Soft Errors Tutoria

llan Beer
IBM Haifa Research Lab
27 Oct. 2008

V
>
AHvC’08

© 2008 IBM Corporation

Motivation

As the semiconductors industry progresses deeply into
the sub-micron technology, vulnerability of chips to soft
errors is growing

In high reliability systems, as well as in aviation and
space, soft errors are already a major issue

It is believed that in the near future soft errors will
become a major issue for more systems

A relatively hot subject in conferences in recent years

On the other hand,
“Fifteen years ago soft errors were the next threat.

Fifteen years later they are still the next threat”
Tim Slegel, Distinguished Engineer, IBM

© 2008 IBM Corporation

Outline

Background — facts about soft errors
Design solutions for dealing with soft errors
Similarity and dissimilarity to functional verification

© 2008 IBM Corporation

What are Soft Errors?

Neither functional problems nor production ones

o Hence cannot be found during functional verification or
production testing

They occur during normal operation
The value of a memory element or a logic gate is flipped

The cause is transient and the error can be fixed by
rewriting the correct value

© 2008 IBM Corporation

Two Main Sources

1: Alpha particles
o Emitted from radioactive impurities in silicon and package
An alpha particle is equivalent to a Helium nucleus
Fly through silicon, affecting nearby devices
A few parts per billion are enough to cause problems

Hit rate depends on the purity of materials used in the
production process

o The duration of a strike is about 100 picoseconds

o O O O

© 2008 IBM Corporation

T'wo Main Sources (cont.)

2. Cosmic rays
Mainly neutrons
Hit silicon and cause emission of alpha (and other) particles

o Only neutrons with enough energy penetrate the atmosphere and
reach earth

~15 particles/cm2-hour at sea level

o Higher flux in higher elevations
300 times more at 10 KM (commercial flight height)
Much more in satellites

o 3-5 meters of concrete can provide enough shield

Also wire crosstalk, voltage surges, etc.

© 2008 IBM Corporation

A Strike Can Cause a Fault

A strike by a charged particle can change the logic value
of a device

Not every strike flips the value
o Depends on strike energy and on the charge stored in the device

o Stored charge depends on transistor capacity (size) and
operation voltage

Both are reduced as technology progresses

The fault rates of specific device types (e.g., sram, dram
and latches) are calculated using models based on
empirical results

Although the particle is positively charged, it can change
a logic value to either ‘1" or ‘0’

© 2008 IBM Corporation

Is Small Transistor Size Good or Bad?

Smaller size => less capacitance => less charge =>
increased vulnerability

Smaller size => less area => less strikes

These contlicting effects indeed cancel each other to
some degree

However, although feature size shrinks, the number of
features grow, so the total system area does not shrink

© 2008 IBM Corporation

Faults May Vanish

u ——
Examples } 0
Fault —

o Logical masking
A register is rewritten after the fault and before being used
A unit or thread is inactive at this moment

Faults that only affect timing (e.g., in branch prediction)

The SW application does not use this value until
overwritten

Vanishing depends on where we measure
(macro/unit/processor/system/SW application)
o All measurements except the application are pessimistic

In Power6, more than 99% of the faults vanished (beam and
simulation)

o Less vanishing in datapath, more in control logic

O 0O 0O O

© 2008 IBM Corporation

Terminology

Fault: a bit flip

Error: a fault that caused harm
o Propagated to a point where it spoils the computation
o An error can be either SDC or DUE (or hang)

SDC: Silent Data Corruption

o A fault that did not vanish and was not detected

o Theoretically should be measured at the SW application level

o We use this term to describe an error at the interface between
HW and SW because we limit ourselves to hardware solutions

DUE: Detected Uncorrectable Error

o The fault was detected but cannot be corrected nor recovered

o Usually stops execution; recovery is done by the layers above

A fault that was corrected or recovered is not an error

10
© 2008 IBM Corporation

Fate of Faults in IBM Power6

Sanda et al., IBM Journal of Research and Development, Jan. 2008

Machine derating

| :
e a) Vanished

o
_fm., by Corrected ST e i
~&) Checkstops L} EHI]IS t.m[
impacting
licati
d)y Incorrect application
designed 2) Software detected
state

3) Silent data corruption

Interesting fact: without detection and correction, (d) only doubled!

These numbers were measured by beam experiments and verified
by simulation

11
© 2008 IBM Corporation

‘Beam Experiments

= Natural hit rate is too low for measuring derating

= Solution: Accelerated irradiation by protons and neutrons
o Measuring faults: latches accessed through the scan chain (idle)
o Measuring errors: by checkers during run

= Pros
o The system runs at full speed

= Cons

o A post production activity
= Too late to affect the design
o Hard to analyze specific events

o No targeted injection

12
© 2008 IBM Corporation

‘ Complementary SFI Experiments

= The number of faults in beam experiments was relatively
low (< 2300)

= Statistical fault injection (SFI, described later) converged
to similar results

e i i et it e e i e =#+="Vanished
{ =
Froton Neutron SFT R =&-Recovered
E == Hangs
Flips 1,748 541 16,817 E Lt et et el R ey i v i === Checkstops
]
a) Vanished (%) 9568 9732 G4 9 'E
b} Corrected (%) 3.50 2.03 3.70 =
m
c) Checkstops (%) 0.60 0.40 0.90 £
d) Incorrect architected 022 025 0.42 2
state (%) ﬁ
1) Errors not impacting 0.06 0.06 .08 'E
application (%) =
2) Software detected (%) 0.00 000 0.03 zlk -l.k srk a1|.: *II;II: 11;1: 1;11 1;;1: *H;k 2[.:Ik

Number of flips

Ramachandran et al., DSN0O8

13
© 2008 IBM Corporation

Fate of Faults in Different Units

Ramachandran et al., DSN0O8

In IBM Power6
RUT is the recovery unit
Note that the scale begins at 90%

100% - l l——-.——— --- -= --

98% 1 I [—-
&
=
= 96% -
(3]
=
-
o 94% -
2
a

Q2% -

0% 4

IFU o FxU FPU RUT FER
W Vanish M Recoveries Hang5 B Checkstops

14
© 2008 IBM Corporation

Mainly Single-Fault Model

A single fault at a time is assumed
o Because fault frequency is relatively low

o No problem if there are simultaneous faults in two devices with
separate detection/correction/recovery logic

However, a single particle strike may flip multiple bits
o Special treatment in memory (see later)
o Less frequent in latches — they are bigger and sparser

Note: a single fault in a gate can spoil multiple latches
o Luckily, we currently neglect faults

in combinational logic ‘Dﬂ[Latch |
Latch

© 2008 IBM Corporation

15

Faults in Combinational Logic

Have effect only if latched
Three types of masking can prevent latching ﬁ

o Logical masking " |) D_ﬂ_
o Electric masking: the fault attenuates before being latched —

o Latch-window masking: fault arrives outside tsetup+thold m

As a result, combinational logic faults are often neglected

This may change if clock frequency continues to grow
o tsetup+thold will occupy more of the cycle time

o Shorter combinational path from latch to latch — less attenuation
and less masking

Some combinational devices in the datapath are protected
(e.g., integer arithmetic)

16
© 2008 IBM Corporation

Measurement Units

Both faults and errors (faults that escaped) are usually
measured by FIT (Faults In Time) units
o The number of faults/errors in 1 billion hours (~114,000 years)

FIT is convenient because it is additive

o The FIT of a system is the sum of FITs of its components

o Independent random variables with Poisson distribution
Assuming that particle strikes are independent events

FIT is proportional to 1/MTTF (Mean Time To Failure)

o MTTF is not additive

A single bit has fault rate of about 1-10 mFIT

o A1 GB memory has fault rate of up to 10°*8*0.01 = 8*107 FIT
An error every 12.5 hours

17
© 2008 IBM Corporation

Problem Detinition

FIT in: the anticipated fault rate
FIT budget: requirement for maximum number of errors

Derating: the ratio between faults and errors
o FIT in/FIT of errors

o Intrinsic derating

Faults that “naturally” vanish as a result of the specific design
structure

o Explicit derating
Achieved by detection and correction

Goal: Given FIT in and FIT budget

o Achieve derating >= FIT in / FIT budget
Measure the intrinsic derating
Add explicit derating >= FIT in / FIT budget / intrinsic derating

18
© 2008 IBM Corporation

Design Solutions

© 2008 IBM Corporation 19

About Design Solutions

Solutions include prevention, detection, correction, and
recovery

Solutions depend on goals. For example,
o In some cases, stopping rather than recovery is enough

o If no delay is allowed, backtracking-based recovery is not an
option

Solutions depend on what we protect
o Memory

o Datapath

o Control logic

, 20
© 2008 IBM Corporation

About Design Solutions (cont.)

Solutions can be provided at various levels
o Physical: add to the chip layers that collect charge (prevention)
o Circuit: hardening of selected latches (prevention)
Increase charge by increasing size or adding capacitors
— Redundancy tricks
o Logic and micro-architecture (next slides)
o Software: calculate twice, sequentially or in parallel
o Combined: detection by hardware, recovery by software

z/osUS Patent 6624677 P

21
© 2008 IBM Corporation

Logic and uArchitecture Level

Solutions
Detection is based on redundancy

We want a fault to bring the system to a non-reachable state
o Bad parity is an example of an unreachable state

If detection is not done close enough to the point of fault,
the fault may escape
o Downstream, it might manifest itself as a reachable state

o This is why functional checkers are not good enough for soft error
detection

—o—>» |—eo—>» —e—>

';:'' L.
EDP g%ith

© 2008 IBM Corporation

22

‘ Very Robust Solutions

= Triple-Modular Redundancy (TMR)
o Three replicas

Compare state/outputs and vote

A fault causes no delay

Used in satellites

Redundancy of more than 200% :>

o O O O

: 23
© 2008 IBM Corporation

Very Robust Solutions (cont.)

Duplicate and backtrack

o Two replicas
o The architected state is compared in every cycle
o Backtrack to a safe snapshot
o Used in older generations of ' p1
IBM z-series processors — jﬁﬁ>
o Redundancy of more than 100% E>)
) P2) =

Both solutions are not limited to a single fault
Both are very expensive
They can be applied to parts of the design

, 24
© 2008 IBM Corporation

Memory Solutions

Useful property: A huge number of elements; at any
time, only one is accessed through a read/write port

Solution: Error correction code (ECC)
o Increased Hamming distance between legal values
o Usually can correct one fault and detect two

Cost: A few additional bits per word + ECC generator +
ECC corrector

Data in SN

ecc ||| ||

generator
Memory

ECC Data out

corrector

, 25
© 2008 IBM Corporation

Memory Solutions (cont.)

No need to backtrack; no delay

Problem: One strike can change multiple adjacent bits

o Solution: Interleave, so that bits of the same word are placed far
from each other

Problem: Faults may accumulate in the course of time
o Solution: Periodic refresh

A perfect solution for ~80% of the system area
Consumes nothing from the FIT budget

Considered as a solved problem; we will not deal with it
further

, 26
© 2008 IBM Corporation

Datapath Solutions

Common elements

o Wide buses that move data without modifying it, possibly through
multiplexers

Parity-based detection (*)
CRC for packets (no extra lines, no need to detect in between)
ECC is not applicable

o Arithmetic operations (integers)
Residue checking (calculation modulo a small integer)

Satisfactory design methodology and implementation
o As long as the elements fall into one of the above classes

Usually has relatively low FIT budget
Occupies ~80% of the non-memory area

, 27
© 2008 IBM Corporation

‘ Parity

=
[
> |

© 2008 IBM Corporation 28

Control Logic Solutions

Only latches are protected, not combinational logic

The goal is to verify that the value read from the latch is
the last value written into it

A common solution is parity prediction and checking (*)

Designers also use functional checkers but they don't
know what is covered

Have to find a compromise between detection quality
and cost in area/power/timing/wiring

Immature design methodology and implementation
Usually has high FIT budget relative to its size

, 29
© 2008 IBM Corporation

Parity Prediction

Calculate parity of latch inputs (!) on write
Check parity of latch outputs in every cycle (not on read)

P

Both timing and wiring complexity limit the number of
protected latches per parity bit

Natural grouping does not always exist

, 30
© 2008 IBM Corporation

Recovery (as in IBM Processors)

Central recovery in a separate unit
Takes snapshots of the architected state

On fault detection

o Backtracks to a valid snapshot

o Reverts to the first instruction discarded

o Resets the relevant units to valid states (e.g., flushes pipelines)
o Stops if recovery is impossible

Detection devices provide information for focused
recovery and fault analysis

Recovery imposes time limits on detection

31
© 2008 IBM Corporation

Over-Detection

In Power6
o With detection: 3.5% corrected, 0.6% DUE, 0.2% SDC
o Without detection: only 0.4% SDC (0 detected; 0 DUE)

Most of the detected faults could vanish
Too many recoveries — not a big problem
Too many DUEs — a big problem

Reason for over-detection

o We protect devices, not against bad states

o Protecting against bad states would cost much more

DUE minimization by deferring until instruction retires
o No delay problems because there is no recovery

, 32
© 2008 IBM Corporation

Veritication Aspects

© 2008 IBM Corporation 33

Verification Goals

Main goal
o Verify that the system meets the FIT budget requirements while
retaining functional correctness
Sub-goals
o Measure system derating
o Measure derating/vulnerability of sub-components
For optimal use of resource budgets
o Verify that the detection logic indeed detects
o Verify that the recovery mechanism indeed recovers

o Verify that the soft error handling logic does not impair functional
correctness

, 34
© 2008 IBM Corporation

Similarity ot Soft Error Veritication
to Functional Verification

RTL of a design is given

Valid stimuli (tests) are generated
o Injected faults can be regarded as part of the test

We verify that the design behaves correctly for all inputs,
iIncluding the presence of faults

Use of interface checkers or expected results
Coverage is possibly measured

The state space is huge

o Fault injection increases the state space even further.
For exhaustive verification, a fault should be injected to every
latch in every reachable state

, 35
© 2008 IBM Corporation

A Simplistic Approach

Use sequential equivalence

In the faulty copy, allow one latch to change its value in
one arbitrary cycle (use non-determinism)

The two copies should be equivalent even in the
presence of one fault

Good

I=
SDC

JLJL

JLIL

o Faulty

Environment model

, 36
© 2008 IBM Corporation

Why Simplistic?

Soft error requirements are statistical
o Not every fault needs to be detected or recovered (FIT budget)
o Only typical workloads are interesting, not corner cases

After recovery, the faulty copy no longer behaves as the
copy without a fault

o Itis reset to a valid state, probably not a state of the design
without a fault (e.g., the pipeline is flushed)

We cannot neglect the state explosion problem

o The comparison should be applied to the entire design in order
not to be pessimistic

, 37
© 2008 IBM Corporation

A Practical Approach:

Statistical Fault Injection

(Sl;lfeg faults one at a time

Simulate enough cycles to allow one of these

o Vanishing

o Detection by the soft error checkers + recovery or stopping
o Detection by “interface” checkers (SDC)

After enough runs, measure output FIT

o The average “latch intrinsic FIT” of latch injections that resulted in
SDC, multiplied by the total number of latches

Use this procedure to report areas that are more

vulnerable

o Same calculations as above, but for specific parts

o This can help designers invest effort and resources efficiently

, 38
© 2008 IBM Corporation

Identitying Escapes and Vanished

Flae,thfsing vanished faults is important

o Efficiency: If a fault vanished, a new fault can be injected

o Correctness: When simulation ends, we want to know if the fault
is latent in the internal state, in which case it is a potential SDC

Solution

o Lock-step simulation of good and faulty machine

o Compare internal state each cycle
(or every K cycles)
A by product test

o By comparing the architected state
every cycle we can find SDCs

o More conservative than interface checkers
o Sometimes over-pessimistic

\
—/

Good

=

o
Sz

Vanished

{}

JL

L]
Faulty

4\
_|/

The solution works only as long as there is lock-step

o E.g., not after recovery

© 2008 IBM Corporation

39

Some Problems to be Solved

Intelligent sampling of the injection space

Identifying protected latches to avoid unnecessary injections
(alternatively, verifying designers’ annotations)

Knowing how many runs are needed to converge to
statistically meaningful results?

Optimizing simulation to allow more injections
Writing simulation checkers that identify all escapes
Selecting typical workloads

|dentifying vulnerable areas in the design

Verifying the recovery process (both recovery unit and
pervasive branches)

Finding a good compromise between FIT budget and
resource budgets

, 40
© 2008 IBM Corporation

Longer Term Goal: Automatic
Generation of the
[Xereanthon Logic

o Intensive effort for the designer

o Inserted logic should be verified
o Logic is not necessarily efficient

Automatically generated logic
o Will be correct by construction

o Might be more efficient

o Will save designer effort

o Will shorten time to market

Naive generation is already possible

The challenge is to close the loop of generation-
measurement in order to find the best compromise
between FIT budget and area/power/timing budgets

41
© 2008 IBM Corporation

Hard Errors

If we reduce the soft error rate to very low levels,
we may face the next barrier: hard errors

o Wire wear-out by electromigration
o Gate oxide wear-out

Intrinsic vulnerability is very low but there is no derating
May result in SDC or DUE; no vanishing; no recovery
In memory, correction by ECC (one fault)

Can be detected with soft error detection logic
However, we protect only latches against soft errors
Hard errors in combinational logic cannot be neglected

Solutions
o Protect the combinational logic in hardware — expensive!
o BIST + SW

AT VR

, 42
© 2008 IBM Corporation

'Recommended Book (new)

= Architecture Design for Soft Errors
by Shubu Mukherjee (Intel)

Thank you ARGHITEGTURE N
DESIC)
FOR
SOFT ERRORS

: 43
© 2008 IBM Corporation

