferred in each steal operation

In order to decrease the number of messages exchanged over high-latency net-

works, we may consider packing more than one task in a message that a victim

sends back to a thief as a response to a steal attempt. The evaluation of Grid-

GUM (see Al Zain et al. [AZTML08]) showed that this can be beneficial in some

situations.

7.3 Further Work

Based on the limitations we described in Section 7.2 and the current trends in com-

puting environments, we can observe several obvious ways in which this thesis can be

improved.

238 CHAPTER 7. CONCLUSIONS

Work-stealing algorithms that support applications with more complex task

dependencies (e.g. applications with pipeline parallelism)

The first obvious direction for improving the work done in this thesis is to consider

the applications that have more data-dependencies between tasks. We can take into

account not only the fact that some tasks can share the data, but also provide for

different sizes of the input data that tasks need and the output data that they generate

(similarly to what is done in the DAG application model). This would require both

an extension to the SCALES simulator in order to be able to model this kind of

applications, and also an extension to the Feudal Stealing and granularity-driven task

selection policies.

In order to extend the SCALES simulator to allow modelling of applications with

complex data dependencies, we would need to add a new task event which simulates

the communication between two tasks. We can parametrise this event by the amount of

communication that needs to be done in terms of, for example, the number of messages

that needs to be exchanged or the size of the data that needs to be communicated.

Therefore, for example, for a task t we can have the event COMMUNICATE t1 m,

which denotes that task t needs to fetch some data from the task t1 (or from the PE

where t1 was executed, if t1 has finished the execution). This fetching would require

m messages (or, alternatively, that the data that needs to be fetched is m bytes long).

The former approach, where the event is parametrised by the size of the data that

needs to be fetch would require us to extend the computing environments we simulate

with the concept of a bandwidth between PEs/clusters. In any case, the introduction

of COMMUNICATE event would enable us to model applications whose tasks share

some data, or where data is continuously passed from one task to the other (e.g.

pipeline parallelism).

Concerning the extensions to work-stealing algorithms we proposed, we would need

to introduce grouping of tasks based on their data dependencies. We can, for example,

decide that a certain set of tasks may be executed only on PEs that communicate over

low-latency networks or, in the extreme cases of huge data-dependencies, even on the

same PE. Granularity-driven task selection policies can then, in addition to the task

sizes, also use this grouping to guide the decision of what task(s) to send to a thief.

Simulating a wider class of computing environments

The second obvious direction for improving the work done here is to consider com-

putational environments where, in addition to communication latencies, heterogeneity

also exists in computing capabilities of individual PEs and bandwidths of communi-

7.3. FURTHER WORK 239

cation links. We can also work under the assumption that certain characteristics of

computing environments (in terms of, for example, latency and bandwidth of com-

munication links and computing capabilities of individual PEs) dynamically vary over

the course of application execution. This would enable us to simulate more accurately

the behaviour of non-dedicated Computational Grids. Our work-stealing algorithms

would then need to take into the account also these other kinds of heterogeneity. For

example, granularity-driven task selection policies may try to avoid sending the tasks

that are too large to the PEs whose computing capability is currently low.

Using the task migration in load balancing

In the applications that we considered, it can happen that a target does not have

any unstarted tasks in its task pool, but that it has many started tasks. In this

situation, rather than considering the steal as unsuccessful, we can decide to send

one of the started tasks. This might be the only solution to achieve a load balance

for some applications, especially if we consider applications with data dependencies.

For example, a situation might happen where a PE has a lot of unstarted tasks that

share the same data that is placed on some other PE, and all tasks need this data at

the beginning of their execution. In this situation, the PE might start the execution

of one task that might immediately block on communication. Since the PE becomes

idle again, it can try to execute other tasks, where the same situation can happen.

Therefore the PE can accumulate a lot of tasks that are blocked at the beginning of

their execution, and they can all be unblocked at approximately the same time (i.e.

when they fetch the data they need). This would leave the PE with a lot of started

tasks, while other PEs in the computing environment might be idle.

Considering the task migration would require us to carefully weight the overheads in

the migration of a task, with respect to the benefits of its parallel execution. Migrating

started tasks might be very expensive in terms of the communication time it takes,

since it might involve transferring the whole task state from a victim to a thief. We

would need, therefore, to provide the estimation of how much communication time

would be needed to migrate a task and how much of it is already completed, and

probably the overall load of the system in order to be able to decide whether the task

migration is worthwhile.

Generally, we might consider task migration as a last resort for achieving load

balance, which should be avoided if at all possible. Considering the Feudal work-

stealing algorithm, we can consider two separate loads – one that denotes how many

unstarted tasks a PE has, and the other that denotes how many started tasks it has.

240 CHAPTER 7. CONCLUSIONS

We can then decide to ask a victim (that has no unstarted tasks) for work only if no

other victim (that has started tasks) exists.

Adaptive task selection policies

We saw in Chapter 6 that none of the proposed granularity-driven task selection poli-

cies gives the best speedups for all applications that we considered. We can, therefore,

consider developing an adaptive task selection policy, which would dynamically switch

between different “basic” policies, depending on the number of tasks that remain to

be executed and the mean size of the remaining tasks. This adaptive policy would use

the SSL policy for most of the application execution, and it would switch to the SLL

policy when the number of tasks that remain to be executed becomes low and in the

case that the remaining tasks are coarse-grained.

Considering different definitions of PE load

In the discussion about task migration (see “Using the task migration in load balanc-

ing”), we pointed out that it might be useful to consider extending the trivial definition

of a PE load that was used in Feudal Stealing (where we defined a PE load as the

number of unstarted tasks in its task pool) to cover both started and unstarted tasks.

This is a part of a more general direction in which work in this thesis can be extended.

Namely, we may need to consider non-trivial definitions of a PE load, that would take

into account not only the number of tasks that a PE has, but also some characteristics

of tasks. For example, incorporating the information about task sizes and the amount

of parallelism they generate may allow thieves to select steal targets that will have

appropriate work to send. For example, when thieves need to choose remote targets,

they may be interested in locating targets that have fewer number of coarse grained

tasks that generate a lot of parallelism, rather than those that have a larger number

of fine-grained or sequential tasks. On the other hand, when thieves look for work

locally (within the same cluster), they might be interested in finding the targets that

have finer-grained tasks, as we saw the benefits of this in SSL granularity-driven task

selection policy. Finding the appropriate definition of a PE load would then allow

Feudal Stealing to find not only any target that has work, but also the target that has

the best work to send.

7.3. FURTHER WORK 241

A combination of shared-memory and distributed-memory work-stealing

algorithms

A more major direction for improving the work-stealing algorithms might be combin-

ing the shared-memory implementations of work-stealing, where a common task queue

for all PEs exists (for example, in the multicore implementation of GpH [MPJS09]) and

the algorithms that were used in this thesis. Because of the emergence of multicore and

manycore architectures, future large-scale computing environments will probably con-

sist of geographically distributed clusters of multicore/manycore machines. Therefore,

we anticipate that the runtime systems will also need to be adapted to this com-

bination of shared- and distributed-memory architectures, and some of them might

consider combinations of shared-memory and distributed-memory application models.

A Markov-chain based system for obtaining the profiles of applications’

tasks

Granularity driven task selection policies assume the presence of accurate information

about the sizes of tasks that comprise an application being executed. Besides the sizes

of the tasks, many other task characteristics may be of use in work-stealing/scheduling,

e.g. the amount of communication between tasks and the amount of parallelism they

generates. Therefore, methods for obtaining this information would be very useful in

load-balancing and scheduling.

In our previous work (Janjic et al. [JHY08]), we showed that the Markov-chain

model can be useful in recognising the patterns of task sizes in bag-of-tasks applica-

tions on Computational Grids. We may consider using the similar model in profiling

of the application over several runs in order to obtain the estimations of important

characteristics of the profiles of its tasks. This can be used as a method for obtaining

accurate information about application tasks.

To conclude this thesis, we have developed and evaluated novel work-stealing algo-

rithms specifically tailored to the execution of irregular parallel applications on het-

erogeneous distributed computing environments, and we have also showed that these

algorithms do not bring a decrease in performance for regular parallel applications. we

have, therefore, showed that work-stealing is the method of choice for load-balancing

in runtime systems for a very large class of applications. We anticipate that the

next major step in the development of work-stealing algorithms will be combining

shared-memory and distributed-memory algorithms in runtime systems that use the

242 CHAPTER 7. CONCLUSIONS

combination of these two memory models.

Bibliography

[ABB00] Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. The Data

Locality of Work Stealing. In Proc. of 12th ACM Symposium on Parallel

Algorithms and Architectures, SPAA ’00, pages 1–12. ACM, 2000.

[AHK98] Robert Armstrong, Debra Hengsen, and Taylor Kidd. The Relative

Performance of Various Mapping Algorithms is Independent of Sizable

Variances in Run-time Predictions. In Proc. of the 7th IEEE Heteroge-

neous Computing Workshop, HCW ’98, pages 79–87. IEEE Computer

Society, 1998.

[Ama] Amazon EC2. http://aws.amazon.com/ec2.

[ATN+00] Kento Aida, Atsuko Takefusa, Hidemoto Nakada, Satoshi Matsouka,

Satoshi Sekiguchi, and Umpei Nagashima. Performance Evaluation

Model for Scheduling in Global Computing Systems. The International

Journal of High Performance Computing Applications, 14(3):268–279,

2000.

[AZ06] Abdallah D. Al Zain. Implementing High-Level Paralelism on Compu-

tational Grids. PhD thesis, Heriot-Watt University, Edinburgh, 2006.

[AZTH+08] Abdallah D. Al Zain, Philip W. Trinder, Kevin Hammond, Alexan-

der Konovalov, Steve Linton, and Jost Berthold. Parallelism without

Pain: Orchestrating Computational Algebra Components into a High-

Performance Parallel System. In Proc. of the 2008 International Sym-

posium on Parallel and Distributed Processing with Applications, ISPA

2008, pages 99–112. IEEE Computer Society, December 2008.

[AZTML06] Abdallah D. Al Zain, Philip W. Trinder, Greg J. Michaelson, and Hans-

Wolfgang Loidl. Managing Heterogeneity in a Grid Parallel Haskell.

Scalable Computing: Practice and Experience, 7(3):9–25, 2006.

243

http://aws.amazon.com/ec2

244 BIBLIOGRAPHY

[AZTML08] Abdallah D. Al Zain, Philip W. Trinder, Greg J. Michaelson, and Hans-

Wolfgang Loidl. Evaluating a High-Level Parallel Language (GpH) for

Computational Grids. IEEE Transactions on Parallel and Distributed

Systems, 19(2):219–233, 2008.

[BBB96] John E. Baldeschwieler, Robert D. Blumofe, and Eric A. Brewer. AT-

LAS: An Infrastructure for Global Computing. In Proc. of the 7th

Workshop on System Support for Worldwide Applications, pages 165–

172. ACM, 1996.

[BC03] Kevin J. Barker and Nikos P. Chrisochoides. An Evaluation of a Frame-

work for the Dynamic Load Balancing of Highly Adaptive and Irregular

Parallel Applications. In Proc. of the 2003 ACM/IEEE Conference on

Supercomputing, SC ’03, pages 45–59. ACM, 2003.

[BCC+05] Francine Berman, Henry Casanova, Andrew A. Chien, Keith D. Cooper,

HHolly Dail, Anshuman Dasgupta, Wei Jaw Deng, Jack J. Dongarra,

Lennart S. Johnsson, Ken W. Kennedy, Charles H. Koelbel, B. Liu,

X. Liu, Anirbal Mandal, Gabriel Marin, Mark Mazina, John Mellor-

Crummey, Ceslo Luis Mendes, A. Olugbile, Jignesh M. Patel, Daniel A.

Reed, Zhiao Shi, Otto Sievert, Huaxia Xia, and Asim YarKhan. New

Grid Scheduling and Rescheduling Methods in the GrADS Project. In-

ternational Journal of Parallel Programming, 33(2):209–229, June 2005.

[BFH03] Fran Berman, Geoffrey C. Fox, and Anthony J. G. Hey, editors. Grid

Computing : Making the Global Infrastructure a Reality. John Wiley &

Sons, 2003.

[BH04] Fran Berman and Tony Hey. The Scientific Imperative. In Ian Foster

and Carl Kesselman, editors, The Grid : Blueprint for a New Computing

Infrastructure, 2nd Edition, pages 13–24. Morgan Kauffman Publishers,

2004.

[BHC+93] Guy E. Blelloch, Jonathan C. Hardwick, Siddhartha Chatterjee, Jay

Sipelstein, and Marco Zagha. Implementation of a Portable Nested Data-

parallel Language. In Proc. of the 4th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, PPoPP ’93, pages 102–

111. ACM, 1993.

BIBLIOGRAPHY 245

[BJK+95] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,

Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An Ef-

ficient Multithreaded Runtime System. In Proc. of the 5th ACM SIG-

PLAN Symposium on Principles and Practice of Parallel Programming,

PPoPP ’95, pages 207–216. ACM, 1995.

[BL99] Robert D. Blumofe and Charles E. Leiserson. Scheduling Multithreaded

Computations by Work Stealing. Journal of the ACM, 46(5):720–748,

1999.

[Ble96] Guy E. Blelloch. Programming Parallel Algorithms. Communications

of the ACM, 39(3):85–97, 1996.

[BLMP97] Silvia Breitinger, Rita Loogen, Yolanda Ortega Mallen, and Ricardo

Pena. The Eden Coordination Model for Distributed Memory Systems.

In Proc. of the 1997 Workshop on High-Level Programming Models and

Supportive Environments, HIPS ’97, pages 120–124. IEEE Computer

Society, 1997.

[BLT03] André R. Du Bois, Hans-Wolfgang Loidl, and Philip W. Trinder. Thread

Migration in a Parallel Graph Reducer. In Proc. of the 14th International

Conference on Implementation of Functional Languages, IFL ’02, pages

199–214. Springer-Verlag, 2003.

[BM02] Rajkumar Buyya and Manzur Murshed. GridSim: A Toolkit for the

Modeling and Simulation of Distributed Resource Management and

Scheduling for Grid Computing. Concurrency and Computation : Prac-

tice and Experience (CCPE), 14(13):1175–1220, 2002.

[BS81] F. Warren Burton and M. Ronan Sleep. Executing Functional Programs

on a Virtual Tree of Processors. In Proc. of the 1981 Conference on

Functional Programming Languages and Computer Architecture, FPCA

’81, pages 187–194. ACM, 1981.

[Buy02] Rajkumar Buyya. Economic-based Distributed Resource Management

and Scheduling for Grid Computing. PhD thesis, School of Computer

Science and Software Engineering Monash University, Melbourne, Aus-

tralia, 2002.

246 BIBLIOGRAPHY

[BWC03] Francine Berman, Richard Wolski, and Henri Casanova. Adaptive Com-

puting on the Grid Using AppLeS. IEEE Transactions on Parallel and

Distributed Systems, 14(4):369–382, 2003.

[CJSN03] Junwei Cao, Stephen A. Jarvis, Subhash Saini, and Graham R. Nudd.

GridFlow : Workflow Management for Grid Computing. In Proc. of

the 3rd International Symposium on Cluster Computing and the Grid

(CCGrid ’03). IEEE Computer Society, 2003.

[CK88] Thomas L. Casavant and Jon G. Kuhl. A Taxonomy of Scheduling in

General-Purpose Distributed Computing Systems. IEEE Transactions

on Software Engineering, 14(2):141–154, February 1988.

[CKK+08] Guojing Cong, Sreedhar Kodali, Sriram Krishnamoorthy, Doug Lea, Vi-

jay Saraswat, and Tong Wen. Solving Large, Irregular Graph Problems

Using Adaptive Work-Stealing. In Proc. of the 37th International Con-

ference on Parallel Processing, ICPP ’08, pages 536–545. IEEE Com-

puter Society, 2008.

[CLJ+07] Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon L. Peyton

Jones, Gabriele Keller, and Simon Marlow. Data Parallel Haskell: A

Status Report. In Proc. of the 2007 Workshop on Declarative Aspects

of Multicore Programming, DAMP ’07, pages 10–18. ACM, 2007.

[CLQ08] Henri Casanova, Arnaud Legrand, and Martin Quinson. SimGrid: A

Generic Framework for Large-Scale Distributed Experiments. In Proc.

of the 10th International Conference on Computer Modeling and Simu-

lation, ICCMS ’08, pages 126–131. IEEE Computer Society, 2008.

[CLZB00] Henry Casanova, Arnaud Lergand, Dmitrii Zagorodnov, and Francine

Berman. Heuristics for Scheduling Parameter Sweep Applications in

Grid Environments. In Proc. of the 9th Heterogeneous Computing Work-

shop, HCW ’00, pages 349–363. IEEE Computer Society, 2000.

[COBW00] Henri Casanova, Graziano Obertelli, Francine Berman, and Richard

Wolski. The AppLeS Parameter Sweep Template: User-level Middle-

ware for the Grid. Journal of Scientific Programming, 8(3):111–126,

August 2000.

[Col89] Murray Cole. Algorithmic Skeletons: Structured Management of Parallel

Computation. The MIT Press, 1989.

BIBLIOGRAPHY 247

[Col99] Murray Cole. Algorithmic Skeletons. In Kevin Hammond and Greg

Michaelson, editors, Research Directions in Parallel Functional Program-

ming. Springer, 1999.

[CRB+11] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, Cesar A. F.

De Rose, and Rajkumar Buyya. CloudSim: A Toolkit for Modeling

and Simulation of Cloud Computing Environments and Evaluation of

Resource Provisioning Algorithms. Software : Practice and Experience,

41(1):23–50, January 2011.

[DA98] Sekhar Darbha and Dharma P. Agrawal. Optimal Scheduling Algorithm

for Distributed-Memory Machines. IEEE Transactions on Parallel and

Distributed Systems, 9(1):87–95, January 1998.

[DA06] Fangpeng Dong and Selim G. Akl. Scheduling Algorithms for Grid Com-

puting: State of the Art and Open Problems. Technical Report 2006-504,

Queen’s University, Kingston, Ohio, 2006.

[DBG+03] Ewa Deelman, James Blythe, Yolanda Gil, Carl Kesselman, Gaurang

Metha, Karan Vahi, Kent Blackburn, Albert Lazzarini, Adam Arbree,

Richard Cavanaugh, and Scott Koranda. Mapping Abstract Com-

plex Workflows onto Grid Environments. Journal of Grid Computing,

1(1):25–39, 2003.

[DLS+09] James Dinan, D. Brian Larkins, P. Sadayappan, Sriram Krishnamoorthy,

and Jarek Nieplocha. Scalable Work Stealing. In Proc. of the Conference

on High Performance Computing Networking, Storage and Analysis, SC

’09, pages 1–11. ACM, 2009.

[ELZ86] Derek L. Eager, Edward D. Lazowska, and John Zahorjan. Adaptive

Load Sharing in Homogeneous Distributed Systems. IEEE Transactions

on Software Engineering, 12(5):662–675, 1986.

[FAF] FAFNER Project. http://www.npac.syr.edu/factoring.html.

[FGN+03] Ian Foster, Jonathan Geisler, Bill Nickless, Warren Smith, and Steven

Tuecke. Software Infrastructure for the I-WAY High-Performance Dis-

tributed Computing Experiment. In Grid Computing: Making the Global

Infrastructure a Reality, pages 101–115. John Wiley & Sons, 2003.

http://www.npac.syr.edu/factoring.html

248 BIBLIOGRAPHY

[FH88] Anthony J. Field and Peter G. Harisson. Functional Programming.

Addison-Wesley Publishing Company, 1988.

[FK04a] Ian Foster and Carl Kesselman. Concepts and Architecture. In Ian

Foster and Carl Kesselman, editors, The Grid : Blueprint for a New

Computing Infrastructure, 2nd Edition, pages 37–64. Morgan Kauffman

Publishers, 2004.

[FK04b] Ian Foster and Carl Kesselman, editors. The Grid : Blueprint for a New

Computing Infrastructure, 2nd Edition. Morgan Kauffman Publishers,

2004.

[FKT01] Ian Foster, Carl Kesselman, and Steven Tuecke. The Anatomy of the

Grid - Enabling Scalable Virtual Organizations. International Journal

of Supercomputer Applications, 15(4):200–222, 2001.

[FKT04] Ian Foster, Carl Kesselman, and Steven Tuecke. The Open Grid Services

Architecture. In Ian Foster and Carl Kesselman, editors, The Grid :

Blueprint for a New Computing Infrastructure, 2nd Edition, pages 215–

249. Morgan Kauffman Publishers, 2004.

[Fos03] Ian Foster. The Grid : A New Infrastructure for 21st Century Science,

chapter 2. Wiley, 2003.

[FZRL08] Ian Foster, Yong Zhao, Ioan Raicu, and Shiyong Lu. Cloud Comput-

ing and Grid Computing 360-Degree Compared. In Proc. of the IEEE

Grid Computing Environments Workshop, GCE ’08, pages 1–10. IEEE

Computer Society, 2008.

[GLS99] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI:

Portable Parallel Programming with the Message-Passing Interface. MIT

Press, 1999.

[GLS03] William Gropp, Ewing Lusk, and Thomas Sterling. Beowulf Cluster

Computing with Linux, 2nd Edition. MIT Press, 2003.

[Goo] Google App Engine. http://code.google.com/appengine.

[GS06] Clemens Grelck and Sven-Bodo Scholz. SAC: A Functional Array Lan-

guage for Efficient Multi-threaded Execution. International Journal of

Parallel Programming, 34(4):383–427, August 2006.

http://code.google.com/appengine

BIBLIOGRAPHY 249

[GVC06] Horacio Gonzaléz-Vélez and Murray Cole. Towards Fully Adaptive

Pipeline Parallelism for Heterogeneous Dsitributed Environments. In

Proc. of the 2006 International Symposium on Parallel and Distributed

Processing and Applications, ISPA 2006, pages 916–926. Springer-Verlag

LNCS 4330, 2006.

[GVC10] Horacio González-Vélez and Murray Cole. Adaptive Statistical Schedul-

ing of Divisible Workloads in Heterogeneous Systems. Journal of

Scheduling, 13(4):427–441, 2010.

[GWT97] Andrew S. Grimshaw, William. A. Wulf, and The Legion Team. The

Legion Vision of a Worldwide Virtual Computer. Communications of

the ACM, 40(1):39–45, January 1997.

[Hag97] Torben Hagerup. Allocating Independent Tasks to Parallel Processors:

An Experimental Study. Journal of Parallel and Distributed Computing,

47(2):185–197, 1997.

[HB95] Jeffrey Hammes and Wim Bohm. Comparing Id and Haskell in a Monte

Carlo Photon Transport Code. Journal of Functional Programming,

5:283–316, 1995.

[HC07a] Israel Hernandez and Murray Cole. Reliable DAG Scheduling on Grids

with Rewinding and Migration. In Proc. of the 1st International Con-

ference on Networks for Grid Applications, GridNets ’07, pages 3:1–3:8.

ICST, 2007.

[HC07b] Israel Hernandez and Murray Cole. Scheduling DAGs on Grids with

Copying and Migration. In Proc. of the 7th International Conference on

Parallel Processing and Applied Mathematics, PPAM ’07, pages 1019–

1028. Springer-Verlag LNCS 4967, 2007.

[Her01] Christoph A. Herrmann. The Skeleton-Based Parallelization of Divide-

and-Conquer Recursions. PhD thesis, University of Passau, Germany,

2001.

[HM99] Kevin Hammond and Greg Micaelson, editors. Research Directions in

Parallel Functional Programming. Springer-Verlag, 1999.

250 BIBLIOGRAPHY

[HSF92] Susan Flynn Hummel, Edith Schonberg, and Lawrence E. Flynn. Fac-

toring: A Method for Scheduling Parallel Loops. Communications of the

ACM, 35(8):90–101, 1992.

[Hug90] John Hughes. Research Topics in Functional Programming, chapter Why

Functional Programming Matters, pages 17–42. Addison-Wesley Long-

man Publishing Co., Inc., 1990.

[HYUY09] Tasuku Hiraishi, Masahiro Yasugi, Seiji Umatani, and Taiichi Yuasa.

Backtracking-based Load Balancing. In Proc. of the 14th ACM SIG-

PLAN Symposium on Principles and Practice of Parallel Programming,

PPoPP ’09, pages 55–64. ACM, 2009.

[Jay99] C. Barry Jay. Shaping Distributions. In Kevin Hammond and Greg

Michaelson, editors, Research Directions in Parallel Functional Program-

ming, pages 219–232. Springer, 1999.

[JH10] Vladimir Janjic and Kevin Hammond. Granularity-Aware Work-

Stealing for Computationally-Uniform Grids. In Proc. of the 10th

IEEE/ACM International Conference on Cluster, Cloud and Grid Com-

puting, CCGrid ’10, pages 123–134. IEEE Computer Society, May 2010.

[JHH+92] Simon L. Peyton Jones, Cordy Hall, Kevin Hammond, Will Partain, and

Phil Wadler. The Glagow Haskell Compiler : A Technical Overview. In

Proc. of the UK Joint Framework for Information Technology (JFIT)

Technical Conference, 1992.

[JHY08] Vladimir Janjic, Kevin Hammond, and Yang Yang. Using Application

Information to Drive Adaptive Grid Middleware Scheduling Decisions.

In Proc. of the 2nd Workshop on Middleware-application Interaction:

Affiliated with the DisCoTec Federated Conferences 2008, MAI ’08, pages

7–12. ACM, 2008.

[Jon92] Simon L. Peyton Jones. Implementing Lazy Functional Languages on

Stock Hardware: The Spineless Tagless G-machine. Journal of Func-

tional Programming, 2:127–202, 1992.

[Jon03] Simon L. Peyton Jones, editor. Haskell 98 Language and Libraries, the

Revised Report. Cambridge University Press, December 2003.

BIBLIOGRAPHY 251

[JWT+04] Seung-Hye Jang, Xingfu Wu, Valerie Taylor, Gaurang Metha, Karan

Vahi, and Ewa Deelman. Using Performance Prediction to Allocate

Grid Resources. Technical report, Texas A&M University and UCS

Information Sciences Institute, 2004.

[KBAK10] Dzmitry Kliazovich, Pascal Bouvry, Yury Audzevich, and Samee Ulah

Khan. GreenCloud: A Packet-level Simulator of Energy-aware Cloud

Computing Data Centers. In Proc. of the 53rd IEEE Global Commu-

nication Conference, GLOBECOM 2010, pages 1–5. IEEE Computer

Society, 2010.

[KGV94] Vipin Kumar, Ananth Y. Grama, and Nageshwara Rao Vempaty. Scal-

able Load Balancing Techniques for Parallel Computers. Journal of

Parallel and Distributed Computing, 22(1):60–79, 1994.

[KPW+07] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Rama-

narayanan, Kavita Bala, and L. Paul Chew. Optimistic Parallelism Re-

quires Abstractions. In Proc. of the 2007 ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI ’07, pages

211–222. ACM, 2007.

[KT99] Paul Kelly and Frank Taylor. Coordination Languages. In Kevin Ham-

mond and Greg Michaelson, editors, Research Directions in Parallel

Functional Programming, pages 305–320. Springer, 1999.

[KTF03] Nicholas T. Karonis, Brian Toonen, and Ian Foster. MPICH-G2: A Grid-

Enabled Implementation of the Message Passing Interface. Journal of

Parallel and Distributed Computing, 63(5):551–563, May 2003.

[KW85] Clyde P. Kruskal and Alan Weiss. Allocating Independent Subtasks

on Parallel Processors. IEEE Transactions on Software Engineering,

11(10):1001–1016, 1985.

[LH97] Hans-Wolfgang Loidl and Kevin Hammond. Making a Packet: Cost-

Effective Communication for a Parallel Graph Reducer. In Proc. of

the 8th International Workshop on Implementation of Functional Lan-

guages, IFL ’96, pages 184–199. Springer-Verlag, 1997.

[LHK+11] Stephen Linton, Kevin Hammond, Alexander Konovalov, Philip W.

Trinder, Christopher Brown, Hans-Wolfgang Loidl, Peter Horn, and Dan

252 BIBLIOGRAPHY

Roozemond. Easy Composition of Symbolic Computation Software using

SCSCP: A New Lingua Franca for Cymbolic Computation. To Appear

in Journal of Symbolic Computation, 2011.

[Loi98] Hans-Wolfgang Loidl. Granularity in Large-Scale Parallel Functional

Programming. PhD thesis, University of Glasgow, 1998.

[Loi02] Hans-Wolfgang Loidl. Load Balancing in a Parallel Graph Reducer. In

Proc. of the International Symposium on Trends in Functional Program-

ming, TFP ’02, pages 63–74. Intellect Books, 2002.

[Loo99] Rita Loogen. Programming Language Constructs. In Kevin Hammond

and Greg Michaelson, editors, Research Directions in Parallel Functional

Programming, pages 63–91. Springer, 1999.

[MAS+99] Muthucumaru Maheswaran, Shoukat Ali, Howard Jay Siegel, Debra

Hensgen, and Richard F. Freund. Dynamic Matching and Scheduling

of a Class of Indipendent Tasks onto Heterogeneous Computing Sys-

tems. In Proc. of the 8th IEEE Heterogeneous Computing Workshop,

HCW ’99, pages 30–44. IEEE Computer Society, 1999.

[MCGH05] Anne Benoit Murray, Murray Cole, Stephen Gilmore, and Jane Hillston.

Flexible Skeletal Programming with eSkel. In Proc. of the 11th Euro-

Par: Parallel and Distributed Computing, Euro-Par 2005, pages 761–770.

Springer-Verlag LNCS 3648, 2005.

[MLD06] Stephen McGough, William Lee, and John Darlington. Workflow De-

ployment in ICENI II. In Proc. of the 6th International Conference

on Computational Science, ICCS 2006, pages 964–971. Springer-Verlag

LNCS 3993, 2006.

[MLS+05] Nithiapidary Muthuvelu, Junyang Liu, Nay Lin Soe, Srikumar Venu-

gopal, Anthony Sulistio, and Rajkumar Buyya. A Dynamic Job

Grouping-based Scheduling for Deploying Applications with Fine-

grained Tasks on Global Grids. In Proc. of the 2005 Australasian Work-

shop on Grid Computing and E-research, volume 44 of ACSW Frontiers

’05, pages 41–48. Australian Computer Society Inc., 2005.

[MPJS09] Simon Marlow, Simon L. Peyton Jones, and Satnam Singh. Runtime

Support for Parallel Haskell. In Proc. of the 14th ACM SIGPLAN In-

BIBLIOGRAPHY 253

ternational Conference on Functional Programming, ICFP 2009, pages

65–78. ACM, 2009.

[MSA] Microsoft Windows Azure. http://www.microsoft.com/

windowsazure.

[MVS09] Maged M. Michael, Martin T. Vechev, and Vijay A. Saraswar. Idempo-

tent Work Stealing. In Proc. of the 14th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, PPoPP ’09, pages

45–54. ACM, 2009.

[NA01] Rishiyur S. Nikhil and Arvind. Implicit Parallel Programming in pH.

Morgan Kaufmann Publishers Inc., 2001.

[NC02] Michael O. Neary and Peter Cappello. Advanced Eager Scheduling for

Java-Based Adaptively Parallel Computing. In Proc. of the 2002 Joint

ACM-ISCOPE Conference on Java Grande, JGI ’02, pages 56–65. ACM,

2002.

[NIS] NIST Definition of Cloud Computing v15. csrc.nist.gov/groups/

SNS/cloud-computing/cloud-def-v15.doc.

[NKP+00] Graham R. Nudd, Darren J. Kerbyson, Efstathios Papaefstathiou, S. C.

Perry, John S. Harper, and Daniel V. Wilcox. Pace–A Toolset for the

Performance Prediction of Parallel and Distributed Systems. Interna-

tional Journal of High Performance Computing Applications, 14(3):228–

251, 2000.

[NPA01] Dimitrios S. Nikolopoulos, Constantine D. Polychronopoulos, and Ed-

uard Ayguadé. Scaling Irregular Parallel Codes with Minimal Program-

ming Effort. In Proc. of the 2001 ACM/IEEE Conference on Supercom-

puting, Supercomputing ’01, pages 16–16. ACM, 2001.

[PBS] Open portable batch system. http://www.mcs.anl.gov/research/

projects/openpbs,.

[PCM+07] Guilherme P. Pezzi, Marcia C. Cera, Elton Mathias, Nicolas Maillard,

and Philippe O. A. Navaux. On-line Scheduling of MPI-2 Programs with

Hierarchical Work Stealing. SBAC-PAD 2007, pages 247–254. IEEE

Computer Society, 2007.

http://www.microsoft.com/windowsazure
http://www.microsoft.com/windowsazure
csrc.nist.gov/groups/SNS/cloud-computing/cloud-def-v15.doc
csrc.nist.gov/groups/SNS/cloud-computing/cloud-def-v15.doc
http://www.mcs.anl.gov/research/projects/openpbs
http://www.mcs.anl.gov/research/projects/openpbs

254 BIBLIOGRAPHY

[PvEPS99] Rinus Plasmeijer, Marko van Eekelen, Marco Pil, and Pascal Serrarens.

Parallel and Distributed Programming in Concurrent Clean. In Kevin

Hammond and Greg Michaelson, editors, Research Directions in Parallel

Functional Programming, pages 323–338. Springer, 1999.

[Qui03] Michael J. Quinn. Parallel Programming in C with MPI and OpenMP.

McGraw-Hill Education Group, 2003.

[RBJ03] David De Roure, Mark A. Baker, and Nicholas R. Jennings. The Evolu-

tion of the Grid. In Grid Computing: Making the Global Infrastructure

a Reality, pages 65–100. John Wiley & Sons, 2003.

[RCL09] Bhaskar Prasad Rimal, Eunmi Choi, and Ian Lumb. A Taxonomy and

Survey of Cloud Computing Systems. In Proc. of the 5th International

Joint Conference on INC, IMS and IDC, NCM ’09, pages 44–51. IEEE

Computer Society, 2009.

[RvG99] Andrei Radulescu and Arjan J.C. van Gemund. On the Complexity of

List Scheduling Algorithms for Distributed-Memory Systems. In Proc.

of the 13th International Conference on Supercomputing, ICS ’99, pages

68–75. ACM, 1999.

[S9́9] Jocelyn Sérot. Explicit Parallelism. In Kevin Hammond and Greg

Michaelson, editors, Research Directions in Parallel Functional Program-

ming, pages 379–396. Springer, 1999.

[Sal] Salesforce.com. http://www.salesforce.com.

[Sar04] Vijay Saraswat. X10 Language Report. Technical report, IBM, 2004.

[Sha01] Gary Shao. Adaptive Scheduling of Master/Worker Applications on Dis-

tributed Computational Resources. PhD thesis, University of California,

San Diego, 2001.

[Ske91] Stephen K. Skedzielewski. Sisal. In Boleslaw K. Szymanski, editor, Par-

allel Functional Languages and Compilers, pages 105–157. ACM, 1991.

[SKS92] Niranjan G. Shivaratri, Phillip Krueger, and Mukesh Singhal. Load

Distributing for Locally Distributed Systems. Computer, 25(12):33–44,

1992.

http://www.salesforce.com

BIBLIOGRAPHY 255

[SLJ+00] Hyou J. Song, Xin Liu, D. Jakobsen, R. Bhagwan, K. Zhang, Ken-

jiro Taura, and Andrew A. Chien. The MicroGrid: A Scientific Tool

for Modeling Computational Grids. Journal of Scientific Programming,

8(3):127–141, August 2000.

[SZ04] Rizos Sakellariou and Henan Zhao. A Hybrid Heuristic for DAG Schedul-

ing on Heterogeneous Systems. In Proc. of the 18th International Par-

allel and Distributed Processing Symposium, IPDPS ’04, pages 111–123.

IEEE Computer Society, 2004.

[THLPJ98] P. W. Trinder, K. Hammond, H.-W. Loidl, and S. L. Peyton Jones. Al-

gorithm + Strategy = Parallelism. Journal of Functional Programming,

8(1):23–60, 1998.

[THM+96] Philip W. Trinder, Kevin Hammond, James S. Mattson Jr., Andrew S.

Partridge, and Simon L. Peyton Jones. GUM: A Portable Parallel Imple-

mentation of Haskell. In Proc. of the 1996 ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI ’96, pages

79–88. ACM, 1996.

[THW02] Haluk Topcuoglu, Salim Hariri, and Min-You Wu. Performance-Effective

and Low-Complexity Task Scheduling for Heterogeneous Computing.

IEEE Transactions on Parallel and Distributed Systems, 13(3):260–274,

March 2002.

[TL04] Douglas Thain and Miron Livny. Building Reliable Clients and Services.

In Ian Foster and Carl Kesselman, editors, The Grid : Blueprint for

a New Computing Infrastructure, 2nd Edition, pages 285–318. Morgan

Kauffman Publishers, 2004.

[TWS03] Valerie Taylor, Xingfu Wu, and Rick Stevens. Prophesy: an infrastruc-

ture for performance analysis and modeling of parallel and grid applica-

tions. ACM SIGMETRICS Performance Evaluation Review, 30:13–18,

March 2003.

[VMW] VMWare Cloud Infrastructure & Management Solutions. http://www.

vmware.com/solutions/cloud-solutions.html.

[VNKB01] Rob V. Van Nieuwpoort, Thilo Kielmann, and Henri E. Bal. Efficient

Load Balancing for Wide-area Divide-and-Conquer Applications. In

http://www.vmware.com/solutions/cloud-solutions.html
http://www.vmware.com/solutions/cloud-solutions.html

256 BIBLIOGRAPHY

Proc. of the 8th ACM SIGPLAN Symposium on Principles and Practices

of Parallel Programming, PPoPP ’01, pages 34–43. ACM, 2001.

[VNMW+04] Rob V. Van Nieuwpoort, Jason Maassen, Gosia Wrzesinska, Thilo Kiel-

mann, and Henri E. Bal. Adaptive Load Balancing for Divide-and-

Conquer Grid Applications. Journal of Supercomputing, 2004.

[VNWJB10] Rob V. Van Nieuwpoort, Gosia Wrzesińska, Ceriel J. H. Jacobs, and

Henri E. Bal. Satin: A High-Level and Efficient Grid Programming

Model. ACM Transactions on Programming Languages and Systems,

32(3):1–39, 2010.

[VRMCL09] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner.

A Break in the Clouds: Towards a Cloud Definition. ACM SIGCOMM

Computer Communication Review, 39(1):50–55, January 2009.

[Xen] XenSource Inc. www.xensource.com.

[YB05] Jia Yu and Rajkumar Buyya. A Taxonomy of Scientific Workflow Sys-

tems for Grid Computing. ACM SIGMOD Record, 34(3):44–49, Septem-

ber 2005.

[YBDS08] Lamia Youseff, Maria Butrico, and Dilma Da Silva. Toward a Unified

Ontology of Cloud Computing. In Proc. of the 2008 Workshop on Grid

Computing Environments, GCE ’08, pages 1–10. IEEE Computer Soci-

ety, November 2008.

[YG94] Tao Yang and Apostolos Gerasoulis. DSC: Scheduling Parallel Tasks on

an Unbounded Number of Processors. IEEE Transactions on Parallel

and Distributed Systems, 5(9):951–967, September 1994.

[ZCB10] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud computing: State-

of-the-Art and Research Challenges. Journal of Internet Services and

Applications, 1(1):7–18, May 2010.

[ZKK07] Yang Zhang, Charles Koelbel, and Ken Kennedy. Relative Performance

of Scheduling Algorithms in Grid Environment. In Proc. of the 7th IEEE

International Symposium on Cluster Computing and the Grid, CCGrid

’07, pages 521–528. IEEE Computer Society, May 2007.

www.xensource.com

	Introduction
	Why Parallel Programming?
	Load Balancing and Work-Stealing in Parallel Runtime Systems
	Irregular Parallel Applications
	Heterogeneous Distributed Computing Environments
	Aim of the Thesis
	Contributions
	Thesis structure
	Publications

	Scheduling and Load-Balancing
	Distributed Computing Environments
	Computational Grids
	Cloud Computing

	Scheduling on Distributed Computing Environments
	Scheduling of Bag-of-tasks Applications
	Scheduling of Applications with Task Dependencies

	Load Balancing
	Work Stealing

	(Parallel) Functional Programming
	Glasgow Parallel Haskell
	GUM
	Grid-GUM

	SCALES Work-Stealing Simulator
	Overview of SCALES
	Applications
	Computing Environments
	Execution of Applications under SCALES
	Accuracy of Simulations Under SCALES

	Grid and Cloud Simulators
	Summary

	Work Stealing on Distributed Systems
	Introduction
	Parallel Applications
	The Degree of Irregularity of Parallel Applications

	Heterogeneous Distributed Computing Environments and Runtime systems
	Work-stealing on Heterogeneous Computing Environments
	How to Choose Steal Targets
	How to Respond to Steal Attempt

	Summary

	Load-Based Topology-Aware Stealing
	The Use of Load Information
	Load-based Work-stealing Algorithms

	Evaluation of Load-based Work-stealing Algorithms
	SimpleDC Applications
	The DCFixedPar Applications
	Summary of Experiments

	Feudal Stealing
	The Feudal Stealing Algorithm

	The Evaluation of Feudal Stealing
	The SimpleDC Applications
	The DCFixedPar Applications
	Why is Feudal Stealing Better than CRS and Grid-GUM?
	Summary

	Conclusions

	Granularity-Driven Work Stealing
	Introduction
	Granularity-Driven Task Selection Policies
	Simulations Experiments
	Overview
	Applications with Variable Mean Task Size
	Applications with Variable Number of Tasks
	Applications with a Varying Degree of Irregularity
	Computing Environments with a Hierarchy of Latencies
	Applications with nested-parallel tasks
	Where do the Improvements Come From?
	Summary of the Simulations Experiments

	Grid-GUM Implementation
	Implementation Details

	Experiments with Grid-GUM
	Differences in Simulation and Grid-GUM Setup
	Experiments with the Synthetic Applications

	Conclusions

	Conclusions
	Contributions of the Thesis
	Limitations of our Approach
	Further Work

