
Transpiling Applications into Optimized Serverless Orchestrations

Downloaded from: https://research.chalmers.se, 2025-01-18 09:33 UTC

Citation for the original published paper (version of record):
Scheuner, J., Leitner, P. (2019). Transpiling Applications into Optimized Serverless Orchestrations.
Proceedings - 2019 IEEE 4th International Workshops on Foundations and Applications of Self*
Systems, FAS*W 2019, June 2019: 72-73. http://dx.doi.org/10.1109/FAS-W.2019.00031

N.B. When citing this work, cite the original published paper.

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

(article starts on next page)



©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works. The definitive Version of Record was published in 2019 IEEE 4th International Workshops on Foundations and Applications of Self* Systems (FAS*W), June
16, 2019, Umeå, Sweden, https://doi.org/10.1109/FAS-W.2019.00031

Transpiling Applications into Optimized Serverless
Orchestrations

Joel Scheuner
Software Engineering Division

Chalmers | University of Gothenburg
Gothenburg, Sweden

scheuner@chalmers.se

Philipp Leitner
Software Engineering Division

Chalmers | University of Gothenburg
Gothenburg, Sweden

philipp.leitner@chalmers.se

Abstract—The serverless computing paradigm promises in-
creased development productivity by abstracting the underlying
hardware infrastructure and software runtime when building
distributed cloud applications. However, composing a serverless
application consisting of many tiny functions is still a cumber-
some and inflexible process due to the lack of a unified source
code view and strong coupling to non-standardized function-level
interfaces for code and configuration. In our vision, developers
can focus on writing readable source code in a logical structure,
which then gets transformed into an optimized multi-function
serverless orchestration. Our idea involves transpilation (i.e.,
source-to-source transformation) based on an optimization model
(e.g., cost optimization) by dynamically deciding which set of
methods will be grouped into individual deployment units. A
successful implementation of our vision would enable a broader
range of serverless applications and allow for dynamic deploy-
ment optimization based on monitoring runtime metrics. Further,
we would expect increased developer productivity by using more
familiar abstractions and facilitating clean coding practices and
code reuse.

Index Terms—serverless, FaaS, transpiling, orchestration

I. INTRODUCTION

The emerging cloud computing paradigm called serverless
computing abstracts operational concerns such as autoscaling
and exposes an event-driven interface for building scalable dis-
tributed applications. Its Function-as-a-Service (FaaS) model
refers to event-triggered server logic running in ephemeral
(compute) containers, which are fully managed by a third
party, such as AWS Lambda1. FaaS pushes the minimal
deployment unit towards small chunks of code encapsulated
within individual functions and the minimal billing unit to-
wards tens of milliseconds. However, building complex server-
less applications is still cumbersome as mentioned in litera-
ture [1], supported by an empirical study [2], and illustrated by
calls of practitioners to raise the level of abstraction level (c.f.,
”I don’t care about Lambda [...] but if I can move one layer up
where I’m just writing business logic and the code gets split
up appropriately, that’s real magic.”)2. Contemporary FaaS
approaches mandate developers into non-standardized Appli-
cation Programming Interfaces (APIs) and proprietary deploy-
ment configurations. The challenge in making FaaS more

1https://aws.amazon.com/lambda/
2https://read.acloud.guru/serverless-is-eating-the-stack-and-people-are-

freaking-out-and-they-should-be-431a9e0db482

accessible is addressed by countless startups3, frameworks,
libraries, and tools. These efforts are driven by a strong focus
on facilitating the definition, deployment, and orchestration of
individual FaaS functions. In this paper, we outline a vision
where developers are liberated from conforming to particular
forms of deployment units, such as individual functions, and
FaaS applications are automatically and dynamically transpiled
into a set of individually deployed functions.

II. VISION

There exist different alternatives to combine individual
functions into a FaaS application. Examples for declara-
tive approaches are AWS StepFunctions4, which represents
workflows as JSON state machine specifications, and Fission
Workflows5, which represents workflows in a YAML-based
DSL. An example for an imperative approach is Azure Durable
Functions6, which represents workflows in code as orchestrator
functions. We think that Azure Durable Functions is a promis-
ing step towards writing FaaS applications in a more natural
and flexible way but envision an even more integrated way of
defining functional code and orchestration logic.

Figure 1 illustrates the main idea how source-to-source
transformation, also called transpilation, can enrich serverless
applications while exposing familiar language abstractions and
allowing for dynamic deployment optimization. Transpilation
can automatically generate boilerplate code and apply inter-
face adjustments for provider API compliance. A platform-
independent application could be transpiled into FaaS appli-
cation variants for multiple providers. Application code can be
expressed using familiar language concepts for asynchronous
programming in a local environment (e.g., async/await follow-
ing the ECMAScript 2018 specification) and then transpiled
into FaaS-aware implementation as demonstrated in recent
work [3]. Furthermore, transpilation allows for dynamically
adjusting deployment decisions based on static source code in-
formation (e.g., data flow) or dynamically collected monitoring
data (e.g., resource footprint). For example, data flow analysis

3https://github.com/anaibol/awesome-serverless
4https://aws.amazon.com/step-functions/
5https://github.com/fission/fission-workflows
6https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-

functions-overview

https://doi.org/10.1109/FAS-W.2019.00031
https://aws.amazon.com/lambda/
https://read.acloud.guru/serverless-is-eating-the-stack-and-people-are-freaking-out-and-they-should-be-431a9e0db482
https://read.acloud.guru/serverless-is-eating-the-stack-and-people-are-freaking-out-and-they-should-be-431a9e0db482
https://github.com/anaibol/awesome-serverless
https://aws.amazon.com/step-functions/
https://github.com/fission/fission-workflows
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview


JS
Application 

Code

Transpile

JS
Serverless 

Orchestration

Monitor
Feedback

Figure 1. Application to Orchestration Transpilation

could group methods into deployment units to minimize data
marshalling between individual FaaS functions, or resource
usage (e.g., memory consumption or CPU utilization) could
identify optimal function configurations and group methods
with similar resource demands together. Thus, this approach
allows for informed and dynamic deployment topology deci-
sions whereas the question how large a FaaS function should
be is nowadays determined manually by the ”gutfeeling” of
the developers or guided by FaaS platform restrictions.

Current technical trends and several application scenarios
motivate our envisioned approach. The trend towards disag-
gregated data centers (e.g., even suggested for memory [4])
and increasingly specialized hardware beyond Graphics Pro-
cessing Units (GPUs) (e.g., Tensor Processing Unit (TPU),
or Field-Programmable Gate Array (FPGA)) open a potential
for deployment optimization where parts of an applications
run on highly optimized hardware. A hypothetical example
application could be orchestrated by affordable CPU functions,
offload image rendering to GPU hardware, machine learning
training to TPU hardware, and encryption to FPGA hardware.
Furthermore, code that leverages specialized libraries (e.g.,
NumPy7 for Python > 10 MB) or runtimes (e.g., Puppeteer8

headless Chrome API > 80 MB) with large memory footprints
can be isolated without imposing high memory requirements
on other parts of an application. Such other parts could then
be grouped and multiple code-level functions can be compiled
into a single FaaS function for improved latency. These sample
scenarios illustrate how this approach can lead to cost savings
and better performance.

III. CURRENT WORK AND CHALLENGES

We are currently working on a prototype to demonstrate
the main idea of optimized dynamic deployments. Our pro-
totype targets Javascript, as most commonly used language
in FaaS [2], and supports the open source serverless cloud
platform Apache OpenWhisk9. Transpilation, a widely ac-
cepted concept in the Javascript community (e.g., Babel10),
is implemented as a series of Abstract Syntax Tree (AST)
transformations using jscodeshift11. For deploying FaaS com-

7https://www.numpy.org/
8https://github.com/GoogleChrome/puppeteer
9https://openwhisk.apache.org/
10https://github.com/babel/babel
11https://github.com/facebook/jscodeshift

positions, we build upon the incubating Apache OpenWhisk
Composer12 but provide a more natural native Javascript
code-oriented way of expressing FaaS applications. During
transpilation, we dynamically decide whether to fuse source
code-level functions together or deploy them as separate FaaS
functions coordinated by OpenWhisk conductor actions.

Several challenges may affect the applicability of the envi-
sioned approach. Transpiling applications into orchestrations
favors applications written in the same programming language
and therefore violates the blackbox constraint of the Serverless
Trilemma [5]. However, we think that for many practical rea-
sons (e.g., maintainability, developer skills) it is a fair assump-
tion to promote a main language. Polyglot applications could
still be integrated non-intrusively by transpiling remote APIs
into library objects [3]. A general challenge when transpiling
a program oriented towards local execution semantics into a
distributed application are disparities in execution semantics.
One major aspect is the handling of side effects and shared
state. While we currently discourage unintentional use of side
effects and marshall shared state up to certain limits, we could
envison compiler-alike warnings to alleviate such issues.

IV. CONCLUSION AND FUTURE RESEARCH

We presented a vision where developers are liberated from
conforming to particular forms of deployment units, such as
individual functions, and FaaS applications are automatically
and dynamically transpiled into a set of individually deployed
functions. We envision that such an approach would enable a
broader range of serverless applications, lead to more flexible
cost-performance trade-off decisions, and increase developer
productivity by providing a unified source code view. In our
future work, we plan to extend our transpilation prototype by
integrating and evaluating dynamic deployment options.

ACKNOWLEDGMENT

This work was partially supported by the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded
by the Knut and Alice Wallenberg Foundation, and the
Swedish Research Council VR under grant number 2018-
04127 (Developer-Targeted Performance Engineering for Im-
mersed Release and Software Engineers).

REFERENCES

[1] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht, “Occupy the
cloud: distributed computing for the 99%,” in Proceedings of the 2017
Symposium on Cloud Computing, 2017, pp. 445–451.

[2] P. Leitner, E. Wittern, J. Spillner, and W. Hummer, “A mixed-method em-
pirical study of function-as-a-service software development in industrial
practice,” Journal Systems and Software, vol. 149, pp. 340 – 359, 2019.

[3] K. Kimura, A. Sekiguchi, S. Choudhary, and T. Uehara, “A javascript
transpiler for escaping from complicated usage of cloud services and
apis,” in 25th Asia-Pacific Software Engineering Conf. (APSEC), 2018.

[4] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han, R. Agarwal,
S. Ratnasamy, and S. Shenker, “Network requirements for resource
disaggregation,” in 12th USENIX Symposium OSDI, 2016, pp. 249–264.

[5] I. Baldini, P. Cheng, S. J. Fink, N. Mitchell, V. Muthusamy, R. Rabbah,
P. Suter, and O. Tardieu, “The serverless trilemma: Function composition
for serverless computing,” in Onward!, 2017, pp. 89–103.

12https://github.com/apache/incubator-openwhisk-composer

https://www.numpy.org/
https://github.com/GoogleChrome/puppeteer
https://openwhisk.apache.org/
https://github.com/babel/babel
https://github.com/facebook/jscodeshift
https://github.com/apache/incubator-openwhisk-composer

	Introduction
	Vision
	Current Work and Challenges
	Conclusion and Future Research
	References

