DREW: Efficient Winograd CNN Inference with Deep Reuse

Ruofan Wu®, Feng Zhang®, Jiawei Guan®, Zhen Zheng*, Xiaoyong Du®, Xipeng Shen*
°Key Laboratory of Data Engineering and Knowledge Engineering (MOE),
and School of Information, Renmin University of China
* Alibaba Group
*Computer Science Department, North Carolina State University
ruofanwu@ruc.edu.cn,fengzhang@ruc.edu.cn,guanjw@ruc.edu.cn,james.zz@alibaba-
inc.com,duyong@ruc.edu.cn,xshen5@ncsu.edu

ABSTRACT

Deep learning has been used in various domains, including Web
services. Convolutional neural networks (CNNs), which are deep
learning representatives, are among the most popular neural net-
works in Web systems. However, CNN employs a high degree of
computing. In comparison to the training phase, the inference pro-
cess is more frequently done on low-power computing equipments.
The limited computing resource and high computation pressure
limit the effective use of CNN algorithms in industry. Fortunately,
a minimal filtering algorithm called Winograd can reduce convolu-
tion calculations by minimizing multiplication operations. We find
that Winograd convolution can be sped up further by deep reuse
technique, which reuses the similar data and computation processes.
In this paper, we propose a new inference method, called DREW,
which combines deep reuse with Winograd for further accelerating
CNNs. DREW handles three difficulties. First, it can detect the simi-
larities from the complex minimal filtering patterns by clustering.
Second, it reduces the online clustering cost in a reasonable range.
Third, it provides an adjustable method in clustering granularity
balancing the performance and accuracy. Experiments show that 1)
DREW further accelerates the Winograd convolution by an average
of 2.06x speedup; 2) when DREW is applied to end-to-end Wino-
grad CNN inference, it achieves 1.71x the average performance
speedup with no (<0.4%) accuracy loss; 3) DREW reduces the num-
ber of convolution operations to 11% of the original operations on
average.

CCS CONCEPTS

« Information systems — World Wide Web; - Computing method-

ologies — Neural networks.

KEYWORDS

data reuse, deep reuse, Winograd, Web systems

ACM Reference Format:
Ruofan Wu®, Feng Zhang®, Jiawei Guan®, Zhen Zheng*, Xiaoyong Du°,
Xipeng Shen. 2022. DREW: Efficient Winograd CNN Inference with Deep

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

WWW 22, April 25-29, 2022, Virtual Event, Lyon, France

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9096-5/22/04. .. $15.00
https://doi.org/10.1145/3485447.3511985

1807

Reuse. In Proceedings of the ACM Web Conference 2022 (WWW °22), April
25-29, 2022, Virtual Event, Lyon, France. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3485447.3511985

1 INTRODUCTION

Convolutional Neural Networks (CNNs) have shown successes and
gained popularity in Web systems [8, 12, 27, 28, 30, 34, 40, 47, 51].
Different from the training process, inferences of CNN are widely
processed on CPUs in industry and face a high demand for per-
formance optimization [19, 29, 63]. Note that accelerators with
high computing power are usually too expensive for companies
to apply to inference workloads. In industry, the CNNs are usu-
ally trained on HPC clusters, while the inference could be con-
ducted on a less powerful machine, such as CPUs or mobile proces-
sors [10, 16, 37, 41, 43, 55, 60]. Due to high compute density, it is
important to optimize the inference process on CPUs, especially for
industry usage. The key to improving the inference performance is
to accelerate the convolutional layers of CNN models, which are
computationally intensive and dominate the total execution time.
Winograd convolution [23] has been demonstrated to be a very
efficient CNN optimization technique. Employing Winograd mini-
mal filtering algorithm reduces the arithmetic complexity of con-
volution operations by at least 2.25x [23] theoretically, saving sub-
stantial time and energy. The majority of modern deep learning
libraries, including Nvidia cuDNN [1] and Intel oneDNN (previ-
ously known as MKL-DNN) [3], enable Winograd convolution for
CNNs . Additionally, several attempts have been made to accelerate
Winograd convolution via increased hardware efficiency [20, 50].
Prior research on Winograd convolution concentrated on how
to improve the algorithm’s performance on certain hardware plat-
forms, such as GPUs [1, 50], rather than the algorithm’s structure.
We find that, rather than performing typical code optimizations, a
unique approach called deep reuse can uncover and leverage reused
calculations to accelerate convolutions. This approach reuses in-
termediate results in CNN inference by recognizing similarities
among neuron vectors, saving both space and time on the fly [32].
The present deep reuse approach, however, is limited to GEMM-
based convolution. The performance of CNN inference could be
considerably enhanced if deep reuse is applied to the Winograd
convolution.
Applying deep reuse to Winograd convolution requires to handle
the following three challenges.
o Algorithm design. Winograd convolution involves fixed minimal
filtering patterns, so there is no direct neuron vector to extract in
the Winograd algorithm. Consequently, an appropriate method

https://doi.org/10.1145/3485447.3511985
https://doi.org/10.1145/3485447.3511985

WWW °22, April 25-29, 2022, Virtual Event, Lyon, France

needs to be designed for exploiting the similarities and saving

computations.

Introduced overhead. Deep reuse is an on-line process in which

the similarity detection process among neuron vectors happens

during the inference time. Because of the computation savings
in Winograd convolution, it poses a tighter constraint on the
introduced overhead compared to the GEMM-based convolution.

Cost-benefit tradeoff- The limitations of minimal filtering patterns

also prevent us from adjusting the reuse granularity as flexibly as

original deep reuse does. Since deep reuse is a lossy optimization,
to provide the choice to trade-off between performance and
accuracy loss, a novel method to adjust reuse granularity needs
to be designed.

We present our solution, a new inference method, called DREW,
for applying deep reuse to Winograd convolution on modern pro-
cessors. DREW solves the challenges above and brings huge perfor-
mance improvements. First, we design a novel approach to leverage
the neuron similarities in Winograd convolution, which has been
proved to have great potentials. Second, to minimize the runtime
overhead introduced by deep reuse, we develop a novel clustering
process, which causes only a small proportion of time compared to
the overall operation time and reduces the space overhead on the fly.
Third, we extend our approach to make it adjustable in clustering
granularity, and leave the adjustment between performance and
accuracy to users to meet their different needs. Moreover, we make
our solution, DREW, a library for users to easily apply our work.

We evaluate DREW on three popular neural networks: LeNet-
5 [25], CifarNet [4], and VGG-16 [36]. For single-layer performance,
DREW achieves 6.68x performance improvement on average com-
pared to the Winograd convolution without deep reuse. Even for the
highly parallel Winograd implementation, DREW can still provide
1.11X to 3.27X performance improvement. For end-to-end perfor-
mance, DREW achieves 5.92X performance improvement with no
(<0.4%) accuracy loss, and for parallel implementation, DREW still
maintains 1.15X to 2.76X performance improvement. With detailed
analysis, the convolution operations can be reduced to 4 to 20%
of the original computations and take up only 35 to 56% of the
execution time.

As far as we know, DREW is the first work that combines deep
reuse with Winograd convolution. In summary, this work makes
the following contributions:

e It points out that deep reuse can be efficiently combined with
Winograd convolution for the first time. This work proposes
a new inference method, called DREW, which can detect and
exploit input similarities among Winograd minimal filtering
computation patterns.

o It designs a novel clustering process for DREW, which reduces
online cost in inference. It extends DREW to adjust the clustering
granularity, allowing users to balance the trade-off between
accuracy and efficiency.

e It validates the efficacy of DREW and demonstrate its significant
performance benefits with almost no accuracy loss.

2 BACKGROUND

2.1 Winograd Convolution

The Winograd convolution is a kind of convolution algorithm that
employs the Winograd minimal filtering algorithm, resulting in

1808

Ruofan Wu, Feng Zhang, Jiawei Guan, Zhen Zheng, Xiaoyong Du, and Xipeng Shen

fewer arithmetic operations compared to the original implemen-
tation [46]. The Winograd minimal filtering algorithm, denoted
as F(m X m, r X r), computes mxm outputs with a rxr filter, and
reduces the number of multiplications from (m X r)? to (m + r — 1)2.
In this paper, we use a common case of F(2X 2, 3 X 3) for application,
which has also been used in [3, 20, 50].

Workflow. The workflow of the convolutional layer with F(2 x
2,3 % 3) Winograd minimal filtering algorithm is shown in Figure 1.
First, each 3 X 3 filter is performed by a filter transformation
(Step 1) to a 4 X 4 transformed filter. Second, the input images or
feature maps are divided into tiles of size 4x4, with 2 elements
overlapping between neighboring tiles. Each tile is performed by
an input transformation (Step 2) to a 4 X 4 transformed input
tile. Third, it executes element-wise multiplication (Step 3) with
the filter of the corresponding input channels and accumulation
along input channels. Fourth, it performs output transformation
(Step 4) for each pre-transformed output tile (the result of element-
wise multiplication and accumulation) to a 2 X 2 output tile.

filters C 1 N=1 input
. (inputchannels) (batch size) '\C
4
H
3 4 (height)
3@ @ filter °UtPUt —
transformation channels) (@) input W(Wldth)

transformatlon

aua 0 @}

multlpl|cat|on

S osooos
4 K output

@ output 2
transformation Q} , input size: NxCxHxW
2 2 H filter size: KxCx3x3
Zﬂj output size: NxKxH' xW’
W’

Figure 1: The workflow of Winograd convolution.

For online CNN inference, the filter transformation can be fin-
ished at preprocessing time once. Therefore, the inference time
mainly comes from input transformation, element-wise multipli-
cation, and output transformation, which are the emphasis of our
optimization.

2.2 Deep Reuse

Deep reuse is a kind of optimization for accelerating CNN infer-
ences by detecting and utilizing runtime similarities among input
data [32]. To compute the convolutional layer, the common practice
is to unfold the input images and filters into input matrix x and
weight matrix W, and then perform General Matrix Multiplication
(GEMM) with two matrices, as shown in Figure 2 (a). The idea of
deep reuse is that strong similarities exist among neuron vectors.
Here, a neuron vector is composed of several consecutive elements
in a row of the unfolded input matrix x. Therefore, the neuron
vectors can be clustered into a small number of groups, and the
computation results for the cluster centroids can be reused by all
neuron vectors in clusters.

DREW: Efficient Winograd CNN Inference with Deep Reuse

input filters X W

] X;
X1 |X; ®© —= X; o I B

‘ X;, X,: heuron vectors ‘ —

Figure 2: The illustration of GEMM-based convolution.

Clustering method. Deep reuse uses Locality Sensitive Hashing
(LSH) [13] as the clustering method to detect similarities among
neuron vectors because LSH can give good clustering results and
does not introduce excessive overhead to inferences. LSH ensures
that the computation savings serve its purpose for performance
improvement without accuracy loss. For each input vector x, a hash
function h is determined by a random vector v in the following
Equation 1:

1 i v-x>0

h”(x)z{ 0 i; v-x<0 ™
With H random vectors, LSH maps an input vector into a bit vector
with 2H possibilities. The input vectors that are close to each other
have a high probability to be hashed into the same bit vector. Thus,
the roughness of the clustering can be adjusted by the number of
hash functions. After LSH being applied to deep reuse, the integer
value of the bit vector can be used as a cluster ID. Then, the cluster
centroids are computed using the neuron vectors with the same
cluster ID for retrieving them for later computation. Ning et al. [32]
define remaining ratio r, to measure reusable potential, which
is the ratio of the number of clusters attained after LSH to the
total number of neuron vectors. A smaller remaining ratio indicates
larger computation savings.

3 MOTIVATION

In this section, we first analyze the reuse opportunities on Winograd
convolution. Second, we show our observations and insights. Third,
we discuss the importance and benefits of our work.

Opportunity. Based on our observation, neuron similarities
exist in Winograd convolution. For Winograd-based convolution,
the 4x4 tiles are local neurons as shown in Figure 1. Due to the
continuity in images or feature maps that CNN often targets, it
has been proved that neighbor neurons have extremely strong
similarities [26]. Hence, there is a strong chance that similarities
exist among such small tiles in Winograd convolution. This provides
us with a great opportunity to further accelerate CNN inference,
and thus we can use the similarity between tiles in Winograd to
reduce the amount of computation to save time.

Observation. To prove our assumption on tile similarities, we
conduct a series of experimental analysis and draw the conclusion
that applying deep reuse to Winograd convolution has a tremen-
dous potential for performance enhancement. We employ the Cifar-
Net [4] trained model on CIFAR10 [22], and conduct its inference.
We perform LSH with a variable number of hash functions to two
convolutional layers and report the remaining ratio after cluster-
ing. Note that a greater number of hash functions results in a more
precise clustering, and the remaining ratio indicates the reusable po-
tentials, as discussed in Section 2.2. Figure 3 shows the experimental

1809

WWW ’22, April 25-29, 2022, Virtual Event, Lyon, France

results of Conv1 (Conv2 exhibits similar trends). First, we cluster
tiles within each channel with varying batch sizes and present the
average remaining ratio for each channel in Figure 3 (a). The re-
maining ratio averages out at 0.084 and rises in tandem with the
increase in hash size and decrease in batch size. Then, we cluster
tiles from multiple channels with a fixed batch size of 100 (we treat
the tiles of several consecutive channels as the neuron vectors)
and present the results in Figure 3 (b). The findings demonstrate
that tiles with multiple channels still create a tiny remaining ratio,
especially when the number of hash functions is modest. A smaller
remaining ratio is often associated with fewer channels. To sum up,
large data similarities exist among tiles of Winograd convolution,
which provides opportunities for reuse.

0.3 0.3
o — N=100 ° —— #channels=1
‘g N=200 g #channels=3
S 02{--=- N=500 502
g g
£ . £
S 0. S0
£ =)
L L
=4 S it -4

e
=)

e

0 10 11 12 13 14 15 16 17 18 19 20
#hash functions

10 11 12 13 14 15 16 17 18 19 20
#hash functions

(a) Single channel. (b) Multiple channels.

Figure 3: Remaining ratio. (a) Different numbers of hash
functions with varying batch sizes in a single channel. (b)
Different numbers of hash functions with varying numbers
of channels.

Importance. Deep reuse has been shown to significantly im-
prove the performance of CNN inference [32]. Meanwhile, Wino-
grad convolution results in a 2.25x reduction in multiplication
calculations when compared to direct convolution [23]. It is worth
the effort to further optimize due to the high performance gains.
Furthermore, as previously explained, the tile in Winograd convo-
lution is suited as the object we reuse. Since the experiments above
have proved that the tiles of batched input have large similarity,
utilizing the similarity allows for significant calculation savings,
and it is possible to provide faster Winograd convolution.

4 SOLUTION OVERVIEW

We show in Section 3 that strong similarities exist among input
tiles of each channel in Winograd convolution, which provides us
the opportunity to save computations by reusing the computed
results of a small number of tiles. In this section, we first elaborate
on our idea of applying deep reuse in Winograd convolution. Then,
we show an example and present our solutions to the challenges
listed in Section 1.

Idea. Revisiting the process of Winograd convolution mentioned
in Section 2.1, we can see that the workflow of Winograd convo-
lution includes 1) filter transformation, 2) input transformation,
3) element-wise multiplication, and 4) output transformation. We
group the input tiles of each channel into clusters and compute
the cluster centroids. Then, we perform input transformation, K
element-wise multiplication, and K output transformation on these
centroid tiles. Finally, we accumulate the corresponding centroid
tiles of each input channel to produce output. Note that the accumu-
lation along input channels happens on element-wise multiplication
in the original Winograd convolution. We leave it to the last for
saving addition operations.

WWW °22, April 25-29, 2022, Virtual Event, Lyon, France

Case study. We show an example in Figure 4 for processing a
1x2x6X6 input with 2x2x3x3 filters. The filters have been trans-
formed during the preprocessing time. First, after clustering, four
input tiles are grouped into two clusters of each channel respec-
tively. The four input tiles can be represented by the two cluster
centroids. Second, four centroid tiles of all channels are transformed
in a way like the input transformation in the Winograd algorithm.
Third, each transformed centroid tile is element-wise multiplied by
filters of two output channels. Fourth, the results of multiplication
are transformed in a way like the output transformation in the
Winograd algorithm. Fifth, we accumulate the output along input
channels, and obtain all tiles in the final output from the computed
centroid tiles.

transformed filters

@ @ 18 ool |01

input , (1) clustering 5

Rl

@]

k=1 [(1,0) [(1,2)

®

c=0 @ c=1 c=0 c=1

(2) input transformation

ol[@l o] [@l

c=1
k=0 k=1

@ |*|0)] |@|*|0o| |@ ||| [@|*|o
@ [*o] |@ |0y |@ ||| |@®|*]a
<

@ output transformation

(5) output accumulation @

B element-wise
multiplication

k=0 k=1
Q|®].[®9]_ 0@|.1910]_
Qle| [®l@ Qo] ®®@

Figure 4: Example of applying deep reuse to Winograd.

Solutions to challenges. We develop DREW to solve the chal-
lenges listed in Section 1. First, we design a method to leverage the
neuron similarities in Winograd convolution in which the tile size
16 is the smallest clustering granularity (Section 4 and Section 5.1).
Second, to minimize the time overhead introduced by clustering,
we choose the fast LSH as the clustering method. However, we
design a new method to retrieve cluster centroids, which is more
suitable for modern processors and can minimize the space over-
head (Section 5.2). Third, we extend the algorithm to reuse tiles
of the input channels, which allows users to tune the clustering
granularity for the trade-off between accuracy and time savings
(Section 5.3).

Novelty. Based on the solutions above, our work makes the
following novel contributions. First, we develop new algorithms
to detect similarities in the complex filtering patterns of Winograd

1810

Ruofan Wu, Feng Zhang, Jiawei Guan, Zhen Zheng, Xiaoyong Du, and Xipeng Shen

(Section 5.1). Second, we provide novel clustering designs to reduce
online cost within a reasonable range (Section 5.2). Third, we pro-
vide a novel adjustable method for users in clustering granularity
balancing the trade-off between performance and accuracy (Sec-
tion 5.3). Then, we develop a fine-tuning process to maintain high
accuracy (Section 7.4).

5 DREW ALGORITHM AND OPTIMIZATIONS

After presenting the idea of combining deep reuse and Winograd
convolution in Section 4, we introduce the detailed design of DREW
in this section. First, we present the basic workflow of DREW. Then,
we delve into the design of clustering and extend the clustering
granularity to multiple channels.

5.1 Deep-Reuse Winograd

Winograd presentation. The original Winograd convolution can
be written in the following formulations. For NXCxHXW inputs
with KXCx3x3 weight filters in Winograd convolution (Section 2.1),
filter transformation F = GFGT is finished in the preprocessing
time, where G is a 4x3 matrix defined in Winograd minimal filtering
algorithm. During the inference time, the input images or feature
maps are divided into P = N[H’/2][W’/2] tiles, where H’ and W’
are the height and width of outputs. An input tile I, ¢ ; j in channel
c is transformed by IA,,, eij = BTI,,, ¢,i,jB, where B is a 4 X 4 matrix
defined in Winograd minimal filtering algorithm. Then, the trans-
formed tile Ip, ¢ ;. j is element-wise multiplied with K transformed
weights and accumulated with the results of the tiles in the same
position in other channels, which is (5,,’ kij = Zi;(l) Fk,c ©) IAn, i
Finally, the output of Oy, ¢ ; ; in channel k can be obtained from
the output transformation ATén’ k,i,jA where A is a 4 X 2 matrix
defined in Winograd minimal filtering algorithm.

Combining deep reuse and Winograd convolution. In DREW,
the 2D batched deep reuse for Winograd convolution can be written in
the following five steps. Note that the filters have been transformed
during the preprocessing time.

Step 1: Clustering. For each 4x4 input tile I, ¢ ; j, Vp,c,i,j is the
1D neuron vector flattened from I, ¢ ;, j. Each neuron vector V;, ¢, ;. j
is projected as a bit vector Pp, ¢, ;,j by H hash functions, as shown
in Equation 2, where pp, ¢ ;,j is the integer value of the bit vector

Pp,c,i,j- Note that T € RH*16 is the hash table with H random
vectors.

Pncij=TVnecij € R ()

Then, for each input channel c, the identical integer values of
neuron vectors are mapped to the same bucket to obtain the bucket
ID by, c,i,j and the bucket size Nj,. Note that the bucket ID b of
neuron vectors in different input channels is different because we
cluster the tiles of each channel respectively. Finally, the cluster
centroid of each bucket b is calculated in Equation 3.

o= >

Vi, c,i,jEbuckety,

Vi,c,i,j/Np (3)

Step 2: Input transformation. For each centroid vector Cp,, we
perform input transformation, as shown in Equation 4.

¢, =BTC,B (4)

DREW: Efficient Winograd CNN Inference with Deep Reuse

Step 3: Element-wise multiplication. For each centroid vector Cp,
of input channel ¢ and each output channel k, we perform element-
wise multiplication, as shown in Equation 5.

Dy =Cp0Fe i (5

Step 4: Output transformation. For each centroid vector Cj,, we
perform output transformation, as shown in Equation 6.

Dy =ATDp xA (6)

Step 5: Output accumulation. For each output tile and each output
channel k, we perform output accumulation, as shown in Equa-
tion 7.

c-1
Onk,ij = Z Dy, i1k (7
c=0

5.2 Clustering Design

We revisit our clustering design of Step I mentioned in Section 5.1.
Since Winograd is an online process, Winograd poses a tight con-
straint on clustering time, including LSH projection, the computa-
tion of the integer value of bit vectors, bucket mapping, and centroid
calculation. To minimize the time overhead caused by deep reuse,
we mainly optimize the following two substeps, LSH projection
and bucket mapping.

LSH projection. For our batched deep-reuse Winograd in DREW,
instead of indexing the vectors one by one, we perform LSH projec-
tion by an Hx16XCP GEMM at one time. Consequently, we convert
it into a GEMM process. Then, we compute the integer value of
each bit vector, which is the projected neuron vector, for bucket
mapping.

Bucket mapping. Bucket mapping uses the integer value of
each bit vector to map similar vectors to the same bucket (cluster)
and thus clustering results are obtained. This is the most difficult
part to parallel in applying deep reuse in Winograd of DREW,
because we need to record the buckets with their related vectors
and calculate the bucket size.

Before showing our bucket mapping design, we first revisit the
bucket mapping in [32], which treats the integer value of bit vec-
tor as cluster ID (to distinguish it from ours, we denote ours as
bucket ID). They minimize the time overhead in a conflict-free
hash. However, such a solution cannot be used in our situation. The
space for 2 cluster centroids needs to be allocated before centroid

calculation; if we adopt this method, we need to allocate Cx2H
neuron vectors for later element-wise multiplication. This would
be a huge space overhead and would become a burden especially
on the industrial hardwares where CNN inferences commonly run.

We develop a novel bucket mapping strategy in DREW. First,
we iterate over P values in C channels. Second, we map each in-
teger value of bit vector to buckets. Third, we increase the newly
discovered bucket ID in order and count bucket size. In this way,
we only need O(3; Np,) space for clustering and later computation.
Because the integer values of vectors provide a hash-map with a
O(1) lookup complexity in nature, we can finish bucket mapping
in O(C - P) complexity, whose time proportion in the whole clus-
tering phase is small (compared with LSH projection and centroid
calculation). Experiments also show that the time of this part is
acceptable (Section 7.6). Finally, we compute the cluster centroid of
each bucket.

1811

WWW ’22, April 25-29, 2022, Virtual Event, Lyon, France

5.3 Clustering Granularity

To further optimize the performance of DREW, we extend the
clustering granularity to tiles of multiple channels. This is regarded
as a user-defined parameter to trade-off between time savings and
accuracy loss.

Limitations in the basic algorithm. First, because it is uncer-
tain which bucket each neuron vector is mapped to, the memory
access to Dy, .. in output accumulation is discontinuous. The
output accumulation phase in our basic algorithm needs a long
time in the whole process. This situation could be alleviated if we
find a way to reduce such memory access pressure. Second, if we
only define the tile of one channel as the clustering granularity,
users cannot adjust the performance and accuracy based on their
requirements.

Clustering granularity design. We solve such limitations by
clustering tiles of multiple channels in DREW. We find that tiles
of multiple channels also have similarities with each other and
these tiles even reach a smaller remaining ratio when the number
of hash functions is small. If we cluster tiles of multiple channels
and reuse the computation results, the results of element-wise
multiplication in these channels can be accumulated in the element-
wise multiplication phase and the amount of output accumulation
is reduced. Therefore, the performance becomes higher due to the
smaller remaining ratio and fewer discontinuous memory accesses.

6 PARALLELISM

In this section, we first discuss the parallelism and complexity
of DREW. To facilitate the analysis of computation savings, we
uniformly denote the height and width of the input and output as
H and W. Then, we analyze the properties of clustering parameters
according to the complexity.

Parallel design. All the five steps of DREW described in Sec-
tion 5.1 can be parallelized. For the first step of clustering, the
LSH projection can be treated as a GEMM and is thus processed
in parallel. The integer value of each projected bit vector and the
computations for each bucket centroid can also be done in paral-
lel. For the second step of input transformation, the third step of
element-wise multiplication, and the fourth step of output transfor-
mation, the computations for each centroid vector can be executed
in parallel and we process these three steps within a loop to avoid
unnecessary memory accesses. For the fifth step of output accumu-
lation, we retrieve the results of centroid vectors of C channels and
accumulate them for each output tile in parallel.

Complexity. The computational complexity of the original Wino-
grad convolution is O(N-H-W-C-K) [23]. Assume that input chan-
nels are divided into N,;, channel blocks and each channel block
contains tiles of L., channels (C=N,p, - L,p)With H hash func-
tions, the total computational complexity of clustering is O(C-P-H),
which can also be presented as O(C-N-H-W-H). If the neuron vec-
tors can be grouped into |C| clusters, the average number of clusters
|é|cb,avg is Nch Zjvz‘lb |é|cb,j- The remaining ratio of Winograd

: : é cb,av . .
with deep reuse r¢ is l‘cb;}},f Then, the computational complexity

of Winograd phase except for output accumulation is O(r¢-N-H-W-C-K)
and the computational complexity of output accumulation is O(N,p-

WWW °22, April 25-29, 2022, Virtual Event, Lyon, France

N -H - W - K). Therefore, the overall computational complexity of

DREWisO((%+rC+L—ib)~N~H-W-C-K).

Properties. There are two clustering parameters to adjust in
DREW: clustering granularity (the number of tile channels L.;)
and the number of hash functions (H). They affect the time savings
by reuse and accuracy loss. With the computational complexity
analysis with different parameter combinations, we observe the
following properties of deep reuse for Winograd convolution:

o When H remains unchanged, a smaller granularity (smaller L)
generally leads to a smaller reuse-caused accuracy loss. Mean-
while, a smaller L.j, leads to more addition operations in output
accumulation.

o When L}, remains unchanged, more hash functions (larger H)
generally incur smaller reuse-caused accuracy loss. Meanwhile, a
larger H causes a larger number of clusters and thus a larger re.

e When Ly, is large, H affects the reuse-caused accuracy loss and
re more than L., does. When L, is small, the change of L.,
affects the reuse-caused accuracy loss and r. more than H does.

e An appropriate combination of L., and H can reduce (% +re+
ﬁ), which is a coefficient in DREW’s complexity, thus resulting
in more computation savings.

Implementation. We build a library called DREW to integrate
our work for three reasons. First, DREW can ease the burden on
programmers to utilize deep reuse on Winograd algorithms; to
this end, we present user-friendly APIs that is compatible with
C/C++, Java, and Python. Second, DREW provides a highly efficient
implementation of Winograd, which can be directly applied to
many existing projects. Third, we hope that our integration of deep
reuse and Winograd can be really integrated to other popular deep
learning systems and libraries. Specifically, we develop Winograd
in C/C++, and provide sequential and parallel versions. Moreover,
we will open source our code after the paper being accepted.

7 EVALUATION

7.1 Experimental Setup

Methodology. We compare our DREW with the original Wino-
grad convolution without deep reuse [23, 53]. We first apply our
approach to only a single convolutional layer to measure the single-
layer speedups (Section 7.2). Second, we apply our approach to
the full neural networks with the optimal clustering configura-
tions from the single-layer experiments to measure the end-to-end
speedups (Section 7.3). Third, we analyze the influence of different
factors on performance, including the clustering configurations of
clustering granularity L, and the number of hash functions H, and
the experiment configurations of the batch size and the number of
threads (Section 7.5). Fourth, we analyze the runtime overhead of
each part of our approach (Section 7.6).

Platforms. We conduct experiments to measure the perfor-
mance of DREW on two experimental platforms. The first plat-
form is equipped with an Intel i7-7700K with 64GB DDR4 memory.
The second platform is equipped with an Intel 19-9900K with 64GB
DDR4 memory.

Workloads. We evaluate DREW with three different networks:
LeNet-5 [25], CifarNet [4], and VGG-16 [36], which are classic and
have been evaluated in many works [32, 39, 45, 62]. The dataset

1812

Ruofan Wu, Feng Zhang, Jiawei Guan, Zhen Zheng, Xiaoyong Du, and Xipeng Shen

of LeNet-5 is MNIST [24] with sparse images of size 28 X 28. The
dataset of CifarNet is CIFAR10 [22] with images of size 32 X 32. We
modify the size of filters in LeNet-5 and CifarNet to 3 X 3 for our
study and there is no influence on accuracy. The dataset of VGG-16
is ImageNet [35] with image size of 224 x 224. VGG-16 uses 3 X 3
filters exclusively in the convolution layers where the Winograd
algorithm can be directly applied.

7.2 Single-Layer Performance

We perform experiments with a range of different clustering con-
figurations and collect the speedup and accuracy results for single
convolutional layer of the networks.

Configuration. We first explore the clustering granularity L,
which represents the number of channels of tiles for clustering. We
test the channel number of tiles of the factors of C, which is less
than 4 in each convolutional layer. Note that we do not explore
the L.;, value that is larger than 4 because it will cause a large
remaining ratio and unendurable accuracy loss. For the number
of hash functions H, we explore a range from 10 to 30. In this and
next sections, we fix the batch size to 100; the number of threads
on Core i7 platform is set to 8 and on Core i9 platform is set to 16,
which are the maximum number of threads of the CPUs.

Performance-accuracy balance. We aim to achieve a balance
between performance and accuracy. To measure the balance be-
tween performance improvement and accuracy loss, we define
efficiency score: e = —speedup - log(accuracy loss). The higher
value of e means that we obtain relatively higher performance with
less accuracy loss.

Result. We report in Table 1 the speedups achieved by the config-
uration that has the highest efficiency score on each convolutional
layer, and we have the following observations.

First, our approach leads to significant performance benefits. For
the serial Winograd convolution, our approach delivers an average
speedup of 6.92x on Core i7 platform and 6.45X on Core i9 platform.
Even for the highly parallel implementation, DREW still provides
an average speedup of 2.14x on Core i7 platform and 1.99x on Core
19 platform. The performance speedup is up to 10.97x and 3.27x
in serial mode and parallel mode respectively, which proves the
effectiveness of DREW.

Second, an appropriate combination of L., and H incurs a small
remaining ratio, thus achieving significant time savings. Experi-
ments show that our approach performs well when L, is one. Note
that although larger L.}, leads to more speedups, the accuracy loss
could also be large, which results in poor efficiency score (detailed
in Section 7.5).

Third, on the networks whose image size is large, such as VGG-
16, the remaining ratio becomes smaller, and thus the achieved
speedup is higher. Note that the first subconvolutional layer in
each convolutional layer in VGG-16, such as Conv3-1, Conv4-1, and
Conv5-1, may have a larger remaining ratio compared to the other
layers, because of the previous maximum pooling operation.

Accuracy loss. We report the single-layer accuracy loss of DREW
compared to [32] in Table 1, which implies that DREW incurs less
than 1.32% accuracy loss in each layer.

7.3 End-to-End Performance

To measure the end-to-end performance benefits of the full neural
networks, we apply DREW to each convolutional layer with the

DREW: Efficient Winograd CNN Inference with Deep Reuse

Table 1: Single-layer performance benefits. Conf. means con-
figuration, L), is the number of channels of tiles, H is the
number of hash functions, r. is the remaining ratio, Serial
means serial speedup, Parallel means parallel speedup, i7
and i9 are Core i7 and Core i9 platforms, and A Acc is the ac-

curacy loss.

Conf. Serial Parallel
re - - - - A Acc
L., H i7 i9 i7 i9
Convl 1 16 0.04 471x 451x 1.16x 1.11x 0.0008
Conv2 1 12 0.14 5.05% 450x 142x 1.27x 0.0012
Average 4.88% 451x 1.29x 1.19x 0.0010
Convl 1 16 0.14 6.52% 6.21x 1.77x 1.69x 0.0031
Conv2 1 12 0.13 5.78% 5.67x 1.66x 1.63x 0.0027

Average 6.15X 5.94x 1.72x 1.66x 0.0029

Network Layer

LeNet-5

CifarNet

Convl1-1 1 24 005 7.67x 7.21x 223X 2.09x 0.0057
Conv1-2 1 23 0.02 1097x 9.18x 3.27x 2.74x 0.0075
Conv2-1 1 22 0.09 8.40x 6.88x 2.76x 2.26X 0.0050
Conv2-2 1 20 0.07 9.00x 8.29x 2.70x 2.49x 0.0018
Conv3-1 1 21 020 5.08x 4.97x 1.64x 1.61x 0.0037
Conv3-2 1 18 0.07 851X 7.94x 274X 255X 0.0012
VGG-16 Conv3-3 1 16 0.06 9.19x 857x 296X 2.76x 0.0011
Conv4-1 1 17 016 592x 570x 1.90x 1.83x 0.0019
Conv4-2 1 15 0.08 6.77x 643X 222X 2.11x 0.0010
Conv4-3 1 17 0.09 6.60x 6.35x 2.17X 2.09x 0.0006
Conv5-1 1 16 020 4.71x 456X 1.54X 1.49x 0.0002
Conv5-2 1 16 018 4.98x 5.03x 1.63x 1.65X 0.0005
Conv5-3 1 11 0.07 7.68x 7.53x 252X 247X 0.0009
Average 735X 6.82X 2.33x 216X 0.0024

configuration that can attain the best efficiency score mentioned in
Section 7.2.

We show our performance benefits on the end-to-end execution
time of the full neural networks in Table 2. We involve all runtime
overhead (clustering and others) in our time measurement and have
the following observations.

Table 2: End-to-end performance benefits. A Acc is the accu-
racy loss.

Serial speedup Parallel speedup
Network Corei7 Corei9 Corei7 Corei9 A Acc
LeNet-5 4.39% 4.28X 1.18% 1.15x 0.0026
CifarNet 4.78%x 4.34X 1.41x 1.36x 0.0064
VGG-16 9.22X 8.51X 2.76X 2.41x 0.0123

First, our deep-reuse Winograd convolution achieves significant
performance benefits. For the serial Winograd convolution, DREW
achieves an average speedup of 6.13x on Core i7 platform and
5.71% on Core i9 platform. For the parallel implementation, it still
provides an average speedup of 1.78x on Core i7 platform and 1.64Xx
on Core i9 platform. The performance speedup is up to 9.22x and
2.76X in serial mode and parallel mode respectively.

Second, for LeNet-5 and CifarNet, the end-to-end speedups are
not as much as the speedups of single layers; the reason is that there
are other layers, such as the activation layer and the pooling layer,
mixed into CNNs. In contrast, for VGG-16, the end-to-end speedups
are larger than the speedups of single layers, and the reason is that
the remaining ratio is reduced for the subconvolutional layers, such
as Conv3-2, Conv4-2, and Conv5-2, before pooling layers.

Third, the performance benefit among the end-to-end process
is not as much as the computation saving because deep reuse in-
troduces extra operations: clustering and the reconstruction of the

1813

WWW ’22, April 25-29, 2022, Virtual Event, Lyon, France

feature maps after deep reuse optimization. As to the single-layer
performance in Table 1, we only need to perform 2 to 20% of the
original computations with DREW in these networks, as indicated
by the r¢ column.

In addition, the accuracy loss is less than 1.23%, as shown in
Table 2.

7.4 Trade-off between Accuracy and Efficiency

In our experiment, DREW incurs an additional 0.26-1.23% accuracy
loss if the model weights remain unchanged, due to the limitation
that we cannot adjust the length of neuron vector to be less than
16. Since accuracy is important in many applications, we have the
following designs to remain the accuracy in an acceptable range.
First, the network can be fine-tuned to amortize the accuracy
loss, which is similar to prior practices [11]. We re-train the model
using DREW. Therefore, only the model weights are updated, not
the model. After fine-tuning, DREW causes less than 0.4% accuracy
loss on all networks. Note that fine-tuning, as part of the train-
ing process, does not lengthen the inference time, so the reported
inference speedups still remain.
Second, in our analysis,

. S LeNet-5 Convl
the first layer in CifarNet ;;3 . e LeNet-5 cOan
and the first three layers 82
in VGG-16 cause the major g, .
accuracy loss. We can ap- 3 0 Wean e oo . .
ply deep reuse in the other <

0 20 40 60 80 100
Performance exchange (%)

Figure 5: Trade-off between
accuracy and performance.

layers while remaining the
front layers unchanged.

Third, the balance be-
tween performance and ac-
curacy loss can be adjusted to meet various application scenarios.
The number of channels L., and the number of hash functions
H, mentioned in Section 6, can be adjusted by users. For example,
in a rigid scenario, users could set a small L., with a large H so
that the accuracy loss shall be greatly minimized. We use LeNet-5
with 100 batch size on Core i7 platform for illustration, and show
the relation between accuracy loss and performance exchange of
DREW in Figure 5. The performance exchange is defined as the
ratio difference between the performance of each measurement
and the highest performance achieved. Figure 5 shows that we can
trade performance for accuracy in DREW.

7.5 Configuration Influence Analysis

To further analyze the efficacy of DREW, we explore the influence
of different configurations on DREW and use CifarNet ConvI on
Core i9 platform for illustration. For clustering granularity and hash
size, we fix the batch size to 100 and the number of threads on CPUs
to 16. When we analyze the batch size and thread number, we only
change the batch size and the number of threads, while keeping
the other configurations unchanged. The performance results are
shown in Figure 6.

Hash size. The number of hash functions mainly influences
the remaining ratio. With the decreasing number of hash func-
tions, more computation is saved due to a smaller remaining ratio.
Therefore, the performance increases along with the hash size.

Clustering granularity. To study how clustering granularity
affects the performance, we explore the channel number of tiles L.,

WWW °22, April 25-29, 2022, Virtual Event, Lyon, France

4 275

—— #channels=1 {:tégg
3 #channels=3 QZ'SO - iE
! - I S ---- N=500
82 B \\‘\‘
g %2.00 """""
“] B e N s s
0 1.50
10111213 141516 17 18 192021 22 2 4 6 8 10 12 14 16

#threads

(a) Clustering granularity and the numb- (b) Batch size and the number of threads.
er of hash functions.

#hash functions

Figure 6: Influence from different configurations.

of all the factors of C in Conv1. Figure 6 shows that performance
increases significantly as granularity becomes larger and the num-
ber of hash functions becomes smaller. The reason is that when the
number of hash functions is small, the remaining ratio becomes
small; at the same time, large granularity results in fewer addition
operations in the output accumulation, which causes discontinuous
memory accesses. However, with the increasing number of hash
functions H, the remaining ratio becomes large especially when the
granularity is large, resulting in moderate performance benefits.

Batch size. The remaining ratio becomes smaller as the batch
size increases, introducing more performance benefits.

Number of threads. DREW achieves significant performance
benefits in all cases. In parallel execution, the speedup can be up
to 2.38x. Note that the baseline and DREW use the same number
of threads. The reason for increasing speedup with decreasing
number of threads is that adding the number of threads increases
the proportion of the extra overhead introduced by parallelism that
cannot be amortized.

7.6 Execution Time Analysis

We perform runtime analysis for each step of DREW in each layer,
and use CifarNet for illustration; the results of the other benchmarks
are similar. We divide the workflow of our approach into three
stages based on the steps in Section 5.1. The first stage is clustering,
which represents the step 1 of clustering in Section 5.1. The second
stage is convolution, which represents the steps 2 to 4. The third
stage is accumulation, which represents the step 5 of accumulation.

The proportions of clustering, convolution, and accumulation are
16%, 34%, and 50% for Conv1, and are 20%, 56%, and 24% for Conv2,
respectively. We have the following findings. First, the clustering
stage occupies the minimum proportion of the overall execution
in both layers. Second, for Conv2, the convolution stage takes a
relatively high proportion because there are more input channels
and the number of neuron vectors is larger, resulting in more mul-
tiplication operations. Third, the accumulation takes a relatively
long time because the memory access to the centroid vector is dis-
continuous. If users pursue higher performance, it can be optimized
by increasing L.j, which reduces the number of discontinuous
Memory accesses.

7.7 Applicability to Other Networks

DREW can be applied to other convolutional neural networks. We
select LeNet-5, CifarNet, and VGG-16 for validation because they
are classic and have been evaluated in many works. More advanced
models have not substantially changed the use of convolution. For
example, the Conv1-2 of VGG-16 [36], which has 64 input features
and 64 output features, is the same as Conv2_1 in ResNet-18 [15].

1814

Ruofan Wu, Feng Zhang, Jiawei Guan, Zhen Zheng, Xiaoyong Du, and Xipeng Shen

Furthermore, advanced models only make the weights more ef-
ficient without considering the input similarities. Therefore, our
work still can be used in other situations.

8 RELATED WORK

Winograd. CNNs have been widely applied in Web applications [8,
12, 27, 28, 30, 34, 40, 44, 47, 51]. Cook [7] and Toom [38] proposed
a class of minimal filtering algorithms, and Winograd [46, 49] gen-
eralized these fast CNN algorithms. Lavin [23] further extended
Winograd as an efficient convolution operation. There are many
works on accelerating Winograd algorithm. Jia et al. [20] optimized
the Winograd-based convolution on Intel Xeon Phi platforms. Yan
et al. [50] optimized the batched Winograd algorithm on GPUs.
Moreover, Winograd algorithm has been integrated in many pop-
ular libraries, such as FALCON [2], LIBXSMM [5], MKL-DNN [3],
and SASS [6].

Data reuse. Data reuse has been proved to be a great success
in data management and analytics [33, 54, 56-59], and has been
applied in deep learning, so called deep reuse. Deep reuse is an
accelerating method that speedups convolution by reusing the sim-
ilarities among neuron vectors. The closest work to our deep reuse
in Winograd is [32]. Ning et al. [32] applied the deep reuse tech-
niques in the CNN inference process. Ning et al. [31] also applied
the deep reuse in CNN training process on the fly. Different from
these works, we apply deep reuse to Winograd algorithms, which
further improves the performance of CNN. Zheng et al. [64, 65] ex-
plore data reuse between memory intensive operations for stitching
optimization, which is orthogonal to our study.

Compression techniques. Deep reuse, which leverages the
similarities among input online, is orthogonal to compression tech-
niques (like pruning and quantization) [9, 14, 17, 18, 21, 42, 48, 52,
61], which reduce the model size offline by leveraging the simi-
larities among weights. Deep reuse can be applied to compressed
models, as discussed in [32], and hence they are complementary to
each other.

9 CONCLUSION

This paper integrates deep reuse with Winograd convolution, and
yields a library, called DREW, to enable efficient CNN inference. By
enabling deep reuse in the Winograd algorithm, DREW reduces the
number of convolution operations to an average of 11% of the orig-
inal operations. The paper presents how deep reuse can be applied
to Winograd. It discusses the major challenges when applying deep
reuse to Winograd convolution, and provides a set of solutions in
applying our method. In evaluation, DREW provides 6.68x perfor-
mance improvement over the original Winograd convolution with
almost no accuracy loss.

ACKNOWLEDGMENTS

This work is supported by the National Key Research and Develop-
ment Program of China (No. 2018YFB1004401), National Natural Sci-
ence Foundation of China (No. 62072458, 62172419, and 62072459),
and Alibaba Group through Alibaba Innovative Research Program.
Feng Zhang is the corresponding author of this paper.

DREW: Efficient Winograd CNN Inference with Deep Reuse

REFERENCES

(1]

[10

[11]

[12]

(13

[14]

(15

[16]

[17]

[18

[19]

[20]

[21

oo
0

[23

[24]

[25]

[26

[27

2014. cuDNN: Efficient Primitives for Deep Learning. https://developer.nvidia.
com/cudnn.

2016. FALCON Library: Fast Image Convolution in Neural Networks on Intel
Architecture. https://colfaxresearch.com/falcon-library/.

2016. Intel(R) Math Kernel Library for Deep Neural Networks. https://github.
com/oneapi-src/oneDNN.

2020. CifarNet. http://places.csail. mit.edu/deepscene/small-projects/TRN-
pytorch-pose/model_zoo/models/slim/nets/cifarnet.py.

2020. LIBXSMM. https://github.com/hfp/libxsmm.

2020. MaxAs. https://github.com/NervanaSystems/maxas.

SA Cook. 1966. On the minimum computation time for multiplication. Ph.D.
Dissertation. Harvard U., Cambridge, Mass.

Rahul Duggal, Scott Freitas, Cao Xiao, Duen Horng Chau, and Jimeng Sun. 2020.
REST: Robust and Efficient Neural Networks for Sleep Monitoring in the Wild.
In WWW °20: The Web Conference, Yennun Huang, Irwin King, Tie-Yan Liu, and
Maarten van Steen (Eds.).

Boyuan Feng, Yuke Wang, Tong Geng, Ang Li, and Yufei Ding. 2021. APNN-TC:
Accelerating arbitrary precision neural networks on ampere GPU tensor cores.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis.

Boyuan Feng, Yuke Wang, Gushu Li, Yuan Xie, and Yufei Ding. 2021. Palleon: A
Runtime System for Efficient Video Processing toward Dynamic Class Skew. In
USENIX ATC 21.

Mikhail Figurnov, Aizhan Ibraimova, Dmitry P Vetrov, and Pushmeet Kohli. 2016.
PerforatedCNNs: Acceleration through Elimination of Redundant Convolutions.
In Advances in Neural Information Processing Systems 29.

Junyi Gao, Cao Xiao, Yasha Wang, Wen Tang, Lucas M. Glass, and Jimeng Sun.
2020. StageNet: Stage-Aware Neural Networks for Health Risk Prediction. In
WWW °20: The Web Conference, Yennun Huang, Irwin King, Tie-Yan Liu, and
Maarten van Steen (Eds.).

Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 1999. Similarity Search in
High Dimensions via Hashing. In PVLDB.

Song Han, Huizi Mao, and William] Dally. 2016. Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding.
International Conference on Learning Representations (ICLR) (2016).

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In CVPR.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. MobileNets:
Efficient Convolutional Neural Networks for Mobile Vision Applications. CoRR
abs/1704.04861 (2017). arXiv:1704.04861

Zhenbo Hu, Xiangyu Zou, Wen Xia, Sian Jin, Dingwen Tao, Yang Liu, Weizhe
Zhang, and Zheng Zhang. 2020. Delta-DNN: Efficiently Compressing Deep
Neural Networks via Exploiting Floats Similarity. In ICPP.

Zhenbo Hu, Xiangyu Zou, Wen Xia, Yuhong Zhao, Weizhe Zhang, and Don-
glei Wu. 2021. Smart-DNN: Efficiently Reducing the Memory Requirements of
Running Deep Neural Networks on Resource-constrained Platforms. In ICCD.
Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew
Howard, Hartwig Adam, and Dmitry Kalenichenko. 2018. Quantization and
Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference. In
CVPR.

Zhen Jia, Aleksandar Zlateski, Fredo Durand, and Kai Li. 2018. Optimizing N-
Dimensional, Winograd-Based Convolution for Manycore CPUs. PPoPP (2018).
Sian Jin, Chengming Zhang, Xintong Jiang, Yunhe Feng, Hui Guan, Guanpeng
Li, Shuaiwen Leon Song, and Dingwen Tao. 2022. COMET: A Novel Memory-
Efficient Deep Learning Training Framework by Using Error-Bounded Lossy
Compression. PVLDB (2022).

Alex Krizhevsky. 2012. Learning Multiple Layers of Features from Tiny Images.
University of Toronto (05 2012).

Andrew Lavin and Scott Gray. 2016. Fast Algorithms for Convolutional Neural
Networks. In CVPR.

Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. 1998. THE MNIST
DATABASE of handwritten digits. http://yann.lecun.com/exdb/mnist/.

Yann Lecun, L.D. Jackel, Leon Bottou, A. Brunot, Corinna Cortes, J. S. Denker,
Harris Drucker, I. Guyon, U.A. Muller, Eduard Sackinger, Patrice Simard, and V.
Vapnik. 1995. Comparison of learning algorithms for handwritten digit recogni-
tion. In International Conference on Artificial Neural Networks, Paris, F. Fogelman
and P. Gallinari (Eds.).

Yu-Chiang Li, Chia-Ming Yeh, and Chin-Chen Chang. 2010. Data hiding based
on the similarity between neighboring pixels with reversibility. Digital Signal
Processing (2010).

Bin Liu, Ruiming Tang, Yingzhi Chen, Jinkai Yu, Huifeng Guo, and Yuzhou Zhang.
2019. Feature Generation by Convolutional Neural Network for Click-Through
Rate Prediction. In The World Wide Web Conference, Ling Liu, Ryen W. White,
Amin Mantrach, Fabrizio Silvestri, Julian J. McAuley, Ricardo Baeza-Yates, and
Leila Zia (Eds.).

1815

(28]

I
20,

[34

[35

[36

[37

[38

[39

=
o

[48

[49

[50]

[51

o
£,

[53

(54

WWW ’22, April 25-29, 2022, Virtual Event, Lyon, France

Junxin Liu, Fangzhao Wu, Chuhan Wu, Yongfeng Huang, and Xing Xie. 2019.
Neural Chinese Word Segmentation with Lexicon and Unlabeled Data via Poste-
rior Regularization. In The World Wide Web Conference, Ling Liu, Ryen W. White,
Amin Mantrach, Fabrizio Silvestri, Julian J. McAuley, Ricardo Baeza-Yates, and
Leila Zia (Eds.).

Yizhi Liu, Yao Wang, Ruofei Yu, Mu Li, Vin Sharma, and Yida Wang. 2019. Opti-
mizing CNN Model Inference on CPUs. In USENIX ATC.

Yilin Liu, Shijia Zhang, and Mahanth Gowda. 2021. NeuroPose: 3D Hand Pose
Tracking using EMG Wearables. In WWW ’21: The Web Conference, Jure Leskovec,
Marko Grobelnik, Marc Najork, Jie Tang, and Leila Zia (Eds.).

L. Ning, H. Guan, and X. Shen. 2019. Adaptive Deep Reuse: Accelerating CNN
Training on the Fly. In ICDE.

Lin Ning and Xipeng Shen. 2019. Deep Reuse: Streamline CNN Inference on the
Fly via Coarse-Grained Computation Reuse. In ICS.

Zaifeng Pan, Feng Zhang, Yanliang Zhou, Jidong Zhai, Xipeng Shen, Onur Mutlu,
and Xiaoyong Du. 2021. Exploring data analytics without decompression on
embedded GPU systems. IEEE Transactions on Parallel and Distributed Systems
(2021).

Jathushan Rajasegaran, Naveen Karunanayake, Ashanie Gunathillake, Suranga
Seneviratne, and Guillaume Jourjon. 2019. A Multi-modal Neural Embeddings
Approach for Detecting Mobile Counterfeit Apps. In The World Wide Web Con-
ference, Ling Liu, Ryen W. White, Amin Mantrach, Fabrizio Silvestri, Julian J.
McAuley, Ricardo Baeza-Yates, and Leila Zia (Eds.).

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV) (2015).

Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. arXiv 1409.1556 (09 2014).

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew
Howard, and Quoc V. Le. 2019. MnasNet: Platform-Aware Neural Architecture
Search for Mobile. In CVPR.

Andrei L Toom. 1963. The complexity of a scheme of functional elements realizing
the multiplication of integers. Soviet Mathematics Doklady.

Hongyi Wang, Scott Sievert, Shengchao Liu, Zachary Charles, Dimitris Papail-
iopoulos, and Stephen Wright. 2018. ATOMO: Communication-efficient Learning
via Atomic Sparsification. In Advances in Neural Information Processing Systems.
Tianhao Wang and Florian Kerschbaum. 2021. RIGA: Covert and Robust White-
Box Watermarking of Deep Neural Networks. In WWW ’21: The Web Conference,
Jure Leskovec, Marko Grobelnik, Marc Najork, Jie Tang, and Leila Zia (Eds.).
Yuke Wang, Boyuan Feng, and Yufei Ding. 2021. DSXplore: Optimizing Convolu-
tional Neural Networks via Sliding-Channel Convolutions. In IPDPS.

Yuke Wang, Boyuan Feng, and Yufei Ding. 2022. QGTC: Accelerating Quantized
GNN via GPU Tensor Cores. In PPoPP.

Yuke Wang, Boyuan Feng, Xueqiao Peng, and Yufei Ding. 2021. An Efficient
Quantitative Approach for Optimizing Convolutional Neural Networks. In CIKM.
Yanling Wang, Jing Zhang, Shasha Guo, Hongzhi Yin, Cuiping Li, and Hong
Chen. 2021. Decoupling representation learning and classification for GNN-
based anomaly detection. In SIGIR.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2016. Learning
Structured Sparsity in Deep Neural Networks. In Advances in Neural Information
Processing Systems 29.

S. Winograd. 1980. Arithmetic complexity of computations.

Fangzhao Wu, Junxin Liu, Chuhan Wu, Yongfeng Huang, and Xing Xie. 2019. Neu-
ral Chinese Named Entity Recognition via CNN-LSTM-CRF and Joint Training
with Word Segmentation. In The World Wide Web Conference, Ling Liu, Ryen W.
White, Amin Mantrach, Fabrizio Silvestri, Julian J. McAuley, Ricardo Baeza-Yates,
and Leila Zia (Eds.).

Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng. 2016.
Quantized Convolutional Neural Networks for Mobile Devices. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Ruofan Wu, Feng Zhang, Zhen Zheng, Xiaoyong Du, and Xipeng Shen. 2021.
Exploring deep reuse in Winograd CNN inference. In PPoPP.

Da Yan, Wei Wang, and Xiaowen Chu. 2020. Optimizing Batched Winograd
Convolution on GPUs. In PPoPP.

Quanming Yao, Xiangning Chen, James T. Kwok, Yong Li, and Cho-Jui Hsieh.
2020. Efficient Neural Interaction Function Search for Collaborative Filtering. In
WWW °20: The Web Conference, Yennun Huang, Irwin King, Tie-Yan Liu, and
Maarten van Steen (Eds.).

Chengming Zhang, Geng Yuan, Wei Niu, Jiannan Tian, Sian Jin, Donglin Zhuang,
Zhe Jiang, Yanzhi Wang, Bin Ren, Shuaiwen Leon Song, et al. 2021. Click-
Train: efficient and accurate end-to-end deep learning training via fine-grained
architecture-preserving pruning. In ICS.

Chenyang Zhang, Feng Zhang, Xiaoguang Guo, Bingsheng He, Xiao Zhang,
and Xiaoyong Du. 2020. iMLBench: A Machine Learning Benchmark Suite
for CPU-GPU Integrated Architectures. https://github.com/ChenyangZhang-
cs/iMLBench. IEEE TPDS (2020).

Feng Zhang, Zaifeng Pan, Yanliang Zhou, Jidong Zhai, Xipeng Shen, Onur Mutlu,
and Xiaoyong Du. 2021. G-TADOC: Enabling Efficient GPU-Based Text Analytics

https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://colfaxresearch.com/falcon-library/
https://github.com/oneapi-src/oneDNN
https://github.com/oneapi-src/oneDNN
http://places.csail.mit.edu/deepscene/small-projects/TRN-pytorch-pose/model_zoo/models/slim/nets/cifarnet.py
http://places.csail.mit.edu/deepscene/small-projects/TRN-pytorch-pose/model_zoo/models/slim/nets/cifarnet.py
https://github.com/hfp/libxsmm
https://github.com/NervanaSystems/maxas
https://arxiv.org/abs/1704.04861
http://yann.lecun.com/exdb/mnist/
https://github.com/ChenyangZhang-cs/iMLBench
https://github.com/ChenyangZhang-cs/iMLBench

WWW ’22; April 25-29, 2022, Virtual Event, Lyon, France

[55]

[56

[57

[58

[59

[60]

without Decompression. In ICDE.

Feng Zhang, Jidong Zhai, Bingsheng He, Shuhao Zhang, and Wenguang Chen.
2016. Understanding co-running behaviors on integrated CPU/GPU architectures.
IEEE Transactions on Parallel and Distributed Systems (2016).

Feng Zhang, Jidong Zhai, Xipeng Shen, Onur Mutlu, and Wenguang Chen. 2018.
Efficient document analytics on compressed data: Method, challenges, algorithms,
insights. Proceedings of the VLDB Endowment (2018).

F. Zhang, J. Zhai, X. Shen, O. Mutlu, and X. Du. 2020. Enabling Efficient Random
Access to Hierarchically-Compressed Data. In ICDE.

Feng Zhang, Jidong Zhai, Xipeng Shen, Onur Mutlu, and Xiaoyong Du. 2022.
POCLIib: A High-Performance Framework for Enabling Near Orthogonal Pro-
cessing on Compression. IEEE Transactions on Parallel and Distributed Systems
(2022).

Feng Zhang, Jidong Zhai, Xipeng Shen, Dalin Wang, Zheng Chen, Onur Mutlu,
Wenguang Chen, and Xiaoyong Du. 2020. TADOC: Text analytics directly on
compression. The VLDB Journal (2020).

Letian Zhang, Lixing Chen, and Jie Xu. 2021. Autodidactic Neurosurgeon: Col-
laborative Deep Inference for Mobile Edge Intelligence via Online Learning. In
WWW °21: The Web Conference, Jure Leskovec, Marko Grobelnik, Marc Najork,
Jie Tang, and Leila Zia (Eds.).

1816

Ruofan Wu, Feng Zhang, Jiawei Guan, Zhen Zheng, Xiaoyong Du, and Xipeng Shen

(61

Shuyu Zhang, Donglei Wu, Haoyu Jin, Xiangyu Zou, Wen Xia, and Xiaojia Huang.
2021. QD-Compressor: a Quantization-based Delta Compression Framework for
Deep Neural Networks. In ICCD.

[62] X.Zhang, J. Zou, K. He, and J. Sun. 2016. Accelerating Very Deep Convolutional
Networks for Classification and Detection. IEEE Transactions on Pattern Analysis
and Machine Intelligence (2016).

Yipeng Zhang, Bo Du, Lefei Zhang, and Jia Wu. 2020. Parallel DNN Inference
Framework Leveraging a Compact RISC-V ISA-Based Multi-Core System. In
KDD.

Zhen Zheng, Xuanda Yang, Pengzhan Zhao, Guoping Long, Kai Zhu, Feiwen Zhu,
Wenyi Zhao, Xiaoyong Liu, Jun Yang, Jidong Zhai, Shuaiwen Leon Song, and Wei
Lin. 2022. AStitch: Enabling A New Multi-Dimensional Optimization Space for
Memory-Intensive ML Training and Inference on Modern SIMT Architectures.
In Proceedings of the 27th ACM International Conferenceon Architectural Support
for Programming Languages and Operating Systems.

Zhen Zheng, Pengzhan Zhao, Guoping Long, Feiwen Zhu, Kai Zhu, Wenyi
Zhao, Lansong Diao, Jun Yang, and Wei Lin. 2020. Fusionstitching: boosting
memory intensive computations for deep learning workloads. arXiv preprint
arXiv:2009.10924 (2020).

[63

[64

[65

	Abstract
	1 Introduction
	2 Background
	2.1 Winograd Convolution
	2.2 Deep Reuse

	3 Motivation
	4 Solution Overview
	5 DREW Algorithm and Optimizations
	5.1 Deep-Reuse Winograd
	5.2 Clustering Design
	5.3 Clustering Granularity

	6 Parallelism
	7 Evaluation
	7.1 Experimental Setup
	7.2 Single-Layer Performance
	7.3 End-to-End Performance
	7.4 Trade-off between Accuracy and Efficiency
	7.5 Configuration Influence Analysis
	7.6 Execution Time Analysis
	7.7 Applicability to Other Networks

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

