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Abstract. Correctness of autonomous driving systems is crucial as
incorrect behaviour may have catastrophic consequences. Many different
hardware and software components (e.g. sensing, decision making, actua-
tion, and control) interact to solve the autonomous driving task, leading
to a level of complexity that brings new challenges for the formal veri-
fication community. Though formal verification has been used to prove
correctness of software, there are significant challenges in transferring
such techniques to an agile software development process and to ensure
widespread industrial adoption. In the light of these challenges, the iden-
tification of appropriate formalisms, and consequently the right verifica-
tion tools, has significant impact on addressing them. In this paper, we
evaluate the application of different formal techniques from supervisory
control theory, model checking, and deductive verification to verify exist-
ing decision and control software (in development) for an autonomous
vehicle. We discuss how the verification objective differs with respect to
the choice of formalism and the level of formality that can be applied.
Insights from the case study show a need for multiple formal methods to
prove correctness, the difficulty to capture the right level of abstraction
to model and specify the formal properties for the verification objectives.

Keywords: Autonomous driving · Formal verification ·
Supervisory Control Theory · Model checking · Deductive verification

1 Introduction and Related Work

Significant progress has lately been made in the global automotive industry
towards autonomous vehicles. Autonomous vehicles can potentially increase road
safety and help reduce road traffic accidents. However, these are extremely com-
plex safety critical systems, and human safety depends on their correctness.
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The level of complexity in these systems is manually intractable. Factors like
size, structure (level of interaction and communication between different sys-
tems), environment (the physical world in the case of autonomous vehicles),
application domain etc., all contribute to the complexity. It is imperative that
all safety critical parts of an autonomous vehicle are veritably reliable and safe.
This is a challenge for the development process due to the complexity needed
to be managed not only in the design but also in the verification and validation
process.

An autonomous vehicle consists of many software and hardware components
interacting to solve different tasks, ranging from sensing, decision making, and
planning to actuation and control. The level of complexity involved may lead
to subtle but potentially dangerous bugs arising due to unforeseen edge cases,
errors in the software design and/or implementation. Coverage based testing is a
widely adopted work flow in many large scale software development companies,
but exhaustive testing is not tractable. Testing can never guarantee absence of
unintended consequences nor provide sufficient certification evidence in all cases.
Thus, there is a need for complementary methods to guarantee system safety,
and the use of formal methods for this is becoming prevalent [14,23].

The international standard ISO 26262 [16] provides guidance on a risk based
approach to manage, specify, develop, integrate, and verify safety critical systems
in road vehicles, including various references to formal specification and verifi-
cation. Adherence to the standard can potentially ensure that system quality
is maintained, and unreasonable residual risk is avoided. The standard is based
upon the V model of product development [13] and aims at achieving system
safety through safety measures implemented at various levels of the development
process. However, the standard addresses neither specific challenges inherent to
autonomous driving systems, nor the development of safety critical software in
an agile development work flow.

Thus, research is needed to solve challenges arising from such inter-
disciplinary problems, and these challenges are at-least two fold:

1. The application of formal verification to autonomous driving systems;
2. The transfer of formal verification techniques to large scale agile development

of safety critical software.

The first challenge is relatively new and is driven by recent developments in
autonomous systems. The second challenge relates to a long standing problem
of successful industrial adoption of formal techniques in software development.
However, the addition of agile methods to safety critical software development
has introduced new directions.

Formal methods—with varying levels of formalisation—can be applied at
various stages of the software development process. The choice of verification
method and the expressive power of the formalism used to specify the proper-
ties is an important choice that affects the conclusions drawn from the results
of the verification process. In this paper, we evaluate three formal verifica-
tion methods and their respective formalisms to verify existing software in an
autonomous driving vehicle: Supervisory Control Theory with Extended Finite
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State Machines [30,34], Model Checking with Temporal Logic of Actions [22],
Deductive Verification with contract based programming [4]. We discuss how the
verification objective differs in these methods and how multiple formal methods
can help tackle the challenges in industrial autonomous driving software devel-
opment.

A recent survey [23] on formal specification and verification of autonomous
robotic systems is a comprehensive study of current state-of-the art literature
focused on formal modelling, formal specification, and formal verification of
robotic systems. It gives a summary on the challenges faced, current methods
in tackling the challenges, and the limitations of existing methods. In [33], an
overview of the challenges in designing, specifying and verifying cyber-physical
systems, particularly semi-autonomous driving systems with human interaction
is provided. [12] presents a model checking framework for verifying autonomous
systems with a distinguished rational ‘agent’, confined to the system architecture
level with autonomous driving as one example scenario. There are prior research
focused on the development of autonomous systems in a generic sense [14,23],
surveys on tool based verification methods and tools [5,9], and the general indus-
trial adoption of formal methods technology [17,18,32,35].

In contrast to the literature cited above, our work is specific to autonomous
driving and we discuss a tightly coupled approach to tackle the two-fold challenge
with an industrial case study. The problem description is given in Sect. 2, followed
by separate sections for the three different verification approaches handled in this
paper. Section 6 discusses the evaluation and insights from the industrial case
study. The paper concludes with some remarks in Sect. 7.

2 Problem Description

Zenuity is one of the leading companies in the development of safe and reli-
able autonomous driving software. A significant part of the embedded software
developed at Zenuity is safety critical. In [36], formal verification was applied
to a small part of the autonomous driving software in development and non-
conformance to a few basic specifications was reported. The work presented in
this paper is a continuation of the work started in [36].

The focus of this paper is a sub-module of the decision making and planning
module, called Lateral State Manager (LSM ), which solves the sub-function of
managing modes during a lane change. A simplified overview of the system and
the interactions are shown in Fig. 1. The software module is implemented in
object-oriented MATLAB-code using several classes, each solving different sub-
problems. The interaction of the LSM class with a high level strategic planner
(Planner) and a low level planner (Path Planner) is also shown in Fig. 1.

The Planner in the lane change module is responsible for strategic decisions
and depending on the state of the vehicle, the Planner sends lane change requests
to the LSM, indicating the desired lane to drive in. These requests are in the form
of NoRequest, ChangeLeft, and ChangeRight. On receiving a request, the LSM
keeps track of the lane change process by managing the different modes possible
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Fig. 1. System overview and interactions.

during the process, and issues commands to the Path Planner. If a lane change
is requested, the Path Planner sends control signals to the low level controller
to perform a safe and efficient lane change. Due to the inherent nature of the
task to solve, the LSM implements a finite state machine. An example of a state
in the LSM state machine is State F inished that represents the completion of
the lane change process.

A call to LSM is issued at every execution cycle. During each call, the
LSM undergoes three distinct execution stages. First, all the inputs are updated
according to the function call arguments. Second, depending on the current state,
code is executed to decide whether the system transits to a new state or not.
This code also assigns outputs and persistent variables. Finally, if a transition is
performed, the last stage executes code corresponding to the new state entered
and assigns new values to the variables.

Of course, LSM is safety critical and its correctness is crucial. In our work,
we focus on verifying properties that affect the safety of the system, i.e. a vio-
lation of which will result in an unsafe behaviour. From a software development
perspective, these properties are typically stated as safety requirements. In [36],
one such requirement was modelled to check whether the LSM always performs
a lane change to the same lane as requested by the Planner. This requirement
was shown to be violated. Under certain circumstances the vehicle could indicate
to go to the right (say), and check for traffic on the right side, but when it was
clear to move into the right lane, the vehicle moved to the left. In our work, we
further strengthen the property to express definite unsafe behaviours and the
strengthened requirement is shown as Req.1 .

Req.1 : If changing lane, the lane change shall always be to the same side as
indicated.

In the following sections, we describe how formal verification is performed to
show correctness of the LSM and to identify the violation of Req.1 in the three
different methods discussed in this paper. While there are several tools and



Verification of Decision Making Software 5

tool based methods that support formal verification [5,9], the choice of the tools
discussed in this paper is primarily motivated by prior case studies with Suprem-
ica [25,36], TLA+ [20,27], and SPARK [1,7] on software systems similar in nature
and scale to autonomous driving systems.

3 Supervisory Control Theory

The Supervisory Control Theory [31] (SCT) provides a framework for modelling,
synthesis, and verification of reactive control functions for discrete event systems
(DES), which are systems that occupy at each time instant a single state out
of its many possible ones, and transits to another state on the occurrence of an
event. Given a DES model of a system to control, the plant, and a specification1

of the desired controlled behaviour, the SCT provides means to synthesize a
supervisor that interacting with the plant in a closed-loop dynamically restricts
the event generation of the plant such that the specification is satisfied.

Though the original SCT focused on synthesising supervisors that by con-
struction fulfil the desired properties, a dual problem of interest here is to, given
a model of a plant and specification, verify whether the specification is fulfilled
or not. So, in this paper we use ideas from SCT to formally verify LSM , and do
not focus on the synthesis of supervisors.

A DES modelling formalism appropriate in our context is finite-state
machines extended with bounded discrete variables, with guards (logical expres-
sions) over the variables and actions that assign values to the variables on the
transitions [34].

Definition 1. An Extended Finite State Machine (EFSM) is a tuple E =
〈Σ,V, L,→, Li, Lm〉, where Σ is a finite set of events, V is a finite set of bounded
discrete variables, L is a finite set of locations, →⊆ L × Σ × G × A × L is the
conditional transition relation, where G and A are the respective sets of guards
and actions, Li ⊆ L is the set of initial locations, and Lm ⊆ L is the set of
marked locations.

The current state of such an Extended Finite State-Machine (EFSM) is given
by its current location together with the current values of the variables. Thus,
the state of an EFSM is not necessarily explicitly enumerated, but can be repre-
sented symbolically. This richer structure, though with equal expressive power,
shows good modelling potential compared to ordinary finite state machines. The

expression l0
σ:[g]a−−−→ l1 denotes a transition from location l0 to l1 labelled by

event σ ∈ Σ, and with guard g ∈ G and action a ∈ A. The transition is enabled
when g evaluates to T, and on its occurrence a updates some of the values of
the variables v ∈ V , thereby causing the EFSM to change location from l0 to l1.

EFSMs naturally interact through shared variables, but they can also interact
through shared events, which is modelled by synchronous composition, where
1 In the SCT framework, the specification is the property of interest to verify with

respect to the plant.
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common events occur simultaneously in all interacting EFSMs, or not at all,
while non-shared events occur independently. By this interaction mechanism a
supervisor restricts the event generation of the plant; if the supervisor has a
specific event in its alphabet but has no enabled transition labelled by that
event from its current state, then the closed-loop system cannot execute that
event in the current global state. We denote the synchronous composition of
two EFSMs E1 and E2 by E1 ‖ E2 [34]. As defined by [34], transitions labelled
by shared events but with mutually exclusive guards, or conflicting actions can
never occur.

3.1 Nonblocking Verification

Given a set of EFSMs E = {G1, . . . , Gn,K1, . . . ,Km} where the components
Gi (i = 1, . . . , n) represent the plant, and Kj (j = 1, . . . ,m) represent the
specification, we now want to determine whether the synchronous composition
over all the components can from any reachable state always reach some marked
state. The straightforward way to do this, called the monolithic approach, is
intractable for all but the smallest systems, due to the combinatorial state-space
explosion problem. Thus, more efficient approaches are needed.

One such approach that pushes the limit of what is tractable is the
abstraction-based compositional verification [26], which has shown remarkable
efficiency and manages to handle systems of industrially interesting sizes and
complexity. It can be shown [26] that when E is blocking, this is due to some
conflict between the components of E . Thus, the approach of [26] employs
conflict-preserving abstractions to iteratively remove redundancy and thus to
keep the abstracted system size manageable. However, this approach eventu-
ally ends up converting the resulting abstracted EFSM system into ordinary
finite-state machines, and then doing a monolithic verification of that. This then
requires an efficient explicit verification algorithm, such as the one presented
in [24].

3.2 Verification of LSM in Supremica

The software tool Supremica [25] implements the nonblocking verification algo-
rithms mentioned above (as well as various other algorithms, both for verification
and synthesis). To verify whether LSM presented in Sect. 2 fulfils Req.1 or not,
we transform Req.1 into an EFSM specification in such a way that with an
EFSM model of the LSM code as the plant, the system will be nonblocking if
and only if LSM fulfils Req.1 .

The manual modelling of the LSM as an EFSM, similar to [36], is illustrated
with a small excerpt from the actual MATLAB-code, shown in Listing 1.1 with
some variable and state names anonymized. Listing 1.1 is a piece of the code that
assigns variables and decides whether the system transits to a new state or not.
The EFSM corresponding to the code is shown in Fig. 2. As described in Sect. 2,
the LSM involves three execution stages during each call. The event update
in the EFSM signifies the first stage: update on the inputs. The event update
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Listing 1.1. An illustrative excerpt from LSM code used for verification.

1 f unc t i on duringStateA ( var , laneChangeRequest )
2

3 var . d i r e c t i o n = laneChangeRequest ;
4 var . x = f a l s e ;
5 var . y = f a l s e ;
6 i f laneChangeRequest != NoRequest
7 var . s t a t e = StateB ;
8 end
9

10 end

is followed by three transitions to model the possibility for the input variable
laneChangeRequest to take one of the three values equally likely. Modelling the
rest of the lines of code is straightforward. Note that the illustration provided is
a minimal example to explain the modelling approach undertaken to manually
model the LSM source code as an EFSM in Supremica.

update

e1: Request = NoRequest

e2: Request = ChangeRight

e3: Request = ChangeLeft

e4:
direction = Request

x = False
y = False

check:
[Request = NoRequest]

state = stateB

check: [Request = NoRequest]

Fig. 2. EFSM of Listing 1.1. Primed variables represent next-state values.

Req.1 modelled as an EFSM is shown in Fig. 3. The event enterFinished
denotes that the LSM has reached State Finished completing the lane change
process. The guard on the event checks for equality between two variables,
Output Indication and Output ChangeLane. When these variables differ, the
EFSM transits to a blocking state as shown in Fig. 3. Output Indication and
Output ChangeLane are modelled in a way such that they are set only during
specific modes during the lane change process and are reset only when the LSM
transits back to the initial state, when no lane change is requested. This makes it
possible for their use in expressing Req.1 . Modelling the LSM code in Suprem-
ica resulted in an EFSM with 76 locations, 113 events, 144 transitions, and 20
variables. The synchronisation of the LSM with the EFSM in Fig. 3 resulted in
a model with 1,522,117 reachable states, 113 events, and 2,164,607 transitions.
The nonblocking verification of the synchronised model took less than a second
and showed that a blocking state can indeed be reached. Supremica also provides
a 43 events long counter example that can be analysed in detail to understand
the underlying cause.
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×

enterFinished:
[Output Indication = Output ChangeLane]

enterFinished:
[Output Indication = Output ChangeLane]

Fig. 3. EFSM of the specification to model Req.1 . The blocking state is represented
with a cross inside.

4 Model Checking

Model checking [10,29] is a framework for verification of finite transition systems
using temporal logic [28] as a specification formalism. Several formalisms and
powerful model checking tools have emerged over the years [6,11].

Definition 2. A finite transition system is a tuple T = 〈S,Act,→, I, AP,L〉
where S is a finite set of states, Act is a finite set of actions, →⊆ S ×Act×S is
a transition relation, AP is a finite set of atomic propositions, and L : S → 2AP

is a labelling function.

Given a transition system T , and a temporal logic formula f , the model checking
problem is a decision procedure for T � f . If T � f , then the model checking
algorithm provides a counter example as an evidence for the violation, which
can then be used to analyse the issue and the ways to resolve it.

4.1 Temporal Logic of Actions

The Temporal Logic of Actions (TLA) is a logical formalism for specifying and
reasoning about concurrent systems [21]. TLA is a variant of temporal logic [28]
and uses the notion of states and actions to model behavioural properties of
systems. TLA, as a logical formalism provides the expressive power to reason
about programs using assertions on states and pairs of states (actions). Actions
are predicates that relate two consecutive states and are used to capture how
the system is allowed to evolve. This section only presents a brief overview of
TLA and the associated formalism for specifying and model checking systems.
A more detailed description of the language and other advanced advanced topics
is available in [20–22].

The reasoning system in TLA is built around TLA formulas. A TLA formula
is true or false on a behaviour. A behaviour in TLA is an infinite sequence of
states. A state in TLA is an assignment of values to variables and a step is a
pair of states. Steps of a behaviour denote successive pairs of states. Given a
system S, with the executions of the system represented as behaviours, and a
formula f , we can decide whether S satisfies f iff the formula f is true for every
behaviour of S.

The elementary building blocks of a TLA formula include state predicates,
actions, logical operators (such as ∧, ¬, etc.), the temporal operator � (always)
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and the existential quantifier ∃. A state predicate is a boolean valued expression
(predicate) on states. An action, A, is a boolean valued expression (predicate)
on steps. Actions are formed from unprimed variables and primed variables to
represent the relation between old states and new states. The unprimed variables
refer to the values of the variables in old states, the first state of the step, whereas
the primed variables refer to the variable values in new states, the second state
of the step. State predicates have no primed variables. A step is an A-step if it
satisfies A. An action is valid, � A, iff every step is an A-step. In TLA, atomic
operations of programs are represented by actions.

TLA+ is a formal specification language based on formal set theory, first
order logic and TLA. A TLA+ specification, typically denoted Spec, is a temporal
formula predicate on behaviours. All the behaviours satisfying Spec constitute the
correct behaviours of the system. TLA+ describes a system as a set of behaviours
with an initial condition and a next state relation. The initial condition specifies
the possible initial states and the next state relation specifies the possible steps.
A TLA+ specification is a temporal formula of the form

Spec � Init ∧ �[Next]〈vars〉 ∧ Temporal (1)

where Init is a state predicate corresponding to the initial condition, Next is an
action corresponding to the next state relation, vars is a tuple of all variables in
the specification, and Temporal is a temporal formula usually specifying liveness
conditions. Formula Spec can be seen as a predicate on behaviours. Spec is true
for a behaviour σ, iff Init is true in the first state of σ and every step in σ is
either a step that satisfies Next or is a stuttering step. A stuttering step is one
in which none of the variables are changed.

The specification (1) can be model checked using the TLC model checker.
TLC takes a TLA+ specification and checks whether the specification satisfies
the desired properties by evaluating all possible behaviours of the specification.
The TLA+ specification language accompanied by an IDE consisting of TLC
and other useful tools can be downloaded from [20].

4.2 Verification of LSM in TLA+

The approach we use to formally verify the LSM in TLA+ is similar to the
approach of Supremica. The LSM code is manually translated in TLA+ using the
constructs available in the specification language. Listing 1.2 shows the TLA+

translation of the MATLAB-code in Listing 1.1 as a TLA+ formula that relates
unprimed variables and primed variables using arithmetic and logical operators.
The formula describes the allowed behaviour of the function in Listing 1.1. A call
to the function duringStateA is translated to a behaviour where the formula
During StateA is valid.

The TLA+ translation of the entire LSM code consists of an initial state
predicate, Init and Next. Next is composed of smaller sub-formulae, each cor-
responding to different functions in the original code, of which one formula is
shown in Listing 1.2. With the complete TLA+ translation of the LSM , TLC
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Listing 1.2. TLA+ translation of the code in Listing 1.1.

1 During StateA ==
2 /\ Lane Change Request ' \ in ...

{”NoRequest ” ,” ChangeLeft ” ,” ChangeRight”}
3 /\ va r s t a t e = ”StateA”
4 /\ va r d i r e c t i on ' = Lane Change Request
5 /\ var x ' = FALSE
6 /\ var y ' = FALSE
7 /\ IF Lane Change Request # ”NoRequest” THEN
8 va r s ta t e ' = ”StateB”
9 ELSE UNCHANGED va r s t a t e

can model check for desired properties, which are described using pre-defined
statements and constructs available. More details on the statements and the
restrictions on TLC is available in [22]. In order to verify Req.1 of Sect. 2, we
make use of invariant checking in TLC.

An invariant, typically denoted as Inv, of a Spec is a state predicate that
should be valid in all reachable states. Invariants can be defined for specifications
as well as next-state actions. An invariant of a specification that is also an
invariant of a next-state action is sometimes called an inductive invariant of
Spec. In model checking mode for invariance checking, TLC explores all reachable
states and looks for states in which the invariant is not satisfied.

Req.1 is translated to a TLA formula as

InvProp � ¬(var state = “State Finished”

∧Output Indication �= Output Change Lane). (2)

Reaching a state where InvProp is violated means that the state predicate eval-
uate to false, i.e. a behaviour where the lane change is finished and the outputs
for showing indication and changing lane differ, is allowed in our specification,
thereby showing the presence of an error in our code. The complete TLA+ trans-
lation was 250 lines with 20 variables. In model checking mode using breadth-first
search, TLC shows the violation of InvProp with a 5 step long error trace for
analysis.

5 Deductive Verification

Model checking is well suited to establish (temporal) properties of state traces,
but mostly requires abstractions over the real source code. In contrast to that,
deductive verification [15] techniques are well suited for fully precise reasoning
about the computation on the source code level. Often, first order-logic is used to
characterise conditions on the data in specific states, in pre and post-conditions
of procedures, or invariants. Deductive verification typically uses a compositional
methodology, specifying and verifying one procedure at a time. Verification tools
exist for common programming languages such as C [19], Java [3], or Ada [7].
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5.1 SPARK

Ada [8] is a high level imperative programming language targeting the devel-
opment of large scale safety critical software. Ada is suited to meet the high
integrity software requirements and has been used in several industrial embed-
ded software development projects [1]. SPARK is a subset of Ada with additional
features to support formal verification [7]. SPARK uses property specifications
in the form of program annotations described inline with the source code to
perform static program analysis and build automated proofs to show the cor-
rectness of the software. In that sense, SPARK uses the correct by construction
philosophy through contract based programming to develop software.

A SPARK program is made up of one or more program units. Subprograms
and packages are two examples of SPARK program units. A subprogram exe-
cution is invoked by a call and subprograms express a sequence of actions. Pro-
cedures and functions are the two types of subprograms in SPARK. Procedure
calls are standalone statements, whereas function calls occur in an expression
and return a value. Packages group together entities like data types, subpro-
grams, etc., and can be considered to be the equivalent of header files in an
object oriented programming language like C++. A program unit consists of
two structures, a specification and a body. The specification contains the vari-
ables, types and the subprogram declarations with their annotations. The body
of a program unit contains the details of the implementation.

Properties are in SPARK specified using subprogram contracts (pre and
post-conditions), loop invariants, and data dependencies. The formal verification
toolset in SPARK can perform program analysis on the source code at various
levels. Flow analysis capabilities ensure the program correctness with respect
to data flow and information flow. Errors arising due to uninitialized variables,
data dependencies between inputs and outputs of subprograms, well-formedness
of programs, etc., are checked by this level of analysis. A higher level of analysis
is to perform automated proofs to check for run time errors and conformance
of the program with the specifications. The program annotations specified are
used to generate verification conditions, which can then be discharged using the
proof tools to show program correctness.

5.2 Verification of LSM in SPARK

SPARK 2014 [1] and its associated tools are used to formally verify the LSM.
With the use of packages and subprograms in SPARK, the code structure of the
original implementation of LSM using classes and methods in MATLAB-code
is preserved. Listing 1.3 shows how the code in Listing 1.1 is built in SPARK.
The implementation is done as a procedure (subprogram). Lines 1–6 represent
the specification part of the subprogram and lines 8–19 represent the body. The
specification consists of the subprogram declaration and its contract in the form
of pre and post-conditions. The parameter mode in out permits both read and
write operations on the values of the associated parameter.
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Listing 1.3. SPARK implementation of the code in Listing 1.1.

1 procedure During StateA
2 (Var : in out Var Type ;
3 Lane Change Request : in Lane Change Direct ion Type )
4 with Pre => Var . State = StateA ,
5 Post => ( ( Var . D i r e c t i on = Lane Change Request ) and
6 (Var . State in StateA | StateB ) ) ;
7 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
8 procedure During StateA
9 (Var : in out Var Type ;

10 Lane Change Request : in Lane Change Direct ion Type )
11 i s
12 begin
13 Var . D i r e c t i on := Lane Change Request ;
14 Var .X := False ;
15 Var .Y := False ;
16 i f Lane Change Request /= NoRequest then
17 Var . State := StateB ;
18 end i f ;
19 end During StateA ;

SPARK has a set of core annotations as predefined rules that can be checked
without user defined contracts. However, here we are interested in verifying func-
tional properties like Req.1 and therefore SPARK needs stronger annotations to
perform formal analysis. The contract specified in Listing 1.3 is an illustrative
example of type of contracts used to show correctness of LSM with respect to
Req.1 . The preconditions, denoted Pre, are assertions that are satisfied when
the procedure is called and the postconditions, denoted Post, are the conditions
that should be satisfied as a result of the procedure call. These contracts are used
by the analysis tools to generate verification conditions, which are mathemat-
ical expressions relating a number of hypotheses (obtained from preconditons)
and conclusions (from postconditions). Providing a correctness proof of the pro-
gram then boils down to showing that the conclusions always follow from the
hypotheses. Detailed information on the the analysis tools is available in [2,7].

With this general idea, the initial approach to prove correctness of the LSM
was to specify one global contract to capture Req.1 . This global contract was
specified on the complete LSM code implemented as a package in SPARK. How-
ever, results from the analysis showed that one global contract was insufficient
to show correctness of Req.1 . Subsequent annotations were added to the differ-
ent subprograms. Req.1 was specified as a postcondition (3) of a subprogram
responsible for execution on the completion of a lane change.

Post ⇒ (Var.State = Finished) and

(Output Indication = Output ChangeLane) (3)

Although the proof checks for most of the subprogram contracts were automati-
cally proved by SPARK analysis tools, error messages from proof checks reported
that a few postconditions including (3) might fail. The unproved checks could
possibly indicate incorrectness of the code (implementation and specification)
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or the need for stronger annotations for the tools in the form of intermediate
assertions and better code organisation. In order to conclusively decide the cause
for the failed proof checks, more manual reviews, analysis of the execution paths
corresponding to the failed checks and possibly stronger contracts were needed.
However, the undertaken approach of implementing the code first and then incre-
mentally annotating the subprograms in order to satisfy the property turned out
to be inefficient. A better work flow in our case would be the reverse approach,
where the property is formally broken down into suitable subprogram contracts
followed by the implementation to show correctness.

6 Insights and Discussion

This section provides a discussion and the insights gained from this case study.
The discussion is focused on how the verification methods aid in addressing the
challenges mentioned in Sect. 1, and does not aim to compare the performances
or the algorithms of the tools.

Describing the System. Autonomous driving systems are often categorised as
Cyber-Physical Systems (CPS) or reactive systems in literature, depending on
the focus of research. Irrespective of the classification, modelling and observing
the system and its environment is a known challenge. The expressive power is
limited to the choice of formalism. In our case, describing LSM as extended
finite state machines and transition systems (although not too different) was
sufficient to capture—and reason about—correctness due to its discrete nature.
However, correctness of Path Planner, Controller, Sense in Fig. 1 is just as cru-
cial as LSM and the formalism discussed in this paper might not be sufficient
as they have continuous dynamics and probabilistic behaviour. Choosing task
specific formalisms and tools for different software development teams compli-
cates the industrial adoption of such techniques. In this respect, having subtle
and necessary extensions to the existing formalisms so as to capture a wider
spectrum of abstractions, while still being decidable, can be invaluable.

Modelling the observable behaviour of the environment faces the risk of state-
space explosion. Defining the operating boundaries of the environment with
respect to the system is very crucial in successfully addressing the challenge.
For example, in our case of the lane change software module, the traffic state
(position, behaviour of other vehicles,...) could serve as a definition of the envi-
ronment for the decision making component in Fig. 1. However, using the same
definition for environment to model and reason about LSM or Path Planner,
would neither help tackle the challenge nor be an efficient use of any of the
formal technique discussed in this paper. The use of deductive verification in
SPARK decouples from such problems by applying verification techniques on
the source code. Nevertheless, the challenge then manifests in the need to write
complex functional specifications to have the formal analysis done, as it turned
out in our case.

From our experience, the key to address these challenges is to use formal
approaches with different levels of abstractions to divide and conquer in a mod-
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ular way, similar to classical large scale software development. Higher level
abstractions could be used to define logical boundaries between the systems
and their environments and lower level abstractions to reason about the systems
within their boundaries. Compositional verification can then be used to reason
about systems in a modular way. Supremica, TLA+ and SPARK have features
to support such compositional verification of systems. This work flow could also
be used to formally obtain subprogram annotations in the deductive verification
framework to show correctness of source code.

Requirements and Properties. In this paper, the focus is to verify one require-
ment that affects the safety of the system. In the SCT framework, EFSM is used
as the specification language. A violation of the requirement is modelled as an
event leading to a blocking state and nonblocking verification is performed to
check for errors. This is similar to checking whether in all computations, we
eventually reach a state from where a marked state can be reached. While non-
blocking cannot be directly translated in linear-time temporal logic, the use of
invariants is exploited in TLA+ to check for the desired property. In SPARK,
the use of pre/post conditions to look for the particular unsafe behaviour did
not prove to be an efficient work method. While TLA+ and Supremica pro-
vided counter examples that could help in the analysis of the bug, the counter
example generation in SPARK was not sufficient to draw concrete conclusions
in our particular case. This could be attributed to the fact that for efficient use
of automated reasoning in contract based programming, operational complete-
ness, meaning contracts for normal, error and exceptional behaviour should be
included in the specification. The reverse approach of implementing the source
code first and then annotating with contracts to check for a particular unsafe
behaviour proved very inefficient. However, a program crashing is just as unsafe
as compared to the behavioural safety property discussed in this paper. For such
software program malfunction due to run time errors (such as division by zero,
overflow, etc.), modelling and specifying in Supremica and TLA+ is complicated
and will greatly increase the complexity. SPARK is efficient in this regard.

Type of Analysis and the Scope of Correctness. Formal methods can be
applied to all levels of the software development process. While acknowledg-
ing the individual strengths of each of the methods discussed in this paper, no
method on its own is sufficient to prove correctness for the LSM. Supervisory
control and TLA+ are abstract methods that are best suited for verification at
the system level, software architectural level and software design level of the ISO
26262 standard. Deductive verification methods give the most benefit at the soft-
ware unit (program) verification, the lowest level (source code) of the V-model.
SPARK is developed to suit the needs of high integrity safety critical applica-
tions and therefore provides better evidence for compliance to several clauses
of the standard at the software unit verification level. The abstraction based
approaches discussed in this paper involves manual modelling of the system and
therefore requires additional effort to ensure that the right detail is captured
in the modelling as well as in specifying the properties. The occurrence of false
alarms in such methods is of course an implicit trade-off.
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Leveraging Formal Methods in an Industrial Setting. The verification
approaches discussed in this paper are all performed after the software was imple-
mented. A software to solve an intended function was written in a programming
language and then verified for correctness. Although, better use of the methods
described in this paper could be made in the earlier stages of the development
process (correct by construction approach), the situation where software is ver-
ified for correctness in the later stages seems more common in the industrial
setting. In our experience, the challenging task encountered while working with
the abstract methods is the lack of interoperability with the other tools used in
the development. Supremica and TLA+ are stand alone methods and currently,
the only way to use them is for engineers to have parallel activities, one with the
formal tools and the other with the conventional development tools. While this
might be justified for high integrity applications, the need for manual effort to
synchronise the parallel activities to obtain a concrete impact is often a draw-
back. Work on suitable intermediary plug-ins to have traceability between the
informal requirements management activity and the formal specification meth-
ods would definitely work in favour of increased adoption in the software specifi-
cation stages. Counter-example generation in the abstract methods discussed in
this paper is easily the highest return on investment in an industrial setting. This
could further be enhanced by work on using counter-examples to generate test
scenarios in the preferred testing framework in the development routine. This
will also suit well within the continuous development and continuous integration
principles of agile development. In this regard, SPARK is well suited for easier
integration. However, the use of SPARK as an after development verification
tool without formal specification in the earlier stages, is still inefficient.

7 Conclusion

In this paper, we have applied formal verification based on Supervisory Control
Theory, Model Checking and Deductive Verification to verify correctness of a
decision making software in an autonomous vehicle. Discussion on how the ver-
ification scenario differs in each of the methods is presented. We also provide
insights on how the different approaches can address the challenges in indus-
trial development of safe autonomous driving software. The difficulty in working
with all these tools is not in learning them but in capturing the right level
of abstraction for the verification objectives and stating the formal properties.
Although this paper deals with the verification of one safety requirement of a
decision making software module, the insights gained are valuable to address
the challenges. Future work includes the investigation of integrating multiple
formal approaches to tackle the challenges mentioned in this paper also to scale
the approaches to different types of systems in an autonomous vehicle for larger
classes of properties with more software requirements.
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