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Abstract

Outlier detection is a fundamental step in knowledge discovery in databases. With the
increasing number of high-dimensional databases, existing outlier detection algorithms that
work only in the context of full space are unable to effectively screen out informative outliers.
This is because majority of these outliers exists only in subspaces. In this paper, we identify
a new outlier detection task for high-dimensional data, i.e. finding the subspaces in which
given points are outliers, and propose a novel outlier detection algorithm, called High-D
Outlier Detection (HighDOD). The intuitive idea is that we measure the outlying degree
of the point using the sum of distances between this point and its k nearest neighbors.
Two pruning strategies are proposed to realize fast pruning in the subspace search and an
efficient dynamic subspace search method with a sample-based learning process has been
implemented. Experimental results show that HighDOD is efficient and outperforms the
naive top-down, bottom-up and random search methods.

1. Introduction

Outlier detection is an important step in data mining that enjoys a wide range of applications
such as the detection of credit card frauds, criminal activities and exceptional patterns in
databases. Outlier detection problem can typically be formulated as follows: given a set of
data points or objects, find a specific number of objects that are considerably dissimilar,
exceptional and inconsistent with respect to the remaining data [9].

Numerous research works in outlier detection have been proposed to deal with the
outlier detection problem defined above. They can broadly be divided into distance-based
methods [13, 14, 18] and local density-based methods [7, 12]. However, many of these outlier
detection algorithms are unable to deal with high-dimensional datasets efficiently as many
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of them only consider outliers in the entire space. This implies that they will miss out on
the important information about the subspaces in which these outliers exist.

Consider the example in Figure 1. Three 2-dimensional views of the high-dimensional
data are presented. Note that point p exhibits different outlying degrees in these three views.
In the leftmost view, p is clearly an outlier. However, this is not so in the other two views.
Finding the correct subspaces so that outliers can be detected is critical to applications such
as fraud detection.
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Figure 1: 2-dimensional views of the high-dimensional data

A recent trend in high-dimensional outlier detection is to use evolutionary search
method [4] where outliers are detected by searching for sparse subspaces. Points in these
sparse subspaces are assumed to be the outliers. While knowing which data points are the
outliers can be useful, in many applications, it is more important to identify the subspaces
in which a given point is an outlier, which motivates the proposal of a new technique in
this paper to handle this new outlier detection task. For example, in the case of designing
a training program for an athlete, it is critical to identify the specific subspace(s) in which
an athlete deviates from his or her teammates in the daily training performances. Knowing
the specific weakness (subspace) allows a more targeted training program to be designed.
In a medical system, it is useful for the Doctors to identify from voluminous medical data
the subspaces in which a particular patient is found abnormal and therefore a corresponding
medical treatment can be provided in a timely manner.

The major contribution of this paper is the proposal of a dynamic subspace search
algorithm, called HighDOD, that utilizes a sample-based learning process to efficiently identify
the subspaces in which a given point is an outlier. Note that, instead of detecting outliers
in specific subspaces, our method searches for the associated subspaces whereby the given
data points exhibit abnormal deviations. To our best knowledge, this is the first such work
in the literature so far.

The main features of HighDOD include:

1. The outlying measure, OD, is based on the sum of distances between a data and its
k nearest neighbors[2]. This measure is simple and independent of any underlying
statistical and distribution characteristics of the data points.

2. Two heuristic pruning strategies are proposed to aid in the search for outlying sub-
spaces.

3. A fast dynamic subspace search algorithm with a sample-based learning process is
proposed.
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4. The heuristic on the minimum sample size based on the hypothesis testing method is
also presented.

The reminder of this paper is organized as follows. In Section 2, we present a survey of
related work in outlier detection algorithms. Section 3 discusses the basic notions and prob-
lem to be solved. In Section 4, we present our outlier detection technique, called HighDOD,
in high-dimensional data. Section 5 discusses the detailed algorithms of HighDOD. Experi-
mental results are reported in Section 6. In Section 7, a practical application of HighDOD
is presented. Section 8 concludes this paper.

2. Related Work

An outlier is an observation that deviates so much from other observations so that it arouses
suspicious that it is generated by a different mechanism [10]. Literatures on outlier detection
algorithms have been abundant in recent years and can be classified into five major cate-
gories based on the techniques used, i.e. distribution-based methods, depth-based methods,
distance-based methods, density-based methods and clustering-based methods.

Distribution-based methods [5, 10] rely on the statistical approaches that assume a
distribution or probability model to fit the dataset. Over one hundred discordancy/outlier
tests have been developed for different circumstances, depending on the parameter of dataset
(such as the assumed data distribution) and parameter of distribution (such as mean and
variance), and the expected number of outliers [9, 13]. However, distribution-based meth-
ods suffer from some key drawbacks. First, they cannot be applied in a multi-dimensional
scenario because they are univariate in nature. In addition, the lack of any prior knowledge
regarding the underlying distribution of the dataset makes the distribution-based methods
difficult to use in practical applications. Finally, the quality of results cannot be guaranteed
because they are largely depended on the distribution chosen to fit the data.

Another kind of outlier detection methods in statistics is the depth-based methods
[17, 19]. Such methods organize the data in the form of layers in the data space and detect
outliers mainly in the shallower layers. This idea is based on the observation that outliers
are more likely to be the points with smaller depths, so the shallower the layers are, the more
likely they are to contain outliers than the deeper layers. Yet, depth-based methods are only
applicable in lower dimensional data due to the expensive computation of k-d convex hulls
that has a low bound complexity of O(Nk/2) for N objects.

[13] and [14] proposed the notion of distance-based outliers, i.e. DB(pct, dmin)-Outlier,
which defines an object in a dataset as a DB(pct, dmin)-Outlier if at least pct% of the objects
in the datasets have the distance larger than dmin from this object. In other words, the
cardinality of the points having distance smaller than dmin is no more than (100− pct)% of
the size of dataset. In [18], the notion of distance-based outlier is extended and the distance
to the kth nearest neighbors of a point p, denoted as Dk(p), is proposed to rank the point so
that outliers can be more efficiently discovered and ranked. [2] further extends Dk(p)-outlier
by considering for each point the sum of its k nearest neighbors. Unlike distribution-based
methods, distance-based methods do not rely on any assumed distribution to fit the data.
Since they only examine the neighborhood for each object in the outlier detection, distance-
based methods achieve better efficiency than distribution-based and depth-based methods.
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Recently, a density-based formulation scheme of outlier has been proposed in [7]. This
formulation ranks the outlying degree of the points using Local Outlier Factor (LOF). LOF
of an object intuitively reflects the density contrast between its density and those of its
neighborhood. Note that LOF ranks points by only considering the neighborhood density
of the points, thus it may miss the potential outliers whose densities are close to those of
their neighbors. [12] improves the efficiency of algorithm in [7] by proposing an efficient
micro-cluster-based local outlier mining algorithm, but it still use LOF to mine outliers in
dataset.

The final category of outlier detection algorithm is clustering-based. So far, they are
numerous studies on the clustering and a number of them are equipped with some mecha-
nisms to detect outliers, such as CLARANS [16], DBSCAN [8], BIRCH [21], WaveCluster
[20], DenClue[11] and CLIQUE[1]. Strictly speaking, clustering algorithms should not be
considered as outlier detection methods, because their objective is only to group the objects
in dataset such that clustering functions can be optimized. The aim to eliminate outliers in
dataset using clustering is only to dampen their adverse effect on the final clustering result.

The methods discussed in the aforementioned four categories are not sufficiently ap-
plicable to high-dimensional data. All of them try to define outliers based on the distance
in full dimensional space in one way or another [4]. But in high-dimensional scenario, the
data points are not likely to exhibits noticeable abnormal behaviors and this abnormality
will show in some lower subspaces of full dimensionality. [4] is the first work identifying this
problem in high-dimensional outlier detection and tries to solve this problem by searching
sparse subspace using evolutionary search method. The evolutionary search method works
by first finding all the lower dimensional projections that are locally sparse. The sparsity of a
k -dimensional projection is measured by the so-called Sparse Coefficient of the corresponding
k -dimensional cube. Formally, let n(D) be the number of points in the k-dimensional data
cube and each attribute of the data is divided into φ equip-depth ranges and let f = 1/φ.

The sparsity coefficient S(D) of the cube D is calculated as S(D) = n(D)−Nfk√
Nfk(1−fk)

. However,

this Sparse Coefficient is not characterized by any upward or downward closure in the set
of dimensions, hence, no pruning mechanism can be performed to find the sparse subspaces
quickly.

Remarks : All the existing outlier detection, regardless of in low or high dimensional sce-
nario, invariably fall into the framework of detecting outliers in a specific data space, either
in full space or subspace. We term these methods as ”space → outliers” techniques. For
instance, [4] detects outliers by first finding locally sparse subspaces, and [14] discoveries
the so-called Strongest/Weak Outliers by first finding the Strongest Outlying Spaces. Our
technique is novel in that it approaches the problem of outlier detection from a different
prospective: finding associate subspaces for each point in which this point is regarded as an
outlier, which we can call it an ”outlier → spaces” technique.

3. Notations and Problem Formulation

Before we formally discuss our outlier detection technique, we start with introduction of the
relevant notations that are being used in this paper and formulation of the new problem of
high-dimensional outlier detection we identify.
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Symbol Description

N Total number of data in the dataset
d Number of dimension of the dataset
k Number of nearest neighbors

T or Ts Distance threshold used
Nq Number of query points
S Number of sampling points

Table 1: Notations used in the paper

3.1 Outlying Degree OD

For each point, we define the degree to which the point differs from the majority of the
other points in the same space, termed the outlying degree (OD in short). OD is defined
as the sum of the distances between a point and its k nearest neighbors in a data space[2].
Mathematically speaking, the OD of a point p in space s is computed as:

ODs(p) =
k

∑

i=1

Dist(p, pi)|pi ∈ KNNSet(p, s)

where KNNSet(p, s) denotes the set composed by the k nearest neighbors of p in s. Note
that the outlying degree measure is applicable to both numeric and nominal data: for nu-
meric data we use Euclidean distance while for nominal data we use Hamming distance.
Mathematically, the Euclidean distance between two numeric points p1 and p2 is defined
as Dist(p1, p2) = [

∑

((p1i − p2i)/(Maxi − Mini))
2]1/2, where Maxi and Mini denote the

maximum and minimum data value of the ith dimension. The Hamming distance between
two nominal points p1 and p2 are defined as Dist(p1, p2) =

∑ |p1i − p2i|, where |p1i − p2i| is
0 if p1i equals to p2i and is 1 otherwise.

3.2 Problem Formulation

Recall our motivation is to find the subspaces in which a given point shows noticeable
deviation from its neighboring points. A distance threshold T is utilized to decide whether
or not a data point deviates significantly from its neighboring points.

We now formulate the new high-dimensional outlier detection problem as following:
given a data point or object, find the subspaces in which this data is considerably dissimilar,
exceptional or inconsistent with respect to the remaining points or objects.

This problem can be mathematically stated as: for any given point p, find the set of
subspaces ϕ such that for each subspace s ∈ ϕ, we have ODs(p) ≥ T . If the answer set is
empty for p, we say that p is not an outlier in any subspaces.

Note that the distance threshold T can either be a uniform threshold for all the sub-
spaces or a different one for each of the subspaces. We call the former as the global distance
threshold (termed as Global-T ) and the later one as the local distance threshold (termed as
Local-T ).
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Figure 2: The overview of HighDoD

4. High-Dimension Outlier Detection

In the section, we present an overview of our High-Dimension Outlier Detection (HighDOD)
method. Figure 2 shows an overview of the system. It mainly consists of three modules.
The X-tree Indexing module performs X-tree [6] indexing of the high-dimensional dataset to
facilitate kNN search in every subspace. Sample-based Learning module randomly samples
the dataset and performs dynamic subspace search to estimate the downward and upward
pruning probabilities of subspaces from 1 to d dimensions. Subspace Outlier Detection
module uses the probabilities obtained in the Learning module to carry out a dynamic
subspace search to find all the subspaces in which the given query data point is an outlier.

4.1 X-tree Indexing Module

We utilize X-tree (eXtended node tree) [6] to index the high-dimensional dataset in order to
speedup the k-NN queries in different subspaces. It is an index structure that is designed
to support efficient query processing of high-dimensional data. The introduction of X-tree
is motivated by the problem with the R-tree-based index structures that the overlap of
bounding boxes in the directory will increase as the dimension grows. The basic idea of X-
tree is to use overlap-minimizing split and supernodes to keep the directory as hierarchical
as possible and at the same time to avoid splits that will result in high overlap. It is a hybrid
of linear array-like and R-tree like directory. The hierarchical organization is good for low
dimensions, while in high dimensions, a linear organization is more efficient. Interested
reader can refer to [6] for details on X-tree.

4.2 Subspace Pruning

To find the subspaces of a given point in which this point is an outlier, we make use of the
heuristics we devise to quickly detect the subspaces in which the point is not an outlier or
the subspaces in which the point is definitely an outlier. All these subspaces can be removed
from further consideration in the later stage of the search process.
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In our work, we have utilized two classes of strategies for subspace pruning in the
searching process, i.e. global-T pruning and local-T pruning. In the global-T pruning, a
global distance threshold T is used for delimiting outlying and non-outlying subspaces in
the whole lattice for a given data point. While in the local-T pruning, different distance
thresholds are used for different subspaces required to evaluate in the searching process.
Also, the subspace searching process can be performed either in an upward or a downward
manner.

Global-T Pruning Strategy

OD maintains two interesting monotonic properties that allow the design of an effi-
ciency outlier subspace search algorithm.

Property 1 : If a point p is not an outlier in a subspace s, then it cannot be an outlier in any

subspace that is a subset of s.

Property 2 : If a point p is an outlier in a subspace s, then it will be an outlier in any subspace

that is a superset of s.

The above properties are based on the fact that the OD value of a point in a subspace
cannot be less than that in its subset spaces. Mathematically, we have ODs1

(p) ≥ ODs2
(p)

if s1 ⊇ s2.

Proof : Let ak and bk be the kth nearest neighbors of p in the an m-dimensional subspace s1

and n-dimensional subspaces s2, respectively (1 ≤ n ≤ m ≤ d and s1 ⊇ s2). MaxDists2(p)
is the maximum distance between p and ai, 1 ≤ i ≤ k, in the subspace s2.

We have Dists1(p, ak) ≥ Dists1(p, ai)|1≤i≤k. Since s1 is a superset of s2, we thus know
Dists1(p, ai) ≥ Dists2(p, ai)|1≤i≤k. This implies Dists1(p, ak) ≥ Dists2(p, ai)|1≤i≤k, By defini-
tion of MaxDists2, we have Dists1

(p, ak) ≥ MaxDists2(p) ≥ Dists2(p, bk). In other words,
Dists1(p, ak) ≥ Dists2(p, bk). Likewise, it is hold that Dists1(p, ai) ≥ Dists2(p, bi)|1≤i≤k,

Since ODs1(p) =
∑k

1 Dists1(p, ai) and ODs2(p) =
∑k

1 Dists2(p, bi). We therefore conclude:
ODs1(p) ≥ ODs2(p).

In the downward global-T pruning strategy, we make use of Property 1 of OD to
quickly prune away those subspaces in which the point cannot be an outlier. This is because
if ODs1(p) < T , then ODs2(p) < T , where s1 ⊇ s2 and T is the distance threshold. In the
upward global-T pruning strategy, Property 2 of OD is utilized to detect those subspaces in
which the point is definitely an outlier. The reason is that if ODs2(p) ≥ T , then ODs1(p) ≥ T .

Consider a 4-dimensional dataset example as shown in Figure 3. Suppose we have
determined that point p is not an outlier in subspace [1, 2, 3], then all the subspaces that
are subset of [1, 2, 3], i.e. [1, 2], [1, 3], [2, 3], [1], [2] and [3], can be pruned by the downward
pruning strategy. These subspaces are highlighted in Figure 3. On the other hand, if p is
found to be an outlier in the subspace [1,4] (see Figure 4), then all the superset of [1,4],
namely [1, 2, 3, 4], [1, 2, 4] and [1, 3, 4], are pruned by the upward pruning strategy.

The global distance threshold T is specified as follows:

T = C
√

d · 1

d

d
∑

i=1

(ODsi
)|dim(si) = 1
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where ODsi
denotes the average OD values of points in the 1-dimensional subspace si and

C is a constant factor. This specification stipulates that only those points whose OD values
are significantly larger than the average level are regarded as outliers in the full space (the
significance is specified by the constant factor C, normally we may set C=2 or 3).

Local-T Pruning Strategy

Let Ts be the distance threshold for subspace s and we have two space s1 and s2

satisfying s1 ⊇ s2. In the downward local-T pruning strategy, if ODs1(p) < Ts1
, then s2 will

be pruned only when the following requirement is satisfied:

∀si, ODsi
(p) <

1

C
· ODsi

|dim(si) = 1, si ⊆ s1 − s2

In the upward local-T pruning strategy, if ODs2(p) ≥ Ts2
, then s1 will be pruned only

when the following requirement is satisfied:

∀si, ODsi
(p) ≥ C · ODsi

|dim(si) = 1, si ⊆ s1 − s2

where C is the same constant factor used in the Global-T pruning. Being more conservative
than the Global-T pruning, the above two requirements intuitively mean that the subspace
s′ which is a superset/subset of the current subspace s can be pruned only when the OD(p)
value in each of the 1-dimensional subspaces that belong to the difference of the two subspaces
(i.e. s′ − s) is significantly larger or smaller than the corresponding average level.

Similar to the specification of the global distance threshold T , we can specify Ts, the
distance threshold for a m-dimensional subspace s, 1 ≤ m ≤ d as follows:

Ts = C
√

m · 1

m

m
∑

i=1

(ODsi
)|dim(si) = 1, si ⊆ s

By comparing the above two pruning strategies, we can learn their advantages and
disadvantages. Since the Global-T pruning strategy performs subspace pruning in a more
aggressive way, it may be able to prune a larger number of subspaces in each step than
the Local-T pruning strategy, therefore it is faster to execute and more scalable to high-
dimensional dataset. However, the Global-T pruning strategy is limited in that it cannot
well deal with the situation that the average OD values of the points in different subspaces
differ significantly, which makes it inaccurate to use a uniform distance threshold for all
the subspaces. Adopting different distance thresholds for different subspaces is, therefore,
more advantageous since it takes into account the varied denseness/sparsity of points in
different subspaces, which enables the Local-T pruning strategy to detect outlying subspaces
with a higher level of accuracy. Still, it is comparatively slow and less scalable to high-
dimensional dataset. From this analysis, we can see that the selection between these two
pruning strategies involves a tradeoff between speed/scalability and accuracy.

Saving Factors of Subspaces

Now, we will compute the savings obtained by applying the pruning strategies during
the search process quantitatively. Before that, let us first give three definitions.
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[1, 2, 3, 4]

[1, 2, 3] [1, 2, 4] [1, 3, 4] [2,3,4]

[1, 2] [1, 3] [1, 4] [2, 3] [2, 4] [3, 4]
[1] [2] [3] [4]

Figure 3: Downward pruning of subspaces

[1, 2, 3, 4]
[1, 2, 3] [1, 2, 4] [1, 3, 4] [2, 3, 4]

[1, 2] [1, 3] [1, 4] [2, 3] [2, 4] [3, 4]

[1] [2] [3] [4]

Figure 4: Upward pruning of subspaces

Definition 1 : Downward Saving Factor (DSF) of a Subspace

The Downward Saving Factor of a m-dimensional subspace s is defined as the savings
obtained by pruning all the subspaces that are subsets of s. In other words, the Downward
Saving Factor of s, denoted as DSF(s), is computed as:

DSF (s) =
m−1
∑

i=1

Ci
m ∗ i

where Ci
m denotes the combinatorial number of choosing i items out of m items.

Definition 2 : Upward Saving Factor (USF) of a Subspace

The Upward Saving Factor of an m-dimensional subspace s, denoted as USF(s), is
defined as the savings obtained by pruning all the subspaces that are supersets of s. It is
computed as

USF (s) =
d−m
∑

i=1

[Ci
d−m ∗ (m + i)]

Refer once again to the examples in Figure 3 and 4, the DSF ([1, 2, 3]) = C1
3∗1+C2

3∗2 =
9. The USF (1, 4]) = C1

2 ∗ (2 + 1) + C2
2 ∗ (2 + 2) = 10.

Definition 3 : Total Saving Factor (TSF) of a Subspace

The Total Saving Factor of a m-dimensional subspace, in terms of a query point p,
denoted as TSF(m, p), is defined as the combined savings obtained by applying the two
pruning strategies during the search process. It is computed as follows:

TSF (m, p) =















prup(m, p) ∗ fup(m) ∗ USF (m), m = 1
prdown(m, p) ∗ fdown(m) ∗ DSF (m)

+prup(m, p) ∗ fup(m) ∗ USF (m),1 < m < d
prdown(m, p) ∗ fdown(m) ∗ DSF (m),m = d

where
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(1) fdown(m) and fup(m) are the percentages of the remaining subspaces to be searched.
specifically,

fdown(m) = Cdown left(m)/Cdown(m)

and
fup(m) = Cup left(m)/Cup(m)

Let dim(s) denote the number of dimensions in subspace s. Cdown left(m) and Cup left(m)
are computed as:

Cdown left(m) =
∑

dim(s)

where s is an unpruned or unevaluated subspace and dim(s) < m.

Cup left(m) =
∑

dim(s)

where s is an unpruned or unevaluated subspace and dim(s) > m.

Cdown(m) and Cup(m) are the total subspace search workload in the subspaces whose
dimensions are lower and higher than m, respectively. Intuitively, fdown(m) and fup(m)
approximate the fraction of DSF and USF of an m-dimensional subspace that are
potentially achievable in each step of the search process.

(2) prup(m, p) and prdown(m, p) are the probabilities that upward and downward prun-
ing can be performed in the m-dimensional subspace respectively. In other words,
for a m-dimensional subspace s, prup(m, p) = Pr(ODs(p) ≥ T ) and prdown(m, p) =
Pr(ODs(p) < T ) in the global-T pruning and prup(m, p) = Pr(ODs(p) ≥ Ts) and
prdown(m, p) = Pr(ODs(p) < Ts) in the local-T pruning. A difficulty in computing the
two prior probabilities, i.e. prup(m, p) and prdown(m, p), is that their values cannot be
known without any priori knowledge of the dataset. To overcome this difficulty, we first
perform a sample-based learning process to obtain some knowledge about the dataset
and then apply this knowledge in the later subspace search for each query point.

4.3 Sampling-based Learning Process

We adopt a sample-based learning process to obtain some knowledge about the dataset
before subspace search of the query points are performed. This is desirable when the dataset
is large so that learning the whole dataset becomes prohibitive. The task of performing this
sampling-based learning is two-fold: first, we will have to compute the estimates of ODsi

which will be used in specifying Ts and the pruning requirements of the Local-T pruning.
Secondly, we will have to compute the two priors prup(m, p) and prdown(m, p). In this learning
process, a small number of points randomly sampled from the dataset are obtained.

At first, the subspace searches are performed in the d 1-dimensional subspaces si on
all the sampled data and ODsi

is computed as the average OD values of all sampling points
in subspace si, i.e.

ODsi
=

1

S

S
∑

j=1

ODsi
(spj)
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where S is the number of sampling points.

Secondly, the subspace searches are performed in the whole lattice of data space on all
the sampling data. For each sampling point sp, we set

prup(m, sp) = prdown(m, sp) = 0.5, 1 < m < d
prup(m, sp) = 1 andprdown(m, sp) = 0,m = 1
prup(m, sp) = 0 and prdown(m, sp) = 1,m = d

This initialization implies that we assume there are equal probabilities for upward and
downward pruning in the subspaces of any dimension, except 1 and d, for each sampling
point. After all the m-dimensional subspaces have been evaluated for sp, the prup(m, sp)
and prdown(m, sp) are computed as the percentage of m-dimensional subspaces s in which
ODs(sp) ≥ T and the percentage of subspaces s in which ODs(sp) < T , respectively. The
average prup and prdown values of subspaces from 1 to d dimensions can be obtained as
follows:

prup(m) = 1
S

∑S
i=1 prup(m, spi)

prdown(m) = 1
S

∑S
i=1 prdown(m, spi)

where we have prdown(1) = prup(d) = 0.

For each query point p, we set prup(m, p) = prup(m) and prdown(m, p) = prdown(m) in
the computation of TSF(m, p) of the query point p.

4.4 Dynamic Subspace Search

In our technique, we use a dynamic subspace search method to find the subspaces in which the
sampling points and the query points are outliers. The basic idea of the dynamic subspace
search method is to commence search on those subspaces with the same dimension that
has the highest TSF value. As the search proceeds, the TSF of subspaces with different
dimension will be updated and the set of subspaces are selected for exploration. The search
process terminates when all the subspaces have been evaluated or pruned. Note that the
only difference between the dynamic subspace search method used on the sample points and
query points lies in the decision of values of prup(m, p) and prdown(m, p): For sample points,
we assume an equal probability of upward and downward pruning (referring to Section 4.3)
while for query points we use the averaged probabilities obtained in the learning process.

Example : Now, we give an example to illustrate how the TSF of a subspace is computed at
each step of the search process using global-T pruning strategy. All the subspaces are shown
in Figure 5. Since the dynamic search method on sample and query points are similar, we
only need to demonstrate the process of dynamic search for the sample points here. Without
loss of generality, we suppose, for a sample point sp, the OD(sp) values of the subspaces
in the boxes are larger than T while the OD(sp) values of the subspaces underlined are
smaller than T, as shown in Figure 5. We compute the TSF for subspaces with different
dimensions (1-4) in each step of the search process (as shown in Table 2 (a)-(c)). In each
step, we select the dimension that has the maximum TSF value, which are highlighted in
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[1, 2, 3, 4]

[1, 2, 3] [1, 2, 4] [1, 3, 4] [2, 3, 4]

[1, 2] [1, 3] [1, 4] [2, 3] [2, 4] [3, 4]

[1] [2] [3] [4]

Figure 5: Subspaces of a 4-dimensional full space

Dimension of subspaces TSF
4 28

3 13
2 12
1 19

(a)

Dimension of subspaces TSF
3 9
2 10
1 17.7

(b)

Dimension of subspaces TSF
3 2.7

2 2
(c)

Table 2: Computation of Dyna-CSF

each of the tables. According to the tables, the order of subspaces in the search process is
4 → 1 → 3 → 2, meaning that the 4 dimensional subspaces are searched first, followed by
1 dimensional and 3 dimensional subspaces. The 2 dimensional subspaces are searched at
last. The probabilities of upward and downward pruning of this sample point in different
dimensions, starting from 1 to d dimension with the format of {prup(m, sp), prdown(m, sp)},
are {0.25, 0},{0.5,0.5},{0.75,0.25} and {0, 0}.

Table 3 summarizes the subspaces searched for the three search methods, i.e. top-down,
bottom-up and dynamic search.

4.5 Minimum Sampling Size for Training Dataset

Before moving on to the details of the HighDOD algorithm, it is worthwhile to discuss the
minimum sample size used for the training dataset.

Recall the sampling method is utilized to obtain a training dataset that can be used
to pre-compute the prior probabilities of upward and downward pruning, namely prup(m)

and prdown(m) (1 ≤ m ≤ d). As such, samples of different sizes will only affect the pruning
efficiency of the algorithm. They will not change the number of subspaces found.

With this in mind, we now wish to determine the minimum sample size to accurately
predict prup(m) and prdown(m) with certain degree of confidence. We denote X as the
sample point that can be expressed as an S -dimensional vector as X = [x1, x2, . . . , xS]
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Searching methods Subspace searched

Top-down searching [1,2,3,4],[1,2,3],[1,2,4],[1,3,4], [2,3,4], [1,2],[1,3],[1,4],[1]

Bottom-up searching [1], [2], [3], [4], [2,3], [2,4],[3,4], [2, 3,4]

Dynamic searching [1,2,3,4], [1], [2], [3], [4], [2,3,4]

Table 3: Pruning results of three methods

where S is the size of the sample. Each data in the sample is a d -dimensional vector as
xi = [xi,1, xi,2, . . . , xi,d]

T where xi,j denote the value of jth dimension of ith data in the
sample. Applying dynamic subspace searching on sampling points, for each dimension m,
we obtain

Ydown(m) = [prdown(m, sp1), prdown(m, sp2), . . . , prdown(m, spS)] (1 ≤ m ≤ d)

We use the S measurements, prdown(m, spi)(1 ≤ i ≤ S) as the training data to estimate
the mean of prdown(m). Here, we assume that the training data are independent and can be
approximated by Gaussian distribution. We estimate the sample size by constructing the
confidence interval of the mean of prdown(m). Specifically, to obtain a (1 − α)-confidence
interval, the minimum size of a random sample is given as follows [15]:

Smin(m) = [
tα/2 ∗ σ

′

m

δ∗
]2

where σ
′

m denotes the estimated standard deviation of prdown in the mth dimension using the
training points that is defined as:

σ
′

m =

√

√

√

√

S
∑

i=1

(prdown(m, spi) − prdown(m, sp))2/(S − 1)

δ∗ denotes the half-width of the confidence interval.

Note that the value of σ
′

m varies for different m. Let σ
′

max = max(σ
′

m)(1 ≤ m ≤ d),
the minimum sample size Smin that satisfies respective minimum sample size requirement of
each dimension is computed as:

Smin = [
tα/2 ∗ σ

′

max

δ∗
]2

Similarly reasoning applies to prup(m) since prup(m)= 1- prdown(m).

4.6 Applicability of Existing High-dimensional Outlier Detection

Technique

The existing high-dimensional outlier detection technique, i.e. find outliers in given sub-
spaces, is theoretically applicable to solve the new outlier detection problem identified in
this paper. Using the existing technique to solve the ”outlier-subspaces” problem can be
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formulated as follows: Given a data point p, find all the subspaces in which p is an outlier
based on the information of outliers in each subspace that is obtained by the ”subspace→
outliers” high-dimensional outlier detection technique. To solve this problem, a searching
in all subspaces is needed in order to find the set of outlying subspaces of p: the outlying
subspaces for p are those subspaces in which p is in their respective set of outliers. Obviously,
the computational and space costs are both proportional to the total number of subspaces
which is in an exponential order of d, where d is the number of dimension of the data point.

This analysis provides an insight into the inherent difficulty of using the existing high-
dimensional outlier detection techniques to solve the new ”outlier-subspaces” problem espe-
cially in a high-dimensional space where such a space searching is rather expensive.

5. Algorithms

The algorithm of dynamic subspace search is presented in Figure 6. In this algorithm,
SetDim stores the number of dimension of the subspaces (from 1 to d). When SetDim is
not empty, it indicates that there are still some subspaces to be searched. The new TSF
of the remaining dimensions are computed and an additional pass of the subspace search is
performed. The dimension of the subspace with the maximum TSF in the current step is
stored in the variable CurrDim. The current dimension of subspaces is deleted from SetDim
and the whole program terminates when SetDim becomes empty. All the subspaces detected
are saved in SetDetectSS. This is returned as the answer set to the user at the end of the
algorithm. Note that the algorithm presented in Figure 6 can run on both the sample points
and the query points. The only difference is in the function ComputeDynaTSF(). Here,
the sample points use the pre-defined probabilities as the priors while the query points use
the probabilities as the priors obtained in the sample-based learning process. The function
of ComputeDynaTSF() dynamically computes the TSF values in the subspace searching
process. The upper bound of the number of dimensions in SetDim is d, thus the time
complexity of performing this function is O(d).

The function SubspaceSearch() (referring to Figure 7 for details) returns all the de-
tected subspaces of the CurrDim dimension. It displays a generic skeleton of the function
SubspaceSearch() for subspace searching using either the global-T pruning strategy or the
local-T pruning strategy. Note that there are two differences between the exact implemen-
tation of the function for the two pruning strategies: (1) T represents the global distance
threshold in the global-T pruning strategy while represents the local distance threshold for
each subspace ss with CurrDim dimension in the local-T pruning strategy; (2) In the local-
T pruning strategy, the algorithm has to check the satisfiability of the pruning requirements
within the functions PruneExistSS(superset(ss)) and PruneExistSS(subset(ss)) before
the pruning is performed, while the global-T pruning strategy does not have to.

6. Experimental Results

In this section, we will carry out experiments to test the efficiency of HighDOD, evaluate
effect of sampling size on the efficiency of HighDOD. Synthetic datasets are generated using
a high-dimensional dataset generator and four real-life high-dimensional datasets from the
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Algorithm HighDoD
Input: p, Dataset D, T and k

Output: All the subspaces in which p is an outlier

SetDim = ∅; SetDetectSS = ∅;
FOR i=1 to d DO SetDim∪ = i;
WHILE (SetDim 6= ∅) THEN {

ComputeDynaTSF(SetDim);
CurrDim=MaxiDynaTSF(SetDim);

SetDetectSS∪ = SubspaceSearch(CurrDim);
SetDim-=CurrDim;}

Return (SetDetectSS );

Figure 6: Algorithm of dynamic subspace search

UCI machine learning repository, which have been utilized in [4] for performance evaluation,
are also used.

In the synthetic data generator, we can specify the number of instances (tuples) (N)
and dimensions (d) of the dataset generated. We will further specify the number of the ranges
(Nr) and the maximum (max) and minimum (min) values for each dimension of the dataset.
The interval for each of the ranges will be max−min

Nr
. For each of the dimensions, N

Nr
distinct

instances are generated based on the Gaussian distribution in each of the Nr ranges. In this
way, we will be able to obtain N distinct instances for each dimension. For each generated
instance, a random number i (1 ≤ i ≤ N) will be generated (without replacement) and this
instance will be assigned to the ith tuple in the dataset. The dataset generated generally
displays dense and sparse regions in the data space, which serves as an ideal test-bed for our
experiments. Specifically, we specify N from 100k to 1000k, d from 10 to 100, and for each
dimension, we specify Nr = 10, min = 0, max = 100 in our experimental setting.

All the algorithms are implemented on a 1.8GHz Pentium PC with 256 MB of main
memory running on Windows 2000. In all the experiments, we set k, the number of neighbors
we are interested in, to 10.

6.1 Efficiency Study

While the evolutionary-based search method [4] is the most recent work to date that addresses
outlier detection in high-dimensional datasets, it is not compatible to compare HighDOD
with the evolutionary-based search method. This is because the evolutionary-based search
method finds outliers in specific subspaces while HighDOD finds subspaces in which the
given points are outliers. Instead, we choose to compare the efficiency of several subspace
search methods, i.e. top-down, bottom-up, random and dynamic subspace search. These
methods aim to find subspaces in which a given query data is an outlier using various
searching mechanism strategies. The top-down search method only employs a downward
pruning strategy while the bottom-up search method only uses an upward pruning strategy.
The random search method, the ”headless chicken” search alternative, randomly selects the
layer in the lattice for search without replacement in each step. The dynamic search method,
which can be considered as a hybrid of upward and downward search, computes the TSF of
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Algorithm SubspaceSearch
Input: Dimension of subspaces to be searched CurrDim.
Output: All the CurrDim dimensional subspaces in which p is an outlier.

SetDetectSS CurrDim = ∅;
IF (CurrDim = 1) THEN

FOR each unpruned subspace ss of CurrDim dimension DO
IF(ODk

ss(p) ≥ T ) THEN {
SetDetectSS CurrDim∪ = ss;
PruneExistSS(Superset(ss)); }

ELSE IF (CurrDim = d) THEN
IF (dim(ss) = d and ODk

ss(p) ≥ T ) THEN
SetDetectSS CurrDim∪ = ss;

ELSE PruneExistSS(Subset(ss));

ELSE
FOR each unpruned subspace ss of CurrDim dimension DO

IF (ODk
ss(p) ≥ T ) THEN {

SetDetectSS CurrDim∪ = ss;
PruneExistSS(Superset(ss)); }

ELSE PruneExistSS(Subset(ss));
Return (SetDetectSS CurrDim);

Figure 7: The generic algorithm of searching subspaces of a given dimension

all subspaces of different dimensions and selects the best subspaces to begin the search. To
evaluate the efficiency of the sample-based learning process in reducing the search space, we
run the dynamic search algorithm with and without incorporating the sample-based learning
process. Since there are two pruning strategies, i.e. the Global-T and the Local-T pruning
strategy, thus we implement the above five searching methods with each of the two pruning
strategies, which resulting in a total of 10 searching methods. Note that the execution times
shown in this section are the average time spent in processing each point in the learning and
query process.

In the first set of experiments, we investigate the effect of dimensions on the average
execution time of the algorithm. Figure 8 shows the results as we vary the dimensions of the
datasets. A quick review of the result reveals that the execution time of all the 10 methods
increase at an exponential rate since the number of subspaces increases exponentially as the
number of dimension goes up, regardless of which searching and pruning strategy is utilized.
On a closer examination, we see that (1) The execution time of top-down and bottom-up
search methods increase much faster than the dynamic search method; (2) When using the
sample-based learning process, the dynamic search method performs better than without
using the sample-based learning process; (3) The execution times of the methods using the
Global-T pruning strategy increase much less slowly compared with the whose methods
using the Local-T pruning strategy. This is because the Local-T pruning strategy is much
conservative than the the Global-T pruning strategy and therefore less number of subspaces
can be pruned in each step of the searching process.

In the second set of experiments, we fix the number of dimensions at 50 and vary the
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Figure 8: Execution time when vary-
ing dimension of data
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Figure 9: Execution time when vary-
ing size of dataset
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Figure 10: Execution time when
varying the number of query points
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Figure 11: Execution time when
varying the size of sample

size of datasets from 100K to 1,000K. Figure 9 shows that the average execution times using
the 10 methods to process each query point are approximately linear with respect to the size
of the dataset. Similar to results of the first experiment, the dynamic search method with
sample-based learning process and Global-T pruning strategy gives the best performance.

Next, we vary the number of query points Nq. Figure 10 shows the results of the
five searching method using the Local-T pruning strategy only . It is interesting to note
that when Nq is large, dynamic search method with sample-based learning process gives the
best performance. However, when Nq is small, it is better to use dynamic search without
sample-based learning. The reason is because when the number of query points is small, the
saving in computation by using the learning process is not sufficient to justify the cost of
the learning process itself.

Finally like [4], we evaluate the practical relevance of our subspace outlier detection
technique by running experiments on five real-life high-dimensional datasets in the UCL
machine learning repository. The datasets range from 8 to 160 dimensions. Table 4 shows
the results of the five search methods using the Local-T pruning strategy. It is obvious that
dynamic search with sampling-based learning process works best in all the real-life datasets.
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Datasets(dimensions) Top-down Bottom-up Random Dynamic Sample+ Dynamic
Machine(8) 56 49 58 41 32

Breast Cancer (14) 165 176 150 121 110
Segmentation (19) 251 237 256 222 197
Ionosphere (34) 472 477 456 414 387

Musk (160) 5203 4860 5002 4389 3904

Table 4: Results of running five methods on real-life datasets (average CPU time in seconds
for each query point)

Furthermore, a closer examination of the result reveals that using dynamic subspace search
alone is faster than top-down bottom-up or random search methods by approximately 20%
while incorporating sample-based learning process into dynamic subspace search contributes
to reducing the execution time by about 30%.

6.2 Effect of Sampling Size on the Efficiency of HighDOD

We also investigate the effect of the number of sampling points, S, used in the learning
process. A large S gives a more accurate estimation of the possibilities of upward and
downward pruning in subspaces, which in turn, helps to speedup the search process. However,
a large S also implies an increase in the computation during the learning process, which may
increase the average time spent in the whole outlier detection process. As we can see,
the execution time is first decreased when the number of sampling point is small, this is
because the prediction of possibility is not accurate enough, which cannot greatly speedup
the later searching process. When the sample size increases, the prediction of the possibilities
are sufficiently accurate, therefore any larger size of sample will no longer contribute to the
speedup of the search process, but only increase the execution time as a whole. Furthermore,
the sample size corresponding to the valley value of the CPU runtime in the figure is close
to Smin, indicating that Smin is an optimal or at least near-optimal sample size to choose in
practice. The horizontal dot-line in Figure 11 indicates the execution time when dynamic
subspace search without sample-based learning is employed. We can see that a large size
of sample will cause the average execution time exceed the horizontal line, thus a sample of
reasonably small size (such like Smin) will ensure that the speedup of the searching process
will not be overshadowed by the associated cost of the learning process.

7. Conclusions

In this paper, we address the problem of outlier detection in high-dimensional data. Unlike
other state-of-the-art research work in outlier detection that mainly detect outliers in full
dimensional space, we propose a novel outlier mining algorithm to find the associated sub-
spaces in which each query point is an outlier. We utilize the sum of distances between a
point and its k nearest neighbors, termed OD, to measure the outlying degree of this point
and propose two pruning heuristics, called Global-T and Local-T pruning strategies, for fast
pruning in the subspace search. To choose an efficient subspace search strategy, we propose

18



a dynamic subspace search method with a sample-based learning process. Experimental
results indicate that our method is efficient and outperforms the straightforward top-down,
bottom-up and random search methods.
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