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ABSTRACT
The present paper deals with a decoupled multimodel predictive
control based on multi-observer for the control of discrete-time
nonlinear systems with time-varying delay. For each local model,
a controller based on partial predictor/observer is synthesized.
A switching algorithm is established to yield the adequate
partial controller ensuring the closed-loop desired performances.
Simulation results are given to illustrate the significance of the
proposed decoupled multimodel predictive control strategy.
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1. INTRODUCTION
Time-delay arises in many physical systems with different
fields such as chemistry, biology, economic or engineering [1].
Time-delay can be generated by computational systems, actuators
and sensors. In many industrial systems, the measured output is
available after a time interval. This dead-time is mainly caused by
the sensor technology or communication systems with low speed.
It occurs also when the computing unit is located far from the
controlled system.
The non consideration of the time-delay can deteriorate the
performance of the control system drastically and can even lead
to instability.
The Model Predictive Control (MPC) is known as an efficient
control strategy for the control of industrial processes. The MPC
was firstly adopted by Shell oil and knew a continual usage in
several fields such as aerospace applications [2],[3],[4].
The significance of this control is due to the consideration of
both performance specifications and operating constraints in the
elaborated control law. The MPC uses an explicit model of the
system in order to envisage its future behavior. A sequence of
commands to be applied in a prediction horizon are determined.
Only the first element of this sequence is actually applied to the
system. This procedure is repeated at the further control intervals.
So, the basic idea of the predictive control is to exploit the
knowledge on the model to anticipate various situations of system
operation in the future and choose the best among them according
to the objectives. A state model predictive controller is proposed

in [5] for MIMO nonlinear and uncertain fractional-order systems.
In [6], the authors proposed an improved state feedback model
predictive control approach for complex systems with delayed state
and input. The robustness of constrained systems with uncertainties
and time-delay controlled by the MPC was studied in [7]. A robust
fuzzy model predictive control joining the MPC strategy and the
T-S model was discussed in [8], [9], [10], [11].
Predictive control based on nonlinear models have several limits
such as the complexity of the model used in the optimisation
problem. In fact, systems with nonlinear behaviors and complex
structures are frequently encountered in practice [12], [13], [14].
Indeed, the handling of these systems is a difficult task in many
practical situations, especially when they have highly nonlinear
dynamic behaviors. Consequently, it is difficult to synthesize
control laws or to implement strategies for system diagnosis for
these systems with mathematical complexity. The evolution of the
system around operating points is an assumption widely used in
the literature [15], [16]. Therefore, a step of linearisation of the
nonlinear model allows the use of techniques extensively developed
with linear systems. However, in practice, the linearised model is
not fully representative of the global system behavior. Thus, it is
essential to find a model that provides a good characterisation of
the global dynamic behavior of the nonlinear system and allows the
exploitation of techniques used in the handling of linear systems. In
order to meet these expectations, a new modeling technique called
multimodel approach has been developed in the recent years. There
are two main structures namely the coupled (Takagi-Sugeno model)
and the decoupled structures. The latter structure is characterised
by a further degree of freedom compared to the coupled structure.
In fact, the partial models of the decoupled structure can be
with different dimensions, which avoids the overparametrisation
occurred with T-S model. To obtain a multimodel, different
techniques have been developed in the literature. Among them,
there are the linearisation [16], the convex polytopic transformation
[17] and identification [18], [19].
The evolution of the system is often characterised by the evolution
of its state variables. This state representation allows the synthesis
of many control laws (predictive control, state feedback control...).
However, the implementation of these control laws requires the
knowledge of all state variables of the system which is often
difficult in practice. So, it is necessary to design an observer
in order to estimate the unmeasurable states [20]. Over the last
decades, state estimation of nonlinear systems described by T-S
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have been widely investigated through several research works [21],
[22], [23], [24], [25]. However, the state estimation of nonlinear
systems represented by decoupled multimodel was recently treated
in few works [26], [27].
[28] designed an observer for continuous-time decoupled
multimodel with delayed output.
In fact, the accurate estimation of the state variables leads to an
efficient control law. In [29], the authors proposed a nonlinear
model predictive control (NMPC) based on fuzzy Kalman filter for
the estimation of system states. An observer based model predictive
controller considering an extended Kalman filter for discrete-time
nonlinear systems was investigated in [30], [31], [32].
The main contribution of this paper is the design of a control
scheme based on decoupled multimodel predictive control for a
large class of discrete-time nonlinear systems with time-varying
delay. On the hand, a multi-observer is investigated for the
estimation of the state variables. The proposed multi-observer
provides an accurate estimation required for the elaboration of an
efficient multi-controller.
The present paper is organized as follows. Section two presents
a multi-observer for the state estimation of decoupled multimodel
with delayed output. The third section is reserved to the partial
model predictive control formulation. A supervised decoupled
multimodel predictive control is developed in the fourth section.
Simulation example is proposed in section five to illustrate the
efficiency of this control strategy. A conclusion achieves the paper.

2. A MULTI-OBSERVER FOR DECOUPLED
MULTIMODEL WITH DELAYED OUTPUT
MEASUREMENTS

2.1 Decoupled multimodel with time-varying delay
The multimodel approach allows the extension of linear methods
to be applied to the nonlinear systems due to its easily exploitable
structure. In the literature, two main types of multimodel are
known. The first one is Takagi-Sugeno multimodel and the second
type is known as decoupled multimodel. The last structure is
retained in this work.
Consider a discrete-time nonlinear system with time-varying delay
described by the following decoupled multimodel:

xi(k + 1) = Aixi(k) +Biu(k)
ymi(k) = Cixi(k)

ym(k) =
Nm∑
i=1

µi(z(k − d(k)))Cixi(k − d(k))
(1)

with:
xi ∈ <ni and ymi ∈ <p are the state and the output vectors of the
ith partial model, respectively.
u ∈ <m is the input and ym ∈ <p is the output vector.
Ai ∈ <ni×ni , Bi ∈ <ni×m and Ci ∈ <p×ni are known
matrices with appropriate dimensions. d(k) is a time-varying delay
on output measurements. It is assumed known and it satisfies the
following condition:

dmin ≤ d(k) ≤ dmax (2)

with dmin and dmax are constant positive scalars denoting the
lower and the upper time-delays, respectively.
Nm is the number of partial models.

µi(z(k − d(k))) =
e
(
−(z(k−d(k))−ci)

2

σ2
d

)

Nm∑
i=1

e
(
−(z(k−d(k))−ci)2

σ2
d

)
,

i = 1, 2, ...,Nm

(3)

ci are the centers and σd is the dispersion.
The µi(z(k − d(k))) are the weighting functions ensuring the
transition between the partial models.
The weighting functions have the following properties:
Nm∑
i=1

µi(z(k − d(k))) = 1,

0 ≤ µi(z(k − d(k))) ≤ 1,
∀i = 1, . . . ,Nm, ∀k
z(k − d(k)) is the decision variable. This variable can be
measurable such as the input, the output and the measurable states,
or unmeasurable such as the unmeasurable states of the system.
Consider the equation (1). This last can be written in a compact
form by defining the following vector x(k):
x (k) =

[
xT1 (k) · · ·xTi (k) · · ·xTNm (k)

]T ∈ <n,
n =

Nm∑
i=1

ni

So, the compact form of the system (1) can be written as follows
[26]: {

x (k + 1) = Ax(k) + Bu (k)
ym (k) = C(k − d(k))x (k − d(k))

(4)

where A ∈ <n×n, B ∈ <n×m and C ∈ <p×n are the matrices
defined as follows:

A =



A1 0 0 0 0

0
. . . 0 0 0

0 0 Ai 0 0

0 0 0
. . . 0

0 0 0 0 ANm

, B =



B1

...
Bi
...

BNm


The matrix C(k − d(k)) can be written as follows:

C(k − d(k)) =

Nm∑
i=1

µi (z (k − d(k)))Ci

with Ci is a bloc matrix of the form:

Ci = [0 . . . Ci . . . 0]

2.2 State estimation of decoupled multimodel with
time-varying delay

The following multi-observer is considered for the state estimation
of the system (1):

x̂i (k + 1) = Aix̂i (k) +Biu (k) + Li(yd(k)− ŷm(k))

ŷm (k) =
Nm∑
i=1

µi (z (k − d(k)))Cix̂i (k − d(k))

(5)
where Li ∈ <ni×p is the unknown gain associated to the ith partial
model and yd(k) is the delayed output of the system.
The multi-observer (5) is written in the compact form given by the
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following expression:{
x̂ (k + 1) = Ax̂(k) + Bu (k) + L(yd(k)− ŷm(k))
ŷm (k) = C(k − d(k))x̂ (k − d(k))

(6)

with L =
[
L1 · · · Li · · · LNm

]T ∈ <n
Thereafter, C(k − d(k)) will be denoted by Cd(k).
The following theorem gives the convergence conditions
formulated in terms of linear matrix inequalities.
Theorem Consider the system (4) and the multi-observer (6). The
estimation error is asymptotically stable if there exist symmetric
matrices (P > 0) and (Q > 0) and a matrix X such that the
following linear matrix inequalities hold: ATPA + d̄Q− P −ATXCi 0

CTi XTA −Q CTi XT

0 XCi −P

 < 0 (7)

i = 1...Nm

with d̄ = dmax − dmin + 1.
The observer gain is L = P−1X .
Proof:The estimation error is defined as follows:

x̃(k + 1) = x(k + 1)− x̂(k + 1) (8)

Consider the following Lyapunov-Krasovskii functional:

V (k) = V1(k) + V2(k) + V3(k) (9)

with

V1(k) = x̃T (k)P x̃(k) (10)

V2(k) =

k−1∑
i=k−d(k)

x̃T (i)Qx̃(i) (11)

V3(k) =

−dmin+1∑
j=−dmax+2

k−1∑
i=k+j−1

x̃T (i)Qx̃(i) (12)

The forward difference ∆V1(k) is obtained by the following
expression:

∆V1(k) =V1(k + 1)− V1(k)

=x̃T (k + 1)P x̃(k + 1)− x̃T (k)P x̃(k)

=x̃Ta (k)Γ(k)x̃a(k)

(13)

where x̃a (k) =

[
x̃(k)

x̃(k − d(k))

]
Γ (k) =

[
ATPA− P −ATPLCd(k)
−CdT (k)LTPA CdT (k)LTPLCd(k)

]
The forward difference ∆V2(k) is:

∆V2(k) =V2(k + 1)− V2(k)

=x̃T (k)Qx̃(k)− x̃T (k − d(k))Qx̃(k − d(k))

+

k−1∑
i=k+1−d(k+1)

x̃T (i)Qx̃(i)

−
k−1∑

i=k+1−d(k)

x̃T (i)Qx̃(i)

(14)

It is clear that:
k−1∑

i=k+1−d(k+1)

x̃T (i)Qx̃(i) ≤
k−dmin∑

i=k+1−dmax

x̃T (i)Qx̃(i)

+

k−1∑
i=k+1−d(k)

x̃T (i)Qx̃(i)

(15)

then

∆V2(k) ≤x̃T (k)Qx̃(k)− x̃T (k − d(k))Qx̃(k − d(k))

+

k−dmin∑
i=k+1−dmax

x̃T (i)Qx̃(i)
(16)

The forward difference ∆V3(k) is:

∆V3(k) =V3(k + 1)− V3(k)

=x̃T (k)(dmax − dmin)Qx̃(k)

−
k−dmin∑

i=k+1−dmax

x̃T (i)Qx̃(i)

(17)

Thus, the forward difference of the Lyapunov functional V (k) is
given by the following equation:

∆V (k) =∆V1(k) + ∆V2(k) + ∆V3(k)

≤ x̃Ta (k)Γ(k)x̃a(k) + d̄x̃T (k)Qx̃(k)

− x̃T (k − d(k))Qx̃(k − d(k))

(18)

then

∆V (k) ≤ x̃Ta (k)Ω(k)x̃a(k) (19)

where

Ω(k) =

[
ATPA− P + d̄Q −ATPLCd(k)
−CdT (k)LTPA CdT (k)LTPLCd(k)−Q

]
and d̄ = dmax − dmin + 1

The use of weighting functions properties and the application of
Schur Complement lead to the following linear matrix inequalities.

 ATPA + d̄Q− P −ATXCi 0
CTi XTA −Q CTi XT

0 XCi −P

 < 0 (20)

i = 1...Nm

3. PARTIAL MODEL PREDICTIVE CONTROL
FORMULATION

The MPC is a model-based control strategy that knew continual
success in recent years. Its significance is mainly due to its
efficiency to control multivariable, constrained, unstable and
non-minimum phase systems. The synthesis of this control is based
on the minimisation of a criterion Ji.Indeed, the optimal control
is obtained by minimizing the finite horizon linear quadratic cost
function:

Ji =
1

2


Np∑
j=1

‖ŷi(k + j/k)− yc(k + j)‖2ν +

Nu−1∑
j=0

‖∆ui(k + j)‖2η


(21)
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where :
Np is the prediction horizon and Nu is the control horizon.
ν and η are positive weighting factors.
yc(k + j/k) and ŷi(k + j/k) are the j steps reference signal and
predicted partial output, respectively.
∆ui(k+j) is the future control increments (∆ui(k+j) = 0 ∀j ∈
[Nu, Np]).
For each partial model and based on equation (1), the
corresponding estimated state predicted for j steps ahead is given
by the following expression:{

x̂i(k + j) = Aix̂i(k + j − 1) +Biui(k + j − 1)
ŷi(k + j) = Cix̂(k + j)

(22)

∀j = 1, . . . ,Np

The prediction of partial model output ŷi(k + j) for j steps ahead
leads to the following expression written in a matrix form:

Ŷi(k) = Ξix̂i(k) + ΨiUi(k) (23)

where

Ξi =


CiAi
CiAi

2

...
CiA

Np
i

 , Ψi =


CiBi 0 · · · 0

CiAiBi
. . .

. . .
...

...
. . .

. . . 0

CiA
Np−1
i Bi · · · CiAiBi CiBi


Ui(k) =

[
ui(k) ui(k + 1) · · · ui(k +Np − 1)

]T
Ŷi(k) =

[
ŷi(k + 1) ŷi(k + 2) · · · ŷi(k +Np)

]T
The matrix form of equation (21) is given by the following
expression:

Ji =
1

2

[∥∥∥Ŷi(k)− Yc(k)
∥∥∥2
ϑ

+ ‖∆Ui(k)‖2ℵ
]

(24)

where

Yc(k) =
[
yc(k + 1) yc(k + 2) · · · yc(k +Np)

]T
∆Ui(k) =

[
∆ui(k) · · · ∆ui(k +Nu − 1)

Np−Nu︷ ︸︸ ︷
0 · · · 0

]T

ϑ =


ν 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 ν

 ,

ℵ =



Np︷ ︸︸ ︷
Nu︷ ︸︸ ︷

2η −η 0 · · · 0

−η 2η
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . 2η −η
0 · · · 0 −η η

0 · · · 0
... · · ·

...
... · · ·

...
... · · ·

...
0 · · · 0

0 · · · · · · · · · · · · 0
...

. . .
. . .

. . .
. . .

0 · · · · · · · · · · · ·

0 · · · 0
. . .

. . .
...

0 · · · 0



The partial criterion Ji is given as follows:

Ji =
1

2
UTi (k)ΘiUi(k) + UTi (k)ϕi + Ti (25)

with
Θi = ΨT

i ϑΨi + ℵ

ϕi =
[

ΨT
i ϑΞi −ΨT

i ϑ
] [ x̂i(k)

Yc(k)

]
−


ηui(k − 1)

0
...
0


Ti = (Ξix̂i(k)− Yc(k))T ϑ (Ξix̂i(k)− Yc(k)) + ηu2

i (k − 1)
Ti is a constant independent from Ui(k).
The partial derivative of the criterion Ji is given by the following
expression:

∂Ji
∂Ui(k)

= ΘiUi(k) + ϕi (26)

The annulment of the derivative of Ji leads to the optimal control
law:

Ui(k) = −Θ−1i ϕi (27)

4. DECOUPLED MULTIMODEL PREDICTIVE
CONTROL WITH SUPERVISION

In practice, the state variables are often unmeasurable, so, it is
necessary to synthesize an observer in order to estimate these
states. In this work, a multi-observer for the state estimation
of discrete-time decoupled multimodel with delayed output
measurements is exploited in the elaboration of the control law.
Indeed, the control scheme (figure 1)includes three main blocks;
multi-observer/multi-controller, supervisor and switching system.
In the first block, a multi-observer is designed in order to provide
an accurate estimation of the state variables. These estimates are
used thereafter to compute the multi-predictor and to elaborate the
partial control laws. On the other hand, the supervisor contains a
multi-predictor that describes the system behavior in the different
operating regimes and a performance evaluator that has as role
to evaluate a performance criterion Jci(k) based on the error
between the system and the partial predictors outputs. Thus, the
criterion having the minimal value corresponds to the suitable
partial predictor and therefore a switching system selects the
adequate local controller.
The following criterion is minimal for the nearest predictor output
to the system output. It has the following expression [33], [34],
[35]:

Jci(k) = αε2i (k) + β

k∑
j=1

e−λ(k−j)ε2i (j), i = 1...Nm (28)

where
εi(k) (εi(k) = yd(k) − ŷci(k)) is the error between the real and
the ith predictor output.
α and β are positive parameters denoting the weighting factors of
the instantaneous and the long-term measures accuracy.
λ is the forgetting factor denoting the memory of the index.
Nm is the number of the partial controllers.
ŷci(k) is the ith predictor output, it follows from the inversion of
the ith partial controller and it has the following expression:
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Fig. 1. Supervised decoupled multimodel predictive control based
on multi-observer.

Ŷci(k) =
(
ΨT
i ϑ
)−1 (

ΨT
i ϑΨi + ℵ

)
Ui(k) + Ξix̂i(k)

−
(
ΨT
i ϑ
)−1

ηui(k − 1)

0
...
0

 (29)

Only the first element is considered.

ŷci(k) = Ŷci(1) (30)

5. SIMULATION RESULTS
The multimodel representation of a nonlinear system can be
obtained by several methods such as the linearisation method,
the convex polytopic transformation and the identification method.
This multimodel representation reduces the identification problem
of nonlinear systems to the identification of the partial models.The
last method concerns the research of an optimal structure (through
the choice of the decision variable and the partition of the operating
space into operating zones), the estimation of the multimodel
parameters and the validation of the result.
The estimation of the multimodel parameters requires the use of
an optimisation method generally based on the minimisation of the
error between the system and multimodel outputs. In this work, the
Levenberg-Marquardt algorithm is adopted. This method ensures
both the stability and the rapidity of the convergence [36].
Consider the discrete-time nonlinear system described by the
following expression [37]:

y(k) =
(y(k − 1)u(k − 1))

(1 + y2(k − 1))
− tan(u(k − 1)) (31)

The input signal u(k) ∈ [−1, 1] is the decision variable.
The centers and the dispersion have the following values:
c1 = −0.7, c2 = 0, c3 = 0.7, and σd = 0.3
The identification of the system (31) leads to the following partial
models:

Partial model 1:

A1 =

[
−0.6965 0.2218
0.2430 0.0914

]
, B1 =

[
−1.1485
−0.0905

]
C1 =

[
1 0

]
.

Partial model 2:

A2 =

[
−0.6274 −0.3475
0.3308 0.1425

]
,B2 =

[
−1.5599
0.1579

]
, C2 =

[
1 0

]
.

Partial model 3:

A3 =

[
−0.2884 −0.5253
0.2000 0.1818

]
,B3 =

[
−2.1989
0.3674

]
, C3 =

[
1 0

]
.

The figure 2 shows the evolutions of the real and multimodel
outputs in the validation phase, it illustrates the good accuracy of
the elaborated base.

0 200 400 600 800 1000
−1.5

−1

−0.5

0

0.5

1

 

 

yd(k)

ym(k)

k

Fig. 2. Evolutions of the real and multimodel outputs.

In order to validate the identified model, two performance indices
can be defined [26]. The first index is the Mean Square Error
(MSE), its expression is given by:

MSE =
1

NH

NH∑
k=1

(ym(k)− y(k))2 (32)

with:
ym(k) is the multimodel output.
y(k) is the system output.
The second index is the Variance Accounted For:

V AF = max

{
1−

var
(
yN − ymN

)
var (ymN )

, 0

}
× 100% (33)

var denotes the signal variance.
The good adequation between the output of the nonlinear system
and that of the multimodel can be clearly illustrated through the
following values:

MSE = 0.0012 , V AF = 99.6727%

The system output is available for measure after a time-delay. This
dead-time occurs because of the time of transmission between the
system and the control unit, communication system with low speed
or sensor technology.
This time-varying delay is expressed in multiple integer of the
sampling period and has the following expression:

d(k) = 3 + 2sin(0.015k)

The control strategy is applied to the system (31) with delayed
output and described by decoupled multimodel. Firstly, the
time-delay is not considered in the multi-observer synthesis as
well as in the elaboration of the control law.
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The following figures illustrate the effect of the non consideration
of the time-delay on the state estimation quality and subsequently
on the control law.
Figure 3 illustrates the evolutions of the real and desired outputs as
well as the control signal.
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u(k)

k

Fig. 3. Evolutions of the real and desired outputs (left). Evolution of the
control signal (right) (non-consideration of time-delay).

The evolutions of the estimation errors of the partial states are
given by the figures 4, 5 and 6.
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Fig. 4. Evolution of the estimation error of states 1 and 2
(non-consideration of time-delay).
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Fig. 5. Evolution of the estimation error of state 3 and 4
(non-consideration of time-delay).
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Fig. 6. Evolution of the estimation error of state 5 and 6

(non-consideration of time-delay).

The performance of the decoupled multimodel predictive control
is considerably deteriorated in the case of non consideration of

the time-delay in the observer synthesis and the control law
elaboration.
Hereafter, the control law is synthesized taking into account the
presence of the time-delay.
Figure 7 illustrates the evolutions of the real and desired outputs as
well as the control signal.
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Fig. 7. Evolutions of the real and desired outputs (left). Evolution of the
control signal (right) (consideration of time-delay).

The figure 8 shows the commutation between the partial
controllers.
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Fig. 8. Commutation between the local controllers (consideration
of time-delay).

The evolutions of the real and estimated states as well as the
estimation errors are shown in the figures 9, 10 and 11.
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Fig. 9. (a) Evolutions of the state 1 and 2 and their estimates (b) Evolution
of the estimation error (consideration of time-delay).
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Fig. 10. (a) Evolutions of the state 3 and 4 and their estimates (b)
Evolution of the estimation error (consideration of time-delay).
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Fig. 11. (a) Evolutions of the state 5 and 6 and their estimates (b)
Evolution of the estimation error (consideration of time-delay).

These figures show clearly that the consideration of a time-varying
delay in the multi-observer design leads to a significant
improvement in state estimation compared to the case of non
consideration of time-delay in the multi-observer synthesis. This
leads to an efficient decoupled multimodel predictive control that
provides a good closed-loop performances compared with the case
where the time-delay is ignored in the multi-observer synthesis.

6. CONCLUSION
In this paper, a multi-observer is synthesized for the state
estimation of nonlinear systems with time-varying delay on
the output measurements described by discrete-time decoupled
state multimodel. These estimates are considered thereafter in
the design of the decoupled multimodel predictive control. A
supervisor enables the choice of the suitable partial controller
that satisfies the closed-loop objectives through a performance
criterion. The significance of this control strategy has been
illustrated by simulation results that show good closed-loop

performances. In our future works, a multiobserver will be
investigated for the state estimation of discrete-time uncertain
nonlinear systems with delayed output measurements.
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