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Modern robotic hands/upper limbs may replace multiple degrees of freedom of

extremity function. However, their intuitive use requires a high number of control

signals, which current man-machine interfaces do not provide. Here, we discuss a

broadband control interface that combines targeted muscle reinnervation, implantable

multichannel electromyographic sensors, and advanced decoding to address the

increasing capabilities of modern robotic limbs. With targeted muscle reinnervation,

nerves that have lost their targets due to an amputation are surgically transferred to

residual stumpmuscles to increase the number of intuitive prosthetic control signals. This

surgery re-establishes a nerve-muscle connection that is used for sensing nerve activity

with myoelectric interfaces. Moreover, the nerve transfer determines neurophysiological

effects, such as muscular hyper-reinnervation and cortical reafferentation that can be

exploited by the myoelectric interface. Modern implantable multichannel EMG sensors

provide signals from which it is possible to disentangle the behavior of single motor

neurons. Recent studies have shown that the neural drive to muscles can be decoded

from these signals and thereby the user’s intention can be reliably estimated. By

combining these concepts in chronic implants and embedded electronics, we believe

that it is in principle possible to establish a broadband man-machine interface, with

specific applications in prosthesis control. This perspective illustrates this concept, based
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on combining advanced surgical techniques with recording hardware and processing

algorithms. Here we describe the scientific evidence for this concept, current state

of investigations, challenges, and alternative approaches to improve current prosthetic

interfaces.

Keywords: myoelectric prosthesis, prosthetic interface, EMG, nerve transfers, TMR, targeted muscle

reinnervation, prosthetic control

INTRODUCTION

Upper extremity loss is a severe lifetime event leading to a
significant physical and consecutive psychological burden to
patients. In modern extremity reconstruction, myoelectric
prostheses are used to restore limb function (Kung et al.,
2013; Farina and Aszmann, 2014). These devices rely on
detection of voluntary residual muscle activity through
electromyography (EMG) to drive prosthetic function.
However, current prosthetic interfaces are unable to provide
sufficient, intuitive and reliable control, which is one of
the main reasons for device abandonment (Atkins et al.,
1996; Biddiss et al., 2007; Peerdeman et al., 2011). Novel
control interfaces are therefore needed to provide a robust
broadband link between the patient and the prosthesis
(Peerdeman et al., 2011; Ortiz-Catalan et al., 2012; Kung
et al., 2013).

Since the 1960s, the prosthetic interface has utilized the
amputee’s two major muscle groups of the residual stump
as sources of myocontrol signals (Childress, 1985; Williams,
1990; Parker et al., 2006). This approach is simple, reliable,
and non-invasive, but the information transfer is limited since
only two control signals from an agonist-antagonist muscle
pair are available. In this scenario, co-contraction is often
used to switch the control signals to different joints of the
prosthetic device (hand, wrist, elbow or shoulder) (Salminger
et al., 2015; Vujaklija et al., 2016). This classic control method
is unintuitive and cumbersome but, due to its reliability,
it is still the only widely applied clinical solution (Turker,
1993; Scheme and Englehart, 2011; Farina and Aszmann,
2014). Considering their complexity, it is apparent that the
modern prostheses cannot be controlled intuitively with this
traditional interface (Ortiz-Catalan et al., 2012; Kung et al.,
2013).

Targeted muscle reinnervation (TMR) was proposed
to increase the number of intuitive control signals in
prosthetics (Kuiken et al., 2005; Miller et al., 2008). With
this approach, peripheral nerves deprived of functional targets
due to amputation are transferred to residual muscles in
the stump and the original motor branch divided (Kuiken
et al., 2009; Kung et al., 2013; Figure 1). As a consequence,
the innervation of multi-headed or segmentally innervated
muscles (e.g., biceps, pectoralis muscle) is separated to increase
the number of available myosignals (Dumanian et al., 2009).
TMR thus enables simultaneous control of multiple degrees
of freedom (DoFs), such as hand opening, wrist rotation
and elbow flexion (Kuiken et al., 2007; Salminger et al.,
2015). In addition, TMR signals are intuitive to use for the

patient, as the nerve’s original function is the same function
as controlled in the prosthesis after the surgery. However, the
latest prosthetic devices allow in principle highly dexterous
hand-like motions involving multiple DoFs, including individual
finger motions (Fifer et al., 2014; Lee et al., 2014; Resnik
et al., 2014). For controlling these functions, an even greater
number of control signals than TMR currently provides are
needed.

Previous investigations indicate that TMR leads to hyper-
reinnervation and cortical reafferentiation (Kuiken et al.,
1995). By recording the activity of the reinnervated muscles
with multichannel EMG systems, activation patterns of
single motor units can potentially be decoded. Based on
these patterns, we believe it is possible to estimate the
neural drive for complex tasks from the spinal cord. This
could provide a broadband interface for the user’s motion
intention and thus govern modern myoelectric prostheses
in a natural manner. In this perspective article, we present
these concepts and the scientific foundation for their clinical
translation.

THE NEUROPHYSIOLOGY OF TARGETED
MUSCLE REINNERVATION

During TMR surgery, nerves that have lost their target due to
amputation are transferred to residual stump muscles to increase
the number of cognitive and independent muscle signals. In this
procedure, the original motor branch of a redundant muscle
is replaced by an amputated nerve and thus this muscle is
reinnervated by a different pool of motor neurons that previously
encoded hand function (Figure 1). Consequently, the target
muscle function is controlled by a different segment of the spinal
cord and cortex area with respect to its natural innervation. Given
sufficient recovery time, TMR leads to the representation of the
targeted muscle at the original cortical location of the missing
limb (Chen et al., 2013; Yao et al., 2015). This reafferentiation
of the highly adapted corticospinal control structures of the
lost extremity creates intuitive signals for prosthetic use. In
this process, the corticospinal areas originally linked to the fine
motions of the hand are reconnected to proximal muscles.

Essential for cognitively establishing such a high
number of control signals is a structured feedback-driven
neurorehabilitation program. For this purpose, EMG
biofeedback is used to facilitate motor learning and to teach
patients how to activate the newly established muscle signals.
Following surgery, cortical plasticity allows the patient to
reintegrate the rewired neuromuscular structures and use them
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FIGURE 1 | TMR and hyper-reinnervation: Top: Physiologically, peripheral nerves typically innervate multiple muscles via different motor fascicles. The fascicles’ motor

neurons are located in the motor neuron columns of the spinal cord. Each motor neuron innervates a certain number of muscle fibers, termed the muscle unit. After

amputation, these motor neurons and fascicles remain intact without any function. Bottom: During TMR surgery, amputated nerves are transferred to replace the

target muscle’s original motor nerve. The donor nerve is typically a multi-fascicular nerve that includes a higher number of motor neurons. Consequently, the targeted

muscle is hyper-reinnervated by more motor neurons which form smaller muscle units. Additionally, the individual motor fascicles could form fascicular territories within

the muscle that could potentially contract independently from each other.

to intuitively control a prosthesis in daily activities (Stubblefield
et al., 2009; Sturma et al., 2014).

Motor Unit Structure
TMR alters the components of the motor units and may thereby
change their physiology. During maturation of the nervous
system, the motor neuron, connecting axon, neuromuscular
junction and muscle fibers are physiologically aligned in their
properties (Buchthal and Schmalbruch, 1980; Heckman and
Enoka, 2012). During the nerve transfers used in TMR, motor
neurons and their axons are linked to new muscle fibers with
potentially different properties than the original fibers. As cross-
innervation studies have shown (Prewitt and Salafsky, 1967;
Romanul and Van Der Meulen, 1967; Amphlett et al., 1975), the
reinnervating motor neurons may restore the integrity of the
motor unit by changing the myosin heavy chain expression of
the muscle fibers. Although the extent of this transition requires
further investigation in TMR, this mechanism transforms the
targeted muscle fibers into fibers with similar characteristics as
in the originally innervated muscle. Hence, the amputee would
be equipped with a complex polytopic muscle signal that is
physiologically similar to that of the amputated musculature and
could provide a “bioscreen” of the EMG activity of lost natural
muscles. This activity can then be mapped into natural control
signals.

Hyper-Reinnervation
Nerve transfer with an axonal surplus can lead to hyper-
reinnervation of the targeted muscle (Kuiken et al., 1995). This
reinnervation by greater motor neuron numbers leads to an
increased number of smaller functional motor units (Kuiken
et al., 1995; Kapelner et al., 2016), so that targeted muscles can
potentially be controlled in a finer way than with their original
innervation. This property can be exploited for optimal control
with a precise tuning between the number of reinnervating axons
and the available target muscle fibers to reach an optimal level of
hyper-reinnervation. Additional axonal surplus could be diverted
to a different target muscle to further increase the overall number
of control sites and/or generate redundancy for increasing the
robustness of the control system.

Fascicular Territories within the Targeted
Muscle
Following TMR, donor nerves originally innervating multiple
muscles with similar functions (e.g., ulnar nerve innervating
intrinsic muscles of the hand) are transferred to only one
target muscle (Aszmann et al., 2008). Thus, individual nerve
fascicles may innervate different portions of the target muscle,
corresponding to the muscles originally innervated by, e.g.,
the ulnar nerve. These targeted muscle portions may be in
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principle independently controlled (Figure 1). Therefore, the
original innervation capacity of the nerve could be projected
within one muscle, with the limitations of the available muscle
fibers and of the neurotrophic support for only a part of the donor
nerve (Kuiken et al., 1995). Classic EMG recordings currently
used for prosthesis control cannot discriminate between the
activities of clusters of muscle fibers from the same muscle.
Nonetheless, more selective EMG techniques, as for example
implantable electrodes, may allow such discrimination, so that
multi-fascicular nerves could be interfaced from recordings
from a single muscle. Consequently, EMG signal recording and
decoding systems that allow the identification of the activity of
motor units controlled by different nerve fascicles within the
same muscle could extract the original neural code for fine motor
control. Fascicular territories within the targeted muscle could be
accessed with highly selective implanted electrodes to record a
higher number of individual control signals.

MULTICHANNEL EMG SYSTEMS

Muscle signals are spatially separated during TMR surgery to
allow recording with standard surface electrodes (Dumanian
et al., 2009). The resulting EMG signals are largely independent
and each able to reliably control one prosthetic function. An
increase in number of recording sites would provide more EMG
signal sources but would increase their correlation due to volume
conduction.

Modern implantable EMG systems can acquire EMG signals
in close proximity to the muscle fibers. Moreover, implantable
systems ensure stable relations between the sources and the
electrodes. In contrast, surface EMG records from a larger
muscle volume and is subject to external factors, such as sweat
or displacement. Recent investigations of chronic implantable
systems, such as the MyoPlant system (Lewis et al., 2013b)
and the IMES (Troyk et al., 2007; Merrill et al., 2011), have
shown that they can provide superior EMG data quality than
surface recordings. These systems are implanted into the patient’s
extremity for recording and wireless transmission of high-quality
muscle signals. EMG data are recorded either from within the
muscle (e.g., IMES) or epimysially from the muscle surface
(e.g., MyoPlant). Deep and/or small muscles that cannot be
easily monitored with non-invasive EMG electrodes can be
targeted by muscle implants, resulting in an increase in control
capabilities. The performance of the IMES system has been tested
in a first clinical trial with implantation of eight electrodes in
transradial amputees showing safe application and simple yet
efficient control over multiple DoFs (Weir et al., 2003; Baker
et al., 2010; Pasquina et al., 2014). The MyoPlant system has been
successfully tested in extensive pre-clinical large animal trials,
showing good biocompatibility and stable electrode impedance
over the course of several months, and reliable acquisition of
multiple adjacent EMG signals (Poppendieck et al., 2011; Lewis
et al., 2013a; Bergmeister K. D. et al., 2016). In view of a chronic
application, further investigations are needed for longer-term
periods. These chronic studies are currently being conducted for
the IMES system by our and several other research groups.

Despite the promising clinical translation of electrodes
implanted in muscles, the information extracted from the
recorded EMG signals is still associated to the activation of large
portions of muscle tissue. For example, simulation studies have
shown that the detection radius of the IMES electrodes may
reach 8 mm (Lowery et al., 2006). More selective signals may
be obtained by reducing the electrode active area. The ultimate
limit of information extraction from EMG signals is the quantum
of the electrophysiological muscle activation, i.e., the motor unit
action potential (Figure 2). The associated neural information
is that of a single efferent nerve fiber. Decoding EMG signals
at the level of motor units would provide direct access to the
full neural information of the innervating nerve motor fibers.
Decoding EMG signals at this fine scale requires more selective
detection sites and, at the same time, greater density of electrodes
(spatial sampling). The principle of spatial sampling with small
individual electrodes has been extensively applied for surface
EMG systems (Hahne et al., 2012; Muceli and Farina, 2012; Ison
et al., 2015) and currently this technology allows the decoding of
the neural drive to muscles by blind source separation methods
(Farina and Holobar, 2016). Recently, as a proof of concept,
these systems have been used to decode the neural activation
of motor nerve fibers following TMR and the motor neuron
behavior has been mapped into control signals for prostheses
(Kapelner et al., 2015; Farina et al., 2017). It was shown that
this approach at the motor unit level is theoretically superior to
classic pattern recognition of the interference EMG using global
parameters in TMR patients (Farina et al., 2017). As we discussed
previously (Farina et al., 2017), the proposed approach, that
has been proven with non-invasive high-density EMG electrode
grids, could be translated to implanted grids. The advantage of
implanted systems would be the possibility of recording from
a greater portion of the muscle, and the increased robustness
and decreased variability of the recordings with respect to skin
mounting. For example, epimysial implantation of electrode
grids would provide EMG signals that do not depend on the
patient’s subcutaneous tissues and that do not shift in location
over repetitive use of the prosthesis.

Recently, high-density spatial sampling of EMG signals has
been implemented in intramuscular electrodes (Farina et al.,
2008; Muceli et al., 2015). These systems, suitable for acute
implants (a few hours to a few days, with percutaneous
wires), allow the identification of the activity of multiple
motor neurons, identified with similar blind source separation
techniques as developed for high-density non-invasive electrode
grids (Muceli et al., 2015; Negro et al., 2016). However, for
clinical translation, multichannel EMG electrodes should be
chronically implanted. Moreover, the decoding into individual
motor units should be implemented with algorithms running in
real-time and embedded in wearable electronics. Intramuscular
signals have a broader bandwidth than the surface signals
and are therefore sampled at higher frequencies. Online
decomposition of multichannel intramuscular signals is not
possible yet. However, we have recently proposed a method for
real-time decomposition of single-channel intramuscular EMG
(Karimimehr et al., 2017) that can be extended to multiple
channels. Ultimately, chronically implanted multichannel EMG
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FIGURE 2 | Broadband prosthetic interface: During TMR, the amputated ulnar nerve was rerouted to the short/medial head of the biceps to provide additional EMG

signals. Using multichannel EMG electrodes, single motor unit activity can be decoded from the EMG data and the neural drive of the ulnar nerve to the intrisic hand

musculature estimated. This information could allow the delivery of extremely precise control signals, ultimately with the same accuracy as physiologically reached.

systems should be decoded online to provide the full neural
information of the motor nerve fibers. This achievement
would in principle establish a control interface for as many
functions as the human hand or upper extremity can naturally
perform.

DECOMPOSITION OF MULTICHANNEL
EMG SIGNALS

The availability of several recordings of muscle fiber electrical
activities theoretically allows the separation of the sources
(discharge timings of motor neurons) from the convolutive
mixing matrix. This can be performed by blind source separation
methods that exploit, e.g., the sparseness property of the
sources (Farina and Holobar, 2016). An assumption of these
methods is that the number of observations is greater than the
number of sources and this imposes a high spatial sampling,
as discussed above. Blind separation of EMG signals has been
demonstrated and validated in the past decade (Holobar and
Farina, 2014) and has been tested on both invasive and non-
invasive muscle recordings (Negro et al., 2016). Nonetheless,
the conditions in which these methods have been applied are
mainly constrained laboratory tests, during muscle contractions
at constant or slow-varying force and in isometric conditions
(Farina and Holobar, 2016). The extension of these methods to
more general conditions is challenging because of the strong non-
stationarity of the sources, artifacts, and brief activation intervals.
These problems are further exacerbated by the need for online

separation, which imposes constraints on the amount of data
available for each processing intervals.

COMBINATION OF NERVE TRANSFERS,
IMPLANTABLE MULTICHANNEL EMG
SYSTEMS, AND EMG DECOMPOSITION

Recent neuro-histological analyses of peripheral nerves
indicate that an average of approximately 25,000 efferent nerve
fibers control the upper extremity function and thereof only
approximately 1,800 motor nerve fibers ultimately control
intrinsic hand function (Gesslbauer et al., in review). Re-routing
these fibers to reinnervate residual stump muscles re-establishes
motor unit function (Bergmeister K. et al., 2016). The hyper-
reinnervation of a single muscle by a multifascicular nerve
with a greater fiber input will lead to a higher number of
functional motor units in the targeted muscle with respect to its
natural innervation (Kuiken et al., 1995; Kapelner et al., 2016).
Additionally, the nerve’s individual fascicles may innervate
certain compartments of the muscle that could be controlled
independently from each other. Thus, a single muscle may
serve as an amplifier (bio-screen) to the many fibers of a
multi-fascicular nerve (Kapelner et al., 2015). By recording
these targeted muscles with implantable multichannel EMG
technology (Farina et al., 2008; Muceli et al., 2015), it would
be possible to identify the clusters of muscle fibers that are
innervated by each nerve fascicle and identify the behavior
of motor neurons for each fascicle. This decoding approach
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is feasible, as shown in laboratory acute conditions in healthy
(Muceli et al., 2015; Negro et al., 2016) as well as TMR patients
(Farina et al., 2017). Considering the relatively small number
of motor nerve fibers innervating the intrinsic musculature of
the hand (only ∼1,800), it is in principle possible to decode
the full neural drive to the intrisic hand musculature with
high resolution multichannel electrode systems. Thereby, the
neural drive of a multi-fascicular (multi-modal) nerve could be
identified in a single targeted muscle and the entire neural drive
to the hand musculature could be decoded from several targeted
muscles (Figure 2).

For example, in a transhumeral amputee, the redundant heads
of the biceps and triceps muscles have a sufficient number of
muscle fibers to receive the full innervation of the median and
ulnar nerve, according to recent nerve fiber counting (Gesslbauer
et al., in review). In this case, the multi-fascicular (multi-modal)
nerves controlling intrinsic hand function would be represented
as fascicular territories into the compartments of the two targeted
muscles. By implanting multichannel EMG electrodes (either
epimysially or intramuscularly) in these muscles, it would be
possible to decode the activity of the separate populations of
motor neurons for each fascicular territory. This information
would allow the delivery of extremely precise control signals,
ultimately with the same accuracy as physiologically reached.

CHALLENGES AND CONCLUSIONS

We illustrated the concept of an intuitive broadband myoelectric
interface to improve prosthetic control. The proposed approach
of decoding efferent nerve activity for control with a combination
of surgical interventions, implanted electrode technology, and
multichannel signal processing is supported by continuous
advances in all these areas. Nonetheless, several challenges
remain for the translation of these advances into clinical
prosthetic systems. The main difficulties relate to the integration
of tens to hundreds of recording sites in implanted EMG
sensors and the wireless transmission of the signals on a large
bandwidth, with high signal-to-noise ratio and with limited
artifacts. Moreover, the recordings should be powered and

stable over time for several years. Another set of limitations
is related to the online robust processing of the EMG for
extracting the constituent sources, in non-stationary conditions,
during brief contractions, and with limited processing delay
(within few hundreds ms). Once decoded, the sources need to
be automatically associated to DoFs which is also a challenge.
Despite these challenges, we believe the proposed scheme is
more promising than current alternative research pathways.
For example, an alternative approach is the direct recording
from efferent fibers in peripheral nerves (Micera et al., 2011;
Carboni et al., 2016; Ng et al., 2016), which however presents
problems related to low signal amplitude and signal-to-noise
ratio, small number of identified spike patterns, and potential
intraneural damage (Navarro et al., 2005; Carboni et al., 2016). In
comparison, the presented strategy may provide a safer and more
robust method to operate modern prostheses with functions
closer to the biological ones.
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