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Abstract—This paper is concerned with the problem of joint
distributed attack detection and distributed secure estimation
for a networked cyber-physical system under physical and cyber
attacks. The system is monitored by a wireless sensor network
in which a group of sensors is spatially distributed and the
sensors’ measurements are broadcast to remote estimators via a
wireless network medium. A malicious adversary simultaneously
launches a false data injection attack at the physical system layer
to intentionally modify the system’s state and jamming attacks
at the cyber layer to block the wireless transmission channels be-
tween sensors and remote estimators. The sensors’ measurements
can be randomly dropped with mathematical probability if the
corresponding transmission channels are deliberately jammed by
the adversary. Resilient attack detection estimators are delicately
constructed to provide locally reliable state estimations and detect
the false data injection attack. Then, criteria for analyzing the
estimation performance and designing the desired estimators are
derived to guarantee the solvability of the problem. Finally, the
effectiveness of the proposed approach is shown through an
illustrative example.

Index Terms—Distributed attack detection, distributed secure
estimation, jamming attack, false data injection attack, wireless
sensor network.

I. INTRODUCTION

YBER-physical systems (CPSs) represent a new gener-

ation of systems that integrate computation resources,
communication medium and physical processes [1], [2]. CPSs
have been intensively applied in a large number of practical
areas, such as aerospace, civil infrastructures, power grids,
water and gas distribution networks, and transportation net-
works. Different from classical control systems, the operation
and communication of CPSs often occur through some shared
wired or wireless network medium, such as the specialized
real-time control networks CAN, BACnet and Fieldbus or
the general-purpose wireless data communication networks
Ethernet and Internet [3], [4]. This makes CPSs more open
to the cyber-world [5]. In addition to being prone to failures
or attacks on the physical processes as in classical control
systems, CPSs are vulnerable to malicious cyber security
threats on the data transmission or communication layer. There
is no doubt that any severe attack on CPSs, launched in either
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the physical-process-domain or the cyber-domain, can have
a significant impact on the economy, environment or even
human life, such as attacks on the national power grids [6].
Therefore, it is of fundamental significance to consider security
issues when designing safe and reliable CPSs.

The distributed secure estimation problem under considera-
tion is motivated by security concerns of CPSs operated over
wireless sensor networks (WSNs). Generally, a WSN consists
of a large number of observation nodes that are spatially
deployed in a monitoring region of the physical process
or target plant. These nodes, which possess data sensing,
processing and communication capabilities, collaborate among
themselves to build a cooperative information processing
paradigm. However, the broadcast nature of the nodes makes
WSNs vulnerable to various malicious threats [7], because
WSNs require the nodes to cooperatively perform an overall
monitoring or estimation task by broadcasting their obser-
vations (e.g., measurements) among the neighboring nodes.
In other words, the nodes’ observations can be potentially
manipulated by cyber attacks. A key concern of distributed
secure estimation is how to assess the trustworthiness of nodes’
measurements and compute locally reliable estimations of the
physical system’s state with the caveat that some of the nodes’
measurements can be corrupted by a malicious adversary.

A. Relevant Work on Secure Estimation against Specific At-
tacks

Note that it is generally challenging to describe attacks by
accurate mathematical models as malicious attacks usually
occur in intelligent and erratic ways. The existing literature
on the analysis of vulnerabilities of CPSs to malicious attacks
has been confined to exploring some specific attacks against
particular CPSs. For example, in [2], [8], integrity attacks
(or deception attacks) on state estimation systems were de-
fined, where integrity attacks intentionally compromised the
integrity of sensor measurements or control packets. In [5],
the problem of state estimation and control for linear systems
was considered when some of the sensors or actuators were
hijacked by deception attacks. Resilient estimators and output
feedback controllers were designed such that the state of the
system was accurately reconstructed and the resilience of the
closed-loop system was improved. In [9], the effect of sparse
sensor attacks was considered to achieve a state reconstruction
of discrete-time linear CPSs where an adversary arbitrarily
falsified measurements of a subset of sensors. In [10], [11],
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false data injection (FDI) attacks were considered in state
estimation frameworks for electric power grids. Generally, FDI
attacks are known as specific deception attacks or integrity
attacks, where an adversary could access and modify the
physical system’s state, sensor data, or control commands by
introducing arbitrary errors, fake information, or faults. In [12],
the effect of FDI attacks on state estimation was studied over
a sensor network. The attacker therein hijacked a subset of
sensors and sent fake sensor measurements to compromise the
integrity of the state estimator. Then, a steady-state Kalman
filter and a failure detector were designed to provide a quanti-
tative measure of the resilience of the system to such attacks.
Very recently, [13] considered a specific FDI attack called a
fake-acknowledge attack against remote state estimation for
CPSs. The attacker was able to modify the acknowledgement-
based online power schedule signal from the remote estimator
and send fake information to the sensor. A game-theoretic
framework was built to investigate the equilibrium for both
the sensor and the attacker. In [6], denial-of-service (DoS)
attacks (or jamming attacks) were studied for the remote state
estimation of CPSs where the wireless channel from a sensor
to a remote estimator was jammed by an external attacker.
DoS attacks aim at deteriorating the communication channels
to prevent information exchange, usually either sensor data
or control commands, between components of CPSs. Note
that a frequently used DoS technique is to launch jamming
attacks on communication channels by interfering with their
radio frequencies [14], [15]. By formulating a game-theoretic
framework, the interactive decision-making process between
a manipulated sensor and an energy-constrained attacker was
investigated in [6]. To maximize the impact of DoS attacks on
CPSs, [15], [16] presented optimal attack scheduling strategies
for energy-constrained attackers. Hence, the attacker was able
to decide when and where to jam the communication channel
at each sampling time so as to degrade the remote estimation
performance. Another particular form of attacks can be found
in [17] where the effect of replay attacks (through which the
sensor data or control commands were maliciously repeated)
on control performance for CPSs was analyzed.

B. Relevant Work on Detection and/or ldentification against
False Data Injection Attacks

Despite the rich body of research about secure estimation
in CPSs, there appear to be only a few studies on detecting
and identifying FDI attacks in CPSs, see, e.g., [1], [11],
[18]-[20]. Depending on different detection techniques, these
results can arguably be classified into three categories. The
first category is based on statistical tests. For example, in
[18], the authors proposed a distributed average consensus
algorithm in which each networked node locally computed the
detection test statistic. The statistical distribution of the nodes’
data was then exploited to devise techniques for mitigating
the influence of data falsifying on the detection system. In
[19], the problem of detecting and mitigating data injec-
tion attacks was studied in randomized gossip-based sensor
networks. By analyzing the statistics of the sensors’ states,
decentralized consensus strategies were designed to detect
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and localize insider attackers. The second category is based
on data time-stamps. For example, in [20], data time-stamps
were used to detect the anomalies caused by the malicious
node by evaluating the (average) temporal difference of the
values held by normal nodes. The third category is based
on estimation residuals and is inspired by the existing fault
diagnosis/tolerance literature [21]-[24]. For example, in [11],
a distributed estimation and false data detection algorithm
was proposed to monitor the operation condition of a power
network subject to FDI attacks. By analyzing the properties
of an estimation residual between the measurement and its
estimation, the presented algorithm detected the false data
among the network measurements. Following similar analysis
and design procedures, both centralized and distributed attack
detection and identification monitors were proposed in [1] for
a class of descriptor CPSs subject to attacks that affect the
state and the measurements.

C. Motivations

A crucial feature of CPSs over WSNs is that system compo-
nents such as observation nodes or sensor nodes are geographi-
cally distributed. This poses a significant difficulty in acquiring
data from these spatially distributed nodes, especially in the
presence of malicious attacks. Whereas, the majority of the
existing results regarding secure estimation of CPSs are limited
to the case of a single observation or sensor node (see, e.g.,
[5], [6], [8]-[10] and references therein), which renders the
secure estimation algorithms therein inapplicable in WSN-
based CPSs. On the other hand, the existing literature focuses
mainly on one specific type of attack, and few results consider
the simultaneous presence of various attacks on practical
CPSs. In fact, it is quite common for a cunning attacker to
launch different attacks on practical CPSs at the same time.
Take automotive vehicles as an example, an attacker might
be able to simultaneously compromise a car’s external vehicle
interfaces and internal network buses to pose threats to the
vehicle control sub-systems [25]. To the best of the authors’
knowledge, there are relatively few studies that have tackled
the conjunct problem of attack detection and secure estimation
for CPSs carried over WSNs when an adversary launches
malicious attacks in both the physical-process-domain and
cyber-domain, which motivates the present study.

D. Contributions

In this paper, we will address a distributed attack de-
tection and secure estimation problem for a CPS over a
WSN subject to both an FDI attack and jamming attacks.
More specifically, the FDI attack will be launched by an
attacker at the physical system layer so as to modify the
system’s state. Jamming attacks, however, will be considered
during the wireless communication from sensors to remote
estimators at the cyber layer. Unlike the information theoretic
studies on secure communication, which primarily involve the
protection of data and/or IT services, we will concentrate on
investigating the distributed estimation performance under the
attacks from a system theoretic perspective. We summarize the
main contributions of this paper as follows.
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o A refined compensation-based measurement output model
will be presented for each sensor. A direct impact of
jamming attacks on wireless transmission channels is that
sensors’ measurements will be randomly dropped with
mathematical probability if the corresponding channels
are deliberately jammed. Based on this measurement
model, each remote estimator will pro-actively admit and
utilize the corrupted sensor measurements from itself and
its neighboring estimators to compute a local estimation.

o Resilient attack detection estimators will be delicately
constructed to deal with the simultaneous effects of the
FDI attack, jamming attacks and process and measure-
ment noises. In particular, to deal with the FDI attack,
each estimator will run a two-step attack detection mech-
anism to discern when the occurrence of the FDI attack
can be detected and alarmed; and to handle the jam-
ming attacks, each estimator will adopt the compensated
measurements to increase the resilience of the estimation
system. Based on the proposed estimators, the WSN-
based secure estimation problem under attacks and noises
will be mapped into an H,, estimation problem of an
augmented estimation error system.

o Criteria for analyzing secure estimation performance and
designing desired estimators will be derived to guarantee
the feasibility of the proposed distributed attack detection
and secure estimation problem. We will analytically and
numerically investigate the impact of the FDI attack, jam-
ming attacks and noises on the estimation performance,
and show that under what conditions the resultant estima-
tion error system will converge even in the presence of
such attacks as well as process and measurement noises.

The reminder of this paper is organized as follows. In Sec-
tion II, a compensation-based measurement model is presented
and resilient attack detection estimators are constructed. The
problem of distributed attack detection and secure estimation
we propose to solve in this paper is also formulated at the
end of this section. Section III presents the main results on
secure estimation performance analysis and estimator design.
Furthermore, an extension of the proposed results to the case of
uncertain measurement-transmission probability is provided.
In Section IV, an industrial continuous-stirred tank reactor
model is employed to illustrate the effectiveness of the pro-
posed method. Finally, Section V concludes the paper.

II. PROBLEM FORMULATION
A. Notations

Throughout the paper, R stands for the n-dimensional
Euclidean space and R™*"" represents the set of all the real
n X m matrices. For symmetric matrices X and Y, the notation
X <Y means that X —Y is negative definite. Prob{-} repre-
sents the occurrence probability of an event. E{-} represents
the mathematical expectation of a stochastic variable. sup
denotes the supremum of a set. ||-|| denotes the induced matrix
2-norm or the Euclidean vector norm as appropriate. ® stands
for the Kronecker product for matrices. diag{-} represents a
diagonal matrix. N denotes the set of nonnegative integers.
I is an identity matrix with an appropriate dimension. Let

asterisk ‘*’ denote a term that is induced by symmetry in
symmetric block matrices. The superscript “I” denotes the
transpose of a matrix with vectors as a special case. If a
matrix is invertible, the superscript ‘—1’ represents the matrix
inverse. The symbol ) denotes the summation of a sequence.
The space of square-summable vector functions over [0, c0)
is denoted as /3]0, 00) and for any w(k) € I3[0, c0), its norm
is given by |[w(k)|| = /D> peo wT (k)w(k). Matrices, if not
explicitly stated, are assumed to have appropriate dimensions.

B. System Dynamics under False Data Injection Attacks

Consider that the physical system is a discrete-time linear-
invariant system of the following form

s(k+1) = As(k) + Bw(k) + Ep(k), s(0) = s (1)

for all k € N, where s(k) € R™ is the state vector of
the system at the k-th time step; w(k) € R" belonging
to [2[0, 00) is the process noise vector at the k-th time step;
p(k) € R" is the false data injection (FDI) attack vector
to be detected at the k-th time step. Here, the vector p(k)
is injected by the malicious attacker at the physical system
layer to intentionally manipulate the system’s state; sg is the
initial state of the system; and A, B and E are known constant
matrices with appropriate dimensions.

C. Communication Topology

In the following, a group of IV spatially distributed sensor
nodes will be deployed to monitor the system described in (1)
and N cooperative estimator nodes which form an estimator
network will be designed to compute local estimations of
the system’s state s(k), as illustrated in Fig. 1. Moreover,
sensors will be responsible for measuring the system’s state
and broadcasting their measurements to remote estimators.
However, the estimators will coordinate their local estimations
and received measurements with only their neighboring esti-
mators in their communication ranges in order to achieve a
satisfactory cooperative estimation task. We first recall some
basic concepts of graph theory.

Denote a weighted directed graph by G = (V, £, .A), where
V = {1,2,--- ,N} is the index set of N nodes, £ C V x
V represents the edge set of paired nodes and A = [a;5] €
RN XN stands for the weighted adjacency matrix with positive
adjacency elements a;;. Then, the communication topology
among the N estimator nodes can be modeled by the digraph
G. Moreover, a;; > 0 < (4,j) € £ which means that node i
can receive information from node j or node j can send its
information to node ¢. It is assumed that self-loops exist in the
graph, i.e., a;; > 0, ¢ € V. The set of neighbors of node i € V
plus the node itself are denoted by V; = {j € V : (i,5) € £}.

D. Ideal Measurement Output Model
At time step k, the ideal measurement output model of
system (1) on sensor ¢ is given by
yi(k) = Cis(k), VieV, )

where y; (k) € R is the measurement output on sensor ¢ and
will be broadcast through a wireless transmission channel to a
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Fig. 1. A schematic diagram of distributed attack detection and secure
estimation subject to a false data injection attack on physical system and
jamming attacks on wireless measurement transmission channels

remote estimator ¢ and estimator ¢’s all underlying neighbors,
thus being vulnerable to cyber attacks; and C;, Vi € V is a
known constant matrix with an appropriate dimension.

In the conventional distributed estimation framework [26]—
[29], the measurement transmission channels from sensors j,
j € N, to the remote estimator 4 are explicitly assumed to be
ideal. In other words, the ideal measurements y;(k), j € NV,
are successfully and completely transmitted to estimator ¢ at
every instant of time, which leads to

Fl(k) = Z aijyj(k), V Z € V, (3)
JEN;

where F;(k) € R™ is the combinational measurement which
acts as an input of estimator ¢. However, this ideal assumption
is not always true in practice when malicious cyber attacks
occur in wireless transmission channels. For example, a DoS
attacker aims at blocking the measurement transmission from
sensor j to the remote estimator ¢, since typical DoS attacks
can jam and interrupt the wireless channels. In this sense, the
corresponding measurements y;(k) may be incomplete and
lossy when they arrive at the side of estimator 1.

E. Compensation-Based Measurement Output Model against
Jamming Attacks

Consider a scenario where the attacker also launches multi-
ple jamming attacks on the wireless measurement transmission
channels between distributed sensors and remote estimators,
as shown in Fig. 1, to deteriorate the overall estimation
performance of the system (1). The attacker is an active
adversary in the sense that sensor ¢’s measurement will be
dropped once the attacker successfully jams the corresponding
wireless channel. Generally, there are three possible cases
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after the attacker launches a jamming attack on a wireless
measurement transmission channel from sensor ¢ to estimator
j (e, i— )
o Sensor ¢’s measurement will successfully arrive at estima-
tor j if the attacker fails to jam the transmission channel
1 — j. For example, in some circumstances, the attacker
has to give up jamming certain channels due to a limited
energy budget [16].

o Sensor ¢’s measurement will be partially lost if the

jamming of the transmission channel ¢+ — j is not heavy.

e Sensor i’s measurement will be completely lost if the

transmission channel ¢ — j is severely jammed.

On the other hand, most malicious attackers have the energy
constraint issue [16], which means that attackers may need to
consider the energy budget when implementing various attack
strategies. Understanding that a deterministic attack strategy
not only leads to excess energy consumption but can also
be readily handled by a robust estimator, a cunning attacker
should randomly decide to jam the wireless transmission
channels or to sleep in order to deceive designers or simply
save energy. In this sense, in the presence of a smart attacker,
random attack strategies may pose major difficulties for remote
estimators.

Motivated by these facts, we adopt the following measure-
ment output which is delivered through the wireless channel
1 — j subject to random jamming attacks and adopted by the
relevant estimators j, V i € ./\/j; 7 €V, as illustrated in Fig. 2,

Gi(k) =yt (k) + " (k) +y7 (), VeV, @)

where the corrupted measurement ¢; (k) on estimator j consists
of three parts

— 0,(k))3i (k — 1) 5)
(k)

and specifically,

o y&* (k) stands for the attacked and manipulated mea-
surement term. The stochastic variable 6;(k) € R is a
Bernoulli distributed white sequence taking values of 1
and 0 with the mathematical probability satisfying

{ Prob{6;(k) =1} = E{6;(k)} = 5 ©)
Prob{0;(k) =0} =1 -E{0;(k)} =1 — 3,

where f3; € [0,1] is a known constant. All stochastic
variables 0;(k), Vi € V and k € N are assumed to be
independent in ¢ and k. Here, the stochastic variable 6, (k)
is employed to characterize the possibility of the measure-
ment y; (k) being successfully transmitted to the remote
estimator ¢ (hereafter, 3; is known as the measurement-
transmission probability). When the attacker launches a
jamming attack and blocks the wireless channel ¢ —
J, sensor i’s measurement y;(k) will be dropped with
probability 1 — 3; (hereafter, 1 — §; is known as the
measurement-loss probability) '. Apparently, the larger

I'Without causing confusion, we use the terms “measurement-transmission
probability” and “measurement-loss probability” interchangeably throughout
the paper, while the term “measurement-loss probability”” emphasizes the lossy
measurement caused by jamming attacks
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the value of (3;, the higher the chance of successful Fi(k) = Z Vijaij(9;(k) — B;Ciz;(k)) )
transmission of the measurement y; (k). JEN;

Note that if 5; € (0,1), only part of the measurement ri(k) = Wiz;(k), 9)

y;(k) is received by the estimators j, V j € N, and
the channel ¢ — j is partially jammed. In particular,
(B; = 1 corresponds to the ideal transmission case, which
means that the measurement y;(k) is successfully and
completely transmitted to estimators j and there is no
jamming attack during the transmission, while 3; = 0
reduces to the worse transmission case, where the mea-
surement y; (k) is lost completely during the transmission.

o y;”"P(k) represents the compensated measurement term
corresponding to the lossy measurement y%'** (k) caused
by the attacker. It is assumed that the sensor measurement
y;(k) and its time-stamp k are encapsulated into a mea-
surement packet (k,y;(k)). As a result, whether or not
this measurement packet is manipulated by the attacker
can be checked by remote estimators according to the
time-stamp of the arrived measurement packet. In this
sense, it is reasonable to introduce the term (1 — 6;(k))
in the compensated measurement. On the other hand, it is
shown in Fig. 2 that a buffer is equipped to store all the
previous compensation-based measurements at instants
k=0,1,--- ,k—1,1e., (g:(k—1),9:(k—2),--- ,4:(0)).
The buffer is accessed in a first-in-last-out mode, which
means that remote estimator j, V j € V, can always use
the compensated measurement (1 — 6;(k))g;(k — 1) on
sensor ¢ to reduce the effect of an attacked measurement
yk(k), V i € Nj. If at time step k, the measurement
yi(k) is totally lost, the last transmitted measurement
§i(k—1) will be adopted to actuate estimators j. It is ex-
pected that such a compensation strategy will be helpful
for estimators to generate accurate local estimations.

o yois¢(k) denotes the perturbed measurement term with
v;(k) € R"™ being regarded as the measurement noise
experienced through the wireless channel ¢« — j. Here,
v; (k) is assumed to belong to [2[0,00) and D;, Vi € V is
a known constant matrix with an appropriate dimension.

Wireless Measurement Transmission Channel i—j
Sensor i | - j&j ______________ | Remote Estimator j
_____ — 9 é -— e — . w—
| Attacker Measurement |
? Jamming 0,00) noise Dy;(k) | T
Measurement | Attacki’ Combinational
yitk)on | T _'_‘_ _ measurement
sensoritobe (k)i ! Ok)yick) Va;pi(k) for
transmitted estimator j
! Measurement

| _ compensation
W0 sy

I
| Jik-1) |

Fig. 2. A compensation-based measurement output model against jamming
attacks on wireless channels

FE. Resilient Attack Detection Estimators

We are interested in constructing the following resilient
attack detection estimators of the form

xz(k + 1) = Z Uijaijxj(k) + Fz(kﬁ) (7)
JEN;

where z;(k) € R™ is the local state estimation computed
by estimator i; » . . Usjaijx;(k) is the estimation exchange
term which represents how estimator 7 collects the estimations
xj(k) from its neighboring estimators 5,V j € N; Fi(k) is the
combinational measurement under the jamming attacks during
the transmission with ;(k) being defined in (4); r;(k) € R™"
is the residual signal, which is assumed to be compatible
with the FDI attack vector p(k); and the initial condition of
estimator i is z;(0) = 2¥. For all 4,5 € V, U;;, Vi; and W;
are the estimator gain matrices to be determined.

As outlined in the preceding section, two types of malicious
attacks are considered in the proposed distributed attack detec-
tion and secure estimation framework. By launching the FDI
attack, the adversary injects false information to modify the
system’s state, whereas with jamming attacks, the attacker tries
to block or interrupt the wireless measurement transmission
channels between distributed sensors and remote estimators.
Hence, we aim at designing resilient attack detection estima-
tors that can work properly under both types of attacks. More
specifically,

o To deal with the FDI attack, a two-step FDI attack
detection mechanism will be established, as demonstrated
in Fig. 3. The first step is to generate a residual signal
r;(k) on each estimator. To achieve a desirable detection
of the FDI attack, the second step is to evaluate the
generated residual signal by analyzing the information
about the FDI attack signal from the residual by means
of post-processing of the residual. To this end, we define
an evaluation function in terms of the norm of the residual
signal on each estimator of the following form

1
k=To+T. 2

> rikrak) g

k=T,

fi(To, Te) = (10)

where Ty > 0 denotes the initial evaluation time instant
and 7T, > T}, denotes the evaluation time steps. Moreover,
to discern when the occurrence of the FDI attack can be
detected, a specific threshold should be pre-defined such
that when the FDI attack occurs, a warning or an alarm
message can be sent to remind the designer or operating
engineer. Generally, the threshold should be the maximal
value of the evaluated residual in the FDI attack-free
case. For this purpose, we choose the residual evaluation
threshold as

Th; = sup Eflra(®)I}- A
w(k),v;: (k) € 120, 00)

p(k) =0

Based on (10) and (11), the following evaluation logic is
designed by comparing the evaluation function f;(Ty, T%)
with the threshold Th;:

{ Ji(To, Te) > Th; = Alarm of FDI attack (12)

fi(Ty, T.) < Th; = No FDI attack.
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By virtue of the FDI attack alarm, further measures,
such as attack isolation and false data correction, can be
taken to guarantee the reliability and safety of the system,
which serves as a possible direction of our future work.
This paper mainly focuses on detecting the occurrence of
the FDI attack.

¢ To handle the random jamming attacks, estimator ¢ in (7)
adopts the compensated measurements §,(k), V j € N;.
This is critical because the jamming attacks are randomly
launched to wireless channels. Some sensors’ measure-
ments can be lost completely during the transmission
at some instants of time. Thus, by employing the com-
pensated measurements, the resilience of the estimation
system is expected to increase. It should be also noted
that the proposed estimator ¢ in (7) is based on its local
estimation and received measurement as well as its all
of its neighbors’ estimations and measurements. This
distributed cooperative estimation paradigm also aims to
improve the resilience and reliability of the estimation

system.
Residual FDI Attack Detection Mechamism
Si gna]{ Evaluation h
Function i !
IAlarm of
Comupted | Resient "™ 1 HT0 T Evaluation Logic  IFp] attack
Measurements | Attack : fi(To,T.,)>Th;?
. . Detection | Threshold i f(To, T,) <Th;? :occurrence
(i(k),....9,(k),...) " Estimator i ! |
| Thl
xi(k) \ !
N /

State Estimation x;(k)

Fig. 3. Resilient attack detection estimators using a false data injection (FDI)
attack detection mechanism

Remark 1: Note that the basic idea of the proposed FDI
attack detection mechanism is to construct a residual signal
and based on this, to determine a residual evaluation func-
tion to compare with a predefined threshold. If the residual
evaluation function has a value larger than the threshold,
then an FDI attack alarm is sent. However, it should be
noted that the co-existence of some uncertain factors, such
as process and measurement noises, and randomly dropped
measurements caused by jamming attacks in this paper, may
affect the residual and, furthermore, the evaluation function
and threshold. Thus, it is possible that the jamming attack
actions may falsely result in an FDI attack alarm at a specific
instant of time. To accurately address the “false alarm” issue
caused by jamming attacks, an intuition is to extract the
information about the FDI attack from the residuals. However,
this extraction/separation is generally difficult because 1) the
jamming attacks are launched randomly; 2) the FDI attack
and the jamming attacks are launched concurrently; and 3)
the corrupted sensor measurements are disseminated in an
epidemic manner over the WSN. In the proposed FDI attack
detection mechanism, we consider the worst case scenario of
all the possible effects of the process noise, the measurement
noise and the randomly dropped measurements by using the
“supremum” to select a proper threshold. To our knowledge, it
remains open to establish a rigorous theoretical framework to
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investigate the “false alarm” issue of FDI attack in the simul-
taneous presence of jamming attacks on wireless measurement
transmission channels.

G. The Distributed Attack Detection and Secure Estimation
Problem

For node i, V i € V), define a state estimation error
vector e;(k) = s(k) — xz;(k) and a residual error vector
( ) = ri(k) — p(k). Denote e(k) = [ef (k), e3 (k), -,
en(k)]", S(k) = [sT(k), sT(k), .-, s (K)]", g(k) = [9] (k).
g3 (k), -+, (],17()=[ i (k), v (k), --’vw(k)]T,
h(’f) = [0t (k ), 5 (k) -, D (k )}T A=Iy®A B=[B",
Br, ..., B, C = dmg{51c1, B2C2, ---, ﬁNC’N},
D = diag{Dy, D2, -+, Dy}, E = [ET, ET, ..., ET|T,
ﬁ = di(lg{ﬁl, ,82, N ﬁN} I = [IT IT IEP]T,
W = diag{Wy, Wa, ---, Wx}, C;, = dzag{O ,0, O,
i—1
,0} and I; = diag{0,---,0, I, , 0,---,0} for all
——
N—i i—1 N—i
ieV.

To simplify subsequent development, we further set

(V2

It is easy to verify that U and V are two sparse matrices due
to the fact that a;; = 0 if j ¢ N;. For sparse matrices, we
recall the following lemma, which is helpful in deriving our
subsequent results.

Lemma 1: [30] Let S = {5 = [Sij]anany|Sij S
R™>My Gy = 0 if j §Z M} be the set of sparse matrices
and P = diag{Py, P», -+, Py} with P, € R"=*"= V),
being invertible matrices. For any matrix F € RN7exNny - jf
F = PF, then we have

[ﬁij]NxN with U5 = Uijaij

_ o 13
[Uij}NxN with UijZVijaij. (13)

FeS«=F €S.

Substituting (4) into (8) and combining (1), (7)-(9), the
estimation error system can be rewritten in a compact form
as follows

é(k+1)—(fi—(7)*( OV C)e(k)+(V -

+Z

V)j(k—1)

( VCys(k)+V L (k— 1))

+Bw(k) — VDu(k) + Ep(k) (14)
h(k) = Ws(k) — We(k) — Ip(k). (15)
Setting (k) = [57(k), eT'(k), g7 (k — 1)]T and n(k) =

[wT (k), o7 (k), pT (k)]T, the combination of (1), (4), (14) and
(15) yields the following augmented estimation error system

E(k+1)=¢(k +Z )—B:) Bie(k)+En(k)  (16)
R(k) = GE(k) + Tn(k), (17)

where o/, $;,V i€V, &, € and Z are given in Box L

As can be seen in (16) and (17), the estimation error system
reveals the difference between the residual signal r;(k) and
the FDI attack p(k) to be detected. Moreover, the effects
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A0 0 0 0 0 B 0 E wT 0
d=|A-U U-VC VB-V|, #=|-VC 0 VL |,&=|B -VD E |, ¢=|-W'|,2=| 0
C 0 In—f C; 0 —I 0 D 0 0 —IT
Box L.
ATpy ATp,-UT  COTh; BTp,  BTPR 0 0 —CIrvT CI'ps
T=| 0o U-C"VT 0 , Y= 0o -D"VT D'py |, Q=[0 O 0
0  (B-In)VT (IN-D) ETP,  ETP 0 0 LV —Lp
Box II.

of the attacks, the process noise w(k) and the measurement
noise v;(k) through wireless channels can be minimized by
making the H,, norm of the difference small. In this sense,
the distributed attack detection and secure estimation problem
to be tackled can be cast into an auxiliary H., estimation
problem, while the latter can be solved by employing the
celebrated H, optimization technique.

To proceed with, the following definition with regard to
stochastic stability is recalled such that the main problem of
this paper can be described more precisely.

Definition 1: System (16) with w(k) = 0 and v;(k) =0 is
said to be stochastically stable if the following holds

{lef ||2}

for any initial condition sy and .

Based on the above definition, the objective of this paper
is to design desired resilient attack detection estimators of the
form (7)-(9) such that

o The augmented estimation error system (16) and (17)

with w(k) = 0 and v;(k) = 0 is stochastically stable
for any initial condition.

o For all nonzero w(k),v;(k) € I3]0,00), V i € V, the

augmented estimation error system (16) and (17) satisfies
the following performance constraint

E {|IA(k)]1}
(&)

sup
w(k) 7 Oaw(k) € 12[03 OO)
vi(k) # 0,vi(k) € 12[0, 00)
for the zero initial condition, where the infimum of v > 0
is made small in the feasibility of (18).

<~y (18

I11.

In this section, criteria for analyzing estimation performance
and designing resilient attack detection estimators (7)-(9) will
be derived such that the augmented estimation error system
(16) and (17) is stochastically stable under an optimized H,
performance level.

MAIN RESULTS

A. Performance Analysis on Distributed Attack Detection and
Secure Estimation

We first present the following theorem which states under
what conditions the augmented estimation error system (16)

and (17) is stochastically stable with a prescribed H,, perfor-
mance index.

Theorem 1: For prescribed scalars v > 0, ; € [0,1] for
all 7 € V, and given estimator gain matrices U;;, V;; and
W;, ¥V i,7 € V, the augmented estimation error system (16)
and (17) is stochastically stable and achieves a prescribed H
performance level « if there exists a real matrix P > 0 of an
appropriate dimension such that

d <0, (19)
where ® = [®(™™)]5, 5 is a sparse block diagonal matrix
with each nonzero entry given by ®(') = —p, (22 —

—y InﬁNnﬁn , 018 = TP, o) = £Tp, ¢33 =

-P, ® (14) _ (gT (24) _ @T’ P44) — —Ian, $15) —
a1 BIP, xBIP, -, anBLP] and %) = —Iy @ P
1 2 N
with «o; = 61(1 — 6i)’ Vie.

Proof: Construct the following stochastic Lyapunov func-
tional candidate V (£(k)) = ¢T(k)P&(k). Recall the facts
of E{(6:(k) — B:)} = 0, E{(6:i(k) — )’} = o; and
E{(0;(k) — 8:)(6,(k) — B;)} = 0 for any ¢ # j. For all
nonzero w(k),v;(k) € 12]0,00), V i € V, calculating the
forward difference of V' (£(k)) along the system (16) yields

E{E{V(£(k + 1))} = V(£(K))

+hT (k)h(k) —~*n" (k)n(k)}
=E{E{" (k + 1)PE(k + 1)} — 7 (k) PE(R) (20)
+hT (k)h(k) = 0" (k)n(k) }
= o7 (k)2o(k), @
where
- p(11)  $QA2)
=[50 ] a= [0 4]

with 1) = TPy — P+ 67 + YN | 0, BT P%;,
0012 = ZTPE+ 6T P and 2 = £TPE + 9T P —~1.

Applying the Schur complement [31] to (19), it is straight-
forward to derive ® < 0. Thus, one has

E{R" (k)h(k) = v*n" (k)n(k)}
<E{V(¢(k)) —E{V(E(k+ 1)} (22
Summing up (22) from & = 0 to kK = kp,

where kr — oo, under the zero initial condition that
E{V(£(0))} = 0 and E{V(£(k))} > 0, we finally obtain
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S o E{lIA(K)|I? = ~+2|In(k)||*} < 0, which means that the
performance index (18) holds.

Next, we consider zero noise signals, i.e., w(k) = 0 and
vi(k) = 0, V i € V. Calculating the forward difference of
V(&(k)) along the system (16) yields

E{E{V ({(k + 1))} — V(£(k))}
N
= T (k) (ﬂTP%—P—&—Zai%’iT P%g) ek), (23)

i=1
Similarly, applying the Schur complement to (19), it is
straightforward to have &7 P.o/ — P + sz\; o, BIP#B; < 0.
Hence, one has E{E{V ({(k + 1))} — V(£(k))} < 0. Then,
following a similar pattern of the proof of Theorem 1 in [32],

it can be shown that E Z 1€k )||2}

=0
1, it can be concluded that the augmented estimation error
system (16) is stochastically stable. This completes the proof.
]

< 00. By Definition

B. Design of Resilient Attack Detection Estimators

Next, let us focus our attention on designing the desired
resilient attack detection estimators (7)-(9) and solving out the
estimator gain matrices U;;, Vi; and W;, V i,5 € V.

The main result is stated in the following theorem which
provides a design criterion for solving the proposed distributed
attack detection and secure estimation problem.

Theorem 2: Given scalars v > 0 and §; € [0,1] for all
i € V), the proposed distributed attack detection and secure
estimation problem for the augmented estimation error system
(16) and (17) is solvable if there exist real matrices P1 > 0,
PQ—dlag{szl,Pg}Q," P2N}>0 P3>0UVWOf
an appropriate dimension such that

b <0, (24)
where & = [®(™™)]5, 5 is a sparse block diagonal matrix with
each nonzero entry given by (1) = —p = diag{ Py, Py, Ps},
(I)(22) _ _,V2In +Nnv+np (13(13) =, (I) (23) _ 'r (I)(33) _
—-P, (I) (14) %T @T @(44) _ 7]'an’ (I)(15) _
[OélQl, asfg, -, aNQN] and HOd) = —In ® P with T, T
and Q;,VieV being given in Box II. Moreover, the estimator
gain matrices U and V' can be computed by

U=P'U, V=P 'V (25)
and W can be directly solved out from (24).

Proof: Choose the following diagonal structure of the matrix
P = diag{ Py, Py, P3}, and define two new matrices U =
PU and V = B,V. By Lemma 1, it can be shown that U
and V are sparse matrices. Then, (19) implies that (24). This
completes the proof. |

With Theorem 2, the proposed distributed attack detection
and secure estimation problem can be transformed into the
following optimization problem

mini(mize (M) subject to (24),

where A = +2 and [ is the set of all feasible solutions from the
linear matrix inequality in Theorem 2. By using the available
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interior-point algorithms in many available commercial and
noncommercial software products such as the Matlab LMI
toolbox, one can solve the above minimization problem to
obtain the desired resilient attack detection estimators (7)-
(9) such that the stochastic stability and the optimal H.,
performance level ¥ = /) of the augmented estimation error
system (16) and (17) under the FDI attack and jamming attacks
can be guaranteed.

C. Extension to the Case of Uncertain Measurement-
Transmission Probability

Consider the case that the measurement-transmission prob-
ability 3; is uncertain. More specifically, it is assumed that
the measurement-transmission probability (; is subject to
uncertainties of the polytopic type.

Assumption 1: The measurement-transmission probability
[; in (6) is uncertain and belongs to a given convex ployhedral
domain described by S vertices:

S S
¢ {ﬂ;’ﬁ;’ =308 oi=1i0. > 0} , (26

s=1 s=1

where ﬂi(s) denotes the s-th vertex of the polotope for all ¢ €
V.

Remark 2: Note that the uncertain but
measurement-transmission probability 57 satisfying

bounded

0<8 <7 <B” <1,

where ﬁi(l) and 652) are known real constants, is a special case
of the polytopic-type uncertainty with only two vertices, i.e.,
07 =30y 08

Remark 3: From the perspective of the attacker, it is promis-
ing to account for the uncertain measurement-transmission
probability (¢ (or uncertain measurement-loss probability
1—7) because the probability of when and where the attacker
decides to launch the jamming attacks is indeterminate to
remote estimators or detectors. This will make the wireless
channels highly vulnerable and will pose significant challenges
for designing estimators or detectors.

First, we present a parameter-dependent design criterion that
guarantees the feasibility of the proposed distributed attack
detection and secure estimation problem.

Theorem 3: Given a positive scalar «y, the proposed dis-
tributed attack detection and secure estimation problem for the
augmented estimation error system (16) and (17) is solvable if
there exist real matrices Py > 0, Py = diag{P21, P22, - -,
Pyn} >0, P{ >0, U, V, W of an appropriate dimension
such that

W, <0, 27)
where U, = [\sz,m”)]g)xs is a sparse block diagonal ma-
trix with each nonzero entry given by \1'5,11) = —P7 =
diag{P{, Py, P§}, OF = —20, noin, U8 = 7T,
v = 1, el = _pe (M = @7 g — g7
I N (D [, Qo -+, Qn] and \115,55> =

—Iny ® 4P Wlth Y, T and Q; being derived from T, T
and ; in Box II by replacing P, Ps, 5; with Py, P§, 37,
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respectively. The estimator gain matrices U and V' can be
computed by (25), and W can be directly solved out from
27).

Proof: Consider the following parameter-dependent stochas-
tic Lyapunov functional candidate V (£(k)) = 7 (k)Po¢(k).
Calculating the forward difference of V' (£(k)) along the sys-
tem (16) yields

E{E{V(£(k + 1))} = V(£(R)
+AT (k)h(k) — 70" (k)n(k)}
TRCEOIACE)
<oThy| T Vo | o). 28)
* Uy
where WM = /T Poofy — PT+ 6T+ 1L 1}1,@7‘130@

I = T Pos+%T P and V3 = 8T Po &+ 9T 9—2]
It should be noted that the inequality o; = 5;(1 — 5;) < 4
is used to obtain (28). The rest of the proof is similar to the
counterpart in the proof for Theorem 1. |

A closer inspection of (27) reveals that the feasibility of
Theorem 3 is dependent on the uncertain parameter o, which
means that Theorem 3 cannot be applied directly to solve out
the estimator gain matrices. Therefore, one needs to convert
the condition in Theorem 3 into a finite set of linear matrix
inequality constraints. To achieve this goal, an alternative
method is to set parameter-dependent matrices such as Py
and Py to be linearly dependent on the uncertain parameter
o. For example, since (37 takes on a polytopic form, one may
set PP =35 o,P* and Py =% | 0P}, where P{”)
and Pés), s =1,2,---
determined.

Next, we present the following result which provides a
numerically tractable design criterion for solving the proposed
distributed attack detection and secure estimation problem in
the case of uncertain measurement-transmission probability.
Recalling (28), the proof follows the similar pattern of Theo-
rem 3, is thus omitted.

Theorem 4: Given scalars v > 0 and 8 € [0,1] for
all i € V;s = 1,2,--- .5, the proposed distributed attack
detection and secure estimation problem for the augmented
estimation error system (16) and (17) is solvable if there exist
real matrices P(S) >0, P = diag{P21, P22, -+, Pan} >0,
P( s 0, U, V, W of an appropriate dimension such that

s=1,2,---,8 (29)

,S are constant real matrices to be

U, <0,
where U, = [\ilgm")]5x5 is a sparse block diagonal matrix
derived from @ in (24) by replacing P, Ps, 3;,C in & with
P P B9 C), respectively. Moreover, the estimator
gain matrices U and V can be computed by (25), and W
can be directly solved out from (29).

IV. AN ILLUSTRATIVE EXAMPLE

To demonstrate the effectiveness and applicability of the
proposed attack detection and secure estimation method, con-
sider the system model as an industrial continuous-stirred
tank reactor (CSTR), in which chemical species A reacts to
form species B [33], as shown in Fig. 4. Cyq is the low
concentration; C'4 is the output concentration of the educt A;

A with Cyy CD Motor -

() (D)
Sensor é é —

Tc
@ @ Infurmat‘ion
— Processing
é <> <> é Center (IPC)
With
Four
Cooperative
B mixed with C and Cj Estimators

Fig. 4. A physical structure of a networked continuous stirred tank reactor
(CSTR)

C?p is the output concentration of the desired product B within
the reactor; 1" denotes the reactor temperature; and 7 is the
cooling medium temperature. The discretized and linearized
state-space model of the CSTR near the operating point is
borrowed from [23], [24] and is given by

sMWk+1) ] [ 09719 —0.0013 s (k)
s@(k+1) | | —0.0340  0.8628 | | s (k)
0.3 —0.0839
+[ 0.1 }w(k)“{ 0.0761 }p(k)’ 0

where s(!)(k) denotes the output concentration of the educt
A; 5@ (k) represents the reactor temperature; w(k) stands for
the process noise, which may stem from poisoning of the
reaction and/or from fouling of the cooling coils; and p(k)
is regarded as a potential false data injection attack launched
by an adversary at the physical process side.

In this example, we apply the developed distributed attack
detection and secure estimation method to estimate the state
of the CSTR by using only the measurement of the reactor
temperature. Four distributed sensors, ie., V = {1,2,3,4},
are deployed to monitor and measure the reactor temper-
ature. Each sensor’s measurement is then sent through a
wireless channel to a remote information processing center
for computing local estimations. The interaction topology of
four cooperative estimators is depicted in Fig. 4, where the
adjacency matrix of the topology is selected as a binary matrix,
whose element is either 1 or 0. The measurement model is
subject to measurement noise v;(k) and has the form of (3)
with parameter matrices given by C; = [0 0.1+ 1/4] and
D; =0.1/i for any ¢ € V.

The objective of this case study is twofold: 1) each estimator
detects when the FDI attack occurs and generates an alarm
signal after its occurrence; and 2) each estimator computes
local estimations of the output concentration of the educt A
and the reactor temperature so as to attenuate the effects of
random packet losses caused by the jamming attacks through
measurement transmission channels and the process noise and
measurement noise.

The uncertain measurement transmission probability of each
sensor is assumed to be 0.3 < ﬁ@ <0.7,02< ﬁéa) < 0.6,
04 < ﬂéa) <0.8and 0.5 < ﬁff) < 0.8. The random variables
0;(k), i € V are shown in Fig. 5. By applying Theorem 3, it is
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—ba(k)
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Fig. 5. The random variables 0;(k), i € V

300 0 50 100 150 200 250 300
Time (k)

found that the proposed distributed secure estimation problem
is solvable. Moreover, the optimal H, noise attenuation level
is obtained as v = 2. To further illustrate the effectiveness
of the designed resilient estimators, the process noise and
measurement noise are taken as

w(k) = rand — 0.6, 30s < k < 80s
B 0, otherwise
: - <k< ,
vi(k) = 1.2rand —rand, 30s <k < 80s Viev,
0, otherwise

where rand denotes a random scalar evenly distributively
generated within [0, 1]. The false data injection attack signal
p(k) is simulated with unit amplitude at time steps k =
50s,51s,---,100s, i.e.,

o ={ o

Connecting the designed estimators to the CSTR system and
letting the simulation run for 300s, Fig. 6 demonstrates the
evolutions of the state estimation errors ¢;(k) = s(k) — x;(k)
for all = € V. It can be seen that the estimation errors
eventually approach zero as time goes on. Thus, the designed
estimators well estimate the CSTR’s states. For each node, the
residual response r;(k) with or without process noise w(k)
and measurement noise v;(k) to the above FDI attack signal
p(k) is depicted in Fig. 7. The residual evaluation functions
fi(0,T¢.) and thresholds Th; for all i € V are illustrated in
Fig. 8. By a simple calculation, the threshold on each node can
be obtained as Th; = 5.9391 x 107, Thy = 5.9889 x 10~ 11,
Ths = 1.4327 x 10719 and Thy = 3.7877 x 107'°, respec-
tively. From Fig. 8, it is found that f; (0, 58) = 5.3951 x 10~ 1!
and f1(0,59) = 6.0383 x 10~1; £5(0,59) = 5.4950 x 101!
and f»(0,60) = 6.0751 x 10711; f3(0,62) = 1.2906 x 1010
and f3(0,63) = 1.4774 x 1071%; £4(0,73) = 3.5666 x 10~1°
and f4(0,74) = 3.8976 x 10~1°, which means that f (0, 58) <
Thy < f1(0,59), f2(0,59) < Thy < fg(O,GO), f3(0,62) <
Ths < f3(0,63) and f4(0,73) < Thy < f4(0,74). Thus,
the FDI attack signal p(k) can be detected in 9 time steps
after its occurrence by the proposed resilient attack detector

50s < k < 100s
otherwise.
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estimator 1, 10 time steps after its occurrence by estimator
2, 13 time steps after its occurrence by estimator 3 and 24
time steps after its occurrence by estimator 4, respectively.
When the occurrence of the FDI attack is detected by the
designed estimators, an alarm or a warning signal of FDI
attack occurrence can be generated to remind the operating
engineers or designer to take further measures such as attack
signal isolation and false data correction. Furthermore, it can
be seen that the residual signals can not only reflect the FDI
attack signal in time, but can also detect the FDI attack signal
without confusing it with the process noise w(k) and the
measurement noise v;(k), which verifies the effectiveness of
the derived results.
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Fig. 6. The estimation errors e; (k) = s(k) — z;(k), i € V
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Fig. 7. The residual signals r; (k) with or without process noise w(k) and
measurement noise v; (k), i € V

V. CONCLUSION

The distributed attack detection and secure estimation prob-
lem for a CPS over a WSN in the presence of two types
of malicious attacks have been studied. More specifically, an
FDI attack has been considered at the physical system layer,
where the adversary has injected false information to modify
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the system’s state. Then, a class of random jamming attacks
on wireless measurement transmission channels have been
investigated. The effects of the physical and cyber attacks on
the estimation performance of the resultant estimation error
system have been analyzed. To handle the false data injection
attack, a two-step attack detection mechanism has been estab-
lished, through which the occurrence of the FDI attack can be
detected and alarmed. To tackle the random jamming attacks,
a refined measurement output model based on compensated
measurements has been proposed and resilient estimators have
been delicately constructed. Criteria for estimation perfor-
mance analysis and estimator design have been derived to
guarantee the feasibility of the problem. An extension of
the proposed results to the case of uncertain measurement
loss probability has also been studied. The effectiveness and
applicability of the derived results have been verified via a
networked continuous-stirred tank reactor system.
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