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ABSTRACT
This paper describes Approximate Value Reconstruction (AVR), an
architecture for approximate memory compression. AVR reduces
the memory traffic of applications that tolerate approximations
in their dataset. Thereby, it utilizes more efficiently the available
off-chip bandwidth improving significantly system performance
and energy efficiency. AVR compresses memory blocks using low la-
tency downsampling that exploits similarities between neighboring
values and achieves aggressive compression ratios, up to 16:1 in our
implementation. The proposed AVR architecture supports our com-
pression schememaximizing its effect and minimizing its overheads
by (i) co-locating in the Last Level Cache (LLC) compressed and
uncompressed data, (ii) efficiently handling LLC evictions, (iii) keep-
ing track of badly compressed memory blocks, and (iv) avoiding
LLC pollution with unwanted decompressed data. For applications
that tolerate aggressive approximation in large fractions of their
data, AVR reduces memory traffic by up to 70%, execution time by
up to 55%, and energy costs by up to 20% introducing up to 1.2%
error to the application output.

CCS CONCEPTS
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1 INTRODUCTION
The performance of computer systems is largely dominated by
their memory hierarchy as the gap between computing speed and
data transfer speed keeps increasing [46]. Besides the long memory
latency, memory bandwidth severely limits performance, energy
efficiency and scalability of Chip Multiprocessors (CMPs) [33]. On
one hand, the demand for higher memory bandwidth increases.
Adding more cores on a chip and using specialized accelerators
increases the potential processing throughput and calls for higher
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data rates. New emerging data-intensive applications further in-
crease the need for large volumes of data to be transferred fast
[4, 5, 30]. On the other hand, memory bandwidth is pin limited
[4, 49] and power constrained [28] and is therefore more difficult
to scale [33]. More expensive, 3D-stacked DRAM technologies alle-
viate the bandwidth problem, but due to power constraints cannot
keep up with the increasing demand on data rates either [28].

One way to alleviate the memory bandwidth pressure is to re-
duce the volume of transferred data using compression. Data can
then be transferred between the main memory and the processor
chip in a compressed form consuming less bandwidth and reducing
energy cost. With a few exceptions, hardware main memory com-
pression is limited to lossless methods. Commercial examples of
architectures that use memory compression are graphics processing
units (GPUs) [1]. GPUs use application-specific compression, ap-
plied to texture and color data [14], and often solve the easy part of
the problem, handling read-only data [42]. Current state-of-the-art,
lossless memory compression techniques achieve on average a 2:1
to 4:1 compression ratio [23]. However, some classes of applica-
tions, i.e., commercial, multimedia, scientific, may allow for more
aggressive compression as they inherently tolerate approximations
in parts of their data [11, 18] without introducing significant error.

In the past, the performance of memory subsystems has been
improved for approximation-tolerant applications. Load value pre-
diction without fetching the actual requested data has been used
for improving memory latency and bandwidth [37, 45, 47], but
has difficulties capturing irregular data variations. Approximate
deduplication of individual cachelines increases cache capacity [39],
however, multiple values need to match at cacheline granularity. A
form of lossy compression has been applied in approximate com-
puting, but is constrained to reducing precision of single values
truncating their least significant bits [6, 21, 22, 42] and therefore
achieves limited compression ratio.

In this work, Approximate Value Reconstruction (AVR) is pro-
posed for reducing data volumes transferred between processor chip
and main memory in approximation tolerant applications, utilizing
more efficiently the memory bandwidth. AVR goes beyond reducing
the precision of individual values and compresses data in a lossy
manner exploiting similarities between values while capturing their
variance. In essence, AVR stores a “summary" of approximated data
in memory, based on which values are approximately reconstructed
in the processor chip. AVR addresses a number of challenges. Sum-
marizing (compressing) and reconstructing (decompressing) the
data needs to be generic, introduce low error, and add minimum
latency and energy overheads. Moreover, managing (updating, re-
packing, storing) compressed data needs to be efficient and impose
low traffic overheads. In effect, AVR utilizes memory bandwidth
better improving performance and energy efficiency.
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Concisely, the AVR architecture contributes the following. AVR
supports aggressive, approximate memory compression exploiting
similarities across values and reduces memory traffic improving
execution time and energy efficiency. In addition, AVR improves the
effectiveness and minimizes the overheads of aggressive compres-
sion by co-locating compressed memory blocks and uncompressed
cachelines in the Last Level Cache (LLC); handling LLC eviction in
a lazy manner; keeping track of badly compressing memory blocks;
and selecting which data to store in LLC after decompression.

The remainder of this paper is organized as follows. Section 2
discusses related work on lossless memory and cache compression
as well as on approximate computing with focus on memory sys-
tems. Section 3 describes the proposed AVR architecture. Section 4
presents our evaluation results and Section 5 draws our conclusions.

2 RELATEDWORK
Prior work on related topics is discussed next. First, existing designs
for lossless memory and cache compression are presented and
subsequently an overview is provided on approximate computing
techniques that improve the performance of memory systems.

Lossless Memory Compression: There is a plethora of mem-
ory compression techniques that improve memory capacity and
bandwidth utilization. Various compression algorithms are used,
such as dictionary-based [9], exploiting frequent patterns or zero-
value blocks [15], and more recently similarities of words at the
same bit position [23]. However, lossless solutions have limited
compression ratio between 2:1 and 4:1, which is substantially lower
than in our work (4-8×). In general, lossless compression is or-
thogonal to AVR as it can be used in our design to compress data
that are not approximated, or even on top of AVR approximately
compressed data. Another aspect is the data placement in memory.
Some approaches compact compressed data in memory to improve
capacity [31]. Others, like in our work, avoid data compaction, allo-
cating the worst case storage required for the uncompressed data
and focus only on memory bandwidth [44]. Finally, managing the
metadata needed for locating and handling the compressed data
is also challenging as it may add considerable memory bandwidth
overheads [12, 20]. AVR uses a metadata table and a cache of it,
as in [31], which is updated with the TLB and adds a few bytes of
bandwidth overhead at every TLBmiss; still techniques like Attache
[20] could be used to further reduce the metadata cost.

Lossless Cache Compression: Lossless compression has been
applied to caches, too. Besides the issues of encoding and com-
paction of variable size blocks [41], the compression and decom-
pression latency constraints are tighter compared to memory com-
pression. In the past, cache compression has been supported in
various ways, for instance using value-centric caches [8]. Compact-
ing compressed cache blocks has been tackled using decoupled
super-blocks and sub-blocks [40], or super-blocks without decou-
pling tag and data arrays [29]. In general, cache compression cannot
reduce memory traffic as it compresses single cachelines separately,
rather than larger memory blocks of consecutive cachelines as
performed by AVR. Consequently, as opposed to AVR, cache com-
pression techniques applied to the LLC cannot reduce the number
of memory accesses and hence cannot reduce memory traffic. Fur-
thermore, AVR uses the LLC to store compressed memory blocks
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Figure 1: Toplevel block diagram of the AVR architecture.

alongside the uncompressed lines, but does not attempt to compress
individual cachelines. As a consequence, cache compression could
be considered to compress the AVR LLC contents.

Approximate Computing: Large classes of applications are
inherently tolerant to approximations [11]. This enables a tradeoff
between the quality of their results and their performance and
energy efficiency. This tradeoff is exploited by various approximate
computing techniques, some of them targeting the aforementioned
memory bottlenecks in a lossy manner.

Approximate load value prediction techniques reduce memory
latency by providing a predicted value substantially faster than
fetching the actual one from memory [37, 45, 47]. They may further
improve memory bandwidth utilization by not always bringing the
actual values at all. Value prediction techniques speculate that the
values loaded by the same instruction may be identical or differ by a
stride. However, this does not capture any irregular variance of data
such as the variance in an image where neighboring pixels may
have similar values but may not necessarily differ by a fixed stride.
Approximate load value prediction is applied near the core (in paral-
lel to the L1 cache) and is therefore orthogonal to the proposed AVR
compression of memory traffic. Another fundamental difference
compared to AVR and in general compared to compression is that
load value prediction techniques aim primarily at reducing load
latency rather than memory bandwidth because in the end they do
fetch the precise values from memory for error checking.

Reducing the precision of floating point [6, 21, 42] and fixed point
[22] numbers has been used to alleviate the memory bandwidth
bottleneck in deep neural networks [22], GPU workloads [42] and
other approximation tolerant applications [21], thereby improving
performance and energy efficiency. However, the compression ratio
is still limited between 2:1 and 4:1 despite the loss of precision as
these approaches do not exploit inter-value similarities to compress
data. Closer to AVR, software techniques for lossy compression
have been proposed, but have high complexity and latency and as
a consequence cannot be used directly in hardware [13].

Approximate, lossy compression has been applied to caches, too.
Doppelgänger deduplicates similar cachelines to compress data
[39]. The subsequent Bunker cache design speculates similarities
between cachelines solely based on their addresses without look-
ing at their contents, proposing a less intrusive cache design but
achieving lower compression ratio than Doppelgänger [38]. Both
designs exploit similarities between cachelines. However, similar
values need to have the same offset within their cachelines in order
to match, which restricts deduplication opportunities.

3 AVR ARCHITECTURE
Approximate Value Reconstruction (AVR) reduces the volume of
data transferred between main memory and processor chip im-
proving bandwidth utilization and in turn system performance and
energy efficiency. Without loss of generality, AVR is applied to a
Chip Multiprocessor as depicted in Figure 1.
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Figure 2: AVR Memory Block.

In a nutshell, AVR handles a processor request to approximated
data as follows. In case the requested cacheline misses in the LLC,
the correspondingmemory block, which compressesmultiple cache-
lines including the requested one, is brought on-chip. The requested
cacheline is then retrieved, stored in the LLC, and sent to the proces-
sor. The memory block is also stored in the LLC as is (compressed)
so to avoid memory accesses at future requests to the block.

In general, AVR employs a number of optimizations to reduce its
overheads. As mentioned above, compressed memory blocks are
stored in the LLC trading LLC capacity for fewer memory accesses.
In addition, every time there is an LLC eviction it would be wasteful
to update the corresponding compressed block in memory. Instead,
for as long as there is available space in the memory block, AVR
evicts such cachelines lazily, writing them back to memory uncom-
pressed. Then, when the space is exhausted, the block is compacted
embedding all lazily evicted cachelines. Finally, the overheads of
unsuccessful compression attempts are minimized by keeping a
history of previous compression attempts per block.

The AVR architecture requires the following additions: a com-
pressor and decompressor module to summarize data before send-
ing them to memory and to reconstruct data coming back from the
memory; a metadata table for storing information about the com-
pressibility of the memory blocks; finally the LLC design requires
changes for storing compressed memory blocks in addition to nor-
mal cachelines. Next, each one of the above modules is discussed
separately, after first presenting the format of the AVR memory
blocks. At the end of the section, the AVR LLC and memory opera-
tions are discussed.

3.1 Memory Blocks
Similar to most techniques that focus on data approximations [21,
36, 39], AVR considers that the programmer annotates memory
regions that can be approximated and hence compressed in a lossy
manner. This annotation also includes the size of the region as
well as the datatype of the approximable data. An additional OS
system call allows allocated pages to be marked as approximate
at the page table requiring an extra bit for every page table and
translation lookaside buffer (TLB) entry as shown in Figure 3. The
programmer may further indicate an upper error threshold for
acceptable approximations. In our experiments, two thresholds are
used, one for the relative error of each individual value and one for
the average error of all values in a block. Currently, error thresholds
are common for all approximations in a program, but they could be
easily extended to thresholds per allocated memory region adding
a respective field to the page table.

The AVR architecture does not consider improving memory
capacity and therefore memory allocation is not affected. Compres-
sion is performed at the granularity of memory blocks composed of
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Figure 3: Format of ametadata table entry and TLB addition.

multiple cachelines as shown in Figure 2; a cacheline, i.e., 64B, being
the granularity of accessing the main memory. In our implementa-
tion, a block is composed of 16 cachelines, in total a quarter of a
physical 4KB page. AVR compresses the 16 cachelines of a block to a
single cacheline summary aiming at a 16:1 compression ratio and at
accessing the entire block with one memory request. The summary
is stored in the first cacheline of the memory block as shown in
Figure 2a. In case this compression produces approximations of
some values that exceed a particular error threshold, these values
are characterized as outliers and stored explicitly, uncompressed in
the compressed block. The outliers are placed in order after the sum-
mary cacheline, together with a bitmap that indicates their location
in the uncompressed block (one bit per 32-bit value). This bitmap
occupies half a cacheline if the block contains outliers. Summary,
bitmap and outliers occupy in total 1-8 out of the 16 cachelines (2:1
worst case compression ratio). The remaining space of the memory
block remains available for lazy evictions; that is for writing back
dirty uncompressed cachelines of the block, when evicted from the
LLC. Thereby, AVR avoids bringing a compressed block on-chip to
be updated every time a dirty cacheline is evicted. This is possible
until the block space is exhausted, then the block and the lazily
evicted dirty uncompressed cachelines are fetched from memory
for recompaction. In case a memory block fails to be compressed
in 8 cachelines or is explicitly marked as not-approximable then it
is stored uncompressed as shown in Figure 2b.

3.2 Metadata Table
Each compressible block requires some metadata information in
order to be handled. Similar to previous approaches on memory
compression [16, 31], these metadata are stored in main memory
and cached on-chip in a TLB-like Compression Metadata Table
(CMT) placed and accessed in parallel with the LLC. The CMT
is updated in pair with the TLB. A CMT has four 23-bit entries
per 4KB page, one per 1KB memory block as shown in Figure 3.
CMT stores the following information about each memory block:
its size (compressed in 1-7 lines or uncompressed), number of lazy
evicted cachelines stored, compression method (and datatype of
values), and a bias of its values. Finally, it maintains two counters
to keep the history of previous compression attempts. The first
one counts the number of consecutive failed compression attempts.
Then, depending on that count, a number of recompression attempts
(in block updates) are skipped to reduce the overhead of badly
compressed blocks.

3.3 Summarizing & Reconstruction
Summarizing and approximately reconstructing memory blocks
requires knowledge of the particular value representation used
in the considered dataset. Our current implementation supports
standard 32-bit floating-point and fixed point formats, but can be
easily extended to support other representations, too. The core
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Figure 4: AVR compressor/decompressor module.

part of the compression is using fixed point arithmetic to reduce
complexity. Consequently, memory blocks containing floating point
numbers are converted to fixed point before compression and back
to floating point after decompression. Figure 4 shows the block
diagram of the AVR compressor and decompressor.

Incoming uncompressed blocks are fed to the compressor cache-
line by cacheline in a pipelined fashion. Fixed point values are
compressed directly. Floating point values are converted to fixed
point after first having their exponent field biased to minimize loss
of accuracy. Subsequently, a simple downsampling compressor is
employed to generate the summary of the block replacing multiple
(typically 16) uncompressed values with their average. In order to
check the error of the approximated values and identify outliers,
the compressed block summary is decompressed again, and if nec-
essary converted back to floating point and unbiased. Then, each
approximated value can be compared with its respective original
uncompressed value stored in the input of the compressor. The
result of this comparison identifies the outliers and produces the
bitmap of their locations, which is part of the compressed block
when outliers exist as shown in Figure 2a. This bitmap is also used
to select and compact the outliers stored in the block. Thereby, the
summary, bitmap and outliers of a block are produced and stored in
the compressed block buffer (CBUF). Once compression completes,
the metadata of the block are updated in the CMT.

Decompression is simpler. The summary of a compressed block
is sent to the decompressor that produces its decompressed version
and stores it to the decompressed block buffer (DBUF) after convert-
ing it to floating point and unbiasing, when needed. In addition, the
outliers are placed according to their bitmap on the buffer replacing
the respective decompressed values. The requested decompressed
cachelines are then sent to the LLC. The remaining ones are kept in
the buffer and future requests for cachelines of the same block are
served from there. When the next block arrives for decompression,
a prefetcher (PFE) selects a number of decompressed cachelines,
not yet stored in the LLC, to be inserted in the LLC before being
replaced by the new block under decompression.

Biasing & unbiasing: When dealing with extremely large or
small floating-point numbers (large positive or negative exponent),
the conversion to fixed-point format can cause a greater loss of
precision. To avoid this, blocks are biased during compression. A
bias value is determined, which, when added to the exponent of
the values in the block, can bring the block’s values into a repre-
sentable range. Biasing is not performed on blocks where either a)
the selected bias would cause special values such as NaN or Inf, or
b) the selected bias would cause over- or underflow of the exponent
of any value. The bias is stored with the block’s metadata and used

Average

Original Block Block Summary Reconstructed Block

Interpolate

Figure 5: Downsampling and Reconstruction of a 2D block.

during decompression to restore the original range of values. Bias-
ing involves finding the maximum and minimum exponent of the
values in a block, determining a suitable offset, and applying it to
the exponents of the block. Biasing is pipelined and performed in 4
cycles. The inverse process (unbiasing) requires an 8-bit addition
to all decompressed values and requires one cycle.

Float to fixed & fixed to float conversions: Converting from
float to fixed point numbers and vice-versa is implemented as de-
scribed in [35] requiring a single cycle.

Compression: Although various lossy compression algorithms
can be considered, we opted for a method that is simple to imple-
ment. In AVR, memory blocks are compressed using downsampling
[26]. This method entails dividing the block into a suitable number
of sub-blocks and computing the average value of each sub-block.
We aim for a 16:1 compression ratio and therefore sub-blocks of
16 values are used. In our attempt to find the best compression, a
number of variations of the method are used in parallel. The main
two variants differ in the considered placement of the values in the
block before partitioning to sub-blocks; in particular, the first one
considers the block as a square 2D array and the second as a linear
1D linear array. Figure 5 shows an example of 2D downsampling,
where the compression is performed by averaging the values of a
sub-block (light-grey) into a single value. For decompression, the
average values are distributed evenly and bi-linear interpolation is
applied to reconstruct the approximate values in-between. In our
implementation, compression and decompression require 15 and
10 cycles, respectively.

Error calculation & Outliers selection: Lossy compression
introduces errors in the approximated values. In order to limit this
error, compression is skipped in case the error exceeds a particular
threshold value. This is evaluated by comparing the original in-
coming uncompressed block with the approximately reconstructed
block produced after compression and subsequent decompression.
Two separate thresholds are used to control the approximation error
of the compression operation: the relative error of each individual
value may not exceed a percentage threshold T1 and the average
relative error across all values in the block may not be greater than
a percentage threshold T2. These error thresholds are exposed as a
tunable knob and in our experiments T1 = 2T2. Notice that this is
an error mitigation strategy of low overhead and local decision.

The error per individual value is calculated in floating point
format as follows1. For a value to be approximated with a relative
error within T1, a comparison between the original and approxi-
mated value should result in (i) the exact match of their signs and
exponents and (ii) the difference of their mantissas not exceeding
the N th most significant bit (MSbit); for an error below 1/2N . The
above comparisons are performed in a cycle and produce the bitmap
of the values that are outliers. Subsequently, this bitmap is used for

1For fixed point numbers a subtraction and a subsequent comparisonwould be required.
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selecting and compacting the outliers and in parallel computing the
average block error for the values that are not outliers. Selecting
and compacting the outliers requires 16 cycles, one cycle per uncom-
pressed cacheline. The relative error of each individual non-outlier
value is required for computing the average error of the block. The
sign and exponent are identical for the original and approximate
values, otherwise they would be outliers. So, the average error is
calculated by subtracting the mantissa bits of each original and
approximated value. The average block error is the average of these
subtractions for all the non-outliers values and computing it also
fits in 16 cycles.

Prefetching decompressed cachelines: After decompressing
a block, the requested cacheline(s) are stored in the LLC. Storing
also the remaining cachelines could lead to the pollution of the LLC
with unwanted cachelines. Consequently, they remain in DBUF
until they are overwritten by another block. In the meantime, if one
of these cachelines is requested it is sent directly to the LLC. When
a new compressed block arrives for decompression, a prefetching
engine (PFE) is consulted to decide whether any of the remaining
decompressed cachelines in DBUF should be written in the LLC
before they are replaced by the new block. The PFE employs a
simple threshold strategy, prefetching all lines from a block where
at least half have been explicitly requested.

Total compression and decompression latency: Based on
the above and as confirmed by our synthesis results presented in
Section 4, the total latency for compressing a block is 49 (processor)
cycles, and for decompressing a block is 12 cycles. Decompression
is more critical for system performance as it affects memory reads.
Compression is less critical because it affects the write backs.

3.4 Last Level Cache
The AVR Last Level Cache (LLC) stores uncompressed cachelines
(UCL) as well as compressedmemory blocks. A compressedmemory
block may occupy one to eight LLC lines (64B), depending on its
compressibility, it is therefore split in 64B compressed memory
subblocks (CMS). When a memory block enters the processor chip
and gets uncompressed, only selected uncompressed cachelines are
stored in the LLC. The AVR LLC is decoupled in order to support
the management of the LLC contents at two granularities, namely,
that of a cacheline (64B) and that of a memory block (16 cachelines).
Following the design of the Decoupled Sectored Caches [43], the
AVR LLC decouples its tag array from the data array. On one hand,
entries of the LLC data array have a cacheline (64B) granularity. On
the other hand, the tag array has a granularity of amemory block (16
cachelines). The decoupling of tag and data arrays is facilitated by
a back-pointer array (BPA) which supports the indirection between
every data array entry and a tag array entry to associate the data
of a cacheline with its tag. In essence, each data array entry has a
respective BPA entry at the same set and way, which maintains its
state-bits and a pointer to its tag in the tag array. In contrast, a tag
array entry can be shared among multiple data array entries.

LLC Functionality: Figure 6 illustrates the AVR LLC function-
ality using an example of a memory block with tag A. The memory
block of this example, when compressed, occupies three cachelines,
CMS0, CMS1, and CMS2; one for the summary of the block and
two for the bitmap and the outliers. All three cachelines of the
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Figure 6: AVR Last Level Cache.

compressed block are stored in the LLC. In addition, two of its 16
uncompressed cachelines, UCL0 and UCL2 are also present in the
LLC. The breakdown of a memory address is shown in Figure 6.
After the 6-bits of byte offset, there is the 4-bit cacheline offset in
the memory block. Let us consider that the LLC requires n-bits for
indexing. Then, the tag array will use as index the n bits of the ad-
dress after the cacheline offset (tag index) and store the remaining
m most significant bits of the address as the memory block tag be-
cause it follows a memory block granularity. For example, the tagA
for the memory block 0xA4B0 is placed in set 0x4B of the tag array.
The same indexing is used for the placement of the compressed
memory subblock. The first CMS of the compressed block, CMS0, is
placed in a way of set 0x4B, occupying the respective entry in both
the data array and the BPA. The remaining parts of the compressed
block, CMS1, and CMS2, are placed in the subsequent sets 0x4C and
0x4D. Uncompressed cachelines use the indexing of a conventional
cache (UCL index), in particular, the n bits after the byte offset. For
example, uncompressed cacheline UCL2, with address 0xA4B2, is
placed in set 0xB2. This LLC design has two advantages. Firstly,
each UCL and CMS is mapped to different LLC sets, thereby, not
affecting the effective associativity of the cache. Secondly, a single
tag entry is required for all of cachelines of a block, making the
management of memory blocks simpler.

LLC Structure: Structurally, the AVR LLC, depicted in Figure 6,
is based on the Decoupled Sectored Caches [43] and shares some
common elements with Decoupled Compressed Cache [40]. A tag
array entry stores the following fields:

• Block Tag: The memory block tag.
• CMS count: the number of subblocks/cachelines needed for
storing the compressed memory block (3 bits).

• UCL count: number of uncompressed cachelines of the
block stored in the LLC (4-bits).

• Block state bits: valid, dirty & least recently used (LRU).

The dirty bit indicates the compressed memory block is dirty. The
tag LRU is updated when a UCL of the block is accessed and used
for tag-entries replacement. A BPA entry stores the following:
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• CL-type: one bit indicating a UCL or CMS.
• CL-id: for a UCL, this 4-bit field stores the cacheline tag
suffix depicted in the address breakdown; for a CMS, 3 of
these 4 bits store the CMS offset in the compressed block.

• Tag-way: the way of the tag array that stores the tag of the
respective block.

• CL state bits: valid, dirty and LRU bits.

The tag suffix of an UCL is stored in the BPA because during a
lookup it needs to match together with a block tag to complete a
cacheline tag match. Instead, for the BPA entries that store a CMS,
the compressed memory subblock number is serving the same
purpose; that is when looking up the i-th subblock (cacheline) of
the compressed block the CL-id of the matching BPA entry should
be i . Finally, the CMS LRU bits are updated when any UCL of the
block is accessed.

LLC Lookup & Allocation: A request for an LLC cacheline is
served by accessing in parallel the DBUF and the LLC tag array. In
case the requested cacheline is in the DBUF it is returned. Other-
wise the tag array access will determine whether the cacheline is
available in the LLC uncompressed or its compressed memory block
is present. In the first case, an UCL lookup is performed. Otherwise,
in the second case a CMS lookup is performed. Figure 7 illustrates
the AVR LLC lookups. Below we discuss each case in more detail.

A lookup for an uncompressed cacheline is performed as follows.
The tag array is accessed using the tag index and in parallel the BPA
and data array using the UCL index. The block tags in the set are
matched. In parallel, the cacheline tag suffixes (CL-id) in the BPA set
are matched for the entries in the set storing UCLs. Subsequently,
the tag-way stored in each of the matching BPA entries is compared
with the way of the matching block tag. There is a hit when a tag
suffixmatches and its tag-way points to amatching tag. The tag-way
stored in the BPA entry must be equal to the way of the matching
tag in order to ensure that a matching tag suffix points to its true
tag, otherwise the cacheline stored in the BPA entry may have a
different tag than the matching one.

A lookup for a compressed block in the LLC requires one or
multiple accesses to the LLC, as many as the CMSs the block is
composed of (CMS count). The tag array, BPA, and data array are
accessed with the tag index. The block tags in the set are matched.
In parallel, the entries in the BPA set that store CMSs compare
their CL-id with zero. Here this field indicates the offset of the
CMS in the compressed memory block and looking up for the first
subblock requiresCL-id to be zero. Subsequently, the tag-way stored
in any of the matching BPA entries is compared with the way of the
matching block tag. In this first access to the LLC, besides the first
subblock (CMS), the CMS count is also retrieved to determine the
total number of LLC accesses required for accessing the compressed
block. If that number is more than one, the BPA and data array are
accessed repeatedly until all parts of the block are read. At each
access, CL-id needs to match the iteration increment, and tag-way
should be the same as the matching tag entry.

When there is no available cacheline entry in the set, allocation
for an UCL is performed choosing a victim cacheline based on the
LRU bits stored in the BPA set. All cachelines in the set, UCLs and
CMSs, compete equally. In case a CMS is evicted, then all the other
CMSs of the same compressed block need to be evicted, too, and
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Figure 7: AVR LLC requests.

if dirty written back to memory. The tag entry of the block would
remain if the LLC stores UCLs of the block. The absence of the
compressed version of the block is indicated by setting to zero the
field CMS count in its entry in tag array. Allocation for a tag entry
is performed by choosing a victim tag in the set based on LRU. The
LRU of a block tag is updated when one of its UCLs is accessed or
when the block is recompressed. Finally, allocation for the CMSs of
a block needs to be performed together at consecutive sets starting
from the one indicated by the tag index.

3.5 Memory operations
We explain next the AVR memory operations at the LLC and main
memory level. More precisely, we explain how a request to the LLC
and an LLC eviction are handled. The details of an LLC lookup and
allocation are omitted as they were described above.

LLC Requests: A request to the LLC has the following possible
outcomes as shown in Figure 7:

• The requested UCL may hit either in the LLC or in the de-
compressed buffer (DBUF). In the latter case the UCL is also
written from DBUF to the LLC.

• There is a miss of the requested UCL, but a hit to the com-
pressed memory block stored in the LLC. Then, the com-
pressed block is read and decompressed in the AVR compres-
sor block to retrieve the requested cacheline.

• In case both the UCL and the compressed block miss in
the LLC, the compressed block containing the requested
cacheline is requested from the main memory and upon
arrival decompressed to retrieve the requested cacheline.
Then, the compressed block is also stored in the LLC.

Note that at a new decompression, the decompressed block previ-
ously stored in the DBUF needs to be overwritten. Before overwrit-
ing the old block, the prefetcher is consulted to potentially save
some of its UCLs, storing them in the LLC.

LLC Evictions: When a cacheline is replaced from LLC, then if
clean no further action is required, if dirty, the cacheline is evicted
and its type is checked first as shown in Figure 8.

In case of a dirty UCL, it is checked whether its compressed
memory block is also stored in the LLC. If so, the compressed block
is read from the LLC, decompressed, updated with the evicted dirty
UCL, compressed again and stored back to the LLC. In case the
compressed block is missing from the LLC (or the compression
attempt fails), the metadata table is consulted to check whether
there is space in the main memory to lazily store the dirty cacheline.
If so, the dirty UCL is written back to the memory and the metadata
entry is updated to reflect that. Otherwise, the compressed block
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is read from memory, decompressed, updated with all the dirty
cachelines, as well as any lazy evicted lines, then compressed and
written back to memory.

When bringing in a compressed block from memory, the meta-
data table is consulted to determine whether lazy evicted cachelines
exist in memory. If so these lazy evicted cachelines are read from
memory together with the block, and incorporated into the block af-
ter decompression. The block is immediately recompressed, marked
dirty and stored in LLC.

When evicting a dirty CMS, the entire compressed block needs
to be evicted, as partially storing it in the LLC is not useful. The
dirty compressed block is first read from LLC and put in the AVR
compressor/decompressor to be decompressed. Any dirty UCLs
belonging to the block are read from LLC and overlaid on the
decompressed block. The memory block is compressed again and
written back to memory.

Note that before compressing a memory block that is currently
uncompressed, because its last attempt for compression failed, its
compression history and counter of skipped compressions is con-
sulted. Based on these fields it is determined whether to proceed
with the current compression or not. Accordingly, the above meta-
data fields are updated in the respective entry. If the recompression
is skipped, the dirty UCL is written back to memory directly.

4 EVALUATION
In this section we evaluate the effectiveness of the AVR architecture.
We first describe our experimental setup, presenting the system
configuration of our experiments and the benchmarks used. Then,
we discuss the hardware overheads of the AVR architecture. Finally,
we show our evaluation results and comparisonwith related designs
in terms of performance, energy, and application output error.

4.1 Experimental setup
We evaluated the AVR system using an in-house simulator, imple-
mented on top of Pin[25], that employs an interval-based processor
model, as proposed by Genbrugge et al. [17], and a cycle-accurate
model of the memory hierarchy that uses DRAMSim2 for modelling
main memory [34]. McPAT[24] and CACTI[27] were used to model
power and latency of the system considering 32nm technology. The
AVR compression hardware modules were implemented in RTL,
synthesized using Synopsys to determine their operating frequency,
latency and power consumption; this information was then fed to
the simulation tool. The parameters of the simulated system are
listed in Table 1. In order to correctly emulate the impact of the
approximations in the overall application error, we not only emu-
late the memory accesses but we actually update the values of the

Table 1: Simulation parameters

Parameter Configuration

CPU 8 core, out-of-order, 4-way issue/commit @ 3.2GHz
L1 cache 64kB per core, 4-way, 1 cycle latency
L2 cache 256kB per core, 8-way, 8 cycle latency
L3 cache 8MB shared, 2 banks, 16-way, 15 cycle access latency
DRAM 8GB DDR4, 2 channels, 1600MHz

memory contents accordingly by applying the construction and
reconstruction methods to the data.

Besides the baseline system, AVR is further compared with (i)
itself without marking any data as approximate so as to measure
AVR overheads (ZeroAVR), (ii) a design that simply compresses
approximate values to half-precision by truncating 16 bits similarly
to what has been proposed in [21, 22, 42] (Truncate), and finally
(ii) Doppelgänger [39], which is the closest and best performing
related work on approximate data compression [39] (Dganger). As
proposed, Doppelgänger is configured to have identical LLC data-
array size and a 4× larger tag-array versus AVR, i.e. being able to
index up to 4× more cachelines. Lossless compression techniques
are considered orthogonal and so not included in the comparison;
that is because the downsampled values and outliers of an AVR
compressed block could be further compressed in a lossless way.

The benchmarks used in this evaluation are selected so each
one of them (i) is able to execute until completion and generate an
output, and (ii) can tolerate approximations in (parts of) its data.
The above restricts us to using the benchmarks listed in Table 2;
the table further presents the application domain, description of
the approximated data-structures and output type as well as their
memory footprint. The application code was analyzed to identify
approximable data structures. In many cases, a large portion of the
application’s working set is dynamically allocated. For these cases,
a wrapper was created to themalloc library call to allocate properly
aligned space and register the address range as approximable. The
input data sets used for our experiments are the standard input data
sets provided with the benchmarks with the exception of (i) lattice
for which we used a silhouette of a car as the input data set, and (ii)
k-means where the input is topological data [2]. We use the mean
of the relative errors for each output value as our quality metric.
Benchmarks for approximate computing (AxBench[48]) considers
10% relative output error, but it is solely up to the application
provider do define what is acceptable. Similar to previous works,
AVR provides the means to control the data approximation error as
a knob to constrain application output error.

Table 2: Benchmark Applications

Application Approx. Output Footprint Description

heat[32] Temps Temps 8.2MB/core 2D Thermodynamics application that iterates
over a grid of values and computes the propa-
gation of heat.

lattice[7] P and M Vel.+Pr. 5MB/core 2D Lattice-Boltzmannmethod simulation of air
flow over a solid object.

lbm[19] Velocities Velocities 325MB/core 3D Lattice-Boltzmann method simulation of
fluid flow over a sphere.

orbit[10] Phys. data Phys. data 376MB/core 3D simulation of the two-particle orbit problem
kmeans[3] Topol. [2] Clusters 5.5MB/core Clustering algorithm, applied on a geographic

elevation map.
bscholes[48] Options Prices 6MB/core Financial forecasting, predicts future stock op-

tion prices based on historical parameters.
wrf[19] Geo data Temp. 90MB/core Weather forecasting model.
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Table 3: Application output error
heat lattice lbm orbit kmeans bscholes wrf

dganger 0.4% 0.2% 22.3% >100% <0.05% <0.05% 24.9%
truncate 0.2% 0.5% 0.6% <0.05% <0.05% 1.4% 4.2%
AVR 0.7% 0.6% 0.1% <0.05% 1.2% 0.5% 8.9%

4.2 AVR hardware overhead
AVR requires some extra hardware resources. The metadata stored
in the CMT and the additional bit in the TLB add up to 93 bits
per page. Compared to the unmodified TLB, which stores a virtual
and a physical page address (52+36=88 bits), this is an overhead of
roughly 2×. The AVR Tag array and the BPA add to the baseline
set-associative LLC 18 bits per entry; that is in total 144kB and
3.2% overhead to the LLC. Moreover, the AVR compressor module
occupies about 200k cells according to our synthesis report.

4.3 Experimental Results
We present next our experimental results for each benchmark com-
paring AVRwith other related designs, namely, Doppelgänger, Trun-
cate, and ZeroAVR (all results normalized to the baseline). The
designs are evaluated in terms of execution time, system energy
consumption, DRAM traffic, average memory access time (AMAT),
and LLC misses per kilo-instruction (MPKI), as shown in Figures
9, 10, 11, 12 and 13 as well as in terms of application output error
shown in Table 3. Table 4 shows the AVR compression ratio (for
Truncate compression ratio is 2:1) as well as the overall memory
footprint versus the baseline. AVR approximate LLC requests and
evictions are analyzed and shown in Figures 14 and 15.

Before presenting the results of each application separately a few
common observations are discussed. Analyzing the execution time
and energy consumption of ZeroAVR, it is observed that AVR does
not add significant overhead when it does not approximate data
(Figures 9 and 10); only in lbm, ZeroAVR is 2% slower than baseline,
adding similar energy overheads, mainly due to increased DRAM
latency caused by changes in the memory access pattern. Moreover,
its AVR Decoupled LLC performs similarly to the baseline LLC
achieving the same MPKI as shown in Figure 13. In our experiments
AVR LLC devotes 2-16% of its capacity to compressed blocks.

Heat dataset exhibits excellent compression; about 8× smaller
total memory footprint and a 10:1 compression ratio.AVR reduces
execution time by 43% compared to the baseline introducing only
0.7% error. That is almost double the reduction compared to Trun-
cate that has a 0.2% error. Doppelgänger shows no speedup as the
data used by heat do not have significant locality and therefore hav-
ing an “effectively" larger cache does not improve performance. Im-
provements in execution time lead to AVR and Truncate reduction
of baseline energy cost by 18% and 15%, respectively. Furthermore,
Doppelgänger introduces an energy overhead of 1% due to its LLC
design. AVR reduces memory traffic by 71% compared to baseline.
Truncate reaches 50% and Doppelgänger achieves a 4% reduction.
AVR reduces memory latency by 20%. Truncate follows with a 5%
reduction. This is confirmed by MPKI, where AVR has less than half
the misses compared to Truncate as over half of its approximate
LLC requests hit in compressed blocks in the LLC or in DBUF.
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Figure 9: Execution time.
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Figure 10: System Energy Consumption.
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Figure 11: Memory Traffic.
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Figure 12: Average Memory Access Time (AMAT).
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Figure 13: LLC misses per kilo-instruction (MPKI).
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Figure 14: AVR LLC Requests on approximate cachelines.
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Figure 15: AVR LLC Eviction of approximate cachelines2.

2Recompress: the evicted cacheline belongs to a compressed block available in LLC,
which is updated and recompressed; Lazy Writebacks: the cacheline is evicted to mem-
ory uncompressed (lazily, without recompression) although it belongs to a compressed
block (stored inmemory); Fetch+Recompress: the compressed block, towhich the evicted
cacheline belongs, is read from memory and updated; Uncompressed WB: the evicted
cacheline’s block has failed to compress so the line is written back uncompressed.
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Table 4: AVR compression ratio and footprint reduction
heat lattice lbm orbit kmeans bscholes wrf

Compr. Ratio 10.5× 9.6× 15.6× 16.0× 2.3× 4.7× 3.4×
Mem. Footprint 12.6% 20.0% 7.9% 54.1% 58.5% 78.6% 89.6%

Lattice dataset is compressed by AVR by a factor of 9.6:1. AVR
reduces execution time by 51% introducing 0.6% output error. Dop-
pelgänger reduces execution time by 54% with an error of 0.2%. This
is because lattice can exploit the effectively larger Doppelgänger
LLC. Furthermore, Truncate achieves a speedup of 47% with an
output error of 0.5%. Energy consumption follows the performance
trends. AVR reduces baseline energy by 23%. Doppelgänger and
Truncate energy consumption is reduced by 27% and 23% of the
baseline, respectively. AVR memory traffic is reduced by 51% com-
pared to baseline. That is similar to Doppelgänger’s 54%. Truncate
reduces the memory traffic by 47%. It is noteworthy that the large
gap in MPKI between AVR (14% of baseline) and competing designs
(48% and 53% for Doppelgänger and Truncate, respectively) is not
reflected in the memory traffic volume. This is caused by frequent
lazy writebacks leading to an inflated amount of read traffic when
memory space is exhausted. AMAT follows the execution time
trends. Doppelgänger leads with a 60% reduction. AVR AMAT is
down by 43% compared to baseline and Truncate follows with 42%.

Lbm has about 98% of its footprint approximable, and AVR re-
duces it more than 15×. AVR is better than Truncate. It reduces
baseline execution time by 57% vs. 42% for truncate, has 0.1% appli-
cation output error (Truncate error is 0.6%), similar energy savings,
lower memory traffic (33% vs. 50% for Truncate) and lower memory
latency (30% reduction for AVR versus Truncate’s 23%) due to very
low LLC MPKI. Doppelgänger yields an excessive 22.3% output er-
ror, with a 3% improvement in execution time and no effect on total
energy. The high output error is caused by edge-cases in Doppel-
gänger’s approximation, where cache-lines at the extreme edges of
their respective expected value span are considered approximately
equal even though their absolute values are very different.

Orbit sees its total footprint reduced to 54% by AVR as half of
its data are approximate and compress almost perfectly. AVR and
Truncate introduce negligible error, while Doppelgänger causes
strong artefacts leading to a runaway error exceeding 100%. AVR
reduces execution time to 79% of baseline, Truncate trails behind
at 82% followed by Doppelgänger with 86%. Truncate achieves
the largest improvement in energy totaling 89% of baseline, AVR
follows closely with a total of 92% and Doppelgänger with 93%.
In spite of the high compression ratio, AVR only reduces memory
traffic to 52%, outperforming by a narrow margin Truncate’s 54%,
while traffic for Doppelgänger is 65%. Memory latency follows a
trend similar to execution time, with AVR achieving a reduction to
84%, Truncate yielding 86% and Doppelgänger 90% of the baseline.

K-means has a 58% reduction in memory footprint at the cost of
1.2% error. AVR achieves the highest instructions per cycle (IPC)
count among all design points, but has the second shorter execu-
tion time after Truncate. That is because the application requires
extra iterations to converge for the AVR, which increases the total
number of executed instructions. Note, that k-means is the only
benchmark used where the workload may vary based on the quality
of the approximations, all other applications have a fixed number of
instructions to execute. Doppelgänger matches the baseline execu-
tion time despite its slightly improved memory latency and reduced

memory traffic and has negligible error. AVR reduces energy cost by
2%. Truncate, which runs an identical number of instructions to the
baseline, reduces energy by 13%. Doppelgänger energy overhead is
3% due to its LLC design. AVR reduces memory traffic by 37% and
Truncate by 50%. This difference is an artifact of AVR’s higher num-
ber of executed instructions. Doppelgänger has a smaller reduction
of memory traffic, 26% less than the baseline, primarily because its
LLC performs better than the baseline, as confirmed by its MPKI
results. Memory latency is the shortest for AVR and Truncate, each
23% lower than the baseline, Doppelgänger follows with 12%. It is
noteworthy that 55% of the AVR approximate LLC requests hit in
the compressed blocks stored in the LLC and another 20% in DBUF.

Blackscholes (bscholes) uses input data where some of the input
fields are identical for multiple entries [48]. This has been exploited
by the Doppelgänger design. About 30% of bscholes dataset is ap-
proximable and AVR reaches a compression ratio of 4.7:1. However,
bscholes is not memory intensive. As a consequence, the evaluated
designs have little impact. Nevertheless it is still interesting to dis-
cuss their behaviour. Indeed, the execution time of all designs is
very close to the baseline as shown in Figure 9. This holds also for
the energy consumption. Truncate and AVR reduce memory traffic
by 15% and 6%, respectively. Doppelgänger reduces traffic by 3%,
does not improve memory latency and reduces MPKI by 1%.

WRF has only 15% of its data marked as approximable, most
of them geographically ordered weather metrics. AVR compresses
these data with a 3.4:1 ratio reducing total memory footprint by
10%. Still it is an interesting application to discuss as a case where
approximation does not offer a large benefit. AVR reduces execution
time by 2% introducing 8.9% error to the application output. It
reduces memory traffic only by 3% and has no effect on memory
access time. Its MPKI is 7% lower than the baseline as over 50%
of the approximable LLC requests hit in compressed blocks in the
LLC or in the DBUF. Truncate has similar performance. It reduces
execution time by 1%with 4.2% output error, reduces memory traffic
by 5% and memory latency is unaffected. Finally, Doppelgänger
causes 24.9% error with negligible performance impact.

Figures 14 and 15 show the breakdown of the LLC requests and
evictions. In general, about 40-80% of the LLC requests hit on the
DBUF or on compressed blocks. The latter case adds extra latency
to the LLC hits for reading and decompressing the compressed
block before serving a request. More precisely, the average LLC
latency when hitting on a compressed block in the LLC is 20-30
cycles for wrf and kmeans, 74 for bscholes, and 40-50 cycles for the
other benchmarks, which is still significantly faster than a DRAM
access. The analysis for the AVR LLC evictions is mixed among
benchmarks. For kmeans and bscholes about 40% of the evictions
require fetching the block from memory and recompressing intro-
ducing traffic overheads, the remaining evictions are uncompressed
written-backs because the block has failed to compress. On the
contrary, the other benchmarks exploit the AVR lazy evictions in
45% to 80% of the cases avoiding fetching the compressed block on
chip. Even including the lazily evicted cachelines, the average size
of a block read from memory is similar to the one indicated by the
compression ratio shown per benchmark in Table 4. That is about
5.1 memory accesses to read a block for kmeans, 3.4-3.8 for bscholes
and wrf, and 1.2-2 for the other benchmarks. Finally, the reuse of
blocks is indicative to the AVR performance gains; on average 7-10
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unique cachelines of a block are used before eviction for bscholes
and lattice and 13-16 cachelines for the other benchmarks.

In summary, for applications with high compression ratio (heat,
lattice, lbm), AVR is better than competing designs. It achieves signif-
icant reduction in execution time (40-55%) and considerable energy
savings (10-20%) with less than 1% output error. Memory traffic is
also reduced for these applications by 50% to 70%, although in some
cases less than expected based on the compression ratio. Orbit is
an exception to this trend; although AVR achieves excellent com-
pression ratio, execution time is reduced only by 20%. At medium
compression ratio, i.e. in k-means, AVR has moderate performance
gains (about 15%) despite increasing the number of executed in-
structions. At low compressibility, i.e. in wrf, AVR improvements
are negligible as are its overheads. Moreover, in compute bound
applications, i.e. bscholes, there is minimum impact. Note that AVR
memory latency is substantially reduced and always lower than
the compared approaches. Finally, when not approximating, AVR
does not have notable overheads.

5 CONCLUSIONS
The AVR architecture improves the memory system using aggres-
sive approximate compression. Thereby, AVR reduces memory traf-
fic, utilizes more efficiently the off-chip bandwidth and achieves bet-
ter performance and energy efficiency. AVR provides a low latency
decompression scheme to reduce overheads in memory access time.
Its LLC design stores both compressed and uncompressed data to
increase its hit rate. AVR LLC evictions of compressible cachelines
are handled in a lazy manner reducing the overhead of recompres-
sion. Moreover, keeping track of badly compressed blocks reduces
unsuccessful compression attempts. Finally, the decompressed data
selected to be stored in the LLC are carefully selected to avoid pol-
luting the LLC with unwanted data. For applications with large part
of the data being approximation-tolerant, AVR reduces memory
latency by up to 45%, memory traffic by up to 70%, and achieves
up to 55% lower execution time, up to 20% lower energy with less
than 1% error to the application output.
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