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ABSTRACT

Two important trends in computing are evident. First, computing is becoming more

data centric, where low-latency access to a very large amount of data is critical. Second,

virtual machines are playing an increasing critical role in server consolidation, security

and fault tolerance as substantial amounts of computing migrate to shared resources in

cloud services. Since the software stack accesses data using virtual addresses, fast address

translation is a prerequisite for efficient data-centric computation and for providing the

benefits of virtualization to a wide range of applications. Unfortunately, the growth in

physical memory sizes is exceeding the capabilities of the most widely used virtual memory

abstraction—paging—that has worked for decades.

This thesis addresses the above challenge in a comprehensive manner proposing a

hardware/software co-design for fast address translation in both virtualized and native

systems to address the needs of a wide variety of big-memory workloads. This dissertation

aims to achieve near-zero overheads for virtual memory for both native and virtualized

systems.

First, we observe that the overheads of page-based virtual memory can increase drasti-

cally with virtual machines. We previously proposed direct segments, which use a form of

contiguous allocation in memory along with paging to largely eliminate virtual memory

overhead for big-memory workloads on unvirtualized hardware. However, direct segments
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are limited because they require programmer intervention and only only one segment is

active at once. Here we generalize direct segments and propose Virtualized Direct Segments

hardware with three new virtualized modes that significantly improves virtualized address

translation. The new hardware bypasses either or both levels of paging for most address

translations using direct segments. This preserves properties of paging when necessary

and provides fast translation by bypassing paging where unnecessary.

Second, we found that virtualized direct segments bypassed widely used hardware

support—nested paging—but ignores a less often used, but still popular, software technique—

shadow paging. We show shadow paging provides an opportunity to reduce TLB miss

latency while retaining all the benefits of virtualized paging. Nested and shadow paging

provide different tradeoffs while managing two-levels of translation. To this end, we pro-

pose agile paging, which combines both techniques while preserving all benefits of paging

and achieves better performance. Moreover, the hardware and operating systems changes

for agile paging are much more modest than virtualized direct segments making it more

practical for near term adoption.

Third, we saw that direct segments traded the flexibility of paging for performance,

which is good for some applications, but was insufficient for many big-memory workloads.

So, inspired by direct segments, we propose range translations that exploit virtual memory

contiguity in modern workloads and map any number of arbitrarily-sized virtual memory

ranges to contiguous physical memory pages while retaining the flexibility of paging. A

range translation reduces address translation to a range lookup that delivers near-zero

virtual memory overhead.

This thesis provides novel and modest address translation mechanisms, that improves



xiv

performance by reducing cost of address translation. The resulting system delivers a virtual

memory design that is high performance, robust, flexible and completely transparent to

the applications.
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Chapter 1

INTRODUCTION

There are two important trends in computing that are more evident. First, computing is

becoming more data centric, where low-latency access to a very large amount of data is

critical. This trend is largely supported by increasing role of big-data applications in our

day-to-day lives. Second, virtual machines are playing a critical role in server consolidation,

security and fault tolerance as substantial computing migrates to shared resources in cloud

services. This trend is evident due to increasing support for public, enterprise and private

cloud services by various companies.

These trends put a lot of pressure on the virtual memory system—a layer of abstraction

designed for applications to manage physical memory easily. The virtual memory system

translates virtual addresses issued by the application to physical addresses for accessing

the stored data. Since the software stack accesses data using virtual addresses, fast address

translation is a prerequisite for efficient data-centric computation and for providing the

benefits of virtualization to a wide range of applications. But unfortunately, growth in

physical memory sizes is exceeding the capabilities of the virtual memory abstraction—

paging. Paging has been working well for decades in the old world of scarce physical

memory, but falls far short in the new world of gigabyte-to-terabyte memory sizes.

In this chapter, we will first review the concept of page-based virtual memory, then

motivate the problem with paging in the new world, and finally introduce this thesis’s
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contributions to mitigate the problem.

1.1 Virtual Memory and Paging

Virtual memory is a crucial abstraction to use physical memory in today’s computer systems.

It delivers benefits such as security due to process isolation and improved programmer

productivity due to simple linear addressing. Each process has a very large virtual address

space managed at granularity of pages, typically 4KB in size. Each virtual page is mapped to

a physical page by the operating system (OS). All per-process virtual-to-physical mappings

are stored in a page table, which is managed by the OS. Most commercial processors today

use page-based virtual memory.

With virtual memory, the processor must translate every load and store generated by a

process from a virtual address to a physical address to access the data. Because address

translation is on the processors’ critical path, a hardware structure called Translation

Lookaside Buffer (TLB) accelerates translation by caching the most recently used page table

entries (PTEs). Paging delivers high performance when most translations are serviced by

TLB hits. However, a TLB miss requires a long latency operation to fetch the virtual-to-

physical mapping, which is the corresponding PTE from the per-process page table.

A TLB miss can be handled in two ways. First, a lesser used technique handles a TLB

miss using OS support by causing a trap into the OS on a TLB miss. This TLB miss trap

enables the OS to walk the per-process page table, get the corresponding PTE and insert it

into the TLB. This TLB miss trap is a very long latency operation (100s of processor cycles).

This technique allows the OS to use any data structure to store the page table and allows
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Figure 1.1: Virtual to physical mappings using pages for two processes and its use by
hardware.

the OS to change the data structure of the page table at any time. This technique with some

optimizations is used today in the SPARC architecture.

Most current architectures (including x86, ARM) uses the second widely used technique

to handle TLB miss completely in hardware. On a TLB miss, the hardware triggers a state

machine called the page table walker that walks the per-process page table and loads

the corresponding PTE into the TLB. This is considered more efficient since this allows

application to perform speculative execution, partially hide the latency of a TLB miss and

does not require a trap. Since the hardware requires the knowledge about the data structure

representing the page table, the page table is fixed for an architecture with a hardware page

table walker. Figure 1.1 shows virtual memory for two processes being mapped to physical
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Year Processor L1 TLB size L2 TLB size
1999 Pentium III 72 0
2004 Pentium 4 64 0
2008 Nehalem 96 512
2012 Ivybridge 100 512
2014 Haswell 100 1024
2015 Skylake 100 1552

Table 1.1: TLB sizes in Intel processors for
last 15 years.

memory using pages. These mappings are cached in TLB for fast lookup. However, on

a TLB miss, long latency operation is required to fetch the corresponding PTE whether

handled by the OS or the hardware.

1.2 Motivation

There are two main factors that motivates us to rethink how we perform address translation:

growing overheads of page-based virtual memory and the rise of virtual machines.

1.2.1 Growing Overheads of Paging

Unfortunately, large server workloads are experiencing execution time overheads of up

to 50% due to paging on native systems [25, 30, 68, 69]. The following two opposing

technology trends are at the root of this problem:

(i) Physical memory is growing exponentially cheaper and larger (Figure 1.2) allowing

modern workloads to store ever increasing large data sets in memory. For example,
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Intel Haswell Xeon servers released in 2015 support up to 12 TB of memory with an

8-socket configuration, which are used for large databases and other workloads.

(ii) TLB sizes have grown slowly, because TLBs are on the processor’s critical path to

access memory (Table 1.1). The L1 TLB size has already stagnated, but even the size

of L2 TLB is not growing as quickly as the memory demand.

The above trends causes a problem that is commonly called limited TLB reach—the

fraction of physical memory that TLBs can map is reducing with each hardware generation.

For instance, recently introduced Intel’s Skylake processors released in 2015 has a TLB that

can cover only 9% of a 256 GB memory. We expect this mismatch between TLB reach and

memory size

(i) to keep growing as the physical memory available keeps on growing,

(ii) to become worse with newer memory technologies, which promise petabytes to

zetabytes of physical memory, and

(iii) to increase the overheads of page-based address translation due to the increase in

TLB misses.

Some previous approaches to address these overheads include hierarchical TLBs (adding

larger but slower L2 TLBs), multipage mappings (mapping several pages with a single TLB

entry), huge pages (mapping much larger aligned memory with a single TLB entry), and

direct segments (providing a single arbitrarily large segment along with standard paging).

These approaches are discussed in detail in Chapter 2. None of these approaches delivers a

complete solution that solves the TLB reach problem while retaining flexible memory use.
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These trends warrants rethinking about how we design virtual memory while preserving

the benefits of paging.

1.2.2 Meteoric Rise of Virtual Machines

Virtual Machine Monitors (VMMs)—such as Xen [23], KVM [72], VMware [100]—provide

an abstraction layer between OSes and the hardware. Virtualization has been used since

the 1970s [56], but it’s renaissance began with Disco in 1997 [39] and progressed without

hardware support [17, 23] (e.g., dynamic binary translation [17, 20, 41, 104]) and, after

gaining popularity, with hardware support [28, 29]. Virtualization enables better resource

management, server consolidation, isolation, and fault tolerance—all very important in

the era of cloud computing where virtual machines rule today. Virtualization in the cloud

provides the added benefit of on-demand access to hardware and multi-tenancy to improve

server utilization.

However, many of these benefits come with overheads in virtualizing processing, I/O,

and memory. Fortunately, hardware advances in virtualization [28, 29, 63] (e.g., virtualizing

I/O in hardware), have reduced many of these overheads substantially. But, overheads for

virtualizing memory are still not universally low [17, 28, 38, 53]. The overheads come from

TLB misses where hardware performs a nested two-level translation—first, from guest

virtual address (gVA) to guest physical address (gPA); second from gPA to host physical

address (hPA). This additional cost increases the latency of hardware page table walk

and makes virtualization less attractive to memory-intensive applications. We observed

that with limited TLB reach, the overheads of address translations can be 2-3x worse
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than that of native execution with memory-intensive applications [53]. This observation

motivates low-cost mechanisms that will provide memory virtualization for free and make

it attractive.

1.3 Proposals

In this thesis, I will address the challenge of high overheads of page-based virtual memory

in a comprehensive manner to allow fast address translation in both the virtualized and

native system for a wide variety of workloads. My dissertation research aims to achieve

near-zero overheads of virtual memory for both native and virtualized systems primarily

through three contributions.

First, we observed that the overheads of page-based virtual memory can increase dras-

tically with virtual machines. Our earlier proposal of direct segments gave an opportunity

to reduce these overheads. Direct segments uses a form of segmentation along with paging

to largely eliminate virtual memory overhead for big-memory workloads on unvirtualized

hardware (discussed in Section 2.3.3). We extend direct segments and propose Virtual-

ized Direct Segments [53], new hardware building on direct segments [25] with three new

virtualized modes that significantly improves virtualized address translation. The new

hardware bypasses either or both levels of paging for most address translations using

direct segments. This preserves properties of paging when necessary and provides fast

translation by bypassing paging where unnecessary.

Second, we noticed that virtualized direct segments bypassed widely used hardware

support—nested paging—but ignores a lesser used software technique—shadow paging.
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Shadow Paging provides an opportunity to reduce TLB miss latency while retaining all

the benefits of paging. Nested and shadow paging provide different tradeoffs while

managing two-levels of translation. So, we propose agile paging [54], which combines both

the techniques while preserving all benefits of paging and achieves better performance.

Moreover, agile paging provides benefits with hardware and operating systems changes

much more modest than virtualized direct segments.

Third, we observed that direct segments [25] traded the flexibility of paging for per-

formance, which is good for some applications, but not all. So, I collaborated with fellow

graduate student Vasileios Karakostas from Barcelona Supercomputing Center. Together

we propose range translations that exploits virtual memory contiguity in modern work-

loads to perform address translation much more efficiently than paging while retaining all

the benefits paging. I will briefly describe these three works below.

1.3.1 Virtualized Direct Segments

Virtualization provides value for many workloads, but its cost rises for workloads with

poor memory access locality. We observed that there is significant overhead of address

translation in the native system and the overheads increase drastically with virtualization.

This overhead comes from TLB misses where the hardware performs a 2D page walk (up to

24 memory references on x86-64) rather than a native TLB miss (up to 4 memory references).

This work is one of the first to study the memory overhead of virtualization for virtual

machines with a large amount of memory.

To eliminate these overheads and make virtualization attractive, we propose Virtualized
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Direct Segments [53], which extends our earlier proposal of direct segments [25] and support

three different virtualized modes of operation to reduce address translation overheads

in virtual machines. Each of these modes uses direct segments at either or both levels

of address translations to bypass paging and reduce overheads of paging. At a given

time, the system administrator can choose one of these modes to trade-off lower address

translation overheads with higher execution environment flexibility and modifications to

system software.

We further observed that a virtual machine may lack the contiguous guest physical

memory needed to create a direct segment due to fragmentation. We address this problem

with self-ballooning, which uses ballooning [100] and memory hotplug [8] to create con-

tiguous physical guest memory from fragmented guest physical memory. Moreover, with

hard faults in memory becoming increasingly prevalent [61], a handful of faulty pages can

hinder the use of direct segment for large parts of memory. We thus propose an escape

filter—a bloom-filter holding addresses of faulty pages—to enable use of direct segment

hardware even in the presence of a few faulty pages.

Our results show that one mode—VMM Direct—reduces address translation overhead

to near-native without guest application or OS changes (2% slower than native on average),

while a more aggressive mode—Dual Direct—on big-memory workloads performs better-

than-native with near-zero translation overhead.
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1.3.2 Agile Paging

The previous proposal was used to bypass paging in widely used hardware support—

nested paging—but ignored a lesser used software technique—shadow paging. Shadow

paging provides an opportunity to reduce reduce TLB miss latency while retaining all the

benefits of paging. Nested and shadow paging provide different tradeoffs while managing

two-levels of translation. With nested paging, TLB misses are costly due to nested two-level

page walk, but page table updates are fast. Whereas with shadow paging, TLB misses

are short since hypervisor creates a single-level shadow page table, but requires costly

hypervisor intervention on page table updates.

We observed that most of the higher levels of the the page table remains static and could

benefit from low-latency page walk of shadow mode while dynamically changing lower

levels can benefit from nested paging to lower the number of costly VMM intervention.

Thus, we propose agile paging [54], which combines both the techniques and exceeds

the best of both. A virtualized page walk starts in shadow mode and then optionally

switches to nested mode for address ranges where frequent updates would cause costly

hypervisor interventions. This reduces the cost of page walks, as many TLB misses can be

handled partially or entirely in shadow mode while keeping VMM interventions required

to a minimum. Agile paging builds on the existing techniques and only requires modest

hardware support: the ability to switch between the two constituent techniques. In addition,

we propose two optional hardware optimizations that further reduce VMM interventions

for the shadow mode of agile paging. This technique preserves all benefits of paging and

achieves better performance.
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Our results show agile paging performs more than 12% better than both of its constituent

techniques and comes within 4% of native execution for all workloads.

1.3.3 Redundant Memory Mappings

Our earlier proposal of direct segments [25] traded the flexibility of paging for performance,

which is good for some applications, but not all. So, I collaborated with fellow graduate

student Vasileios Karakostas from Barcelona Supercomputing Center to find a robust

solution to reduce overheads of virtual memory in a native system. We observed that many

applications naturally exhibit an abundance of contiguity in their virtual address space. If

the OS can map this virtual contiguity to physical contiguity, a single entry is sufficient

to translate from a virtual range to a physical range. By using the above observation, we

introduce the key concept of range translation [55, 68] that exploits the virtual memory

contiguity in modern workloads to perform address translation much more efficiently

than paging. Inspired by direct segments [25], a range translation is a mapping between

contiguous virtual pages mapped to contiguous physical pages of arbitrary size with

uniform protection bits.

We implement range translations in the Redundant Memory Mappings (RMM) archi-

tecture. RMM employs hardware/software co-design to map the entire virtual address

space with standard paging and redundantly map ranges with range translations. Since

range translations are backed by page mappings in RMM, the operating system can flexibly

choose between using range translations or not, retaining the benefits of paging for fine-

grain memory management when necessary. The RMM system (i) efficiently caches range
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translations in a hardware range TLB to increase TLB reach, (ii) manages range translations

using a per-process software range table just like the page table, and (iii) increases physical

contiguity to increase the range size resulting in modest number of range translations

per-process using eager paging.

Our results shows that RMM performs substantially better than paging alone and

improves a wider variety of workloads than direct segments (one range per program),

reducing the overhead of virtual memory to less than 1% on average.

1.4 Thesis Organization

Chapter 2 describes the state of the art of page-based virtual memory systems and its

virtualization support. In addition, we will describe some recent other research proposals

that we will use as comparisons for our proposals and range of related work

Chapter 3 explains the BadgerTrap tool [52], which we developed and have released on-

line. This tool was originally published in Computer Architecture News (CAN), September

2014 issue. This tool will serve as the base for evaluating all the three proposals.

Chapter 4 describes Virtualized Direct Segments [53] that was originally published in

the 47th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-47)

2014.

Chapter 5 describes Agile Paging [54] that was originally published in the 43rd Annual

International Symposium on Computer Architecture (ISCA-43) 2016.

Chapter 6 describes Redundant Memory Mappings [68] that was originally published

in the 42nd Annual International Symposium on Computer Architecture (ISCA-42) 2015.
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A shorter version of this work is published in IEEE Micro Special Issue: Micro’s Top Picks

from Architecture Conferences 2016 [55].

Chapter 7 concludes the thesis and provides various potential extensions to this thesis.
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Chapter 2

BACKGROUND

This chapter first presents state-of-the-art mechanisms and optimizations available today

in our commodity processors that support page-based virtual memory, and more recent

research proposals that help mitigate overheads associated with virtual memory. Most

of the description follows x86-64 architecture, but these concepts are applicable to other

architectures such as ARM and SPARC.

2.1 Page-Based Virtual Memory

The concept of virtual memory was first invented in 1959 with the Atlas system [70]. It

was greatly refined with introduction of fixed size allocation in terms of pages in 1968 with

the MULTICS systems [46]. Since that time, page-based virtual memory has dominated

commercial computer architectures. We will next describe various components that makes

this abstraction work efficiently in today’s computer systems.

2.1.1 Page Table

The page table is a per-process structure which stores all virtual to physical mappings for

each process. This structure is managed by the OS and walked by the hardware or OS

to fetch a translation. For hardware based page walkers the structure of the page table is

architecturally defined since hardware has access to the page table. A hierarchical page
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Figure 2.1: Page table format for x86-64.

table provides a compact space-efficient representation from a very large but sparsely

populated virtual address space to smaller physical address space. For x86-64, a four-level

hierarchical page table is used to store all virtual to physical mappings (see Figure 2.1). A

hptr register stores the physical address that points to the top-level of the page table. Each

page can store 512 entries and thus, each level of the page table can have a maximum fan

out of 512.

2.1.2 Translation Lookaside Buffer

The most crucial hardware component that enables fast address translation is the Translation

Lookaside Buffer (TLB) that caches most recently used page table entries (PTEs). A TLB is a

hardware cache, which is indexed by part of a virtual address called virtual frame number.
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Figure 2.2: A TLB translating a virtual address to physical address.

On a hit, it provides a physical frame number, which can be used to generate physical

address along with the protection bits for that page. A TLB can be designed as fully

associative, set-associative or direct-mapped cache. Figure 2.2 shows lookup operation

in a TLB to translate a virtual address to physical address. The TLB lookup operation is

performed for every load, store, and instruction fetch issued by a processor and mostly

accesses in parallel with L1 cache lookup.

2.1.3 Native Hardware Page Table Walk

In case of a TLB miss, the corresponding PTE has to be fetched from the page table and

introduced in the TLB. For hardware based page table walk in an architecture like x86-64,

a hardware state machine is triggered with the virtual address to walk the page table. In
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Figure 2.3: Native address translation sup-
ported by hardware.

host_walk(VA, hptr)

PA = hptr;
for (i=0; i6MAX_LEVELS; i++) do

PA = host_PT_access(PA + index(VA,i));
end
return PA;
host_PT_access(address)

PTE = *address;
PA = PTE.PA;
if PTE.valid == 0 then

raise host PAGE_FAULT;
return PA;

Figure 2.4: Pseudocode for native hard-
ware page walk.

x86-64, there is a per-core hardware register called cr3, which stores the physical address

that points to the top-level of the corresponding page table and its value is the same for a

given process. For generality, we will call this pointer as host pointer or hptr interchangeably

in this thesis. Using hptr in combination with virtual address, the four-level hierarchical

page table is walked to retrieve the corresponding PTE. Figure 2.3 pictorially shows the

native page table walk with which part of virtual address is used to create index at each

level of page walk. Figure 2.4 describes the pseudocode for hardware page walker used to

perform the native page walk. This page walk is also referred as 1D page walk. Note that

this page walk will require 4 memory accesses to get the PTE to perform the translation.

2.1.4 Page Walk Caches

To reduce the latency of the 1D page walk from 4 memory accesses, page walk caches

(PWCs) were invented [24, 30]. PWCs stores most recent partial translations which help

reduce the latency of 1D page walk in best case to 1 memory access. The key observation

is that the higher three levels of the page table shows high temporal locality and not the
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Figure 2.5: Organization of page walk caches in Intel processors.

last level. For example, page walks for two consecutive virtual pages would have the same

three upper level entries since the higher index bits between both pages would be the same.

In this section, we will discuss Intel x86-64 style page walk cache and build on them

in later chapters. We refer to each level of the x86-64 page table as L1 being the lowest

level storing the PTEs and L4 being the highest level or the root. In Intel x86-64, page walk

caches are designed as three tables. Each table stores L4 index or L4+L3 index or L4+L3+L2

index of a virtual page as tag and stores the physical address of the next level of the page

table (see Figure 2.5). All three tables are looked up in parallel on a TLB miss with a virtual

page number and there can be hits in any of the tables. But the longest hit is used to skip

the maximum number of levels of the page table. Thus, in the best case, three levels of the

page table walk are skipped bringing down the number of memory accesses from 4 to 1.
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Figure 2.6: Memory mapped by one entry with various proposals: (a) hierarchical trans-
lation look-aside buffers, (b) multipage mappings, (c) huge pages, and (d) direct seg-
ments. Each proposal tries to increase the reach of the TLB..

2.1.5 Hierarchical TLBs

Two-level TLBs form a common organization for address translation in today’s proces-

sors [58, 93]. The TLB organization is per-core. The L1 TLB is usually small (e.g., 64 entries)

and features a very fast search operation (1-2 cycles), while the L2 TLB is usually larger

(e.g., 512 entries) and holds more translations at the cost of increased access latency (∼7 cy-

cles [65]). To boost the performance further, processors provide separate TLBs for data and

instructions. This technique helps increase the reach of the TLB by increasing the number

of TLB entries, but does not increase the TLB reach of each TLB entry (see Figure 2.6(a)).

2.1.6 Huge Pages

Huge Pages using Transparent Huge Pages (THP) [15] and libhugetlbfs [1] increase the TLB

reach and reduce the performance overhead of page walks [25, 30, 69, 79] by mapping a

large fixed size region of memory with a single TLB entry [64, 76, 85, 93] (see Figure 2.6(c)).

The x86-64 architecture supports mixing 4 KB with 2 MB and 1 GB pages at the same time.

The hardware support for huge pages usually includes either a separate set associative L1

TLB for each page size, as in Intel processors [58], or a single fully associative L1 TLB that
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L1 DTLBs L2 DTLBs

Sandy Bridge / Haswell / Broadwell Sandy Bridge Haswell Broadwell
Page-size Entries Assoc. Page-size Entries Assoc. Page-size Entries Assoc. Page-size Entries Assoc.

4 KB 64 4-way 4 KB 512 4-way 4 KB/2 MB 1024 8-way 4 KB/2 MB 1536 n/a2 MB 32 4-way 2 MB —
1 GB 4 fully 1 GB — 1 GB — 1 GB 16 n/a

Table 2.1: Details of the private, per-core, data TLB hierarchy for the three latest Intel
processor architectures.

supports both 4 KB and huge pages, as in SPARC and AMD processors [18, 93]. These two

approaches dominate because supporting all page sizes in a single set associative TLB is not

straight-forward: the page size defines the index bits to access the TLB, but the page size is

unknown during the TLB lookup time [79, 97]. The effectiveness of huge pages is limited

by the size-alignment requirement: huge pages must have size-aligned physical addresses,

and thus the OS can only allocate them when the available memory is size-aligned and

contiguous [81, 82]. In addition, many commodity processors provide limited numbers of

large page TLB entries (see Table 2.1), which further limits their benefit [25, 53, 69].

To summarize, Table 2.1 overviews the details of the per-core TLB hierarchy for the

recent Sandy Bridge and Haswell, and Broadwell x86-64 processors. We observe that all

these processors have a two-level TLB organization, with support for various pages sizes

by separate individual L1 TLBs. This data suggests that their recipe for improving TLB

performance consists of having separate L1 TLBs for various page sizes, and increasing the

size of the L2 TLB which is off the critical path.

2.2 Support for Virtual Machines

To run multiple OSes on top of hardware, virtualization introduces a layer of indirection

called the VMM or hypervisor. Similarly, to fully virtualize memory fully, a layer of
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Figure 2.7: Two-level address translation with virtual machines.

indirection is introduced between guest virtual address (gVA) space and host physical

address (hPA) space called the guest physical address (gPA) space. A two-level address

translation is thus required with virtual machines (Figure 2.7):

gVA⇒gPA: guest virtual address to guest physical address translation via a per-process

guest OS page table (gPT)

gP⇒hPA: guest physical address to host physical address via a per-VM host page table

(hPT)

We will discuss two state-of-the-art techniques to manage and translate two-levels of

page tables: nested paging and shadow paging.

2.2.1 Hardware-based Nested Paging

Nested paging is a widely used hardware technique to virtualize memory [28]. The proces-

sor has two hardware page table pointers to perform a complete translation: one points to

the guest page table (gptr) and the other points to the host page table (hptr). The guest page

table holds gVA to gPA translation and the host page table holds gPA to hPA translations.
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nested_walk(gVA, gptr, hptr)
//page fault in hPT will cause a VM exit
hPA = host_walk(gptr, hptr);
for (i=0; i6MAX_LEVELS; i++) do

hPA = nested_PT_access(hPA +
index(gVA,i), hptr);

end
return hPA;
nested_PT_access(address, hptr)

PTE = *address;
gPA = PTE.PA;
if PTE.valid == 0 then

raise guest PAGE_FAULT;
//page fault in hPT will cause a VM exit
hPA = host_walk(gPA, hptr);
return hPA;

Figure 2.9: Pseudocode for hardware-
based nested page walk state machine.
The helper function host_walk is defined
in Figure 2.4

In the best case, the virtualized address translation hits in the TLB to directly translate

from gVA to hPA with no overheads. In the worst case, a TLB miss needs to perform a 2D

page walk that multiplies overheads vis-á-vis native, because accesses to the guest page

table also require translation by the host page table. Figure 2.8 depicts virtualized address

translation for x86-64. It shows how the page table memory references grow from a native

4 to a virtualized 24 references: 4 access to translate gptr (since each gPA requires access to

host page table) and each of the 4 levels of the guest page table (guest page table holds gPA)

plus 4 references for the guest page table itself to obtain the final hPA: 4 × 5 + 4 references.

Figure 2.9 describes the hardware page walk for nested paging.

Note that various caching techniques in today’s commodity processors, like caching

of page table entries in data caches [65], MMU caches [24, 30] and caching intermediate

translations [28, 29] can remove some of the memory references for a TLB miss (see Sec-
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Figure 2.10: Shadow page walk using the
same hardware was the native page walk.

shadow_walk(gVA, sptr)

return host_walk(gVA, sptr);

Figure 2.11: Pseudocode for shadow page
walk uses host_walk as defined in Fig-
ure 2.4

tion 2.2.3). Even though the virtualized TLB miss is longer than native TLB miss, nested

paging allows fast direct updates to both of the page tables without any VMM intervention.

2.2.2 Hypervisor-enabled Shadow Paging

Shadow paging is a less used software technique to virtualize memory. With shadow

paging, the VMM creates a shadow page table (on demand) by merging the guest and host

tables, then holds a complete translation from gVA⇒hPA. This was the only technique

used before hardware support for virtualization was invented [17, 28, 78].

In the best case, the virtualized address translation hits in the TLB to directly translate

from gVA to hPA with no overheads. On a TLB miss, the hardware performs a 1D page

walk on the shadow page table. The native page table pointer points to the shadow page

table. Thus, the memory references required for a shadow page table walk are the same

as a base native walk. For example, x86-64 requires up to 4 memory references on a TLB

miss for shadow paging as well as base native address translation (shown in Figure 2.10).

In addition, as a software technique, there is no need for any extra hardware support for
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page walks. The pseudocode hardware page walk is the same as the native page walk (see

Figure 2.11).

Even though the TLB misses cost the same as native execution, this technique does

not allow direct updates to the page tables since the shadow page table must be consis-

tent [17]. Every page table update requires a costly VMM intervention (VMtraps) to fix the

shadow page table by invalidating or updating its entries. These VMM interventions cause

significant overheads in many applications. For example, to mark a page copy-on-write

by a guest OS, shadow paging requires at least two VMtraps costing 1000s of cycles: one

to write to the guest page table to mark the page read-only and one to force a TLB flush.

Similarly, context switches require a VMtrap for the VMM to determine the shadow page

table for the incoming process. These costly VMtraps are not required for nested paging or

native paging. Note that we define VMtrap latency as the cycles required for a VMexit trap

and its return plus the work done by the VMM in response to the VMexit.

2.2.3 Page Walk Caches and Nested TLBs

As we saw in Section 2.1.4, page walk caches (PWCs) help reduce page walk latency by

skipping some levels of page table walk in a 1D native page walk. PWCs also help skip

levels of page walk in nested and shadow paging. With shadow paging as with native page

walk, PWCs store the hPA as a pointer to the next level of the shadow page table and thus

skip accessing a few levels of the the shadow page table walk. With nested paging, PWCs

store the hPA as a pointer to the next level of the guest page table, and skip accessing some

of the levels of guest page table as well their corresponding host page table accesses. The
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locality in PWCs help reduce a large fraction of page walk latency with nested paging since

it reduces a larger fraction of memory accesses.

Apart for PWCs, nested TLBs in Intel and AMD processors store intermediate gPA⇒hPA

translations which help reduce most of the host page table accesses. Usually a separate

structure stores the nested TLB entries [28], but has been implemented as a physically

shared TLB as well [53].

2.2.4 Dimensionality of Page Walks

Native page walk is usually referred to as a 1D page walk since there is only one dimension

of the hierarchical page table depth. Whereas with a nested page walk, there are two-

dimensions of the hierarchical page table depths with two page tables. Thus, it is referred

to as a 2D page walk. Ideally, if an application can use the physical address directly without

any page tables, then the ideal case can be termed as a 0D page walk.

With each increase in the dimensionality of page walk, the overheads associated with

address translation increase. This is caused by longer latency page table walk with each

increase in dimensionality of page walk. This of course impacts the performance of the

application running at each level of the page table. In this thesis, we are aiming to achieve

a 0D page walk for any dimensionality of page walk.

2.3 Other Related Work

The previous sections discussed state-of-the-art commercially available hardware designs

to support virtual memory. This section presents other related work that comprises mostly
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research proposals and a few older but pivotal commercial designs.

2.3.1 Virtual Memory

When applications have very large working sets, TLBs can cause performance degradation

on native machines [25, 26, 28, 31, 32, 75]. Workload running in a virtualized system

exacerbate this problem [17, 21, 28, 38, 101]. Two classical approaches to reducing overheads

of virtual memory are reducing TLB miss latency and reducing TLB misses.

Reducing TLB miss latency: To reduce TLB miss latency, PTEs are cached in data caches [24,

28, 62] or TLB miss latency is hidden with help of shared TLBs [31, 33]. Prefetching PTEs

can also improve performance [28, 66, 67, 88]. A special structure was proposed to cache

the nested translations (gPA⇒hPA) to reduce the latency of a TLB miss with virtual-

ization [28, 29]. Translation caching [24] and Large-Reach MMU caches [30] improved

performance by caching any intermediate translation. Some ISAs like SPARC use software

managed TLBs and use a software-defined translation buffer (TSB) to service TLB misses

faster [62].

Reducing TLB misses: Large-pages improve TLB coverage, thus reducing TLB misses [49,

51, 92, 95, 96, 97]. Most processors support multiple page sizes today [66]. However,

applications and OSes have been slow to support multiple page sizes [51, 96]. Hardware

support for large pages is difficult to design [24, 94, 96]. Coalescing contiguous or clustered

PTEs have been shown to improve effective TLB size [81, 82]. There have been some efforts

to enable large pages more effectively. Papadopoulou et al. [79] proposed a prediction

mechanism that allows all page sizes to share a single set-associative TLB. Du et al. [48]
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proposed mechanisms to allow huge pages to be formed even in the presence of retired

physical pages.

Various software techniques help manage TLBs and reduce TLB misses. Intel Itanium

had a software managed section in the TLB to pin critical address translations [45]. A recent

proposal supports virtualization with software-managed TLBs [40].

The other common approach for reducing TLB misses is virtual caching [26, 66, 89, 90,

105, 106]. However, big-memory workloads often have poor cache performance, so virtual

caching merely moves, but does not solve the problem. Other mechanisms also include

fine-grained memory protection [57, 99, 103], but they do not reduce address translation

costs. We will next discuss two approaches to reduce overheads of virtual memory in

particular which we use and compare against in this thesis.

2.3.2 Multipage Mappings

Multipage Mapping approaches, such as sub-blocked TLBs [96], CoLT [82] and Clustered

TLBs [81], pack multiple PTEs into a single TLB entry. Figure 2.6(b) in Section 2.1.5 compares

this technique with hierarchical TLBs and huge pages discussed before. These designs

leverage default OS memory allocators that either (i) assign small blocks of contiguous

physical pages to contiguous virtual pages (Sub-blocked TLBs and CoLT), or (ii) map small

set of contiguous virtual pages to clustered sets of physical pages (Clustered TLB). However,

they pack only a small multiple of translations (e.g., 8-16) per entry, which limits their

potential to reduce page-walks for large working sets.
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2.3.3 Direct Segments

Direct segments use a form of segmentation along with paging to largely eliminate virtual

memory overhead for big-memory workloads on unvirtualized (native) hardware [25]. A

direct segment maps one portion of a process’s linear address space with a segment rather

than paging. Thus, a large chunk of a contiguous virtual address space can be mapped to

contiguous physical addresses with only three registers per hardware context: BASE, LIMIT

and OFFSET where BASE and LIMIT are the start and end of contiguous virtual address

space and OFFSET is the difference between the virtual addresses and physical addresses

of the direct segment. For compatibility, the rest of the linear address space is mapped

using conventional paging. On a memory reference, the processor consults the segment

registers and L1 TLB in parallel, with at most one match. A virtual address V within a direct

segment (BASE 6 V < LIMIT) gets translated to physical address V+OFFSET via simple

addition avoiding the possibility of a TLB miss. Figure 2.12 illustrates an example address

space mapping and Figure 2.6(d) in Section 2.1.5 compares direct segments with other

techniques that increase TLB reach. Basu et al. show that direct segments can eliminate

99% of address translation overhead for native big-memory applications.

To expose this hardware to programs, Basu et al. propose the primary region abstraction,

which is a contiguous chunk of virtual address space that is mapped with the same access

permissions. A primary region can be mapped fully or partially by a direct segment (shown

in Figure 2.12). However, direct segments are limited because they require programmer

intervention and only one segment is active at once.
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2.3.4 Virtualization

Virtualization has been used since the 1970s [56] to run multiple OSes on a single machine

by introducing a layer of indirection between hardware and operating systems called

a hypervisor or VMM. Virtualization’s renaissance began with Disco in 1996 [39] and

progressed without hardware support [17, 23] (e.g., dynamic binary translation [17, 20])

and, after gaining popularity, with hardware support [28, 29].

Virtualization of memory management units followed the same software-to-hardware

progression. The key software-only technique initially was shadow paging [100]. All x86-64

and ARM64 processors now support the 2D page walk in hardware [28, 29].

In addition, hardware support for virtualization has greatly reduced the number and the

latency of VMM interventions [12, 28, 29]. Binary translation can reduce these interventions

further [20]. But a 2013 study from VMware shows that big-memory workloads have high

virtualization overheads [38].
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2.3.5 Flat Page Tables for Virtual Machines

Ahn et al. [21] proposed replacing x86-64’s four-level nested page table (gPA⇒hPA) with a

flat one-level nested page table. This closely related work reduces the number of nested

page table accesses from 4 to 1 and a 2D page walk (gVA⇒gPA & gPA⇒hPA) from 24 to 8

accesses. While this is promising for the small virtual machines they studied, it may be

less suited for big-memory workloads. Our proposals goes beyond and reduce overheads

higher than this work.

2.3.6 Selective Hardware Software Paging (SHSP)

Past work—selective hardware software paging (SHSP)—showed that a VMM could dy-

namically switch an entire guest process between nested and shadow paging to achieve

the best of either technique [101]. It monitored TLB misses and guest page faults to period-

ically consider switching to the best mode. However, switching to shadow mode requires

(re)building the entire shadow page table, which is expensive for multi-GB to TB workloads.

2.3.7 Segmentation

Segmentation has been used in various processors. The Burroughs B5000 [73] was an

early user of pure segments. In general, segmentation is used without any paging other

systems like the early 8086 [2], or on top of paging later, as in IA-32 [66] and MULTICS [46].

Segmentation on top of paging in x86-64 has been used with virtual machines [19]. A flat

memory was also used in Blue Gene Linux for HPC workloads [107]. We use segmentation

along with paging, but never for the same address. Segmentation in virtualized systems
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has been mentioned, but without any hardware design or evaluation [25, 60].

We covered a plethora of related work in this chapter. We will now use these as

background to build our proposals in this thesis.
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Chapter 3

BADGERTRAP: A TOOL TO INSTRUMENT X86-64 TLB MISSES

3.1 Introduction

This thesis deals with MMU (Memory Management Unit) research, which has been often

performed with cycle-level simulators like gem5 [35]. While these simulators provide the

flexibility of modeling any architectural innovation, they suffer from three drawbacks. First,

TLB misses are rare events (a few per thousand instructions), which require long simula-

tions to accurately measure their performance. Especially for big-memory workloads, a

full-system simulation would take weeks, if not months, of simulation time to provide any

insightful information. Second, memory requirements for running big-memory applica-

tions in a cycle-level simulator are much higher, requiring long startup times to initialize

memory. Also, a single simulation point in gem5 takes at least twice as much physical

memory as the workload [25]. Third, OS-level issues like timer-interrupts are usually

approximately modeled, which makes simulators not good for studying systems-level

issues like TLB misses. Therefore, it is challenging to use such detailed simulators to gain

insight into micro-architectural techniques for improving MMU efficiency.

We address this issue with a new tool called BadgerTrap, which uses online instrumen-

tation of TLB misses. It performs a higher-level analysis of a large number of TLB misses

to get a better understanding of a proposed architecture. Specifically, BadgerTrap analyzes
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hardware or software functions that affect x86-64 TLB misses, such as new page table

layouts or address translation mechanisms. These are especially important to study in

big-memory workloads, where TLB misses are more frequent [25].

BadgerTrap intercepts each hardware-assisted page walk on an x86-64 TLB miss and

converts it into a page fault handled specially inside the kernel with a new software-assisted

TLB miss handler. We extend the handler for online analysis while running applications.

BadgerTrap slows down workloads by about 2x to 40x based on their rate of TLB misses.

However, BadgerTrap runs orders of magnitude faster than binary instrumentation tools

like Pin [74]. The main contributions of the tool are:

(i) a novel tool that intercepts both data and instruction TLB misses, converting hardware-

assisted page walks to software-assisted page walks,

(ii) extensions of software-assisted page walks to instrument and analyze x86-64 TLB

misses on real hardware, which is orders of magnitude faster than full-system cycle-

level simulators.

This thesis evaluates all its proposals with BadgerTrap. We describe how to extend

the BadgerTrap tool to evaluate our proposals in their respective chapters. This tool

was originally published in Computer Architecture News (CAN) in its September 2014

edition [52] and was developed in collaboration with Arkaprava Basu.
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Figure 3.1: Format of a 64-bit Page Table Entry [44].

3.2 Design

This section describes the mechanism to convert a hardware-assisted page walk on an

x86-64 TLB miss into a software-assisted page walk using an instrumented Linux kernel.

The design has four main components:

(i) Intercepting TLB misses by marking PTEs as invalid/poisoned

(ii) Software-assisted TLB miss handler for the TLB misses being intercepted

(iii) Attaching BadgerTrap to processes

(iv) Instrumenting TLB misses to perform interesting studies on a program.

3.2.1 Intercepting TLB misses

To intercept the hardware page walker, we poison the PTEs at the leaves of the page table

to force the system to trap rather than load a PTE. In x86-64 systems, on a TLB miss, a

hardware page-table walker walks the four-level page table to load a new TLB entry for

virtual address that needs translation.

BadgerTrap poisons a PTE by setting a reserved bit (one of bits 48-51) in a PTE (see

Figure 3.1). The poisoned PTEs can be at L4, L3 and L2 levels of the page table to support

all page sizes (4KB, 2MB and 1GB, respectively). This causes the hardware page walker
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to raise a page fault exception with RSVD bit set in the page fault exception flags [44].

Using a reserved bit rather than the valid bit allows the page-fault handler to quickly

determine from the RSVD flag whether the fault is real or caused by instrumentation,

without accessing memory. We instrument the Linux kernel to handle this exceptional

page fault with a special TLB miss handler. Note that these faults occur whether the page is

referenced from user mode or kernel mode, allowing BadgerTrap to track kernel-induced

TLB misses on user memory.

3.2.2 Software-assisted TLB miss handler

To make forward progress, BadgerTrap handles these exceptional TLB misses by inserting

a translation into the TLB. Figure 3.2 (a) shows the steps (marked 1-4) involved in handling
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this exceptional TLB miss. While handling the TLB miss in kernel mode, we un-poison the

PTE for which the exception was raised (clear the reserved bit). We introduce the correct

PTE into the TLB by referencing the page, and then poison the PTE again. This approach

works since the x86-64 architecture allows the page tables and TLBs to be incoherent. Thus,

the TLB can cache translations until the OS explicitly invalidates the translation. Figure 3.2

(b) shows how incoherence can exist between PTE and TLB entry with each step in the TLB

miss handler.

The main trick involved in the TLB miss handler is explicitly loading both user data

and instruction TLB entries for a process while in kernel-mode. To load a DTLB entry from

kernel mode, BadgerTrap reads from the virtual address causing the fault. This causes the

page table walker to load the (now valid) PTE into the DTLB.

Loading an ITLB entry is more involved. To introduce an ITLB entry while in kernel

mode, an instruction needs to be executed on the page containing the faulting address.

The kernel cannot start executing user code, because it would not regain control. Instead,

we use a technique similar to Rosenblum’s context sensitive mappings [86]. We dynamically

overwrite the first 13 bytes of the faulting user code page by saving the original instructions

and adding a jump instruction to regain control. After executing this code, we replace the

original instructions in the user code page before restarting execution in user-mode.

Every core has its own MMU unit to support multithreaded and multiprogrammed

workloads. Our tool works naturally with multiprogrammed workloads, but it only works

with multithreaded programs for DTLB misses. This limitation on ITLB misses comes

from the usage of the above technique which exposes our code patch to other threads in

user-mode. We are not aware of an effective mechanism for each core to have exclusive
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access to a code page while it dynamically writes to it.

3.2.3 Enabling BadgerTrap

BadgerTrap can be attached to a running process by providing its process ID to the newly

created system call. It can also be attached to a new process at startup by passing the

program’s filename to the tool. Every time a binary with that name is launched, BadgerTrap

automatically attaches to it. We provide a user-mode utility that works as a wrapper and

an easy to use interface.

At process startup or when attached dynamically, BadgerTrap walks the page tables

and marks each leaf PTE as poisoned. In addition, as a program makes progress, whenever

a physical page is allocated to the process by having a page fault, we intercept these page

faults and poison the newly created PTEs. This keeps all leaf PTEs in the dynamically

changing page table poisoned while the process is running.

3.2.4 Instrumenting TLB misses

From the function in which we handle these exceptional TLB misses, we can instrument

the misses to perform various studies. We have access to various process-level structures

and registers like the task structure, program counter, faulting virtual address and the

physical page address, when we are in the software-assisted page fault handler. We discuss

examples of different studies using this mechanism in the next section.
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3.3 Using BadgerTrap

In this section, we discuss a few ways to use the tool to perform interesting architectural

studies. We will cover two published studies that uses the same mechanism.

3.3.1 Study 1: Direct Segment

Direct segments use a form of segmentation along with paging to largely eliminate virtual

memory overhead for big-memory workloads on native hardware [25]. A direct segment

maps a portion of a process’s linear address space with a segment rather than paging. Thus,

a large chunk of a contiguous virtual address space can be mapped to contiguous physical

addresses with only three registers per hardware context: BASE, LIMIT and OFFSET. For

compatibility, the rest of the linear address space is mapped using conventional paging. On

a memory reference, the processor consults the segment registers and L1 TLB in parallel,

with at most one match (See Section 2.3.3 for details).

We used an earlier version of the tool that later evolved into BadgerTrap. The TLB misses

were instrumented and split into two categories: the TLB misses that would be eliminated

using the new hardware and the TLB misses that would be serviced by conventional paging.

Each TLB miss was put in the respective bin based on the virtual address of the TLB miss.

We developed a linear model to estimate the reduction in TLB miss handling cost using

performance counters and the above information. We used this simple model to estimate

performance improvement using such a hardware technique.
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3.3.2 Study 2: Coalesced and Shared MMU

A coalesced MMU uses the spatial contiguity available in PTEs to coalesce them into a single

entry, thereby increasing the reach of the MMU cache. In addition, a shared MMU which

is shared between cores allows multiple cores to share MMU cache entries [30], thereby

improving capacity of the MMU cache. Bhattacharjee recently proposed a hardware-

software co-design with these two optimizations to reduce MMU overheads [30].

To evaluate such an MMU optimization, Bhattacharjee created real-system memory

trace tool using an independently developed mechanism similar to BadgerTrap. The tool

dumps system memory trace on allocation of a new DTLB entry. This trace has a list

of distinct page references to the DTLB. The trace basically can be thought of as a trace

generated by a one-entry DTLB having DTLB misses. To create a DTLB miss trace for a

one-entry DTLB, DTLBs are flushed between every DTLB miss detected. They used such a

memory trace in order to get an estimate of improvement in hit-rate of their new MMU

design [30].

3.3.3 Study 3-5: This Thesis

BadgerTrap is used for the evaluation in the next three chapters. See Section 4.6 for how it

is used to evaluate virtualized direct segments. See Section 5.5 for how it is used to evaluate

agile paging. See Section 6.6 for how it is used to evaluate redundant memory mappings.
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3.3.4 Performance

Since we are converting a TLB miss to a software-assisted TLB miss handler, BadgerTrap

does slow down the application being analyzed. BadgerTrap, in general, slows down

workloads by around 2x to 40x based on the rate on TLB misses. Binary instrumentation

tools like Pin [74], which instrument all instructions, usually slows down applications by a

magnitude higher than BadgerTrap.

3.3.5 Discussion

BadgerTrap, with its limited-support for ITLB, can be used to dump real-system memory

trace similar to the tools like Pin [74]. BadgerTrap helps to induce a DTLB miss for every

memory access by flushing both TLBs while servicing any TLB miss. This support improves

upon the memory-system trace used by Bhattacharjee for his analysis (Section 3.3.2) by

having a DTLB miss trace for a zero-entry DTLB instead of a one-entry DTLB using ITLB

support in BadgerTrap.

BadgerTrap can also be applied to analyze TLB misses in a virtual machine by attaching

BadgerTrap to a process running inside of a guest OS. It works with Linux running on both

VMware- and KVM-based virtual machines.

In the current form as released, BadgerTrap prints only the count of DTLB misses, but the

TLB miss handler can be instrumented to dump real-memory system trace or instrument

to perform other interesting studies. The user of the tool will have to instrument the

Linux kernel to perform such studies. But since the tool has streamlined the function for

instrumentation, we expect the instrumentation step will be fairly easy to write.
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For valdation of the tool, we compared the TLB misses measured by performance

counters while running the application alone and then running them with BadgerTrap.

The comparison showed that BadgerTrap captures all TLB misses faithfully and its within

1% of performance counter results. These variations can occur across running the same

experiments again. The validation was performed for all page sizes in x86-64.

Some benefits of using BadgerTrap are:

1. The tool captures traces with real-systems effects along with physical addresses which

other tools like Pin [74] do not.

2. The trace generation is faster than tools like Pin [74] since we only instrument memory

references and not all instructions or TLB misses, which are orders of magnitude less

frequent.

3. The tool captures more detailed information in the presence of additional levels of

abstractions (e.g. virtual machines).

3.4 Limitations and Future Work for the Tool

This software has only been tested with Linux Kernel v3.12.13. This tool may need to be

tweaked to port it to older or newer kernels. The steps provided above are generic but are

only tested on an Ubuntu- and Fedora-based operating systems. We suggest that users

gain some experience with kernel development before using this tool.

The mechanism may not work for a 32-bit system since their page-table entries do not

have reserved bits. This mechanism has been tested on various Intel x86-64 processors. As
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per our knowledge, AMD processors may support reserved faults and thus the tool may

work on AMD processors. The reserved bits in the PTEs may be different from that of Intel

processors.

BadgerTrap can also be attached to multithreaded programs with the exception of ITLB

(see Section 3.2). Even with multithreaded programs, the slowdown is not much larger

than single-threaded programs since we use the distributed locking already inbuilt into

the page table structure.

This tool currently does not support NUMA memory, Kernel Samepage Merging

(KSM) [3] and kernel TLB misses in Linux and many more exotic features available in

the Linux kernel. The tool can be easily extended to support these different memory

management optimizations.
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Chapter 4

VIRTUALIZED DIRECT SEGMENTS

4.1 Introduction

Virtualization has gained importance and has various benefits espcially in the cloud such as

server consolidation, isolation, better resource management and fault isolation. Virtualiza-

tion’s benefits, however, come with overheads in processing, I/O, and memory. Fortunately,

hardware advances in virtualization [28, 29, 63] (e.g., virtualizing I/O in hardware), have

reduced these overheads substantially. However, overheads for virtualizing memory are

high, especially for big-memory workloads. To quote a 2013 VMware paper:

We will show that the increase in translation lookaside buffer (TLB) miss handling costs due to

the hardware-assisted memory management unit (MMU) is the largest contributor to the perfor-

mance gap between native and virtual servers. —Buell et al., 2013 [38]

Our results corroborate Buell et al. and show that virtualization degrades performance

in workloads that use substantial memory. Figure 4.1 provides a preview of the over-

heads associated with virtual memory for the native case (bar: 4K) and the virtualized

case with the guest OS using 4KB pages and the VMM using 4KB, 2MB and 1GB (bars:

4K+4K, 4K+2M, and 4K+1G, respectively). We observe that overheads increase drastically

with virtualization and remain high even with larger VMM pages. This overhead makes

virtualization less attractive for big-memory workloads that reference vast memory with
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Figure 4.1: Overheads associated with virtual memory for selected workloads and con-
figurations.

poor locality, such as key-value stores and databases. Our proposed design (bars: DD and

4K+VD) mitigates these overheads.

We propose new hardware that supports three new virtualized modes to lower the

overheads of virtualized address translation. It extends direct segments [25], which were

proposed to reduce TLB misses in unvirtualized (native) systems. As reviewed in Sec-

tion 2.3.3, a direct segment maps most of a process’s linear virtual address space with a

segment, while mapping the rest with page tables.

This proposal was created in collaboration with Arkaprava Basu with me as the pri-

mary author and was origially published in the 47th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO-47) 2014 [53].

Figure 4.2 depicts the two base modes (native and virtualized), one unvirtualized direct

segment mode (shaded) and three new virtualized modes (shaded). Large rectangular
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Figure 4.2: Native and virtualized address translation modes supported by proposed
hardware.

boxes represent an x86-64 page table walk, small squares represent direct segment accesses

(used throughout the chapter), and thick arrows depict the expected path of most transla-

tions. The left two modes show native (unvirtualized) 1D translation with and without

direct segments. The right four modes are virtualized two-level translations with the exist-

ing 2D page walk (base virtualized) and our three new virtualized modes, representing

different combinations of direct segments in the guest and nested address spaces. Note

that Figure 4.2 shows nested translation linearly to simplify the illustration

Dual Direct mode achieves almost zero translation overheads for big-memory workloads

with modest changes to the VMM, guest OS, and applications. It uses direct segments to

map directly from gVA to hPA, bypassing both dimensions of virtualized address transla-

tion.

VMM Direct mode achieves near-native performance for arbitrary workloads with mod-

ifications confined to only the VMM. It uses a direct segment to map most of a guest’s

physical memory to host physical memory (2nd dimension: gPA⇒hPA).
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Guest Direct mode provides near-native performance for big-memory workloads while

using nested page tables in the VMM to facilitate services like live migration. It uses a direct

segment to map most guest virtual addresses to guest physical addresses (1st dimension:

gVA⇒gPA).

Unvirtualized Direct Segment mode provides identical behavior as the original direct

segment proposal [25], but with less intrusive hardware.

To increase the flexibility of direct segments, we propose two novel techniques to

address their limitations. First, a VM may lack contiguous physical memory needed to

create a direct segment due to fragmentation. We address this with a new mechanism called

self-ballooning, which uses ballooning [100] and memory hotplug [8] to create contiguous

physical guest memory from fragmented guest physical memory. Ballooning removes

the fragmented memory from use and hotplug adds it back as contiguous guest physical

memory that can be used to create a guest direct segment. We extend self-ballooning to

further increase the amount of contiguous guest physical memory by relocating memory

before the x86-64 I/O gap to contiguous memory at the end. Second, we address the

concern that a single faulty physical page can prevent the creation of a contiguous direct

segment with an escape filter that allows holes in direct segments. The escape filter allows

the OS to remap a few faulty pages within a direct segment through conventional paging.

We find a 256-bit escape filter retains the performance gained by direct segments even in

the presence of 16 faulty pages.

We emulate our proposed hardware and prototype our proposed software in the Linux

operating system with KVM/QEMU as the VMM on x86-64. We evaluate our designs with

big-memory workloads (graph500, memcached, NPB:CG), the micro-benchmark GUPS,
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Figure 4.3: (a) Address translation flow chart (b) Steps of page walk state machine for
various supported modes.

and compute workloads (SPEC 2006 and PARSEC). VMM and Guest Direct modes reduce

translation overheads (page walk times) to near-native, while Dual Direct mode makes

overheads negligible.

This proposal is one of the first to study the memory overhead of virtualization for

virtual machines with a large amount of memory. Our contributions are:

1. a quantitative analysis of address translation overheads for large virtualized work-

loads,

2. a new virtualized address translation design using direct segments with three new

virtualized modes for reducing overhead to make virtualization more attractive,

3. a self-ballooning technique to increase contiguity of guest physical address, and

4. an escape filter to handle physical memory faults that may exist in a direct segment.
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4.2 Hardware Design and Software Support

The hardware proposed supports two levels of segment registers that can be controlled

independently by the VMM and guest OS and used alone, together, or not at all. The

hardware design we propose is shown in Figure 4.3. This hardware design supports three

new virtualized modes, as was specified in Section 4.1. At any point in time, each guest

process (address space) uses one mode. We next explain the workings of each mode using

the proposed hardware, along with the software support required.

4.2.1 Dual Direct mode

Dual Direct mode seeks a zero-D (0D) page walk. It uses two layers of direct segments: one,

called the guest segment, for most of the first level of address translation (gVA⇒gPA) and

the other, called the VMM segment, for (most of) the second-level of translation (gPA⇒hPA).

Most L1 TLB misses are translated by segment registers and hence do not need to perform

a page walk (a zero-D walk), which achieves better-than-base-native execution. However,

this mode suits big-memory applications with moderate guest OS and VMM changes.

Figure 4.4 shows the layout for gVA, gPA, and hPA address spaces with a guest segment

in yellow and a VMM segment in green. The direct segments can be of different sizes, but

here the guest segment is shown as a subset of the VMM segment.

Hardware Operation: Dual Direct performs the first level of address translation (gVA⇒gPA)

with guest segment registers BASEG, LIMITG and OFFSETG. Next, Dual Direct performs a

second level of address translation (gPA⇒hPA) with segment registers BASEV , LIMITV ,

and OFFSETV . These registers are like those of unvirtualized direct segments (Section 2.3.3),
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Figure 4.4: Memory layout for Dual Direct mode.

but for both levels of translation (see Figure 4.3 (a)).

A guest address can be in one of four categories in Dual Direct mode based on in which

segment(s) it lies in. This is decided based on segment checks in hardware, BASEG 6 gVA

< LIMITG and BASEV 6 gPA < LIMITV . Table 4.1 shows the translation steps in each of

the categories. In the best case, the guest address lies in both segments (Case: "Both") for

which a L1 TLB miss will have a 0D page walk.

On VM-exit/entry, hardware must save/restore registers BASEV , LIMITV and OFFSETV

along with other VM state.

Software Support: For Dual Direct mode, both the VMM and guest segments need modest

software support. The VMM requires two key changes: (a) it must request contiguous

Steps of Guest Virtual Address in Guest Segment or VMM Segment?
Translation Both VMM Segment only Guest Segment only Neither

L1 TLB Hit Translation complete Translation complete Translation complete Translation complete

L1 TLB miss hPA=gVA+OFFSETG+OFFSETV L2 TLB lookup L2 TLB lookup L2 TLB lookupInsert L1 TLB entry
L2 TLB hit — Insert L1 TLB entry Insert L1 TLB entry Insert L1 TLB entry
L2 TLB Miss — Invoke PTW Invoke PTW Invoke PTW

PTW:
gVA⇒gPA — Walk guest page table gPA=gVA+OFFSETV Walk guest page table

PTW:
gPA⇒hPA —

For each gPA,
Walk nested page table For each gPA,

walk nested page tablehPA=gPA+OFFSETV

or walk nested page table
PTW: End — Insert L1 TLB entry Insert L1 TLB entry Insert L1 TLB entry

Table 4.1: Steps in address translation of a guest virtual address in Dual Direct mode.
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host physical memory, and (b) it must set/clear segment registers when switching between

guest VMs. The value of the BASEV , LIMITV , and OFFSETV , registers are the start and

end of the guest physical contiguous memory region, and the difference between the guest

and host physical addresses of the region.

Support for guest segments for the first level of translation (gVA⇒gPA) follows unvir-

tualized direct segments (Section 2.3.3). They are suitable for big-memory applications

with a primary region and OS support for allocating contiguous physical addresses. The

guest segment register values are set per guest process and must be set during guest OS

context switches. With Dual Direct, however, the OS becomes the guest OS and the physi-

cal address range is a gPA range. Like direct segments, restrictions imposed on primary

regions make this less useful for compute workloads.

4.2.2 VMM Direct mode

VMM Direct mode seeks a 1D (faster than 2D) page walk with no application or guest OS

changes. It uses paging for the first level of address translation (gVA⇒gPA) and a direct

segment for most of the second (gPA⇒hPA). This allows applications to use a dense or

sparse gVA space, and leaves the guest OS unchanged with standard paging. Figure 4.5

shows the memory layout for gVA, gPA, and hPA address spaces with a VMM segment in
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green.

Hardware Operation: For VMM Direct mode, BASEG is set equal to LIMITG to nullify

the effect of the dashed boxes labeled Dual Direct and Guest Direct mode in Figure 4.3. A

guest address can be in one of two categories based on whether the guest address is in the

VMM segment or not. The translation in each case is covered by the "VMM segment only"

and "Neither" respectively from Table 4.1. The key advantage of VMM Direct mode is that

TLB misses take only up to 4 memory accesses and 5 base and bound calculations, because

guest page-table accesses (gPA) are translated with the direct segments rather than the

nPT.

On VM-exit/entry, hardware must save/restore registers BASEV , LIMITV and OFFSETV

along with other VM state.

Software Support: VMM Direct mode requires no application or guest OS changes, but

only VMM support. VMM Direct requires only the two key VMM changes that were

described for Dual Direct mode.

However, with small guest OS changes, better performance can be achieved. The x86-64

architecture has a gap in the physical address space between 3-4GB for memory-mapped

I/O [2]. In Section 4.3, we describe how a simple guest OS extension can relocate memory

before the gap to create a larger contiguous region above the gap. Moreover, the guest OS

must allocate page tables within the VMM direct segment, which can be achieved with a

guest kernel module like VMware Tools, thus improving performance.
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4.2.3 Guest Direct mode

Guest Direct mode seeks a 1D page walk while supporting features like page sharing and

live migration that depend on 4KB nested pages. It uses a guest segment for (most of) the

first level of translation (gVA⇒gPA) and nested paging for the second (gPA⇒hPA). This

mode retains nested page table in the VMM while providing near-base-native speeds. It

suits big-memory workloads along with small guest-OS changes. Figure 4.6 shows the

memory layout for gVA, gPA, and hPA address spaces with a guest segment in yellow.

Hardware Operation: For Guest Direct mode, BASEV is set equal to LIMITV thus nullify-

ing the effect of dashed box labeled Dual Direct mode and VMM Direct mode in Figure 4.3.

A guest address can be in one of two categories based on whether the guest address is in a

Guest segment or not. These are covered by the cases "Guest segment only" and "Neither"

respectively from Table 4.1. The key advantage of Guest Direct mode is that TLB misses

make 4 memory accesses and 1 base and bound calculation, which costs closer to a native

1D page walk (4 accesses and 0 base and bound calculations) and much less than the

24-access 2D page walk.

On every guest OS context switch, hardware must save and restore BASEG, LIMITG,

and OFFSETG, along with other guest process state.

Software Support: Guest Direct mode does not require any changes to the VMM, but
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requires the guest OS support proposed for Dual Direct mode.

4.2.4 Unvirtualized Direct Segments

Direct segment mode operates just like the original direct segments [25] but with less

intrusive hardware. The key advantage of Direct Segment mode is that TLB misses make

only 1 calculation, as compared to a native 1D page walk (up to 4 accesses).

This mode is supported by using only guest segment registers to translate from VA⇒PA

in parallel with the L2 TLB and introduces a L1 TLB entry. This hardware support is less

intrusive than the originally proposed design [25], as it performs the segment calculation

in parallel with the L2 TLB lookup instead of L1 TLB lookup, where it could affect pipeline

timing. The software support remains the same.

Summary: The new hardware for virtualized direct segments logically resides in two

places. On the L1 TLB miss path, Dual Direct-mode hardware consults segment registers

to bypass the page walk entirely. We also modify the page-walk hardware to flatten one

or two dimensions of the walk based on the mode. The hardware along with software

support allows switching between modes dynamically during execution.

Table 4.2 summarizes the tradeoffs among the modes. The modes can achieve faster

page walks at the cost of additional hardware and software changes or restrictions. Dual

Direct provides only limited support for memory overcommit, as it uses direct segments

at both address translation levels. VMM Direct supports guest swapping whereas Guest

Direct also supports page sharing, ballooning, and VMM swapping. All techniques can

always be used for memory outside direct segments with all three modes since it uses
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Properties Base Virtualized Dual Direct VMM Direct Guest Direct
Page Walk Dimensions 2D 0D 1D 1D
# of memory accesses 24 0 4 4for most page walks
# of base-bound checks 0 1 5 1for most page walks
Guest OS modifications none required none required
VMM modifications none required required none
Application category any big-memory any big-memory
Page sharing unrestricted limited limited unrestricted
Ballooning unrestricted limited limited unrestricted
Guest swapping unrestricted limited unrestricted limited
VMM swapping unrestricted limited limited unrestricted

Table 4.2: Trade-offs in various virtualized designs.

paging.

4.3 Reducing Memory Fragmentation

Guest and host physical memory fragmentation can prevent creation of direct segments at

one or both levels. Moreover, the x86-64 architecture fragments the physical memory for

memory-mapped I/O. We discuss few ways to reduce memory fragmentation to enable

creation of direct segments.

4.3.1 Self-ballooning

To handle guest physical memory fragmentation and facilitate quick creation of guest

segments, we propose a novel software optimization: self-ballooning. The goal of this

technique is to provide contiguous guest physical memory quickly from fragmented free
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Figure 4.7: Illustration of guest physical memory with self-ballooning.

guest physical memory without the cost of memory compaction. Self-ballooning applies

to Guest Direct mode and creates contiguous memory in two steps:

First, our balloon driver runs in the guest OS, and like a standard balloon driver [100],

asks the guest OS for a set of pages that can be reclaimed by the VMM. The balloon driver

pins and reserves this memory so it cannot be used by guest applications nor swapped out.

Second, the balloon driver passes these pages to the VMM, which uses memory hotplug

to add the same amount of memory back to the VM. Memory hotplug [8] is designed

for hot swapping or powering off memory chips. The newly added contiguous guest

physical memory can now serve as the guest segment in the VM. Thus, the VMM can create

contiguous guest physical memory from an assortment of pages. Figure 4.7 illustrates

self-ballooning. While designed for Guest Direct segments, self-ballooning can also work

with standard nested page tables to create more large pages in a guest OS.

4.3.2 Reclaiming I/O gap memory

A second source of fragmentation is architectural. The x86-64 architecture has an I/O gap,

which is a 1GB region at the high-end of the 32-bit (4GB) physical address space reserved

for memory-mapped I/O [2]. This gap splits the addresses backed by physical memory to
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about 3GB before the I/O gap and the rest after, and prevents a single direct segment from

mapping all guest physical memory. Normally, the chipset remaps contiguous physical

memory to introduce the I/O gap.

We mitigate this effect with a variation of self-ballooning using hot-unplug instead of

ballooning to remove the guest physical memory. We unplug most guest physical memory

before the I/O gap and extend memory by the same amount. We use hot-unplug instead

of ballooning because it supports removing specific addresses (those before the I/O gap),

rather than an arbitrary set chosen by the kernel memory allocator. Moving the memory

allows a single direct segment to map almost all guest physical memory. More details on

implementation can be found in Section 4.5.3. This technique is effective for both VMM

Direct and Dual Direct.

4.3.3 Memory compaction

To address host physical memory fragmentation, we leverage the slower technique of mem-

ory compaction which slowly relocates pages and creates a VMM segment. Compaction is

supported in many OSes including Linux [7]. Dual Direct and VMM Direct modes can start

without a VMM segment in Guest Direct mode and Base Virtualized mode respectively.

Once the compaction daemon provides enough contiguous physical memory to create

a VMM segment, the VMM can create a VMM segment achieving higher performance

through Dual Direct.

Summary: Table 4.3 summarizes the modes used in fragmented systems.
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Applications VM State Modes Utilized

Big-Memory Workloads

Host physical memory fragmented Guest Direct mode slowly converted to Dual Direct
mode with host memory compaction

Guest physical memory fragmented Dual Direct mode with self-balloon support

Host+Guest physical memory fragmented
Guest Direct mode with self-balloon support slowly
converted to Dual Direct mode with host memory
compaction

Compute Workloads

Host physical memory fragmented Base Virtualized mode slowly converted to VMM
Direct mode with host memory compaction

Guest physical memory fragmented Dual Direct mode

Host+Guest physical memory fragmented Base Virtualized mode slowly converted to VMM
Direct mode with host memory compaction

Table 4.3: Various modes utilized in fragmented systems.

4.4 Escape Filter

Commodity OSes commonly put faulty pages on a badpage list to prevent their use [11,

61, 98]. However, with direct segments, a single bad page can prevent creation of a large

direct segment. We introduce a novel hardware technique, an escape filter that allows holes

in direct segment. If an address is in a hole, it "escapes" segment-based translation to use

conventional paging. Hence, the VMM or OS can still use paging to remap escaped pages

to functioning memory.

We implement the escape filter using a hardware Bloom filter that is checked in parallel

with the VMM’s segment registers (in Dual or VMM direct modes) and the guest segment

registers (in Direct Segment mode). In Guest Direct mode, the VMM still uses nested

pages tables and can remap faulty pages. The VMM (or OS for Direct Segment mode) adds

escaped pages to the Bloom filter and creates PTEs to map those pages. As the Bloom

filter may have false positives (non-escaped pages that are falsely considered escaped), the

VMM must create mappings for these pages as well. With an escape filter, an address is

translated with direct segments if it lies within the direct segment, but not the filter. The



58

filter is part of the VM context state and must be saved/restored with VMM’s segment

registers. However, it can be small: to tolerate 16 faulty pages, we show that a 256-bit

filter has almost zero overhead from false positives. The escape filter can also implement a

limited number of pages with different protection, such as guard pages. For such uses, it

may be useful to have escape filters at both levels of translation so the guest OS can escape

pages as well.

4.5 Prototype Implementation

We design our prototype system for the Linux operating system (x86-64) with LTS kernel

v3.12.13 using QEMU v1.4.1 with KVM as the VMM. Our implementation has three pieces:

(1) allocating contiguous physical memory, (2) emulating segmentation behavior, and (3)

prototyping self-ballooning.

4.5.1 Contiguous Allocation

To allocate contiguous physical memory, the OS reserves memory immediately after startup.

We target machines running a stable set of long-lived virtual machines allowing us to use the

mechanism without relying on expensive compaction. The size of the virtual machine and

memory requirements of big-memory applications [25] are often known a priori through

their configuration parameters and allow the application to reserve the required memory.
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4.5.2 Emulating Segments

The hardware design described in Section 4.2 requires new hardware support. To evaluate

this design on current hardware, we follow a previously proposed technique [25] and

emulate direct-segment functionality by mapping segments with 4KB pages. We modify

the Linux page fault handler both in the VMM and guest OS. These changes identify page

faults to direct segments, and compute physical addresses using segment offset. These

computed addresses are added to the respective page tables by the fault handler. Thus,

direct segments are mapped using dynamically computed PTEs. This approach provides

a functionally correct implementation of our designs on current hardware. However, it

does not provide any performance improvement without new hardware. As described in

Section 4.6, we count events to predict performance with new hardware.

4.5.3 Self-Ballooning Prototype

We implemented self-ballooning in KVM. Each guest VM has an associated KVM process,

which runs as a userspace process on the host OS. The guest physical addresses of a VM

are mapped on to the host virtual addresses of the KVM process, and the host Linux maps

host virtual addresses of the KVM process to host physical addresses. Figure 4.8 shows a

typical address space mapping in x86-64 using KVM. The KVM kernel component, called

the KVM module, creates nested page tables by computing combined gPA⇒hVA⇒hPA

translations. The mapping gPA⇒hVA is handled through memory slots. A memory slot

is a contiguous range of guest physical addresses that are mapped to contiguous virtual

memory in the KVM process. There are only two large slots in KVM: one between 0-4GB,
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Figure 4.8: KVM memory slots to nested page tables.

and another for 4GB and beyond.

Fragmented memory: We modify QEMU-KVM [72] and the virtio balloon driver [5] to

prototype self-ballooning with the KVM hypervisor. KVM currently does not support

hot-adding memory to guest OSes. Instead, we extend the second KVM slot by the largest

amount of memory (96GB for our machine) that can be used for self-ballooning when

required. This extra guest physical memory is ballooned out during startup and cannot be

used by the guest OS.

The guest OS invokes the modified balloon driver when it cannot create a guest segment

due to fragmentation. The driver removes the required amount of memory and provides

that to the VMM. The VMM in return informs the driver to release the memory from the

reserved portion of guest physical memory. The guest OS can now create a guest segment

from the newly released guest physical memory.

I/O gap: We modify the guest OS to remove as much memory as possible from the first

KVM slot using hotplug [8]. Using hotplug is similar to ballooning, and causes the guest

OS to ignore the removed addresses. We extend the second KVM slot by the same amount
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of memory. Our experiments show that 256MB is enough to boot Linux correctly and the

rest (3.1 GB) can be removed from the first KVM slot. This gives us a long address range in

the gPA starting at 4GB that can be mapped using a single segment to hPA, and a small

256MB range for the kernel mapped using pages.

Memory compaction: We use the memory compaction daemon present in Linux [7] to

aggressively perform compaction when required to create a direct segment in the host OS.

4.6 Evaluation Methodology

We evaluate the proposed hardware using VMM and kernel modifications and hardware

performance counters since workload size and duration makes full-system simulation less

appropriate. We use the counters to measure the number of TLB misses in native (Mn) and

virtual (Mv) environments, and the page walk cycles spent on TLB misses. This provides

us with page walk cycles spent per TLB miss (Cn and Cv, respectively) for each program.

We modify the guest OS kernel to capture all TLB misses using BadgerTrap (Chapter 3), a

tool that instruments all DTLB misses, as these DTLB misses benefit from our proposed

hardware.

We instrument the guest OS to extract gVA and gPA for a DTLB miss to determine if

the address lies in a VMM or guest segment. We classify the miss depending on the mode

used to calculate DTLB misses affected by a direct segment.

Native/Virtualized baseline: We run the workloads (Table 4.4) to completion on native

hardware and in a virtual machine described in Table 4.5 and use Linux perf [10] to collect

the performance counter data. By fixing the amount of work done by the programs, we
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Workload Description

graph500 Generation, compression and breadth-first search (BFS) of very large graphs, as often
used in social networking analytics and HPC computing.

memcached In-memory key-value cache widely used by large websites, for low-latency data retrieval.
NPB:CG NASA’s high performance parallel benchmark suite. CG workload from the suite.
GUPS Random access benchmark defined by the High Performance Computing Challenge.
SPEC 2006 Compute single-threaded workloads: cactusADM, GemsFDTD, mcf, omnetpp (ref inputs)
PARSEC 3.0 Compute multi-threaded workloads: canneal, streamcluster (native input set)

Table 4.4: Workload discriptions.

Native System

Processor Dual-socket Intel Xeon E5-2430 (SandyBridge)
6 cores/socket, 2 threads/core, 2.2 GHz

Physical Memory 96 GB DDR3 1066MHz
Operating System Fedora-20 (Linux LTS Kernel v3.12.13)

L1 Data TLB
4KB: 64 entries 4-way associative
2MB: 32 entries 4-way associative
1GB: 4-entry fully associative

L2 TLB 4KB: 512 entries 4-way associative

Virtualized System
VMM QEMU (with KVM) v1.4.1, 24vCPUs
Physical Memory 85GB
Operating System Fedora-20 (Linux LTS Kernel v3.12.13)
EPT TLB/NTLB Shares the TLB (no separate structure)

Table 4.5: Description of native and virtualized systems.

compare cycles across different configurations. For each proposed mode, we developed

linear models to predict its performance (Table 4.6).

Direct Segment: To compare with native direct segments, we developed a model to

determine the unvirtualized performance. We find the fraction of TLB misses (FDS) that lie

in the direct segment [25], which would be eliminated.

VMM Direct/Guest Direct: We determine the fraction of TLB misses that lie in the re-



63

spective direct segment (FVD or FGD). This fraction of TLB misses would spend near-native

cycles per TLB miss. We estimate the cycles per TLB miss of this fraction as (Cn+∆) where

∆ represent the overhead of performing base-bounds check in addition to cycles per TLB

miss on native hardware (Cn). As an estimate, we use 1 cycle per base-bound check, thus

∆VD=5 for VMM Direct and ∆GD=1 for Guest Direct modes. The rest of the TLB misses

would suffer Cv cycles per TLB miss due to 2D page walk.

Dual Direct: We split the TLB misses in 4 ways according to Table 4.1:

1. The fraction of misses that lie in both direct segments (FDD). These page walks are

eliminated by Dual Direct.

2. The fraction of misses that lie only in VMM segment and not in guest segment (FVD).

These misses are sped up by VMM Direct mode.

3. The fraction of misses that lie only in guest segment and not in VMM direct segment

(FGD). These misses are sped up by Guest Direct mode.

4. The rest of the TLB misses suffer Cv cycles per TLB miss for the 2D page walk.

The cycles per TLB miss for Dual Direct Design can be calculated by adding the above four

categories. Since we cannot measure cycles spent accessing L1 and L2 TLBs, our model

Design Model
Direct Segment Cn*(1-FDS) * Mn

Dual Direct [(Cn+∆VD)*FVD + (Cn+∆GD)*FGD + Cv*(1-FGD- FVD-FDD)]*Mn

VMM Direct [(Cn+∆VD)*FVD + Cv*(1-FVD)]*Mn

Guest Direct [(Cn+∆GD)*FGD + Cv*(1-FGD)]*Mn

Table 4.6: Linear model for cycle spent on page walk.
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does not account for improvements due to faster L2 hits when using the Dual Direct design

or pollution of the L2 TLB from pages in a direct segment.

In all our experiments for this chapter, we turned all prefetchers off to reduce variations

across our experiments. This methodology mostly improves overall performance of the ap-

plication without much impact on the page walk latency and thus shows higher overheads

of page walk in a realistic setting. However, for a more conservative estimate of overheads,

this methodology was discontinued in the later chapters and all prefetchers were turned

on.

4.7 Cost of Virtualization

We show that the cost of virtualization can be very high and corroborate some of the

findings of Buell et al. [38]. Similar earlier studies used much smaller virtual machines

running desktop applications [21, 29]. Our study quantifies how applications behave in

large virtualized environments.

Our experimental setup is as follows:

• We use several multithreaded big-memory workloads, a GUPS micro-benchmark,

and some SPEC2006 and PARSEC workloads (Table 4.4). The big-memory workloads

were executed with 60-75GB datasets on virtual machines with 80GB of guest physical

memory.

• We run the workloads on an x86-64 system (Table 4.5), both natively and in a Linux

KVM virtual machine.
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• We examine four native configurations. For big memory workloads, it is straightfor-

ward to have big-memory applications explicitly request 4KB, 2MB, or 1GB pages.

Since SPEC and PARSEC are less suited to these changes, we use 4KB pages and en-

able transparent hugepages (THP) [15], which seeks to dynamically promote aligned

groups of 512 4KB pages to a 2MB page.

• We examine eight virtualized configurations that vary both guest and VMM page

sizes (e.g., 4K+2M means the guest uses 4KB pages and the VMM uses 2MB pages).

Figure 4.9 and Figure 4.10 present execution time overheads for address translation for

base-native (hashed bars) and virtualized (solid). If an execution E runs in time TE, we

calculate its address-translation overhead as (TE — T2Mideal)/T2Mideal, where T2Mideal is

the same benchmark’s native execution time with 2MB pages minus the time the 2MB run

spends in page table walks. TLB misses may be overlapped with other processor stalls, so

for workloads with very high miss rates, subtracting page walk time from total execution

time may be inaccurate. We try to minimize this effect by using as our base execution time,

the 2MB results (T2Mideal), but cannot remove it completely. Note that execution times

include the effects of all TLBs and page walk caches. The GUPS micro-benchmark uses the

scaled righthand y-axis and is shaded separately.

We make the following observations:

1. Native address translation overheads with 4KB pages can be high and grow drastically when

virtualized. [e.g., the overheads for graph500 goes up from 28% in native to 113% under

virtualization (bar 4K vs 4K+4K)]. The geometric mean increase with virtualization is

3.6x.
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2. Virtualization overheads can be reduced by using 2MB pages to map gPA to hPA at the VMM.

However, overheads can still be large. Even with 2MB pages at both levels of translation,

overheads are substantially higher than native execution with 2MB pages (e.g., bar 4K+2M:

53% vs bar 4K+4K: 113% and bar 2M: 6% vs. bar 2M+2M: 13% for graph500).

3. Even with 1GB pages at guest OS and VMM, the overhead does not reduce greatly as com-

pared to 2MB pages and are higher than native execution with 1GB pages. In addition, using

1GB pages in the VMM can also hurt performance due to limited 1GB TLB entries (e.g., for

graph500, bar 1G: 3% vs. bar 1G+1G: 11% and 13% overhead with bar 2M+2M and

14% with bar 2M+1G).

4. Similar trends are observed in compute workloads. CactusADM and mcf have high over-

heads even with transparent huge pages (THP).

These observations demonstrate that many workloads suffer substantial virtualization

overheads, rendering virtualization less attractive today. Moreover, we conjecture that

overheads will get considerably worse with larger datasets and virtual machines [25]. This

analysis corroborates a recently published study from VMware [38].

4.8 Evaluation of New Design

In this section we discuss the various benefits of our proposed hardware with its various

modes of operation.



69

4.8.1 Performance Analysis

Performance benefits: Figure 4.9 and Figure 4.10 depict execution time overheads for address

translation for our new designs in green. Recall that our models are pessimistic due to our

assumption of flat ∆VD = 5 cycles and ∆GD = 1 based on the number of base-and-bound

calculations. This overhead will be reduced by techniques like translation caching [24] and

shared MMU caches [30] that store intermediate translations by reducing the computations

required.

From Figure 4.9 and Figure 4.10, we conclude:

1. For our big-memory and compute workloads, VMM Direct achieves overheads close to native

execution. [e.g., graph500 suffers 30% (bar 4K+VD) overhead, close to the native over-

head of 28% (bar 4K). Overall, VMM Direct is only 2% slower than native execution

(geo mean)].

2. Similarly, Guest Direct is able to achieve native performance for big-memory workloads (bar

4K+GD).

3. Dual Direct achieves negligible address translation overheads for big-memory workloads,

similar to unvirtualized direct segments. Dual Direct mode reduces address transla-

tion overheads to at most 0.17% (bar DD).

The performance benefits of VMM Direct are further enhanced by using 2MB (bar 2M+VD)

or 1GB pages (bar 1G+VD) or THP to translate from gVA to gPA. We do not evaluate these

due to lack of support for large pages in our prototype. Guest Direct can also be enhanced

similarly.
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Performance Breakdown: We analyzed two key factors affecting the translation overheads:

1) number of TLB misses and 2) avg. cycles spent per TLB miss.

We make two observations about execution under virtualization vs. executing natively.

First, we expect the TLB misses for a given application to remain the same across execution

under virtualization and native execution. However, we found that virtualization can lead to

a significant increase in the number of TLB misses. For example, TLB misses 4K+4K increased

by 1.38x for graph500, 1.62x for memcached, 1.41x for GUPS, 1.33x for canneal, and 1.29x

for streamcluster. The extra misses occur because nested TLB entries (gPA⇒hPA) share

the same physical structure as the normal TLB entries, reducing the effective capacity

of the TLB. We confirmed the behavior with a microbenchmark. Second, as expected for

all workloads, the average cycles per TLB miss grows significantly with virtualization due to 2D

page walks. For example, it can be as high as 3.5x for NPB:CG with 4K+4K. On average,

cycles-per-miss increase 2.4x, 1.5x, 1.6x for 4K+4K, 4K+2M, and 4K+1G, respectively.

With our proposed hardware, we find that VMM Direct and Guest Direct achieve cycles

per TLB miss close to native execution. A TLB miss costs only 13% higher (on average)

with VMM direct and 3% higher (on average) with Guest Direct compared to native 4K.

In contrast, Dual Direct gets most of its benefits from reduction in L2 TLB misses ( 99.9%

reduction in L2 TLB misses).

4.8.2 Energy Discussion

Alternate address translation modes affect system energy in two ways. Most importantly, if

the mechanism reduces execution time by some percentage X, it can reduce wholesystem
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static energy by about X%. For example, Dual Direct reduces execution time by 11-89%

compared to 4K+2M pages (Figure 4.9 and Figure 4.10) across our benchmarks and thus

reduces system static energy by a similar fraction.

Second, the translation mechanism itself uses energy, (e.g., 20-38% of L1 cache dynamic

energy [26] and a smaller fraction of whole system energy). Page-based address translation

uses dynamic energy to: (a) access the L1 TLB, (b) on an L1 TLB miss, accesses the L2 TLB,

and (c) on an L2 TLB miss, accesses the page walker and MMU cache.

Our new virtualized design: (a) leaves the L1 TLB access unchanged; (b) on an L1 TLB

miss, accesses the L2 TLB as well as small virtualized direct-segment hardware; and (c) on

a L2 TLB miss and on a miss in the both direct segments, accesses the modified page walker

and MMU cache. We expect the reduction in term (c) dominates the small cost increase to

term (b), thus potentially reducing address translation dynamic energy as compared to

virtualized baseline.

The original direct segment design uses energy to: (a) access the L1 TLB as well as

small direct-segment hardware, (b) on a L1 TLB miss and on a miss in the direct-segment,

accesses the L2 TLB, and (c) on L2 TLB miss, accesses the page walk hardware and MMU

cache. If the reduction in the term (b) dominates the small cost increase to term (a), then

the original direct segment hardware further improves on address translation dynamic

energy compared to the new virtualized design.

If this improvement is important, our design can be modified to perform the base-bound

check for Dual Direct with its two comparators in parallel with L1 TLB lookup. We do not

advocated this design, because it affects the timing critical L1 TLB hit path (a drawback of

the original design).
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Figure 4.11: Normalized execution time for big-memory workloads in presence of bad
pages.

4.8.3 Escape Filter

Our proposed escape filter enables a few pages within a direct segment to escape to page-

based translation. We use this mechanism to retain most of a direct segment’s performance

benefits even when 1-16 pages have hard faults.

We studied the impact of using a 256-bit (32-byte) hardware parallel bloom filter with

four H3 hash functions [87]. For each number of bad pages (1-16), we ran each application

with 30 different random sets of bad pages. Figure 4.11 depicts execution time overhead

(compared to Dual Direct mode with no bad pages), as well as 95% confidence intervals.

Dual Direct mode retains almost all its performance benefits even with some hard faults. With

a pessimistic 16 faults, execution impact is less than 0.06% (except microbenchmark GUPS
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0.5%). We observe similar trends with compute workloads running in VMM Direct mode.

4.8.4 Shadow Paging: An Alternative

Shadow paging offers a way to eliminate 2D page walks, but we observe that it works

well for only some of our workloads, while our new design works for all. Recall that with

shadow paging (Section 2.2.2), the VMM uses the guest page table (gVA⇒gPA) and nested

page table (gPA⇒hPA) to build a shadow page table (gVA⇒hPA) walked by the hardware,

and changes to guest or host page tables incur substantial performance overheads.

We use shadow paging by disabling extended page tables in KVM. We measure the

slowdown in execution time compared to native execution for shadow paging using 4KB

and 2MB pages (both guest and VMM).

We observe that our workloads fall in two categories:

1. Workloads for which shadow paging incurs high virtualization overheads: mem-

cached (4K: 29.2%, 2M: 11.1%), GemsFDTD (4K: 12.2%, 2M: 4.9%), omnetpp (4K:

8.7%, 2M: 3.4%), and canneal (4K: 6.63%, 2M: 2.5%). The increase in execution time

corresponds to extra VMexits to keep shadow page tables coherent.

2. Workloads for which shadow paging incurs relatively low overheads. For all other

workloads, we observed slow-down of less than 5% for both page sizes.

Shadow paging does well due to the static nature of memory allocation in workloads from

the second category. For workloads with frequent memory allocations and deallocations

(first category), shadow paging provides poor performance due to frequent updates to

guest page tables [101].
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In contrast, VMM Direct allows page table updates to proceed without any VMM inter-

vention. Thus, our techniques provide near-native performance for both sets of workloads.

Shadow paging can be up to 29.2% slower, whereas VMM Direct is only up to 7.3% slower

than the native execution. With small guest OS and application changes, Dual Direct

provides much lower overhead than shadow paging.

4.8.5 Content-Based Page Sharing

Content-based page sharing saves memory for compute workloads, but we observe that it

provides less benefit for our big-memory workloads. Content-based page sharing scans

memory to find pages with identical contents. When such pages are found, the VMM can

reclaim all but one copy and maps the others using copy-on-write [100].

We studied the impact of content-based page sharing, since VMM segments preclude

page sharing. We coscheduled two smaller instances (40 GB) of KVM, each running one of

our big-memory workloads (all possible pairs) to measure the potential memory saving

from page sharing.

We observed that page sharing does not save more than 3% memory for our big-memory

workloads since the bulk of memory is for data structures unique to the workload. These

include OS code pages that can be easily shared with our modes, as they are mapped with

pages. Thus, restricting page sharing may be less important when virtualizing big-memory

workloads than others.

For compute workloads, earlier studies have shown page sharing to be useful when

there are large numbers of VMs.
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4.9 Summary

This proposal brings low-overhead virtualization to workloads with poor memory access

locality. This is achieved with three new virtualized modes that improve on 2D page walks

and direct segments. In addition, we propose two novel optimizations that greatly enhance

the flexibility of direct segments. This design can greatly lower memory virtualization

overheads for big-memory and compute workloads.



76

Chapter 5

AGILE PAGING

5.1 Introduction

The previous chapter on virtualized direct segments brings low-overhead virtualization by

using direct segments to bypass paging in widely used hardware support — nested paging—

but ignored a less used software technique—shadow paging. Shadow Paging provides an

opportunity to reduce TLB miss latency while retaining all the benefits of paging. Nested

and shadow paging provide different tradeoffs while managing two-levels of translation

for robust virtualization support. Unfortunately, virtualized direct segment required

substantial hardware and operating system changes which made its adoption harder. With

this proposal, the goal is to provide low-overhead virtualization without with more modest

hardware and VMM support as compared to virtualized direct segments.

Table 5.1 summarizes the trade-offs provided by the two techniques to virtualize mem-

ory as compared to base native. With current hardware and software, the overheads of

virtualizing memory are hard to minimize because a VM exclusively uses one technique or

the other. Nested and shadow paging make different tradeoffs.

First, the widely used hardware technique called nested paging [28] generates a TLB

entry (gVA⇒hPA) to map guest virtual address directly to host physical address enabling

fast translation (Section 2.2.1). On a TLB miss, hardware performs a long-latency 2D page

walk which walks both page tables. For example, in x86-64, TLB misses require up to 24
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Base Native Nested Paging Shadow Paging Agile Paging
TLB hit fast (VA⇒PA) fast (gVA⇒hPA) fast (gVA⇒hPA) fast (gVA⇒hPA)

Max. memory access 4 24 4 ∼(4—5) avg.on TLB miss

Page table updates fast direct fast direct slow mediated fast direct
by VMM

Hardware support 1D page walk 2D+1D page walk 1D page walk 2D+1D page walk
with switching

Table 5.1: Trade-off provided by both memory virtualization techniques as compared
to base native. Agile paging exceeds best of both worlds.

memory references [28] as opposed to a native 1D page walk requiring up to 4 memory

references. However, this technique benefits from fast direct updates to both page tables

without VMM intervention.

Second, the lesser-used technique called shadow paging [100], which was used be-

fore hardware support was available, requires the VMM to build a new shadow page table

(gVA⇒hPA) from both page tables (Section 2.2.2). It points standard paging hardware to

the shadow page table (sPT), so that TLB hits perform the translation (gVA⇒hPA) and TLB

misses do a fast native 1D page walk (e.g., 4 memory references in x86-64). However, page

table update requires VMM to perform substantial work to keep the shadow page table

consistent [17].

Past work—selective hardware software paging (SHSP)—showed that a VMM could dy-

namically switch an entire guest process between nested and shadow paging to achieve

the best of either technique [101]. It monitored TLB misses and guest page faults to period-

ically consider switching to the best mode. However, switching to shadow mode requires

(re)building the entire shadow page table, which is expensive for multi-GB to TB workloads.

We take inspiration from and extend this approach with agile paging to exceed the best
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of both techniques. Intuitively, most of the updates to a hierarchical page table occur at

the lower levels or leaves of the page table. With that key intuition, agile paging starts

virtualized page walk with the shadow paging for stable upper levels of page table and

optionally switches within the same page walk to nested paging for lower levels of page

table, which receive frequent updates. With this agile page walk, guest virtual address

space to use both shadow and nested paging at the same time with varying degree of nesting

and allows switching from one mode to the other in the middle of a page walk. Agile

paging reduces the cost of a TLB miss since most of the TLB misses are handled fully or

partially with shadow paging and reduces the costly VMM interventions by allowing fast

direct updates to the page tables. Table 5.2 shows varying degrees of nesting and memory

references for page walks in x86-64 depending on when the switch from shadow to nested

paging occurs. Our evaluation in Section 6.7 shows that agile paging requires fewer than 5

memory references per TLB miss on average.

Agile paging goes beyond SHSP [101] so a process can concurrently use nested and

shadow paging for different address regions (and even different levels of a single translation)

at a cost of modest hardware changes. One can think of SHSP as a temporal solution since it

multiplexed the two techniques in time, while agile paging is temporal and spatial, where

spatial may grow in importance with increasing memory footprint.

The initial feasibility analysis of this proposal was done in collaboration with Sujith

Surendran and the work was originally published with me as primary author in the 43rd

ACM/IEEE Symposium on Computer Architecture (ISCA-43) 2016 [54].

Agile paging builds on existing hardware for virtualized address translation, requiring

only a modest hardware change that switches between the two modes. In addition, to
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Levels of Page Table Base Native Nested Paging Shadow Paging Agile Paging
PTptr: Page table pointer 0 4 0 0 or 4
L4: Page table level 4 entry 1 5 1 1 or 5
L3: Page table level 3 entry 1 5 1 1 or 5
L2: Page table level 2 entry 1 5 1 1 or 5
L1: Page table entry (PTE) 1 5 1 1 or 5
All 4 24 4 4-24

Table 5.2: Number of memory references with varying degree of nesting provided by
agile paging in a four-level x86-64-style page table as compared to other techniques.

further reduce VMM interventions associated with the shadow technique within agile

paging, we propose two optional hardware optimizations. Similarly, VMM support for

agile paging builds upon existing support and requires modest changes.

Figure 5.1 shows address translation techniques for base native, nested paging, shadow

paging, and our technique of agile paging. The numbers in the figure show the chronologi-

cal order in which different levels of the page table structures are accessed on a TLB miss.

The page tables are hashed in shadow paging since the hardware has no access to the guest

or host page tables. Agile paging is color coded to show two of the options available from

Table 5.2. The black colored path shows shadow paging in agile paging. With the blue

colored escape path, agile paging switches the hardware from shadow paging to nested

paging for the leaf-level of page table, requiring up to 8 memory accesses per translation.

The switch from shadow to nested can be performed at any level of the page table (not

shown).

We emulate our proposed hardware and prototype our proposed software in KVM on

x86-64. We evaluate our design with variety of workloads and show that our technique
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improves performance by more than 12% compared to the best of nested and shadow

paging.

In summary, the contributions of our work are:

1. We propose a mechanism agile paging that simultaneously combines shadow and

nested paging to seek the best features of each within a single address space.

2. We propose two optional hardware optimizations to further reduce overheads of

shadow paging.

3. We show that agile paging performs better than the best of shadow and nested paging.

5.2 Agile Paging Design

We propose agile paging as a lightweight solution to the cost of virtualized address transla-

tion. We observe that shadow paging has lower overheads than nested paging, except when

guest page tables change. Our key intuition is that page tables are not modified uniformly:

some regions of an address space see far more changes than others, and some levels of the

page table, such as the leaves, are updated far more often than the upper-level nodes. For

example, code regions may see little change over the life of a process, whereas regions that

memory-mapped files may change frequently.

We use this key intuition to propose agile paging that combines the best of shadow and

nested paging by:

1. using shadow paging for fast TLB misses for the parts of the guest page table that

remain static, and
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Figure 5.2: Different degrees of nesting with agile paging in increasing order of page
walk latency. Starting point for each is marked bold and green.

2. using nested paging for fast in-place updates for the parts of the guest page tables

that dynamically change.

We refer to these two memory virtualization techniques as constituent techniques for
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agile_walk(gVA, gptr, hptr, sptr)
if sptr==gptr then

return nested_walk(gVA, gptr, hptr);
else

nested = sPT.switching_bit;
hPA = sptr;
for (i=0; i6MAX_LEVELS; i++) do

if nested then
hPA = nested_PT_access(hPA + index(gVA,i), hptr);

else
hPA = host_PT_access(hPA + index(gVA,i));
PTE = *(hPA + index(gVA,i));
//Switching to nested mode
if PTE.switching_bit then

nested = true;
end

end
end
return hPA;

Figure 5.3: Pseudocode of hardware page walk state machine for agile paging. Note that
agile paging requires modest switching support (shown in red) in addition to the state
machines of nested and shadow paging shown in Sections 2.2.1 & 2.2.2 respectively.

the rest of the chapter. We show that agile paging performs better than its constituent

techniques and supports features of conventional paging on both guest OS and VMM.

In the following subsections, we describe the hardware mechanism which will enable

us to use both constituent techniques at the same time for a guest process and discuss

policies that are used by the VMM to reduce overheads.

5.2.1 Mechanism: Hardware Support

Agile paging allows using the constituent techniques for the same guest process—even on

a single address translation—with modest hardware support to switch between the two.

Agile paging has three architectural page table pointers in hardware: one each for shadow,

guest, and host page tables. If agile paging is enabled, virtualized page walk starts in

shadow paging and then switches, in the same page walk, to nested paging if required. To
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allow fine grain switching from shadow paging to nested paging on any entry at any level

of guest page table, the shadow page table needs to logically support a new switching bit

per page table entry. This notifies the hardware page table walker to switch from shadow

to nested mode. We choose not to support the switching in the other direction (nested to

shadow mode) since the updates to the page tables are mostly confined to the lower levels

of the page tables. When the switching bit is set in a shadow page table entry, the shadow

page table holds the hPA (pointer) of the next guest page table level.

There are different degrees of nesting for virtualized address translation with agile

paging: full shadow paging, full nested paging, and four degrees of nesting where trans-

lation starts in shadow mode and switches to nested mode at any level of the page table.

These are shown in increasing order of page walk latency in Figure 5.2. The hardware

page-walk state machine uses a bit to switch between the paging mechanisms as shown

in Figure 5.3. A modest change needed to switch between the two techniques; the rest of

the state machine is already present to support the constituent techniques. This change is

shown in red in Figure 5.3.

Page Walk Caches: Modern processors have hardware page walk caches (PWCs) to reduce

the number of memory accesses required for a page walk by caching the most-recently-used

partial translations. For example, Intel processors use three partial translation tables inside

PWCs: one table each to help skip the top one, two, or three levels of the page table [24, 30].

With shadow paging, PWCs store the hPA as a pointer to the next level of the shadow page

table and thus skip accessing a few levels of the the shadow page table. With nested paging,

PWCs store the hPA as a pointer to the next level of the guest page table, and skip accessing
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some of the levels of guest page table as well their corresponding host page table accesses.

With agile paging, PWCs can be used to store partial translations for up to three levels of

the guest page table without any restrictions on which mode any of the levels may be in.

The PWCs will store an hPA for the partial translation with a single bit to denote whether

the hPA points to shadow or guest page table so that an agile page walk can continue in the

correct mode. While we extended Intel’s PWCs with agile paging, the approach supports

other designs as well.

5.2.2 Mechanism: VMM Support

Like shadow paging, the VMM for agile paging manages three page tables: guest, shadow,

and host. Agile paging’s page table management is closely related to that of shadow paging,

but there are subtle differences.

Guest Page Table (gVA⇒gPA): As with shadow paging, the guest page table is created

and modified by the guest OS for every guest process. The VMM, though, controls access

to the guest page table by marking them read-only. Any attempt by the guest OS to change

the guest page table will lead to a VMM intervention, which then updates the shadow page

table to maintain coherence [17].

With agile paging, we leverage the support for marking guest page tables read-only

with one subtle change. The VMM marks as read-only just the parts of the guest page table

covered by the partial shadow page table. The rest of the guest page table (considered

under nested mode) has full read-write access. Section 5.2.3 describes policies to choose

what part of page table is under which mode. For example, KVM [72] allows the leaf level
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of a guest page table to be writable temporarily, called an unsynced shadow page, allowing

multiple updates without intervening VMtraps. We extend that support to make other

levels of the guest page table writable in our prototype.

Shadow Page Table (gVA⇒hPA): As with shadow paging, for all guest processes with

agile paging enabled, a shadow page table is created and maintained by the VMM. The

VMM creates this page table by merging the guest page table with the host page table so

that any guest virtual address is directly converted to a host physical address. The VMM

creates and keeps the shadow page table consistent [17].

However, with agile paging, the shadow page table is partial and cannot translate all

gVAs fully. The shadow page table entry at each switching point holds the hPA of the next

level of guest page table with the switching bit set (as shown in Figure 5.2). This enables

hardware to perform the page walk correctly with agile paging using both techniques.

Host Page Table (gPA⇒hPA): As with shadow paging, the VMM manages the host page

table to map from gPA to hPA for each virtual machine. VMM merges this page table with

the guest page table to create a shadow page table. The VMM must update the shadow

page table on any changes to the host page table. The host page table is only updated by

the VMM and during that update the shadow page table is kept consistent by invalidating

affected entries.

For standard shadow paging, the host page table is never referenced by hardware, and

hence VMM can use other data structures instead of the architectural page-table format.

However, with agile paging, the processor will walk the host page table for addresses using

nested mode (at any level), and hence the VMM must build and maintain a complete host
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page table for each guest virtual machine as in nested paging.

Accessed and Dirty Bits: As with shadow paging, accessed and dirty bits are handled by

the VMM and kept consistent between shadow page table and guest page table. On the

first reference to a page, the VMM sets the accessed bit in the guest PTE and in the newly

created shadow PTE. The write-enable bit is not propagated to the new shadow PTEs from

the guest PTE. This ensures that the first write to the page will cause a protection fault,

which causes a VMtrap that checks the guest PTE for write enable bit. At this point, the

dirty bit is set in both the guest and shadow PTEs, and the shadow PTE is updated to

enable write access to the page. If the guest OS resets any of these bits, the writes to guest

page table are intercepted by the VMM which invalidates (or updates) the corresponding

shadow PTEs.

With agile paging, we use the same technique for pages completely translated by shadow

mode. Pages that end in nested mode instead use the hardware page walker, available for

nested paging, to update guest page table accessed and dirty bits. We describe an optional

hardware optimization in Section 5.3 that improves handling of accessed and dirty bits by

eliminating costly VMtraps involved with shadow mode.

Context-Switches: Context switches within the guest OS are fast with nested paging,

since guest OS is allowed to write to guest page table register. But with shadow paging,

the VMM must intervene on context switches to determine the shadow page table pointer

for the next process.

With agile paging, the context switching follows the mechanism used by shadow paging

for all processes. The guest OS writes to the guest page table register, which triggers a



88

trap to the VMM. The VMM finds the corresponding shadow page table and sets it in

the shadow page table register. Hence, the cost of a context switch with agile paging is

similar to shadow paging. We describe an optional hardware optimization in Section 5.3

that improves context switches in a guest OS by eliminating costly VMtraps involved in

shadow paging.

To summarize, the changes to the hardware and VMM to support agile paging is

incremental, but they result in a powerful, efficient and robust mechanism. The design is

applicable to architectures that support nested page tables (e.g., x86-64 and ARM) and any

hypervisor can use this architectural support. The hypervisor modifications are modest if

they support both shadow and nested paging (e.g., KVM [72], Xen [23], VMware [100] and

HyperV [9]).

5.2.3 Policies: What degree of nesting to use?

Agile paging provides a mechanism for virtualized address translation that starts in shadow

mode and switches at some level of the guest page table to nested mode. The purpose

of a policy is to determine whether to switch from shadow to nested mode for a single

virtualized address translation and at which level of the guest page table the switch should

be performed.

The ideal policy would determine that the page table entries are changing rapidly

enough and the cost of corresponding updates to the shadow page table outweighs the

benefit of faster TLB misses in shadow mode and thus the translation should use nested

mode. The policy would quickly detect the dynamically changing parts of the guest page
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table and switch them to nested mode while keeping the rest of the static parts of the guest

page table under shadow mode. Note that programs with very few TLB misses should use

nested paging for the whole address space, as shadow mode has no benefit.

To achieve the above goal, a policy will move some parts of the guest page table from

shadow to nested mode and vice-versa. We assume that the guest process starts in full

shadow mode. We propose one static policy to move parts from shadow to nested mode

and two online policies to move parts back from nested to shadow mode.

Shadow⇒Nested mode: Detecting dynamically changing parts of a guest page table is

convenient when these parts are in shadow mode. These parts are marked read-only, thus

any attempt to change an entry requires a VMM intervention (Section 5.2.2). Agile paging

uses this to track the dynamic parts of the guest page table in the VMM and move those

parts to nested mode.

To design a policy, we observe that updates to a page in page table are bimodal at a

time interval of 1 second: only one update or many updates (e.g., 10, 50 or 500) within a

second. Similar observations were made by Linux-KVM developers and used it to guide

unsyncing a page of shadow page table [4]. For agile paging, if two writes to any level of

the page table are detected by the VMM in a fixed time interval, then that level and all

levels below it are moved to nested mode. This policy provides a small threshold like the

one used in branch predictors for switching modes.

Nested⇒Shadow mode: The second, more complex, part of the policy is to detect when

the workload changes behavior and stops changing the guest page table dynamically. This

requires the switching parts of the guest page table back from nested to shadow mode to
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minimize TLB miss latency.

Our first simple online policy moves all the parts of the guest page table from nested

back to shadow mode at fixed time interval and then use the above policy to move dynamic

parts of the guest page table back to nested mode. While this policy is simple, it can lead to

high overheads if the parts of the guest page table oscillate between the two modes.

A second more complex but effective policy uses dirty bits on the nested parts of the

guest page table to detect changes to the guest page table itself. Under this policy, at the

start of a fixed time interval, the VMM clears the dirty bits on the host page table entries

mapping the pages of the guest page table. At the end of the interval, the VMM scans the

host page table to which guest page table pages have dirty bits, which indicates the dynamic

parts of the guest page table under nested mode. The non-dynamic parts of the guest page

table (pages which did not have the dirty bit set) are switched back to shadow mode. The

parent level of the guest page table is converted to shadow mode before converting child

levels.

Short-Lived or Small Processes: Nested paging performs well for short-lived processes

and for processes that have a very small memory-footprint since they do not run long

enough to amortize the cost of constructing a shadow page table or do not suffer from TLB

misses [29]. With agile paging, an administrative policy can be made to start the process

in nested mode (no use of shadow mode) and turn on shadow mode after a small time

interval (e.g., 1 sec) if TLB miss overhead is sufficiently large. The VMM can measure the

TLB miss overhead with help of hardware performance counters and perform the switch

to use agile paging.
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To summarize, with our proposed policies, the VMM detects changes to the page tables

and intelligently makes a decision to switch modes to reduce overheads.

5.3 Hardware Optimizations

Shadow paging was developed as a software-only technique to virtualize memory before

there was hardware support. We propose two optional hardware optimizations that can

further reduce the number of VMtraps associated with shadow paging and agile paging’s

shadow mode.

Handling Accessed and Dirty Bits: Agile paging requires costly VMtraps to keep accessed

and dirty bits synchronized for regions of guest page table under shadow mode. Unlike

shadow paging, in agile paging, the hardware has access to all three page tables (guest, host,

shadow). As a result, we propose to extend hardware to set the accessed/dirty bit in all

three page tables rather than just in the shadow. The extra page walk required to perform

the write of accessed/dirty bits requires a full nested walk (up to 24 memory accesses) and

will be faster than a long VMtrap. In addition, recent Intel Broadwell processors introduced

two hardware page walkers per-core to help handle multiple outstanding TLB misses and

writing accessed/dirty bits. Similar hardware for page walkers can be leveraged to perform

writes to all page tables in parallel. Thus, in the worst case, on first write to a page will cost

a two-level TLB miss to update the dirty bit.

Context-Switches: With every guest process context switch, the guest OS writes to the

guest page table register, but is not allowed to set the shadow page table register since it

does not have knowledge about the shadow page table. This results in costly VMtraps on
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context switches, which can degrade performance for workloads that do so frequently. In

order to avoid these VMtraps, we propose adding a small 4-8 entry hardware cache to hold

shadow page table pointers and their corresponding guest page table pointer, similar to

how a TLB holds physical page numbers corresponding to virtual frame numbers. This

cache can be filled and managed by the VMM (with help of new virtualization extensions)

and accessed by the hardware on a context switch. So, if the guest OS writes to guest page

table pointer register, hardware quickly checks this cache to see if there exists a shadow

page table pointer corresponding to that guest process. On a hit, the hardware sets the

shadow page table register without a VMtrap.

5.4 Paging Benefits

Agile paging is flexible and supports all features of conventional paging. We next describe

how three important paging features that are supported with agile paging.

Large Page Support: Current processors support larger page sizes (2MB and 1GB pages

in x86-64) by reducing the levels of the page tables and mapping larger regions of aligned

contiguous virtual memory to aligned contiguous physical memory. Larger page sizes

reduce the number of TLB misses for workloads with large working sets. Larger page sizes

are supported at either or both stages for virtualized address translation with both shadow

and nested paging; when large pages are used only in one stage of translation (e.g., guest

only), they are in effect broken into smaller pages for entry into the TLB.

With agile paging, larger page sizes are supported using their current implementation

in shadow paging and nested paging. The shadow page table, guest page table and host



93

page table support larger page sizes as they all are multi-level page tables and can reduce

their depth. Thus, agile paging supports larger page sizes using the same mechanisms and

policies described in Section 5.2.

Content-Based Page Sharing: Content-based page sharing is a technique used by both the

guest OS and the VMM to save memory for many workloads. The guest OS or VMM scans

memory to find pages with identical content. When such pages are found, the guest OS or

VMM reclaims all but one copy and maps all the copies using copy-on-write [100]. This

mechanism shares pages within a process, between two guest processes and even between

two virtual machines. Reclamation by the guest OS requires changes to the guest page

table (and shadow page table if applicable) whereas reclamation by the VMM requires

changes to the host page table (and shadow page table if applicable).

As copy-on-write must update the page table, agile paging will naturally detect these

changes and move parts of the page table to nested mode to reduce overheads. The

overhead of copy-on-write is very high with shadow paging and will benefit from nested

mode provided by agile paging.

Memory pressure: When free memory is scarce, a guest OS will frequently scan and clear

the referenced bits of page tables looking for pages to reclaim (e.g., clock algorithm). With

shadow paging, this scanning causes VMtraps, which increases overhead on an already

stressed system. With agile paging, though, the VMM detects the page-table writes to clear

referenced bits and converts leaf-level page tables to nested mode to avoid the VMtraps.

To summarize, existing page-based mechanisms blend naturally with our proposed

technique. Agile paging has the agility to adapt to changing environments and is powerful
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Processor Dual-socket Intel Xeon E5-2430 (Sandy Bridge), 6 cores/socket
2 threads/core, 2.2GHz

Memory 96 GB DDR3 1066MHz
OS Linux kernel version 3.12.13

VMM QEMU (with KVM) version 1.6.2, 24vCPUs

L1 DTLB
4 KB pages: 64-entry, 4-way associative
2 MB pages: 32-entry, 4-way associative
1 GB pages: 4-entry, fully associative

L1 ITLB 4 KB pages: 128-entry, 4-way associative
2 MB pages: 8-entry, fully associative

L2 TLB 4 KB pages: 512-entry, 4-way associative

Table 5.3: System configurations and per-core TLB hierarchy.

to reduce overheads of memory virtualization.

5.5 Methodology

To evaluate our proposal, we emulate our proposed hardware with Linux and prototype

our software in KVM.

State of the art: We compare against six configurations: base native (B), nested paging

(N) and shadow paging (S), each with two page sizes 4KB and 2MB. The prior work,

SHSP [101] performs similarly to the best of shadow and nested paging, so we do not

evaluate it separately.

We run workloads to completion on real hardware as described in Table 6.5. We use

Linux’s perf utility [10] to measure (i) total execution cycles for all six configurations: base

native (EB), nested paging (EN) and shadow paging (ES) for both page sizes, (ii) number

of TLB misses (MB/N/S) (iii) cycles spent on TLB misses (TB/N/S) (iv) cycles spent in the

hypervisor (HB/N/S) (v) number of VMtraps (VB/N/S) for each page size. For the virtualized

setting, we use the same page size for both levels of address translation since they only
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Ideal execution time (from base native) Eideal = E2M − T 2M

Overhead of page walks (for both 4K and 2M) PWB/N/S = [EB/N/S − Eideal −HB/N/S]/E
ideal

Overhead of VMM (for both 4K and 2M) VMMB/N/S = HB/N/S/E
ideal

Avg. cycles per TLB miss (for both 4K and 2M) CB/N/S = TB/N/S/MB/N/S

Overhead of page walk (A) (for both 4K and 2M) PWA = [CN ∗
4∑

i=2
(FNi) + CS ∗ (1 −

4∑
i=1
FNi)

+(CN + CS) ∗ 0.5 ∗ FN1] ∗MB

Overhead of VMM (A) (for both 4K and 2M) VMMA = OS −
n∑

i=1
(FVi ∗ CEi)

Table 5.4: Performance model based on performance counters and BadgerTrap.

reduce TLB misses when both have same page size. For transparently using 2MB and

4KB page sizes, we turn on transparent huge page support in Linux [15]. Note that the

effects of various caching techniques like caching of PTEs in data caches [65], page walk

caches [24, 30], Intel EPT caches and nested TLBs [28, 29] are already included in the

performance measurement since they are part of the base commodity processor.

Linux does not use 1GB pages transparently and instead requires applications to explic-

itly allocate 1GB pages. Thus, we did not include that configuration. Agile paging supports

1GB page size (Section 5.4) and has the potential to reduce overheads of page walks with

1GB page size.

We calculate the overhead of page walks and that of VMM interventions and report

those for each of the six configurations based on the performance model described in

Table 5.4.

Agile Paging: We use a novel two-step approach to report improvements for agile paging.

We first generate a trace of page table updates from KVM and then use that trace with

BadgerTrap [52] (Chapter 3) to calculate performance using a linear model. Next we

describe our novel two-step methodology.
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Suite Description Workload Memory

SPEC 2006
compute and memory astar 350 MB
intensive single-threaded gcc 885 MB
workloads mcf 1.7 GB

PARSEC Shared-memory multi- canneal 780 MB
threaded workloads dedup 1.4 GB

BioBench Bioinformatics single- tigr 610 MBthreaded workloads

Big Memory
Generation, compression Graph500 73 GBand search of graphs
In-memory key-value cache Memcached 75 GB

Table 5.5: Workload description and memory footprint.

Step 1: The goal of this step is to create a list of dynamically changing gVAs to classify

under nested mode and calculate the fraction of VMtraps (FVi) that agile paging eliminates

with reason “i”. This emulates the optional hardware optimizations for agile paging as

well. The workload is run to completion with shadow paging on real hardware (described

in Table 6.5) with an instrumented VMM to create a per-vCPU trace of all updates to the

guest and host page table that lead to shadow page table updates. We use the trace-cmd

tool [14] with KVM, modified to print extra trace information, for creation of the trace

in this step. We process the trace to find which areas of the page tables are changing by

looking at the reasons for VMtraps. We record the gVAs being dynamically changed due to

changes on any level of the page table. This helps us create four lists of gVAs under nested

mode corresponding to their switching level of page table. The lists of gVAs are considered

under nested paging for step 2. This step also finds the fraction of VMM interventions that

agile paging will reduce (FVi) from the trace since areas of the page table under nested

paging are known. Note that we emulate our shadow-to-nested policy in an offline fashion

when processing the trace.
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Step 2: The goal of this step is to find the fraction of TLB misses that would be serviced

under nested mode (FNi) for each level "i“ the switch occurs. The workload is again run

to completion, but this time with nested paging along with BadgerTrap [52]: a tool that

converts all x86-64 TLB misses to a trap, which allows us to analyze TLB misses and

classify TLB addresses, while enabling full-speed execution of instructions with TLB hits

(Chapter 3). We instrument the TLB misses and classify them under shadow mode or

nested mode at each switching level. We compare TLB miss addresses against the gVAs for

nested mode to find the fraction of TLB misses serviced in nested mode at each switching

level i (FNi). We conservatively assume that when a TLB miss is serviced in nested mode

FN1 pays half the cost of a nested TLB miss beyond native and the rest FN2, FN3 and FN4

pays full cost of nested paging. This assumption leads to higher overheads for agile paging

than with real hardware.

Cost of VMtraps: We measure VMtrap latency as the cycles to complete the VMM

intervention: the VMexit operation and return plus the work done by the VMM in response

to the VMexit. The total cost varies and can be 1000s of cycles. We use LMbench [6] and

microbenchmarks to measure the cost of the VMtrap for a context switch, page table update

and page fault. We calculate reduction in cycles spent in the VMM, by subtracting the

number of VMtraps of each type multiplied by its cost.

Performance Model: We use the fractions calculated using the above two step approach

to develop a linear model to project performance for agile paging (A) with both page sizes

(i) fraction of VMtraps reduced (FVi) and, (ii) fraction of TLB misses serviced under nested

mode (FNi) for both page sizes. The linear model takes the performance of shadow paging,

subtracts the cost of VMtraps avoided, but adds in the higher cost of nested TLB misses.
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This linear performance model is similar to previous research [30, 53, 68, 83].

We use this new two step approach with the linear model to evaluate realistic workloads

(in time and data footprint). We use a linear performance model to illuminate trends. Our

two-phase approach includes the real system effects of page sharing, zapping of shadow

entries, page walk cache, etc., and approximates the performance impact of these effects

on agile paging.

Benchmarks: Our proposal is applicable to a wide variety of workloads from desktop to

big-memory workloads. To evaluate our proposal, we select workloads with high TLB-miss

overhead (more than 5MPKI) from SPEC [59], PARSEC [34], BioBench [22], and big-memory

workloads [25] as summarized in Table 5.5.

5.6 Results

This section evaluates the cost of address translation and VMM interventions of agile

paging, and shows that agile paging outperforms state-of-the-art techniques.

5.6.1 Performance analysis

Figure 5.4 shows the execution time overheads associated with page walk and VMM

interventions for each workload in eight different configurations: base native paging (bars

4K:B and 2M:B), nested paging (bars 4K:N and 2M:N), shadow paging (bars 4K:S and 2M:S)

and agile paging (bars 4K:A and 2M:A). Each bar is split into two segments. The bottom

segment represents the overheads associated with page walks and the top dashed segment

represents the overheads associated with VMM interventions.



99

 

  

0
%

1
0

%

2
0

%

3
0

%

4
0

%

4K:B

4K:N

4K:S

4K:A

2M:B

2M:N

2M:S

2M:A

4K:B

4K:N

4K:S

4K:A

2M:B

2M:N

2M:S

2M:A

4K:B

4K:N

4K:S

4K:A

2M:B

2M:N

2M:S

2M:A

4K:B

4K:N

4K:S

4K:A

2M:B

2M:N

2M:S

2M:A

m
e

m
ca

ch
e

d
ca

n
n

e
al

as
ta

r
gc

c

EXECUTION TIME OVERHEADS

0
%

2
0

%

4
0

%

6
0

%

8
0

%

1
0

0
%

4K:B

4K:N

4K:S

4K:A

2M:B

2M:N

2M:S

2M:A

4K:B

4K:N

4K:S

4K:A

2M:B

2M:N

2M:S

2M:A

4K:B

4K:N

4K:S

4K:A

2M:B

2M:N

2M:S

2M:A

4K:B

4K:N

4K:S

4K:A

2M:B

2M:N

2M:S

2M:A

gr
ap

h
5

0
0

m
cf

ti
gr

d
e

d
u

p

EXECUTION TIME OVERHEADS

M
ea

su
re

d
 p

ag
e 

w
al

k
M

ea
su

re
d

 V
M

tr
ap

M
o

d
el

e
d

 p
ag

e
 w

al
k

M
o

d
el

e
d

 V
M

tr
ap

Fi
gu

re
5.

4:
Ex

ec
ut

io
n

tim
e

ov
er

he
ad

s
du

e
to

pa
ge

w
al

ks
(b

ot
to

m
ba

r)
an

d
V

M
M

in
te

rv
en

tio
ns

(to
p

da
sh

ed
ba

r)
fo

r
al

l
w

or
kl

oa
ds

.



100

Agile paging outperforms its constituent techniques for all workloads and improves

performance by 12% over the best of nested and shadow paging on average. It performs

less than 4% slower than unvirtualized native at worst. On the other hand, nested and

shadow paging perform 31% and 70% slower than unvirtualized native at worst. We find:

1. For these workloads, the base native system with 4KB pages incurs high overheads. For ex-

ample, mcf, tigr and graph500 spend 50%, 32% and 41% respectively.

2. With virtualization, the overheads increase drastically under nested paging. For example,

the overheads increase from 50% to 97% for mcf (bar 4K:B vs. bar 4K:N). Compared

to native, translation overheads increase by 2.5×with nested paging using 4KB pages

(geometric mean).

3. Shadow paging has high cost due to VMM interventions for some workloads. While shadow

paging generally performs better than nested paging, it has high overheads for dedup,

memcached and gcc. Dedup has 57% overhead spent in the VMM servicing page

table updates. Compared to native, translation overheads increase by 3.1× with

shadow paging using 4KB pages.

4. Agile paging outperforms the best of shadow paging and nested paging for all workloads.

Agile paging achieves low cost of VMM interventions as well low latency TLB misses.

Agile paging is only 2.3% slower than native on average (up to 3.7%). These results

include the benefits of hardware optimizations.

5. 2MB large pages help reduce overheads of virtual memory. Agile paging helps reduce over-

heads further. Large pages consistently improve performance with agile paging as

compared to the 4KB page size.
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Switch Level Shadow L4 L3 L2 L1 Nested
Mem. accesses 4 8 12 16 20 24 Avg.
memcached 88.2% 4.5% 7.3% 0% 0% 0% 4.76
canneal 94.7% 4.6% 0.7% 0% 0% 0% 4.24
astar 92.3% 7.5% 0.2% 0% 0% 0% 4.32
gcc 81.6% 11.7% 6.7% 0% 0% 0% 5.00
graph500 99.8% 0.2% 0% 0% 0% 0% 4.01
mcf 99.1% 0.9% 0% 0% 0% 0% 4.04
tigr 88.3% 7.6% 3.1% 0% 0% 0% 4.51
dedup 91.4% 2.2% 6.4% 0% 0% 0% 4.60

Table 5.6: Percentage of TLB misses covered by each mode of agile paging while using
4KB pages assuming no page walk caches. Most of the TLB misses are served in shadow
mode.

5.6.2 Insights into Performance of Agile Paging

We report the fraction of TLB misses covered by each mode of agile paging in Table 5.6

for 4KB pages. For this table alone, we assume no page walk caches. More than 80% of

TLB misses are covered under complete shadow mode reducing TLB miss latency to 4

or 5 memory accesses. Thus, few of the pages suffering TLB misses also have frequent

page-table updates. By converting the changing portion of the guest page table to nested

mode, agile paging prevents most of the VMexits that makes shadow paging slower. We

also note that most of the upper-levels of the page table remain static after initialization

and hence use shadow mode. Overall, the average number of memory accesses for a TLB

miss comes down from 24 to between 4-5 for all workloads.

5.6.3 Discussion: Selective Hardware Software Paging (SHSP)

SHSP seeks to select the best paging technique dynamically [101]. Their results for a 64-bit

VM running SPEC workloads showed that SHSP achieves approximately the best of the

two techniques. While SHSP, with no hardware support, improves on a single system-wide
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choice, it is limited by the high cost of each virtualization technique alone. Agile paging

breaks that limitation and exceeds the best of shadow and nested paging by more than

12% on average, even with a pessimistic model. Moreover, Table 5.6 shows that only part

of the address space needs to switch from one mode to the other.

5.7 Summary

We and others have found that the overheads of virtualizing memory can be high. This is

true, in part, because currently guest processes must choose between (i) nesting paging

with slow 2D page table walks or (ii) shadow paging wherein page table updates cause

costly VMM interventions. Ideally, one would want to use nested paging for addresses and

page table levels that change, and use shadow paging for addresses and page table levels

that are relatively static.

Our proposal—Agile Paging—seeks the above ideal. With Agile Paging, a virtualized

address translation usually starts in shadow mode and then switches to nested mode only

if required to avoid VMM interventions. Agile paging requires a new hardware mechanism

to switch modes during a page walk in response to a page-table-entry bit set by the VMM.

The VMM policy seeks to invoke the mode change only on more dynamic page table entries.

We emulate the proposed hardware and prototype the software in Linux with KVM on

x86-64. We find that, for our workloads, agile paging robustly performs better than the

best of nested paging and shadow paging.
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Chapter 6

EXPLOITING RANGE TRANSLATIONS WITH REDUNDANT MEMORY

MAPPINGS

6.1 Introduction

Direct segments [25, 53] trades the flexibility of paging for performance which is good

for some applications, but not all. In addition, we learned from agile paging, that we can

preserve flexibility of paging and still reduce overheads of virtual memory. So, we find a

robust solution to reduce overheads of virtual memory in a native systems.

Chapter 1 shows that the performance of paging is suffering due to stagnant TLB sizes,

whereas modern memory capacities continue to grow, causing the problem of limited

TLB reach. Recent studies show that modern workloads can experience execution-time

overheads of up to 50% due to page table walks [25, 30, 69]. This overhead is likely to grow,

because physical memory sizes are still growing. Furthermore, many modern applications

have an insatiable desire for memory—they increase their data set sizes to consume all

available memory for each new generation of hardware [25, 50].

Previous research has focused on solving this problem by improving the efficiency of

paging in the following three ways.
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1. Multipage mappings use one TLB entry to map multiple pages (e.g., 8-16 pages per

entry) [81, 82, 96]. Mapping multiple pages per entry increases TLB reach by a small

fixed amount, but has alignment restrictions, and still leaves TLB reach far below

modern gigabyte-to-terabyte physical memory sizes.

2. Huge pages map much larger fixed size regions of memory, on the orders of 2 MB

to 1 GB on x86-64 architectures. Use of huge pages (THP [15] and libhugetlbfs [1])

increase TLB reach substantially, but also suffer from size and alignment restrictions

and still have limited reach.

3. Direct segments provide a single arbitrarily large segment and standard paging

for the remaining virtual address space [25, 53]. For applications that can allocate

and use a single segment for the majority of their memory accesses, direct segments

eliminate most of the paging cost. However, direct segments only support a single seg-

ment and require that application writers explicitly allocate a segment during startup.

The goal of our work is to provide a robust virtual memory mechanism that is transpar-

ent to applications and improves translation performance across a variety of workloads.

We introduce Redundant Memory Mappings (RMM) a novel hardware/software co-

designed implementation of virtual memory. RMM adds a redundant mapping, in addition

to page tables, that provides a more efficient representation of translation information for

ranges of pages that are both physically and virtually contiguous. RMM exploits the natural

contiguity in address space and keeps the complete page table as a fall-back mechanism.
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Figure 6.1: Range translation: an efficient representation of contiguous virtual pages
mapped to contiguous physical pages.

RMM relies on the concept of range translation. Each range translation maps a contiguous

virtual address range to contiguous physical pages, and uses BASE, LIMIT, and OFFSET

values to perform translation of an arbitrary sized range. Range translations are only

base-page-aligned and redundant to paging; the page table still maps the entire virtual

address space. Figure 6.1 illustrates an application with two ranges mapped redundantly

with paging as well as range translations.

Analogous to paging, we add a software managed range table to map virtual ranges

to physical ranges and a hardware range TLB in parallel with the last-level page TLB to

accelerate their address translation. Because range tables are redundant to page tables,

RMM offers all the flexibility of paging and the operating system may use or revert solely

to paging when necessary.

To increase contiguity in range translations, we change the OS’s default lazy demand

page allocation strategy to perform eager paging. Eager paging instantiates pages in

physical memory at allocation request time, rather than at first-access time as with demand
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paging. The resulting OS automatically maps most of process’s virtual address space with

orders of magnitude fewer ranges than paging with Transparent Huge Pages [15]. On a

wide variety of workloads consuming between 350 MB – 75 GB of memory, we find that

RMM has the potential to map more than 99% of memory for all workloads with 50 or

fewer range translations (see Section 6.2’s Table 6.2).

To evaluate this design, we implement RMM software support in Linux kernel v3.15.5.

We emulate the hardware using a combination of hardware performance counters from

an x86 execution and functional TLB simulation in BadgerTrap [53] (Chapter 3)—the

same methodology as in prior TLB studies [25, 30, 53]. We compare RMM to standard

paging, Clustered TLBs, huge (2 MB and 1 GB) pages, and direct segments (one range per

program). RMM robustly performs substantially better than the former three alternatives

on various workloads, and almost as fast as Direct segments when one range is applicable.

However with RMM, more applications enjoy reductions in translation overhead without

programmer intervention. Overall, RMM reduces the overhead of virtual memory to less

than 1% on average for our big-memory workloads.

In summary, the main contributions of this chapter are:

• We show that diverse workloads exhibit an abundance of contiguity in their virtual

address space.

• We propose Redundant Memory Mappings, a hardware/ software co-design, which

includes a fast and redundant translation mechanism for ranges of contiguous virtual

pages mapped to contiguous physical pages, and operating system modifications

that detect and manage ranges.
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Huge pages Ideal RMM ranges
Benchmark 4 KB + 2 MB total 99% coverage largest
astar 5129 + 158 55 7 76.2%
mcf 1737 + 839 55 1 99.0%
omnetpp 2041 + 77 54 12 60.2%
cactusADM 1365 + 333 112 49 2.4%
GemsFDTD 3117 + 414 73 6 71.7%
soplex 4221 + 411 61 5 41.9%
canneal 10016 + 359 77 4 90.9%
streamcluster 1679 + 55 78 14 83.8%
mummer 29571 + 172 17 4 57.5%
tigr 28299 + 235 16 3 97.9%
Graph500 8983 + 35725 86 3 50.4%
Memcached 4243 + 36356 82 2 98.6%
NPB:CG 2540 + 26058 84 5 28.8%
GUPS 2210 + 32803 92 1 99.7%

Table 6.2: Total translation entries mapping the application’s memory with: (i) Trans-
parent Huge Pages of 4 KB and 2 MB pages [15] and (ii) ideal RMM ranges of contiguous
virtual pages to contiguous physical pages. (iii) Number of ranges that map 99% of the
application’s memory, and (iv) percentage of application memory mapped by the single
largest range.

• We prototype RMM in Linux and evaluate it on a broad range of workloads. Our

results show that a modest number of ranges map most of memory. Consequently,

the range TLB achieves extremely high hit rates, eliminating the vast majority of costly

page-walks compared to virtual memory systems that use paging alone.

This proposal was created in collaboration with Vasileios Karakostas with both of

us as primary authors and was orginally published in the 42nd ACM/IEEE Symposium

on Computer Architecture (ISCA-42) 2015 [68]. A shorter version of this proposal was

selected for and published in IEEE Micro Special Issue: Micro’s Top Picks from Architecture

Conferences 2016 [55].
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four orders of magnitude fewer entries than pages.

6.2 Redundant Memory Mappings

We observe that many applications naturally exhibit an abundance of contiguity in their

virtual address space and the number of ranges needed to represent this contiguity is low.

Abundance of address contiguity. We quantify address contiguity by executing appli-

cations on x86-64 hardware (see Section 6.6 for workload and methodology details), and

periodically scan the page table, measuring the size of virtual address ranges where all

pages are mapped with the same permissions. Table 6.2 shows the minimum number of

ranges of contiguous virtual pages that the OS could map to contiguous physical pages.

The workloads require between 16 to 112 ranges to map their entire virtual address space.

However, the number of ranges to cover 99% of the application’s memory space falls to

fewer than 50. Although a single range maps 90% or more of the virtual memory for
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5 of the 14 workloads, the rest require multiple ranges. Figure 6.2 plots the number of

pages and contiguous virtual page ranges required to map all of an application’s address

space for seven representative workloads. Hence, a modest number of ranges have the

potential to efficiently perform address translation for the majority of virtual memory

addresses—orders of magnitude less than with regular or even huge PTEs.

6.2.1 Overview

The above measurements motivate the RMM approach. (i) The OS uses best-effort allocation

to detect and map contiguous virtual pages to contiguous physical pages in a range table

in addition to mapping with the page table. (ii) The hardware range TLB caches multiple

range translations providing an alternate translation mechanism, parallel to paging. (iii)

Most addresses fall in ranges and hit in the range TLB, but if needed, the system can revert

to the flexibility and reduced fragmentation benefits of paging.

Definition: A range translation is a mapping between contiguous virtual pages mapped

to contiguous physical pages with uniform protection bits (e.g., read/write). A range

translation is of unlimited size and base-page-aligned. A range translation is identified by

BASE and LIMIT addresses. To translate a virtual range address to physical address, the

hardware adds the virtual address to the OFFSET of the corresponding range. Figure 6.3

shows how RMM maps parts of the process’s address space with both range translations

and pages.

Redundant Memory Mappings (RMM) use range translations to perform address transla-

tion much more efficiently than paging for large regions of contiguous physical addresses.
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Figure 6.3: Redundant Memory Mappings design. The application’s memory space is
represented redundantly by both pages and range translations.
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Page Translation (x86-64) + Range Translation

Architecture

TLB range TLB
page table range table
CR3 register CR-RT register
page table walker range table walker

OS page table management range table management
demand paging eager paging

Table 6.3: Overview of Redundant Memory Mapping

We introduce three novel components to manage ranges: (i) range TLBs, (ii) range tables,

and (iii) eager paging allocation. Table 6.3 summarizes these new components and their

relationship to paging. The range TLB hardware stores range translations and is accessed in

parallel to the last-level page TLB (e.g., L2 TLB). The address translation hardware accesses

the range and page TLBs in parallel after a miss at the previous-level TLB (e.g., L1 TLB). If

the request hits in the range TLB or in the page TLB, the hardware installs a 4 KB TLB entry

in the previous-level TLB, and execution continues. In the uncommon case that a request

misses in both range TLB and page TLB, and the address maps to a range translation, the

hardware fetches the page table entry to resume execution and optionally fetches a range

table entry in the background.

RMM performance depends on the range TLB achieving a high hit ratio with few

entries. To maximize the size of each range, RMM extends the OS page allocator to improve

contiguity with an eager paging mechanism that instantiates a contiguous range of physical

pages at allocation time, rather than the on-demand default, which instantiates pages

in physical memory upon first access. The OS always updates both the page table and

the range table to consistently manage the entire memory at both the page and range

granularity.
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6.3 Architectural Support

The RMM hardware primarily consists of the range TLB, which holds multiple range

translations, each of which translates for an unlimited-size range. Below, we describe RMM

as an extension to the x86-64 architecture, but the design applies to other architectures as

well.

6.3.1 Range TLB

The range TLB is a hardware cache that holds multiple range translations. Each entry maps

an unlimited range of contiguous virtual pages to contiguous physical pages. The range

TLB is accessed in parallel with the last-level page TLB (e.g., the L2 TLB) and in case of hit,

it generates the corresponding 4 KB entry in the previous-level page TLB (e.g., the L1 TLB).

We design the range TLB as a fully associative structure, because each range can be

any size making standard indexing for set-associative structure hard. The right side of

Figure 6.4 illustrates the range TLB and its logic with N (e.g., 32) entries. Each range

TLB entry consists of a virtual range and translation. The virtual range stores the BASEi

and LIMITi of the virtual address range map. The translation stores the OFFSETi that

holds the start of the range in physical memory minus BASEi, and the protection bits (PB).

Additionally, each range TLB entry includes two comparators for lookup operations.

Figure 6.4 illustrates accessing the range TLB in parallel with the L2 TLB, after a miss

at the L1 TLB. The hardware compares the virtual page number that misses in the L1 TLB,

testing BASEi 6 virtual page number < LIMITi for all ranges in parallel in the range TLB.

On a hit, the range TLB returns the OFFSETi and protection bits for the corresponding
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range translation and calculates the corresponding page table entry for the L1 TLB. It adds

the requested virtual page number to the hit OFFSETi value to produce the physical page

number and copies the protection bits from the range translation. On a miss, the hardware

fetches the corresponding range translation—if it exists—from the range table. We explain

this operation in Section 6.3.3 after discussing the range table in more detail.

The range TLB is accessed in parallel with the last-level page TLB and must return the

lookup result (hit/miss) within the TLB access latency, which for the L2 TLB on recent

Intel processors is ~7 cycles [65]. Unlike a page TLB, the range TLB is similar to N fully-

associative copies of direct segment’s base/limit/offset logic [25] or a simplified version of

the range cache [99]: it performs two comparisons per entry instead of a single equality

test. Our design can achieve this performance because the range TLB contains only a few

entries and it can use fast comparison circuits [71]. Our results in Section 6.7 show that a

32-entry fully-associative range TLB eliminates more than 99% of the page-walks for most

of our applications, at lower power and area cost than simply increasing the size of the

corresponding L2 TLB. Note that our approach of accessing the range TLB in parallel to the

last-level page TLB can be extended to the other translation levels closer to the processor

(e.g., in parallel to the L1 TLB); we leave such analysis for future work.

Optimization. To reduce the dynamic energy cost of the fully associative lookups, we

introduce an optional MRU Pointer that stores the most-recently-used range translation

and thus reduces associative searches of the range TLB. The range TLB first checks the

MRU Pointer and in case of a hit, skips the other entries. Otherwise, the range TLB checks

all valid entries in parallel. Note that the MRU Pointer can serve translation requests faster

than the corresponding page TLB and may further boost performance.
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RTEC RTED RTEF RTEG

RTEA RTEB RTEE RTEH RTEI

CR-RT

Range Translation or
Range Table Entry

BASE LIMIT

1247 1247

OFFSET    +  Protection

064

Figure 6.5: The range table stores the range translations for a process in memory. The
OS manages the range table entries based on the applications memory management
operations.

6.3.2 Range table

The range table is an architecturally visible per-process data structure that stores the process’s

range translations in memory. The role of the range table is similar to that of the page table.

A hardware walker loads range translations from the range table on a range TLB miss,

and the OS manages range table entries based on the application’s memory management

operations.

We propose using a B-Tree data structure with (BASEi, LIMITi) as keys and OFFSETi

and protection bits as values to store the range table. B-trees are cache friendly and keep

the data sorted to perform search and update operations in logarithmic time. Since a single

B-Tree node may have multiple ranges and children, it is a dense representation of ranges.

The number of ranges per range table node defines the depth of the tree and the average

number of node lookups to perform a search/update operation. Figure 6.5 shows how the

range translations are stored in the range table and the design of each node. Each node
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accommodates four range translations and points to five children, e.g., up to 124 range

translations in three levels. Since each range translation is represented at page-granularity

with the BASE (48 architectural bits −12 bits per page=36 bits), the LIMIT (36 bits), and

the OFFSET and protection bits together (64-bits conventional PTE size), thus each range

table node fits in two cache-lines. This design ensures the traversal of the range table is

cache-friendly, accesses only a few cache lines per operation, and maintains the dense

representation. Note that the range table is much smaller than a page table: a single 4 KB

page stores 128 range translations, which is more than enough for almost all our workloads

(Table 6.7). All the pointers to the children are physical addresses, which facilitate walking

the range table in hardware.

Analogous to the page table pointer register (CR3 in x86-64), RMM requires a CR-

RT register to point to the physical address of the range table root to perform address

translation, as we explain next.

6.3.3 Handling misses in the range TLB

On a miss to the range TLB and corresponding page TLB, the hardware must fetch a

translation from the memory. Two design issues arise with RMM at this point. First, should

address translation hardware use the page table to fetch only the missing PTE or the range

table to fetch the range translation? Second, how does the hardware determine if the

missing translation is part of a range translation and avoid unnecessary lookups in the

range table? Because ranges are redundant, there are several options.

Miss-handling order. RMM first fetches the missing translation from the page table, as all
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valid pages are guaranteed to be present, and installs it in the previous-level TLB so that

the processor can continue executing the pending operation. This choice avoids additional

latency from accessing the range table for pages that are not redundantly mapped. In the

background, the range table walker hardware resolves whether the address falls in a range

and if it does, updates the range table with the range table entry. Thus when both the range

table and page TLB miss, the miss incurs the cost of a page-walk. Any updates to the range

TLB occur off the critical path.

Identifying valid range translations. To identify whether a miss in the range TLB can be

resolved to a range or not, RMM adds a range bit to the PTE, which indicates whether a

page is part of a range table entry. The page table walker fetches the PTE, and if the range

bit is set, accesses the range table in the background. Without this hint, available from

redundancy, the range table walker would have to check the range table on every TLB miss.

Alternatively, hardware could use prediction to decide whether to access the range table,

which requires no changes to page table entries, but we did not evaluate this option.

Walking the range table. Similar to the page table walker, RMM introduces the range

table walker that consists of two comparators and a hardware state machine. The range

table walker walks the range table in the background starting from the CR-RT register. The

walker compares the missing address with the range translations in each range table node

and follows the child pointers until it finds the corresponding range translation and installs

it in the range TLB. To simplify the hardware, an OS handler could perform the range table

lookup.

Shootdown. The OS uses the INVLPG instruction to invalidate stale virtual to physical trans-

lations (including changes in the protection bits) during the TLB shootdown process [36].
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To ensure correct functionality, RMM modifies the INVLPG instruction to invalidate all

TLB entries and any range TLB entry that contains the corresponding virtual page. The

modified OS may thus use this instruction to keep all TLBs and the range TLB coherent

through the TLB shootdown process. The OS may also associate each range TLB entry with

an address space identifier, similar to TLB entries, to perform context switches without

flushing the range TLB.

6.4 Operating System Support

RMM requires modest operating system (OS) modifications. The OS must create and

manage range table entries in software and coordinate them with the page table. We

modify the OS to increase the size of ranges with an eager paging allocation mechanism.

We prototype these changes in Linux, but the design is applicable to other OSes.

6.4.1 Managing range translations

Similar to paging, the process control block in RMM stores a range table pointer (RT pointer)

with the physical address of the root node of the range table. When the OS creates a process,

it allocates space for the range table and sets the RT pointer. On every context switch, the

OS copies the RT pointer to the CR-RT register and then the range table walker uses it to

walk the range table.

The OS updates the range table when the application allocates or frees memory or the

OS reclaims a page. The OS analyzes the contiguity of the affected page(s). Based on a

contiguity threshold (e.g., 8 pages), the OS adds, updates, or removes a range translation



120

from the range table. The OS avoids creating small range translations that could cause

thrashing in the range TLB. The OS can modify the contiguity threshold dynamically, based

on the current number and size of range translations, and the performance of the range

TLB (option not explored). The OS updates the range bit in all the corresponding PTEs for

the range to keep them consistent.

6.4.2 Contiguous memory allocation

Achieving a high hit ratio in the range TLB and thus low virtual memory overheads requires

a small number of very large range translations that satisfy most virtual address translation

requests. To this end, RMM modifies the OS memory allocation mechanism to use eager

paging, which strives to allocate the largest possible range of contiguous virtual pages to

contiguous physical pages. Eager paging requires modest changes to Linux’s default buddy

page allocator.

Default buddy allocator. The buddy allocator splits physical memory in blocks of 2order

pages, and manages the blocks using separate free-lists per block size. A kernel compile-

time parameter defines the maximum size of memory blocks (2max_order) and hence the total

number of the free-lists. The buddy allocator organizes each free-list in power-of-two

blocks and satisfies requests from the free-list of the smallest size. If a block of the desired

2i size is not available (i.e., free-list[i] is empty), the OS finds the next larger 2i+k size free

block, going from k = 1, 2, ... until it finds the smallest free block large enough to satisfy

the request. The OS then iteratively splits a block in two, until it creates a free block of

the desired 2i size. It then assigns one free block to the allocation and adds any other free
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compute the memory fragmentation;
if memory fragmentation 6 threshold then

// use eager paging;
while number of pages > 0 do

for (i = MAX_ORDER-1; i > 0; i–) do
if freelist[i] > 0 and 2i 6 number of pages then

allocate block of 2i pages;
for all 2i pages of the allocated block do

construct and set the PTE;
end
add the block to the range table;
number of pages – = 2i;
break;

end
end

end
else

// high memory fragmentation - use demand paging;
for (i = 0; i < number of pages; i++) do

allocate the PTE;
set the PTE as invalid so that the first access will trigger a page fault and the
page will get allocated;

end
end

Figure 6.6: RMM memory allocator pseudocode for an allocation request of number of
pages. When memory fragmentation is low, RMM uses eager paging to allocate pages at
request-time, creating the largest possible range for the allocation request. Otherwise,
RMM uses default demand paging to allocates pages at access-time.

blocks it creates to the appropriate free-lists. When the application later frees a 2i block,

the OS examines its corresponding buddy block (identified by its address). If this block is

free, the OS coalesces the two blocks, resulting in a 2i+1 block. The buddy allocator thus

easily splits and merges blocks during allocations and deallocations respectively.

Despite contiguous pages in the buddy heap, in practice most allocations are of a

single page because of demand paging. Operating systems use demand paging to reduce

allocation latency by deferring page instantiation until the application actually references
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the page. Therefore, the application’s allocation does not trigger OS allocation, but rather

when the application first writes or reads a page, the OS allocates a single page (from

free-list[0]). Demand allocation at access-time degrades contiguity, because (i) it allocates

single pages even when large regions of physical memory are available, and because (ii)

the OS may assign pages accessed out-of-order to non-contiguous physical pages even

though there are contiguous free pages.

Eager paging. Eager paging improves the generation of large range translations by allocat-

ing consecutive physical pages to consecutive virtual pages eagerly at allocation, rather

than lazily on demand at access time. At allocation request time (e.g., when the application

performs an mmap, mremap or brk call), if the request is larger than the range threshold,

the OS establishes one or more range translations for the entire request and updates the

corresponding range and page table entries. We note that demand paging replaced eager

paging in early systems [16]. However, one motivation for demand paging was to limit

unnecessary swapping in multiprogrammed workloads, which modern large memories

make less common [25]. We find that the high cost of TLB misses, makes eager paging a

better choice with RMM hardware in most cases.

Eager paging increases latency during allocation and may induce fragmentation, be-

cause the OS must instantiate all pages in memory, even those the application never uses.

However unused memory is not permanently wasted. The OS could monitor memory use

in range translations and reclaim ranges and pages with standard paging mechanisms,

but we leave this exploration for future work. Allocating memory at request-time gener-

ates larger range translations compared to the access-time policy of demand paging and

improves the effectiveness of RMM hardware.
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Algorithm. Figure 6.6 shows simplified pseudocode for eager paging. If the application

requests an allocation of size N×pages, eager paging allocates the 2i block, as described

above. This simple algorithm only provides contiguity up to the maximum managed block

size. If the application requests more memory than the maximum managed block, the OS

will allocate multiple maximum blocks. Two optimizations further improve contiguity.

First, eager paging could sort the blocks in the free-lists, to coalesce multiple blocks and

generate range translations larger than the maximum block. Second, to generate large

range translations from allocations that are smaller than the maximum block, eager paging

could request a block from a larger size free-list, assign the necessary pages, and return

the remaining blocks to the corresponding smaller sized free-lists. These enhancements

introduce additional trade-offs that warrant more investigation. Note that in our RMM

prototype, we did not implement these two enhancements. Nonetheless, the simple eager

paging algorithm generates large range translations for a variety of block sizes and exploits

the clustering behavior of the buddy allocator [81, 82].

Finally, eager paging is only effective when memory fragmentation remains low and

there is ample space to populate ranges at request time. If memory fragmentation or

pressure increases, the OS may fall back to its default paging allocation.

6.5 Discussion

This section discusses some of the hardware and operating systems issues that a production

implementation should consider, but leaves the implications for automatic and explicit

memory management and for applications as future work.
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TLB friendly workloads. If an application has a small memory footprint and experiences

a low page TLB miss rate, the range TLB may provide little performance benefit while

increasing the dynamic energy due to range TLB accesses. The OS can monitor the memory

footprint and then dynamically enable and disable the range TLB. The OS would still

allocate ranges and populate the range table, but then it could selectively enable the range

TLB based on performance-counter measurements and workload memory allocation.

Accessed & Dirty bits. The TLB in x86 processors is responsible for setting the accessed bit

in the corresponding PTE in memory on the first access to a page and the dirty bit on the

first write. The range TLB does not store per-page accessed/dirty bits for the individual

pages that compose a range translation. Thus, on a range TLB hit, the range TLB cannot

determine whether it should set the accessed or dirty bit. The OS may address this issue

by setting the accessed and dirty bits for all the individual pages of a range translation

eagerly at allocation time, instead of at access or write time. If the OS needs to reclaim

or swap a page in an active range because of memory pressure, it may. Because the OS

manages physical memory at the page-granularity—not at the range granularity—it may

reclaim and swap individual pages by dissolving a range completely and then evicting and

swapping pages individually. Another option is for the OS to break a range in to multiple

smaller ranges and dissolve one of the resulting ranges.

Copy-on-write. Copy-on-write is a virtual memory optimization in which processes ini-

tially share pages and the OS only creates separate individual pages when one of the

processes modifies the page. This mechanism ensures that these changes are only visible to

the owning process and to no other process. To implement this functionality, copy-on-write

uses per-page protection bits that trigger a fault when the page is modified. On a fault,



125

the OS copies the page and updates the protection bits in the page table. With RMM, the

range translations hold the protection bits at range granularity, not on individual pages.

One simple approach is to use range translations for read-only shared ranges, but dissolve

a range into pages when a process writes to any of its pages. Alternatively, the OS could

copy the entire range translation on a fault.

Fragmentation. Long-running server and desktop systems will execute multiple processes

at once and a variety of workload mixes. Frequent memory management requests from

complex workloads may cause physical memory fragmentation and limit the performance

of RMM. If the OS cannot find a sufficiently large range of free pages in memory, it should

default to paging-only and disable the range TLB. However, abundant memory capacity

coupled with fragmentation is not uncommon, since a few pages scattered throughout

memory can cause considerable fragmentation [42]. In this case, the OS could perform

full compaction [25, 82], or partial compaction with techniques adapted from garbage

collection [37, 42].

6.6 Methodology

To evaluate virtual memory system performance on large memory workloads, we imple-

ment our OS modifications in Linux, define RMM hardware with respect to a recent Intel

x86-64 Xeon core, and report overheads using a combination of hardware performance

counters from application executions and functional TLB simulation.

RMM operating system prototype. We prototype the RMM operating system changes in

Linux x86-64 with kernel v3.15.5. We implement the management of the range tables by



126

Suite Description Input Memory

SPEC 2006

astar 350 MB
compute & memory cactusADM 690 MB
intensive single-threaded GemsFDTD 860 MB
workloads mcf 1.7 GB

omnetpp 165 MB
soplex 860 MB

PARSEC RMS multi-threaded canneal 780 MB
workloads streamcluster 120 MB

BioBench Bioinformatics single- mummer 470 MB
threaded workloads tigr 610 MB

Generation, compression Graph500 73 GBand search of graphs
In-memory key-value cache Memcached 75 GB

Big memory NASA’s high performance NPB:CG 54 GBparallel benchmark suite.
Random access benchmark GUPS 67 GB

Table 6.4: Workload description and memory footprint.

intercepting all kernel memory-management operations. We implement range creation and

eager paging by modifying the mmap, brk and mremap system calls. For our prototype range

table, we implement a simple linked list rather than a B-tree. Because our applications

spend only a tiny fraction of their time in the OS and the range TLB refill is not on the

processor’s critical path, this simplification does not affect our results.

We use a contiguity threshold of 32 KB (8 pages) to define the minimum size of a range

translation. To increase the maximum size of a range, we increase the maximum allocation

size in the buddy allocator to 2 GB, up from 4 MB by modifying the max_order parameter

of the buddy allocator from 11 to 20. Because the default glibc memory management

implementation does not coalesce allocations into fixed-size virtual ranges, we instead
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Description

Processor Dual-socket Intel Xeon E5-2430 (Sandy Bridge),
6 cores/socket, 2 threads/core, 2.2 GHz

Memory 96 GB DDR3 1066MHz
OS Linux kernel version 3.15.5

L1 DTLB
4 KB pages: 64-entry, 4-way associative
2 MB pages: 32-entry, 4-way associative
1 GB pages: 4-entry, fully associative

L1 ITLB 4 KB pages: 128-entry, 4-way associative
2 MB pages: 8-entry, fully associative

L2 TLB 4 KB pages: 512-entry, 4-way associative
2 MB pages:

range TLB unrestricted sizes: 32-entry, fully associative

Table 6.5: System configurations and per-core TLB hierarchy.

use the TCMalloc library [13]. In addition, we modify TCMalloc to increase the maximum

allocation size from 256 KB to 32 MB.

RMM hardware emulation. We evaluate the RMM hardware described in Section 6.3 with

Intel Sandy Bridge core shown in Table 6.5. We choose a 32-entry fully associative range

TLB accessed in parallel with the L2 page TLB, since we estimate that it can meet the L2’s

timing constraints.

To measure the overheads of RMM, we combine performance counter measurements

from native executions with TLB performance emulation using a modified version of

BadgerTrap [52] (Chapter 3). Compared to cycle-accurate simulation on these workloads,

this approach reduces weeks of simulation time by orders of magnitude. Previous virtual

memory system performance studies use this same approach [25, 30, 53].

BadgerTrap instruments x86-64 TLB misses. We add a functional range TLB simulator
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in the kernel that BadgerTrap invokes. On each page L2 TLB miss, BadgerTrap performs

a range TLB lookup. Note that the actual implementation would perform the range TLB

lookup in parallel, rather than after the L2 TLB miss. This emulation may thus underesti-

mate the benefit of the range TLB, because the real hardware will install a missing page

table entry, even if the virtual address hits in the range TLB. The actual RMM implemen-

tation reduces traffic to the L2 page TLB on range TLB hits, freeing up page TLB entries

and potentially making it more effective. This simulation methodology may itself perturb

TLB behavior. To minimize this problem, we allocate a 2 MB page in the kernel for the

simulator itself, which reduces the differences with an unmodified kernel to less than 5%.

Performance model. We estimate the impact of RMM on system performance with the

following methodology. First, we run the applications on the real system (Table 6.5) with

realistic input sets until completion and collect processor and TLB statistics using hardware

performance counters. We use the Linux perf utility [10] to read the performance counters.

We collect total execution cycles, misses for L2 TLB, and cycles spent in page-walks. Based on

these measurements we calculate (i) the ideal execution time (no virtual memory overhead),

(ii) the measured overhead spent in page-walks, and (iii) the estimated overhead with the

simulated hardware mechanisms based on the fraction of reduced page-walks, using a

simple linear model [25, 53] given in Table 6.6.

Benchmarks. RMM is designed for a wide range of applications from desktop applications

to big-memory workloads executing on scale-out servers. To evaluate the effectiveness of

RMM, we select workloads with poor TLB performance from SPEC 2006 [59], BioBench [22],

Parsec [34] and big-memory workloads [25] as summarized in Table 6.4. We execute each

application sequentially on a single test machine without rebooting between experiments.
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Performance Model
Ideal execution time Tideal = T2M − C2M

Average page-walk cost AvgC4K/2M = C4K/2M/M4K/2M

Measured page-walk overhead Over4K/2M = C4K/2M/Tideal

Simulated page-walk overhead OverSIM =MSIM ∗AvgC4K/Tideal
T: Total execution cycles M4K/2M: page-walks with 4K/2M
C: Cycles spent in page-walks MSIM: Simulated page-walks

Table 6.6: Performance model based on hardware performance counters and Badger-
Trap.

6.7 Results

This section evaluates the cost of address translation, the impact of eager paging, and

implications on energy of RMM, and shows substantial improvements in performance over

current and proposed systems.

We compare RMM performance to the following systems. (i) We measure the virtual

memory overheads of a commodity x86-64 processor (see Table 6.5) with 4 KB pages, 2 MB

pages with transparent huge pages, and 1 GB pages with libhugetlbfs using hardware

performance counters. (ii) We emulate multipage mappings in BadgerTrap. We implement

the Clustered TLB approach [81] of Pham et al., configured with 512 fully-associative

entries. Each entry indexes up to an 8-page cluster, shown best by Clustered TLB [81].

We use eager paging to increase the opportunities to form multipages, improving on the

original implementation. (iii) We emulate the performance of ideal direct segments. We

assume all fixed-size memory regions that live for more than 80% of a program’s execution

time can be coalesced in a single contiguous range, which can be used to estimate the

reduction in TLB misses with direct segment hardware [25].
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6.7.1 Performance analysis

Figure 6.7 shows the overhead spent in page-walks for RMM compared to other techniques.

The 4 KB, 2 MB Transparent Huge Pages (THP) [15] and 1 GB [1] configurations show the

measured overhead for the three different page sizes available on x86-64 processors. All

other configurations are emulated. The CTLB bars show Clustered TLB [81] results. The

DS bars show direct segments [25] results and the RMM bars show the 32-entry range TLB

results.

RMM performs well on all configurations for all workloads, improving substantially

over all the other approaches, except direct segments. RMM eliminates the vast majority of

page-walks, significantly outperforms the Clustered TLB (CTLB), huge pages (THP and

1GB) and achieves similar or better performance to direct segments, but has none of its

limitations. On average, RMM reduces the overhead of virtual memory to less than 1%.

For most workloads, the base page size (4 KB) incurs high overheads. For example, mcf,

cactusADM, and graph500 spend 42%, 39% and 29% of execution time in page-walks due

to TLB misses. Even the applications with smaller working sets, such as astar, omnetpp,

and mummer, still suffer substantial paging overheads using 4 KB pages.

Clustered TLB (CTLB) only offers limited reductions in overhead and only for small-memory

workloads. CTLB performs better than 4 KB pages on small-memory workloads, such as

cactusADM, canneal, and omnetpp. However, CTLB provides little benefit on big-memory

workloads and performs worse than THP overall.

Huge pages (THP and 1 GB) reduce virtual memory overheads for all workloads but still leave

room for improvement. The limited hardware support for huge pages (e.g., few TLB entries),
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poor application memory locality, and the mismatch of their sizes with the virtual memory

contiguity all contribute to the remaining overheads.

Direct segments achieve negligible overheads on big-memory workloads and some small-memory

workloads. But, direct segments poorly serve workloads that require multiple ranges, such

as omnetpp, canneal, or those that use memory-mapped files such as mummer. Compared

to direct segments, RMM is a better choice because it achieves similar or better performance

on all workloads.

Redundant Memory Mappings achieve negligible overhead—essentially eliminating virtual

memory overheads for many workloads. Only one workload has greater than 2% overhead,

GUPS. As our sensitivity analysis in the next section shows, GUPS requires at least a

64-entry range TLB to achieve less than 1% overhead. Overall, RMM performs consistently

better than the alternatives and in many cases eliminates the performance cost of address

translation.

6.7.2 Range TLB sensitivity analysis

To achieve high performance, the range TLB must be large enough to satisfy most L1 TLB

misses. Figure 6.8 shows the range TLB miss ratio as a function of the numbers of entries.

We observe that a handful of workloads, such as cactusADM, memcached, tigr, and GUPS,

suffer from high miss ratios with a 16-entry range TLB. Overall, a 32-entry range TLB

eliminates more than 99% of misses for most workloads (97.9% on average), delivering a

good trade-off of performance for the required area and power.

We also note that a single-entry range TLB is insufficient to eliminate virtual memory
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Figure 6.8: Range TLB miss ratio as a function of the number of range TLB entries.

overheads. Most applications require multiple range table entries, especially those with

large working sets, such as cactusADM, GemsFDTD and GUPS, and those with large

numbers of ranges, such as memcached, mummer, and tigr. However, the single-entry

results illustrate that the optional MRU Pointer would be effective at saving dynamic energy

and latency in many cases. It reduces accesses to the range TLB by more than 50% for astar,

omnetpp, canneal, streamcluster, and graph500.

6.7.3 Impact of eager paging

Eager paging increases range size by instantiating physical pages when the application

allocates memory, rather than when the application first writes or reads a page. Table 6.7

shows the effect of eager paging on the number and size of range, and on time and memory

overheads, compared to default demand paging. Default demand paging includes forming

THPs, which we translate to ranges.
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The first two sections of Table 6.7 (demand paging and eager paging) compare the

number of ranges, the percentage of the memory footprint covered by ranges with a

contiguity threshold of 8 pages, and the range sizes (median, average, maximum) in terms

of pages, created by demand and eager paging. Eager paging (i) lowers the median range

size for small-memory workloads because it allocates fewer medium-sized ranges (the

median for demand paging is usually 512, i.e., 2 MB regions, due to THP), (ii) increases the

median range for big-memory workloads because it allocates fewer small and medium-sized

ranges, and (iii) increases the average and maximum range size for all workloads because

it allocates larger blocks from the buddy allocator. Overall eager paging generates orders

of magnitude fewer ranges that cover a larger percentage of memory for all applications

compared to demand paging. Thus eager paging assists in achieving high range TLB hit

ratio with few entries.

Eager paging alters execution by changing when and how pages, even used pages,

are allocated to physical memory. We measure execution overhead due to eager paging

by running applications with the eager paging operating system support, but without

the hardware emulation. Table 6.7 shows that the execution time for most applications is

relatively unchanged. A few get faster: mcf and memcached improve by 4.1% and 3.9%.

However, GemsFDTD degrades by 11%. In this case, the changes in physical page allocation

affect cache indexing, increasing cache conflicts. Various orthogonal mechanisms address

this problem [47, 91].

Eager paging anticipates that the application will use the requested memory regions

and may thus increase the memory footprint. The last column of Table 6.7 reports the

memory footprint increase with eager paging. Eager paging increases memory by a small
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amount for three of the big-memory workloads, and by less than 10% for 7 of the remaining

10 workloads. Eager paging increases memory substantially on cactusADM and NPB:CG

(the percentage is low, but totals 2.3 GB), mainly because of instantiating memory that

these applications request but never use, and because of modifying TCMalloc to increase

contiguity. Thus RMM trades increased memory for better performance, a common tradeoff

when memory is cheap and plentiful. Note that the OS can convert a range to pages or

abandon ranges altogether under memory pressure as discussed in Section 6.5.

6.7.4 Energy

The primary RMM effect on energy is executing the application faster, which improves

static energy of system. According to our performance model, RMM improves performance

by 2-84% and thus saves a similar ratio of static energy.

Secondary effects include the static and dynamic energy of the additional RMM hard-

ware. The system accesses the range TLB in parallel with the L2 TLB, consuming dynamic

energy on a L1 TLB miss. The dynamic energy of a 32-entry range TLB is relatively small

with respect to the entire chip, and lower than of a fully-associative 128-entry L1 TLB

(e.g., SPARC M7 [84]). Furthermore, replacing misses in the L2 TLB with hits in the range

TLB saves dynamic energy by avoiding a page-walk that performs up to four memory

operations. The OS can identify workloads for which the range TLB provides little benefit

and disable the range TLB (see Section 6.5), eliminating its dynamic energy.

To further explore power and energy impact of the range TLB on the address translation

path, we implemented a 32-entry range TLB and a 512-entry L2 page TLB with search
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latency of six cycles in Bluespec. We then synthesized both designs with the Cadence RTL

Compiler using 45nm technology (tsmc45gs standard cell library) at 3.49GHz under typical

conditions. We specified that timing should be prioritized over area and power.*1 This

analysis shows that the range TLB adds power that is less than half (39.6%) of L2 TLB’s

power. Moreover, the range TLB area is only 13% of the L2 TLB area. These results and the

high range TLB hit ratio indicate that simply increasing the number of entries in the L2

TLB, which would also incur a cycle penalty on the critical path, at the same power and

area budget will not be as effective as the RMM design.

6.8 Summary

We propose Redundant Memory Mappings, a novel and robust translation mechanism,

that improves performance by reducing the cost of virtual memory across all our work-

loads. RMM efficiently represents ranges of arbitrarily-many pages that are virtually and

physically contiguous and layers this representation and its hardware redundantly to page

tables and paging hardware. RMM requires only modest changes to existing hardware

and operating systems. The resulting system delivers a virtual memory system that is high

performance, flexible, and completely transparent to applications.

1*Due to license limitations, we synthesized memory cells of both structures with D flip-flops instead of
SRAM cells.
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Chapter 7

SUMMARY AND FUTURE WORK

This chapter summarizes the thesis and mentions a few future research directions suggested

by to this dissertation.

7.1 Summary

Virtual memory is a crucial abstraction in modern computer systems. However, modern

workloads are experiencing execution time overheads of up to 50% due to page-based

virtual memory. This problem is mainly caused by two opposing trends:

1. Physical memory is growing exponentially cheaper and bigger and modern workloads

want to store ever increasing large data sets in memory and orders of maginitude

more slowly.

2. Translation Lookaside Buffer (TLB) size has grown slowly than memory, because the

TLB is on the processor’s critical path to access memory.

We expect this mismatch between memory size and TLB size (i) to keep growing, (ii) to

become worse with newer memory technologies, which promise petabytes of physical

memory, and (iii) to increase the overheads of paging due to costly TLB misses. Our key

observation is many features of traditional page-based virtual memory are underutilized

in native systems and in virtual machines. This observation suggested opportunities to



139

reduce the cost of virtualizing memory by enabling alternative mechanisms of address

translation without significantly losing benefits of paging. This dissertation exploited these

observations and provided fast address translation for a wide variety of workloads. This

dissertation research aimed to achieve near-zero overheads of virtual memory for both

native and virtualized systems primarily through three contributions.

First, we observed that the overheads of page-based virtual memory can increase drasti-

cally with virtual machines. Hardware performs a nested two-level translation to translate

a guest virtual address. This additional cost makes virtualization less attractive for many

workloads. In MICRO’14 [53] (Chapter 4), we proposed new hardware building on direct

segments [25] with three new virtualized modes that significantly improveed virtualized

address translation. The new hardware bypassed both or either levels of paging for most

address translations using direct segments and brought down the dimensionality of page

walk from 2D to a 0D (see Figure 7.1). This mechanism preserved properties of paging

when necessary and provided fast translation by bypassing paging where unnecessary.

This work was selected as one of 24 most significant papers of 2014 and received an hon-

orable mention in IEEE MICRO for its novelty and long term impact (IEEE MICRO Top

Picks 2015). This work also inspired the creation and release of a Linux based tool called

BadgerTrap to analyze and instrument TLB misses [52], improving the methodology for

analyzing and optimizingvirtual memory system design.

Virtualized direct segments bypassed widely used hardware support—nested paging—

but ignored a less often used software technique—shadow paging. Moreover, virtualized

direct segments required extensive hardware, VMM, and operating system support. We

exploited the fact that nested and shadow paging—the state-of-the-art techniques—provide
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Figure 7.1: Effect of different proposals in this thesis on dimensionality of page walk.

different tradeoffs. With nested paging, TLB misses are costly due to nested two-level page

walk, but it perform fast direct updates to page tables. Whereas with shadow paging, TLB

misses have fewer memory acceses since hypervisor creates a single-level shadow page

table, but requires costly hypervisor intervention on page table updates. For ISCA’16 [54]

(Chapter 5), we proposed agile paging, which combines both the techniques. A virtualized

page walk starts in shadow mode and then switches to nested mode for address ranges

where frequent updates would cause costly hypervisor interventions. This mechanism

reduced the cost of page walks, as many TLB misses are handled partially or entirely in

shadow mode and helped in reducing the dimensionality of page walk from 2D to 1D

(see Figure 7.1). In addition, this technique preserved all benefits of paging and robustly

exceeded the performance of both the state-of-the-art techniques.

Direct segments [25] traded the flexibility of paging for performance, which is good for

some applications, but not all. For ISCA’15 [68] (Chapter 6),we proposed range translations

which exploit the virtual memory contiguity in modern workloads to perform address

translation much more efficiently than paging. Inspired by direct segments, a range transla-
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tion is a mapping between contiguous virtual pages mapped to contiguous physical pages

of arbitrary size with uniform protection bits. We implemented range translations in the

Redundant Memory Mappings (RMM) architecture. RMM employed hardware/software

co-design to map the entire virtual address space with standard paging and redundantly

mapped ranges with range translations. Since range translations were backed by page map-

pings, the OS may flexibly choose between using range translations or not, thus retaining

the benefits of paging for fine-grain memory management when necessary. This work was

selected as one of 12 most significant papers of 2015 and will published in IEEE MICRO

Top Picks 2016 for its novelty and long term impact [55]. This proposal help reduce a 1D

page walk to a 0D page walk for TLB misses that hit in Range TLB (see Figure 7.1).

7.2 Future Work

Over the past several years, a paradigm shift is occurring in microprocessor design industry.

In the era of energy efficiency, specialization and heterogeneity is a driving design principle.

On the computing side, we see a rise of various different resources like graphics processing

units (GPUs) and other accelerators (database, crypto, etc.) being closely integrated with

our general purpose processors. On the memory and storage side, we are seeing a rise in

non-volatile memory (NVM) technologies alongside of traditional DRAM playing a big

role and promises to increase memory capacity to petabytes with fast access times. This

increase in heterogeneity opens up a plethora of multidisciplinary research opportunities

spanning across computer architecture, operating systems, databases, graphics, program-

ming languages, and applications. Inspired from this dissertation, interesting areas for
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future research are:

Efficient address translation with NVMs: Virtual memory in its current form is likely

infeasible for mapping petabytes of NVM integrated with traditional DRAM. New memory

technologies requires rethinking of how to integrate them in our memory hierarchy and

how to virtualize them while delivering fast access time. Some of my previous experience

with RMM and agile paging can be leveraged to create a virtual memory system for next

generation of NVM-based systems.

Efficient support for nested virtualization: Recently, there has been an increasing in-

terest in supporting nested virtualization—a VMM can run various VMMs which can run

their own VMs [27, 102]. This approach comes with its own set of benefits:

(i) public cloud providers can give consumers full control of their VMs by making them

run on their own favorite VMM,

(ii) increase security and integrity of VMs on public clouds even when the VMM provided

by service provider is compromised [108],

(iii) enable new features used by VMMs which the service providers are slow to adopt

(like VM migration [27]), and

(iv) help debug, build and benchmark new VMMs. Vendors like VMware have been

supporting nested virtualization by using software techniques [20].

Hardware advancement such as VMCS shadowing are being included in recent processors

(e.g., Intel Haswell) to perform efficient nested virtualization [43]. Unfortunately, these

benefits of nested virtualization come at the cost of increasing the memory virtualization
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overheads because of the additional levels of abstraction. This new interest in nested virtual-

ization motivates us to think about providing a scalable solution for memory virtualization

in presence of more levels of virtualization.

NUMA-aware data placement and address translation: Designing large multi-socket

servers comes with a tradeoff. On one hand, physically non-contiguous NUMA-aware

data placement is necessary to achieve maximum bandwidth utilization. But on the other

hand, virtual and physical contiguity is required for fast translation especially with larger

memories [68]. This tradeoff can cause a workload to perform poorly in a large NUMA

system. We would like to explore possibilities on improving efficiency of workloads on large

NUMA machines by leveraging the concepts such as Redundant Memory Mappings [68].

Efficient virtualization of GPUs and other Accelerators: Many accelerators are virtual-

ized very poorly by using I/O memory management unit (IOMMU). By using this interface,

the accelerators are used as slow devices rather than tightly integrated co-processing accel-

erators. We would like to explore mechanisms to improve IOMMU support and provide

hardware support to virtualize these accelerators to make them achieve their true potential

as high performance accelerators rather than being treated as slow devices.

Memory consistency and persistency: NVM technologies have very different properties

than traditional DRAM. Current memory consistency models are not sufficient to handle

ordering of operation to persistent NVM memory efficiently and provide crash consistency

guarantees. To cope with this deficiency, memory persistency was proposed to enhance

memory consistency rules in presence of persistent memory [80]. These persistency order-

ings have implications on our cache hierarchy since caches have been tuned to provide

efficient access to traditional DRAM memory. Designing an efficient persistent memory
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interface so that programs can easily use it while integrating effortlessly into the memory

hierarchy for fast access is an important and open problem.

In conclusion, with the end of Moore’s law in sight, we must consider more creative cross-

layer solutions—a philosophy that this thesis embraced. In our opinion, this philosophy

will provide higher performance and energy efficiency over the next decade—the golden

age for hardware/software co-design of computer systems.
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