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Abstract 

Background:  It has been a long-held consensus that immune reactions primarily mediate the pathology of chronic 
obstructive pulmonary disease (COPD), and that exosomes may participate in immune regulation in COPD. However, 
the relationship between exosomes and peripheral immune status in patients with COPD remains unclear.

Methods:  In this study, we sequenced plasma exosomes and performed single-cell RNA sequencing on peripheral 
blood mononuclear cells (PBMCs) from patients with COPD and healthy controls. Finally, we constructed compet-
ing endogenous RNA (ceRNA) and protein–protein interaction (PPI) networks to delineate the interactions between 
PBMCs and exosomes within COPD.

Results:  We identified 135 mRNAs, 132 lncRNAs, and 359 circRNAs from exosomes that were differentially expressed 
in six patients with COPD compared with four healthy controls. Functional enrichment analyses revealed that many 
of these differentially expressed RNAs were involved in immune responses including defending viral infection and 
cytokine–cytokine receptor interaction. We also identified 18 distinct cell clusters of PBMCs in one patient and one 
control by using an unsupervised cluster analysis called uniform manifold approximation and projection (UMAP). 
According to resultant cell identification, it was likely that the proportions of monocytes, dendritic cells, and natural 
killer cells increased in the COPD patient we tested, meanwhile the proportions of B cells, CD4 + T cells, and naïve 
CD8 + T cells declined. Notably, CD8 + T effector memory CD45RA + (Temra) cell and CD8 + effector memory T (Tem) 
cell levels were elevated in patient with COPD, which were marked by their lower capacity to differentiate due to their 
terminal differentiation state and lower reactive capacity to viral pathogens.

Conclusions:  We generated exosomal RNA profiling and single-cell transcriptomic profiling of PBMCs in COPD, 
described possible connection between impaired immune function and COPD development, and finally determined 
the possible role of exosomes in mediating local and systemic immune reactions.
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Background
As the rate of demographic aging and urbanisation con-
tinues to increase, chronic respiratory diseases place 
increasing health and economic burdens on all nations 
[1]. A systematic review reported that the global preva-
lence of chronic obstructive pulmonary disease (COPD) 
was 10.3% in 2019 according to the GOLD definition, 
affecting 391.9 million people [2]. Deaths due to COPD 
accounted for 5.7% of all deaths in 2017 [1]. China, as the 
most populous country, accounts for most of the global 
burden of COPD. Based on a nationally representative 
sample, the estimated prevalence of COPD in China was 
13.6%, and COPD was the fifth leading cause of death 
nationwide in 2016 [3]. However, most existing treat-
ments for COPD aim to relieve symptoms and avoid 
acute exacerbation. More targeted interventions are still 
lacking, partially because the pathogenesis of this disease 
is not well established. Therefore, clarifying the patho-
physiology of COPD is a major focus in the field of res-
piratory diseases.

Patients with COPD suffer from consistent airway limi-
tation, which is predominantly caused by airway inflam-
mation  and is characterised by an increased release of 
pro-inflammatory factors and higher counts of immune 
cells [4]. COPD itself is a highly heterogeneous disease 
of complex and diverse origins. Instead of tobacco-stim-
ulated chronic inflammation in genetically susceptible 
individuals, COPD has recently been recognised as an 
accumulation of gene-exposure interactions accompa-
nied by aging [5].

The characteristics of the peripheral immune sys-
tem remain elusive, hence, the regulatory properties 
of immune reactions in COPD warrants further study. 
Efforts have been made to identify the distinct inflam-
matory endotypes underlying COPD based on sputum 
and blood biomarkers [6]. Moreover, it has been proven 
that local and peripheral biomarkers, especially immune-
related biomarkers, are associated with COPD pheno-
types at the cellular and molecular levels. The ability of 
blood transcriptomes to predict COPD development 
and progression [7] has also been illustrated, and sev-
eral gene expression signatures stimulated by interfer-
ons have been associated with COPD clinical traits [8]. 
Gene expression signatures of peripheral blood mononu-
clear cells (PBMCs), representative of systemic immune 
function, have been validated to play critical roles in 
COPD pathogenesis [9]. Nonetheless, the mechanism 
by which the immune system is regulated during COPD 
progression remains unknown. Evidence has shown that 

the activation of immune reactions relies on intercel-
lular mediators, including exosomes [10]. Derived from 
either  lung resident macrophages or bronchial epithelial 
cells, exosomes can induce the production of cytokines 
and other signal transduction molecules that activate 
downstream immune cell recruitment and other inflam-
matory reactions [11].

Despite the great strides in our knowledge of COPD, 
the relationship between local airway inflammation and 
peripheral immune status remains unclear. Considering 
the robust evidence regarding the association between 
exosomes, immune cells, and COPD pathophysiology, we 
aimed to determine the connection between exosomes 
and peripheral immune patterns in COPD. To illustrate 
the immune landscape of PBMCs in COPD, we per-
formed deep single-cell RNA (scRNA) sequencing. By 
visualising protein–protein interactions between exo-
somal RNA and PBMCs, we intended to identify poten-
tial exosomal RNA signatures of inflammation-related 
signalling transduction and explore the possible roles of 
immune cells in COPD pathology, shedding light on the 
mechanisms underlying impaired immune functions in 
patients with COPD.

Methods
Collection of human specimens
Patients with COPD who were hospitalised at the Uni-
versity of Hong Kong-Shenzhen Hospital served as the 
disease group (n = 6), while healthy volunteers served as 
the control group (n = 4). Two blood samples per par-
ticipant for exosome isolation and PBMC preparation 
respectively and clinical information were collected upon 
their first day of hospitalization. Baseline characteristics 
of all the participants are provided in Table 1. One blood 
sample from each participant was used for exosomal 
RNA sequencing which data was merged into an RNA 
expression matrix sorted by group. Two subjects without 
complications, Dis6 from the disease group and Con4 
from the control group were selected for PBMC single-
cell RNA sequencing.

Exosome isolation
The ethylenediaminetetraacetic acid-anticoagulated 
blood samples were centrifuged at 10,000 × g for 15 min 
at 4 °C to remove debris. The supernatants were washed 
with phosphate-buffered saline (PBS) and treated with 
proteinase K (Life Technologies, MD, USA) for 10 min at 
37 °C. Total exosome isolation reagent (Invitrogen, Gaith-
ersburg, MD, USA) was added to the tubes and incubated 
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for 30 min at 4 °C. Subsequently, exosomes were retained 
in the sediment via centrifugation at 10,000 × g for 
5 min at 4  °C. After centrifugation under the same con-
ditions for 1  min, the supernatants were removed, and 
the exosomes were incubated in 110 μL PBS for 3  min 
at 37 °C. The exosome pellet was resuspended for subse-
quent experiments.

Exosome characterisation
Transmission electron microscopy (TEM) (HT-7800, 
Hitachi High-Technologies Corporation, Minato, Tokyo, 
Japan) was used to examine the morphology of the iso-
lated exosomes. First, 5 μL of the isolated exosomes were 
diluted with PBS to a volume of 10 μL before examina-
tion. The samples were then dropped onto a copper 
screen for 1 min, and the excess suspension was removed 
using filter paper. Subsequently, 10 μL of 2% uranyl ace-
tate was added to the deposited exosomes for 1 min, and 
the excess suspension was removed. The copper screen 
was dried for a few minutes at 25  °C, and then TEM 
images of the isolated exosomes were acquired at 80 kV.

Nano-flow cytometry (nFCM) (Flow Nano-Analyzer, 
NanoFCM Inc., Xiamen, China) was used to measure 
the concentration and size of the isolated exosomes. 
First, isolated exosomes (5 μL) were diluted to 30 μL for 
examination. After performance testing of the instru-
ment using standards, the exosomes were loaded into 
the nFCM instrument to determine their concentration 
and size. Identification of exosome-specific proteins was 

also performed using nFCM. Briefly, 30 μL of the isolated 
exosomes were diluted 1:4 and equally distributed into 
four sterile tubes. Next, 30 μL of each diluted sample was 
stained with 20 μL fluorescently labelled anti-human IgG 
(BioLegend, San Diego, CA, USA), anti-CD9, -CD63, and 
-CD81 antibodies (BD Biosciences, Franklin Lakes, NJ, 
USA), and incubated at 37  °C for 30 min. Subsequently, 
the mixture was mixed with 1 mL of precooled PBS and 
centrifuged at 110,000 × g for 70 min at 4 °C, after which 
the supernatant was removed. The resulting exosome 
pellet was resuspended in 50 μL precooled PBS for nFCM 
detection.

RNA extraction, library construction, and RNA sequencing
Exosomal RNA sequencing was performed at the Bei-
jing Genomics Institute (BGI, Shenzhen, China). Prior 
to sequencing, RNA was extracted from exosomes using 
TRIzol reagent (Life Technologies). An Agilent 2100 Bio-
analyzer (Thermo Fisher Scientific) and qRT-PCR were 
used to evaluate the quality and quantity of the extracted 
RNA to meet the specifications for library generation 
performance. MGIEasy rRNA depletion kits (MGI, Shen-
zhen, China) were used to remove the rRNA. The purified 
RNA was then used to construct a cDNA library using 
an MGIEasy RNA Directional Library Prep Kit (MGI). 
The constructed library was sequenced on an Illumina 
DNBSEQ platform, the raw reads generated were filtered 
using SOAPnuke software (version 1.5.2) [12] to obtain 
clean reads, and were saved in FASTQ format. After 

Table 1  Baseline characteristics of the subjects included

Dis disease, Con control, CAT​ COPD assessment test, BMI body mass index, sNEU sputum neutrophil, sLYM sputum lymphocyte, sMAC sputum macrophage, sEOS 
sputum eosinophil, FVC forced vital capacity, FEV1 forced expiratory volume in 1 s, GOLD global initiative for chronic obstructive lung disease, bWBC blood white 
blood cell, bNEU blood neutrophil
* Including former and current smoker

Dis1 Dis2 Dis3 Dis4 Dis5 Dis6 Con1 Con2 Con3 Con4

Gender Male Male Male Female Male Male Female Male Male Male

Age 61 60 64 62 38 70 54 59 53 47

BMI (kg/m2) 21.0 18.0 19.5 21.4 23.1 18.6 23.9 21.5 21.0 22.0

Smoke* Yes Yes Yes None Yes Yes None None None None

CAT​ 13 5 6 11 6 20

sNEU (%) 72.93 95.31 90.37 88.72

sLYM (%) 2.63 1.27 1.17 1.43

sMAC (%) 23.3 1.27 5.89 8.39

sEOS (%) 1.12 2.12 2.55 1.43

FVC (L/%) 3.76/93.1 3.44/93.2 3.01/82 1.83/75.9 3.81/93

FEV1 (L/%) 1.88/59 1.5/51.2 1.65/57.2 0.94/46.6 2.62/76

FEV1/FVC (%) 49.9 43.5 57.2 51.3 68.9

GOLD 2 2 2 3 2

bWBC (109/L) 8.30 6.79 7.06 8.47 6.74

bNEU (%) 64.3 52.6 58.5 68.7 62.5

bNEU# 5.33 3.57 4.13 5.82 4.21
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the clean reads were aligned to the reference genome 
and transcriptome using Bowtie2 software (version 
2.2.5) [13], the mapped reads were used for subsequent 
analyses. Between disease group and control group, dif-
ferentially expressed exosomal mRNAs, lncRNAs, and 
circRNAs were identified using the DESeq2 package [14], 
based on the criteria |log2FC|> 1.0 and adjusted p-value 
(Q value) < 0.05.

Competing endogenous RNA (ceRNA) network 
construction
Bioinformatic databases were applied to construct 
ceRNA network. We used TargetScan (http://​www.​targe​
tscan.​org/) to predict miRNA targets for differentially 
expressed mRNAs, miRcode (http://​www.​mirco​de.​org/) 
to predict miRNA targets for differentially expressed 
lncRNAs and starBase (http://​starb​ase.​sysu.​edu.​cn/) to 
predict miRNA targets for differentially expressed circR-
NAs identified before. After identifying miRNA targets, 
all pairs of miRNA and differentially expressed mRNAs/
lncRNAs/cirRNAs were retrieved from the websites of 
these databases by directly downloading (miRcode) or 
programming script (TargetScan and starBase). Then, 
mRNA-miRNA pairs which have overlapped miRNA 
targets with lncRNA-miRNA or circRNA-miRNA pairs 
were screened. Finally, these mRNA-miRNA pairs 
together with matched lncRNA-miRNA and circRNA-
miRNA pairs were input onto Cytoscape software to con-
struct a ceRNA network.

Single‑cell preparation and sequencing
PBMCs were isolated from another blood samples of 
Dis6 and Con4 using the Ficoll-Paque Plus reagent (GE 
Healthcare). The PBMC suspensions were then loaded 
onto a haemocytometer for cell counting and viability 
examination. The viability of all the assessed samples 
exceeded 80%, and the cell densities of the suspensions 
were adjusted to 700–1200 cells/μL. The suspensions 
were then loaded onto microfluidic chips from the Sin-
gle Cell 3′Chip Kit (10 × Genomics, CA, USA) to pre-
pare single-cell gel beads-in-emulsions (GEMs). GEMs 
were subsequently subjected to cDNA library construc-
tion using a Chromium Single Cell 3′ Reagent Kit v2 
(10 × Genomics). Libraries were sequenced using the 
BGISEQ-500 instrument. CellRanger software (version 
5.0.1) was used to process the raw reads, map the reads, 
and quantify gene expression. Seurat software (version 
3.0.2) was used for quality control and to identify highly 
variable genes. Single-cell RNA transcriptome analysis 
was then performed based on the expression matrices 
generated from the above steps.

Unsupervised clustering and cell type annotation
The filtered expression matrices were subjected to unsuper-
vised cell clustering using Seurat software (version 3.0.2). 
All cells were pooled for dimensional reduction using prin-
cipal component analysis based on the top 20 significant 
principal components and the 2000 most variable genes. 
These pooled cells were clustered with a resolution of 0.5 
and visualized using the graph-based visualisation method 
uniform manifold approximation and projection (UMAP). 
The expression levels of each cluster were compared with 
the remaining clusters. Genes with a |log2FC|> 0.25 and Q 
value < 0.05 were identified as marker genes. Clusters were 
first annotated automatically using the SCSA software and 
then modified artificially based on the expression of canon-
ical markers of known cell types [15].

Functional annotation
All differentially expressed genes and marker genes were 
annotated based on the Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes (KEGG) databases. GO and KEGG 
enrichment analyses were carried out using the R function 
“Phyper”. The GO or KEGG terms that matched the criteria 
of p-value < 0.05 were considered significantly enriched.

Statistical analysis
Continuous variables are presented as the mean ± stand-
ard deviation. Statistical analyses and visualisations were 
performed using R software (version 4.0), while the Pear-
son method was used for the correlation analyses. Unless 
specified, statistical significance was accepted at a bilateral 
p-value < 0.05.

Results
Isolation and identification of exosomes from plasma
TEM imaging revealed the typical double-layer rounded 
shape of the vesicles (Fig. 1A). nFCM analysis showed that 
the particle size was 73.25 ± 20.28 nm (median ± SD) and 
the average concentration of the particles was 8.17 × 108/
mL, verifying that they were within the typical particle 
size distribution and higher than the detection limit [16] 
(Fig. 1B, C). Furthermore, the presence of exosomal marker 
proteins, including CD9, CD63, and CD81, was confirmed 
through nFCM analysis, where IgG was regarded as the 
isotype control antibody (Fig.  1D–G). These results indi-
cate that exosomes were successfully extracted from the 
plasma samples.

Differentially expressed exosomal mRNAs, lncRNAs, 
circRNAs, and association between differentially expressed 
mRNAs and clinical characteristics
In total, 15,454 mRNA, 12,286 lncRNA, and 10,813 
circRNA reads were identified. The expression matrix 
was shown in Additional file  1: Table  S1. Through 

http://www.targetscan.org/
http://www.targetscan.org/
http://www.mircode.org/
http://starbase.sysu.edu.cn/
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setting the criteria |log2FC|> 1.0 and adjusted p-value 
(Q value) < 0.05 using DESeq2 package, we obtained 
135 mRNAs (89 upregulated and 46 downregulated), 
132 lncRNAs (115 upregulated and 17 downregulated), 
and 359 circRNAs (292 upregulated and 67 down-
regulated), which were differentially expressed in the 
exosomes from patients with COPD compared with 
the controls. Refined information of the differentially 
expressed exosomal mRNAs, lncRNAs and circRNAs 
were listed in Additional file  2: Tables S2–S4. The top 
three significantly upregulated mRNAs in the COPD 
cohort were PIGZ, NCBP2L, and THTPA, while the 
top three significantly downregulated mRNAs were 
VWF, FAM90A1, and RFXAP. The volcano plot showed 
the expression patterns of the mRNAs, lncRNAs, and 
circRNAs between the two groups (Fig.  2A–C). The 
heatmaps depicted the expression levels of differen-
tially expressed mRNAs, lncRNAs, and circRNAs in 

each sample (Fig.  2D–F). Pearson’s correlation test 
was applied to the differentially expressed exosomal 
mRNAs and the clinical characteristics of the patients. 
As shown in the Additional file 3: Fig. S1, sputum cell 
counts, which reflect the lung microenvironment, 
were linearly associated with the number of differen-
tially expressed mRNAs. Interestingly, upregulation of 
the same gene set, including CD151, SPATA1, DEFA4, 
SERPINE3, FBXO3, and SART3, was linearly associated 
with elevated counts of macrophages and lymphocytes 
and conversely decreased number of neutrophils in 
sputum from COPD patients. Meanwhile, the expres-
sions of AMN1, AP1AR, and CARMIL1 showed a lin-
ear correlation with the COPD Assessment Test (CAT) 
scores. In addition, LSM5, ARID5A were linearly posi-
tively correlated with counts of lymphocytes while lin-
early negatively correlated with counts of neutrophils 
in sputum. CTNNA2 expression also showed linear 
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Fig. 1  Identification of exosomes from plasma. A Electron micrograph of exosomes imaged under transmission electron microscopy (scale 
bar = 100 nm). B Diameter and C concentration of exosomes as detected using nanoflow cytometry measurement (nFCM). The expression of 
surface markers D CD9, E CD63, F CD81, and G IgG (as a negative control) was also detected using nFCM
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positive correlation with numbers of eosinophils in 
sputum in COPD patients.

Differentially expressed mRNAs are functionally enriched 
in immune‑related pathways
GO functional and KEGG pathway enrichment analyses 
were performed to annotate the differentially expressed 
mRNAs. KEGG enrichment analyses of mRNA profiles 
identified Herpes simplex virus 1 infection as the most 
enriched pathway, followed by cytokine-cytokine recep-
tor interaction, viral protein interaction with cytokine 
and cytokine receptor and Pertussis (Fig.  3A). The 
enriched GO terms were sorted into three domains: 
biological process (BP), molecular function (MF), and 
cellular component (CC). In the cellular component, 
the predicted targets were mainly associated with the 
extracellular region, the specific granule lumen, and the 
collagen-containing extracellular matrix (Fig.  3B). In 
the molecular function category, DEGs were primarily 
related to integrin binding (Fig.  3C). Furthermore, the 
immune response represented the maximum number of 
DEGs in the biological processes (Fig. 3D).

LncRNAs can function as antisense RNAs by forming 
complementary hybrids with target mRNAs to regulate 
their expression. Therefore, we predicted the potential 
target mRNAs of the lncRNAs through the program 
“rnaplex,” and 111 mRNAs were found. Subsequently, we 
performed GO and KEGG analyses on these 111 mRNAs 
to explore the potential functions of the dysregulated 
lncRNAs. KEGG enrichment analyses showed various 
pathways, including Th1 and Th2 cell differentiation and 
Th17 cell differentiation (Fig. 3E). GO analyses identified 
major histocompatibility complex (MHC) class II mole-
cules as the most enriched pathways in terms of both CC 
and MF (Fig.  3F, G), and programmed cell death as the 
top BP (Fig. 3H). These results implied that the specific 
gene expression patterns of plasma-derived exosomes 
may participate in the regulation of peripheral immune 
activity in patients with COPD.

CeRNA prediction and construction of a ceRNA network
We obtained 282 miRNA-mRNA pairs, 153 miRNA-
lncRNA pairs, and 68 miRNA-circRNA pairs for dif-
ferentially expressed exosomal mRNAs, lncRNAs and 
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Fig. 2  Identification of exosomal differentially expressed mRNAs, lncRNAs, and circRNAs in COPD. Volcano plots of exosomal differentially expressed 
A mRNAs, B lncRNAs, and C circRNAs. The green dots represent the downregulated genes, while the red dots represent the upregulated genes. 
Heatmap of the expression of differentially expressed D mRNAs, E lncRNAs, and F circRNAs
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circRNAs respectively by searching bioinformatic data-
bases mentioned in methods. All of these RNA pairs 
were demonstrated in Additional file  4: Tables S5–S7. 

26 miRNA-mRNA pairs having shared miRNA targets 
with miRNA-circRNA pairs or miRNA-lncRNA pairs 
were screened, and resultant 52 RNA pairs were put into 

Fig. 3  Functional analysis of differentially expressed mRNAs and target mRNAs of differentially expressed lncRNAs. The top 10 KEGG terms (A), 
GO-CC terms (B), GO-MF terms (C), and GO-BP terms (D) of differentially expressed mRNAs. The top 10 KEGG terms (E), GO-CC terms (F), GO-MF 
terms (G), and GO-BP terms (H) of target mRNAs of differentially expressed lncRNAs. KEGG Kyoto Encyclopedia of Genes and Genomes, GO Gene 
ontology, CC cellular component, MF molecular function, BP biological process
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Cytoscape software to construct a ceRNA network. Even-
tually, a ceRNA network consisting of 42 nodes which 
were 18 miRNAs, 18 mRNAs, two lncRNAs, and four cir-
cRNAs was built (Fig. 4).

ScRNA‑seq identified 18 distinct cell clusters from PBMCs
Next, we conducted single-cell transcriptomic analysis 
of PBMCs isolated from the patient Dis6 in the COPD 
group and Con4 in the control group, obtaining 8253 
cells and 8349 cells, respectively. All samples were pooled 
and analysed through dimensional reduction using the 
graph-based visualisation method UMAP. Unsupervised 
cluster analysis of all cells identified 18 clusters in total, 
and all clusters were annotated predominantly based 
on the expression of known marker genes, as shown in 
Fig. 5A (resolution = 0.5). Cells from patients with COPD 
and healthy controls were also presented in different 
colours, as shown in Fig. 5B. These 18 clusters included 
three types of CD4 + T cells (clusters 0, 5, and 8), three 
types of CD8 + T cells (clusters 1, 2, and 7), two types of 
natural killer (NK) cells (clusters 3 and 11), three B cell 
populations(clusters 4, 9, and 10), three types of mono-
cytes (clusters 6, 14, and 15), megakaryocytes (cluster 
12), two subclusters of dendritic cells (clusters 13 and 
16), and an ambiguous cluster characterised by a T cell 
marker (CD3D) without other representative marker 

genes (since it contained only 47 cells), which should 
have minor effects on further analyses.

Marker genes of each cluster are listed in the Table 2, 
and the expression levels of several representative mark-
ers are depicted in Fig.  5C. Among T cells, cluster 0 
(CD4 +) and cluster 7 (CD8B +) showed CCR7 and LEF1 
expression, which were considered markers of naïve T 
cells; cluster 1 exhibiting significant PRF1, KLRG1, and 
GZMH expression was annotated as CD8 + T effector 
memory CD45RA + (Temra) cells; cluster 2 (GZMK +) 
was defined as CD8 + effector memory T (Tem); clus-
ter 5 (NR4A2 + , IL7R + , PTGER4 +) was annotated as 
CD4 + Trm cells; and cluster 8 (S100A4 + , LTB +) was 
recognised as CD4 + Tm cells [17, 18]. NK cells, includ-
ing clusters 3 and 11, showed similar expression patterns 
and were located adjacently in UAMP. Clusters 4, 9, and 
10 were annotated as B cells, marked by IGKC, IGHD, 
and MS4A1, respectively [19, 20]. Cluster 6 was defined 
as classical monocytes due to its high expression of LYZ, 
S100A9, and S100A8, while cluster 14 (FCGR3A +) was 
defined as non-classical monocytes [21, 22]. Cluster 12, 
marked by PPBP and PF4, was comprised of megakaryo-
cytes [20]. Both groups of dendritic cells accounted for 
less than 1% of the cells; cluster 13 (HLA-DRB1 + , HLA-
DRB5 +) was defined as myeloid dendritic cells, and clus-
ter 16 (IRF7 + , IRF8 +) was annotated as plasmacytoid 
dendritic cells [21, 22].

Fig. 4  The lncRNA/circRNA–miRNA–mRNA ceRNA regulatory networks. Triangular nodes represent lncRNAs, V-shaped nodes represent miRNAs, 
elliptical nodes represent mRNAs, and rhombic nodes represent circRNAs. miRNA microRNA, ceRNA competing endogenous RNA
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Fig. 5  Single-cell unsupervised clustering and annotation. Uniform manifold approximation and projection (UMAP) representation of the pooled 
cells depicted in different colours by A cluster and cell type and B sample. C Canonical cell markers were used to annotate clusters. Each colour 
represents the expression level (grey means low and purple means high). D Bar plot of cell fractions in patients with COPD and healthy controls in 
each cluster. E Cell fractions of all clusters in patients with COPD and healthy controls
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Divergent cell composition between patients with COPD 
and healthy controls
The corresponding proportions of cells for each cluster 
are shown in Fig.  5D, E. Surprisingly, monocytes (clus-
ters 6, 14, and 15) and dendritic cells (clusters 13 and 
16) predominantly originated from patients with COPD. 
NK cells (clusters 3 and 11) also comprised more cells 
from patients with COPD. Conversely, B cells (clus-
ters 4, 9, and 10) and CD4 + T cells (clusters 0, 5, and 8) 
mainly belonged to healthy controls. Notably, in terms of 
CD8 + T cells, cluster 1 (Temra) and cluster 2 (Tem) had 
a higher proportion of cells from patients with COPD, 
whereas cluster 7 (naïve CD8 + T cells) was almost exclu-
sively populated with cells from the normal controls.

Three types of CD8 + T cells (29.69%), three CD4 + T 
cell populations (29.97%), three B cell subtypes (17.19%), 
and two types of NK cells (11.56%) accounted for the 
majority of the identified cells, which may indicate 
their roles in COPD development and progression. The 
results of the KEGG functional analysis of the mark-
ers of these clusters are shown in Fig.  6, and the rest 
are shown in Additional file  5: Fig. S2. Cluster 0 (naive 
CD4 + T cells), cluster 7 (naive CD8 + T cells), and clus-
ter 8 (CD4 + Tm) were mostly enriched in the ribosome 
pathway, whereas cluster 5 (CD4 + Trm) was involved 
in the IL-17 signalling pathway (Fig. 6A–D). In contrast, 

cluster 1 (CD8 + Temra) and cluster 2 (CD8 + Tem), 
whose proportions were higher in patients with COPD, 
were related to inflammation-related pathways, including 
inflammatory bowel disease (IBD) and cytokine-cytokine 
receptor interaction (Fig. 6E, F). Three clusters of B cells 
were enriched in the same terms, including haematopoi-
etic cell lineage, asthma, and intestinal immune network 
for IgA production. NK cells (clusters 3 and 11) were 
enriched in antigen processing, presentation, and cyto-
toxic functions. Monocytes (clusters 6, 14, and 15) were 
comprised of phagosomes. Cluster 17, marked by STMN, 
was significantly related to the cell cycle, while cluster 12 
was chiefly associated with platelet activation. Clusters 
13 and 16, representing dendric cells, were mostly related 
to asthma, which may indicate some common pathways 
between COPD and asthma.

Differential functional annotation of specific cell types 
between patients with COPD and healthy controls
We identified 140 DEGs between patients with COPD 
and healthy controls, of which 104 were upregulated 
and 36 were downregulated in COPD (Additional file 6: 
Table  S8). The top five upregulated genes were LYZ, 
S100A9, CXCL8, S100A8, and PTGS2, while the top five 
downregulated genes were HBB, IGKC, IGLC3, IGLC2, 
and IGHM. We then performed KEGG pathway analy-
sis for DEGs at different levels, from individual cluster 
to pooled cell types. Overall analyses of all cells revealed 
that the DEGs were mainly enriched in Salmonella infec-
tion, rheumatoid arthritis, viral protein interaction with 
cytokines and cytokine receptors, malaria, and cytokine-
cytokine receptor interaction (Fig. 7A).

Considering that T cells accounted for over half of the 
total cells and possessed the most divergent populations, 
we performed a detailed functional analysis of the DEGs 
in each T cell cluster defined by different functional 
states. Among all T cells in patients with COPD verse 
healthy controls, KLRD1, GZMB, NKG7, GNLY, and 
CCL5 were the top five upregulated genes, whereas HBB, 
HBA2, LTB, RPS13, and HBA1 were the top five down-
regulated genes. Pathways including ribosomes, Afri-
can trypanosomiasis, malaria, Salmonella infection, and 
rheumatoid arthritis, a type of autoimmune disease, were 
significantly enriched in T cell entirety from patients 
with COPD (Fig.  7B). For a particular cell cluster, clus-
ter 1 (CD8 + Temra) was enriched in apoptosis, whereas 
cluster 2 (CD8 + Tem) was associated with viral infec-
tions, Toll-like receptor signalling, and TNF signalling 
(Fig. 7C, D). DEGs from other clusters of T cells tended 
to be enriched in less specific pathways, as shown in the 
Additional file  7: Fig. S3. Compared with healthy con-
trols, NK cells from patients with COPD may be more 

Table 2  Identified clusters, annotated cell type, representative 
genes and their corresponding proportions

Tn Naïve T cell, Trm resident memory T cell, Tm memory T cell, Temra effector 
memory RA + T cell, Tem effector memory T cell

Cluster Cell type Representative genes Proportion

0 CD4 + Tn CCR7, LEF1 16.01%

5 CD4 + Trm NR4A2, IL7R, PTGER4 7.79%

8 CD4 + Tm S100A4, LTB 6.17%

1 CD8 + Temra PRF1, KLRG1, GZMH 12.91%

2 CD8 + Tem GZMK 10.53%

7 CD8 + Tn CCR7, LEF1 6.25%

3 Natural killer cell GNLY, NKG7 8.04%

11 Natural killer cell GNLY, NKG7 3.52%

4 B cell IGKC 7.94%

9 B cell IGHD 5.52%

10 B cell MS4A1 3.73%

6 Classical Monocyte CD14, S100A9, LYZ 6.30%

14 Nonclassical Monocyte CD16, FCGR3A, TCF7L2 0.64%

15 Monocyte CD14, CLEC12A 0.43%

12 Megakaryocyte PPBP, PF4 2.64%

13 Myeloid dendritic cell HLA-DRB1, HLA-DRB5 0.87%

16 Plasmacytoid dendritic 
cell

IRF7, IRF8 0.43%

17 STMN + T cell CD3D, STMN 0.28%
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involved in cytokine-related interactions and play impor-
tant roles in communicating with T cells. We also found 
that monocytes, especially cluster 6 (classical monocytes) 
from patients with COPD, were enriched in NF-κB sig-
nalling pathway, TNF signalling pathway, and rheumatoid 

arthritis (Fig.  7E). As for megakaryocytes, the DEGs 
were mainly enriched in the IL-17 signalling pathway 
and apoptosis (Fig.  7F), which suggests that monocytes 
and platelets may play a role in the pathophysiology of 
COPD, as reported previously [6]. DEGs from dendritic 
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cells were enriched in viral protein, Th1, Th2, and Th17 
cell differentiation, and the T cell receptor signalling 
pathways, indicating their role in viral immunity and the 
activation of T cell differentiation. There were only four 
DEGs (|log2FC|≤ 0.4) in B cells, suggesting that B cells 

may not be as multifunctional as T cells in the develop-
ment of COPD, which was congruent with the results of 
functional analyses that showed no significant difference 
among the three B cell populations.
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Construction of a protein–protein interaction network 
combining exosomal and sc‑RNA transcriptomics 
and clinical characteristics
To explore the connection between exosomal transcrip-
tomics and sc-RNA transcriptomics, we constructed 
a protein–protein interaction (PPI) network by merg-
ing the DEGs of the two libraries and the target genes of 
the differentially expressed lncRNAs in exosomes using 
the Search Tool for the Retrieval of Interacting Genes 
(STRING) (https://​string-​db.​org), with a minimum 
required interaction score of 0.700 (high confidence). All 
the genes included for PPI network construction were 
listed in Additional file  6: Table  S9. The network was 

visualised using Cytoscape software. Eventually, a PPI 
network containing 130 nodes (genes) and 348 edges 
(interactions between genes) was constructed (Fig.  8). 
From this network, we observed a relatively tight inter-
action between the two transcriptomes. Reflecting on 
the exosomal mRNAs presenting significant correlation 
with clinical characteristics (Additional file  3: Fig. S1), 
CTNNA2 and DEFA4 also appeared in the PPI network 
and their clinical relevance were tagged. Among all the 
nodes, CXCL8, IFNG, and CD79B were genes common 
between the two DEG sets, whereas RPS18 was shared by 
DEGs in the sc-RNA library and the target genes of the 
differentially expressed lncRNAs in exosomes.

Sing-cell trancriptome

Exosome transcriptome

Target of lncRNA

Single-cell&Exosome

Single-cell&Target of lncRNA

Clinial variables

Fig. 8  Protein–protein interaction network and its connection with sputum clinical variables. Elliptical nodes represent proteins, hexagonal nodes 
represent clinical variables, and the colours represent libraries. EOS eosinophil, LYM lymphocyte, MAC macrophage

https://string-db.org
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Discussion
Our study provides an in-depth RNA profile of exosomes 
in plasma and single-cell transcriptomic atlas of PBMCs 
in COPD, affording insights into the local and the periph-
eral immune status of COPD, which we hope may assist 
in ultimately elucidating the mechanisms underpinning 
the development of COPD. To the best of our knowledge, 
this is the first study to characterise PBMC transcrip-
tome at single-cell resolution in COPD by using scRNA 
sequencing. Reasoning that exosome may serve as mes-
sengers of lung tissues, we also attempted to identify the 
connection between plasma exosomal RNA and PBMC 
transcriptome in COPD for the first time.

First, we profiled exosomal RNAs in COPD and iden-
tified several gene signatures associated with COPD 
clinical characteristics. Then, we used scRNA sequenc-
ing of PBMCs to depict the peripheral immune niche in 
COPD and constructed a PPI network to further explore 
the connection between exosomes and PBMCs. It could 
be implied from our results that exosomes might play an 
intermediate role in interactions between the systemic 
immune response and local lung tissues meanwhile the 
systemic immunity may mutually influence pulmonary 
immune microenvironment in COPD patients.

We discovered a gene array composed of CD151, 
SPATA1, DEFA4, SERPINE3, FBXO3, and SART3, which 
were related to higher macrophage, higher lymphocyte, 
and lower neutrophil cell counts in the sputum, indicat-
ing the possibility of airway leucocyte recruitment, which 
to some extent concurred with the pathways enriched 
by differentially expressed exosomal mRNAs concern-
ing lymphocyte function such as allograft rejection, 
Viral protein and so on (Fig. 3A). CD151 encodes a cell 
surface protein involved in integrin-mediated cell adhe-
sion and promotes macrophage infiltration [23]. DEFA4 
belongs to the defensin family, which is abundant in the 
granules of neutrophils that defend the host against bac-
teria; nevertheless, its function has not been reported in 
COPD. It has been discovered that circulating FBXO3 
could potentially stimulate cytokine release from inflam-
matory cells in patients with sepsis [24]. SART3 antigen 
was found to be expressed in human CD34 + cells, ena-
bling the recruitment of cytotoxic T cells and triggering 
pro-inflammatory responses [25]. Expression of AMN1, 
AP1AR, and CARMIL1 were associated with the CAT 
score, which reflects the severity of COPD and CARMIL1 
has been shown to be involved in inflammatory signal-
ling, specifically IL-1 signal transduction [26]. The above 
results suggested the potential roles of exosomal mRNAs 
in promoting leucocyte migration and inflammatory sig-
nal transmission within the pulmonary tissue in patients 
with COPD, although most of the gene targets have not 

been explored in exosomes, which warranted massive 
experiments to verify.

KEGG and GO enrichment analyses showed that 
the differentially expressed exosomal mRNAs were 
enriched to a large extent in signal transduction and 
immune responses. For example, the top three KEGG 
enriched pathways were concentrated on viral infec-
tion and cytokines, either in the level 1 or level 2 cate-
gories. The effects of viral infection in COPD have been 
described before; viruses could curtail phagocytosis by 
macrophages and reduce cytokine production [27], thus 
making patients with COPD more vulnerable to bacte-
rial infection. Programmed cell death in COPD has been 
characterised as another feature of COPD development, 
which is triggered by cigarette smoke, often followed by 
persistent inflammation, owing to the release of damage-
associated molecular patterns (DAMPs) [28]. KEGG 
analysis showed enrichment in Th1, Th2, and Th17 cell 
differentiation, the proportions of which were reported to 
increase in patients with COPD [29]. Moreover, another 
study also showed that different inflammatory pheno-
types may be related to different bacterial species in the 
airways of patients with COPD [30]. The ceRNA network 
illustrated the possible interactions in between exoso-
mal RNAs. LINC00324 is capable of promoting lung 
cancer cell proliferation, counteracted by miR-615-5p 
(Fig. 4) [31]. All of the miRNA nodes have been reported 
to exert roles in immunity, tumorigenesis, or both [32–
34]. Defense against infection relies on immunity, in the 
same context that cancer surveillance largely depends on 
immunity. Therefore, it could be implied that exosome 
contained RNAs may affect homeostasis maintenance 
through communication with each other and regulation 
of immune signaling pathways.

ScRNA sequencing of PBMCs in our study pro-
vided a panoramic albeit obscure view of systemic 
immune status in patients with COPD (Fig.  5). Many 
of the cell clusters we identified including cluster 14 
(TCF7L2 + , CD16 + non-classical monocytes) and clus-
ter 15 (CLEC12A + , CD14 + monocytes) have not been 
reported in COPD. The maturity of dendritic cell subsets 
(clusters 13 and 16, higher in COPD) indicated by the 
increased expression of co-stimulatory molecules was 
found to be positively correlated with COPD severity [35]. 
All of the refined clusters of NK cells and B cells have been 
described in COPD. Our study indicated that the num-
ber of NK cells (cluster 3,11) with more robust cytotoxic 
effects may increase in patients with COPD (Fig.  5D). 
Three subclusters of B cells all increased in COPD patient 
in our study, consistent with the former findings that B 
cells were higher in COPD pulmonary tissues [36]. How-
ever, B cells of different subclusters may play paradoxi-
cal roles in COPD. On the one hand, they may produce 
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autoantibodies directed against lung cells; on the other 
hand, they could elicit adaptive immune responses against 
pathogens [36], which warrants further study.

In terms of T cell subtypes, our results were concord-
ant with previous studies that patients with COPD have 
shrinking naïve T cell pools, regardless of CD4 or CD8 
positivity and CD8 + Temra and CD8 + Tem markedly 
elevate in COPD patients [37]. In addition, we found 
the decline of peripheral CD4 + Trm (cluster 5) and 
CD4 + Tm (cluster 8, ANXA1 +) in COPD patient and 
evidence has shown that CD4 + Trm (cluster 5) could 
respond rapidly to pathogen re-exposure and facilitate 
CD8 + T cell recruitment [38], suggesting its impor-
tance in protecting the host against infection. The pro-
tein expression of ANXA1, which is considered as an 
anti-inflammatory factor, was found to be increased 
in the bronchoalveolar lavage (BAL) of patients with 
COPD [39]. Among all six T cell clusters, only cluster 1 
(CD8 + Temra) and cluster 2 (CD8 + Tem) were more 
abundant in patients with COPD; the other clusters 
showed the opposite. According to enrichment analyses 
of cell markers, clusters 1 and 2 were related to inflam-
mation pathways, whereas naïve T cells were enriched 
in the ribosome pathway, suggesting higher translation 
activity. Taken together, it may be rationale to assume 
that T cell subsets with either higher differentiation 
potential, such as naïve T cells, or with faster response 
to pathogens, such as CD4 + Trm may decline in COPD 
patients. Conversely, CD8 + Temra subset, representa-
tive of low proliferative and reactive capacity especially to 
virus[40], and Tem marked with advanced differentiation, 
may be predominant in COPD patients. Based on their 
developmental trajectory, we postulated that progressive 
depletion of naïve T cell pools in COPD maybe caused 
by repeated exposure to pathogens, resulting a shift from 
naïve T cells to Tem and Temra. Consequently, patients 
with COPD may have expanded Temra and Tem cell sub-
sets, which could further exhaust their reserved capacity 
to respond to pathogens, which remains to be confirmed.

Considering PBMCs as a whole, the top five upreg-
ulated genes were LYZ, which encodes an antibi-
otic lysozyme, S100A9, CXCL8, S100A8, and PTGS2. 
S100A8/9 play roles in many aspects of immunity, such as 
the induction of cytokine cascades, stimulation of leuco-
cyte chemotaxis, and antimicrobial activity [41]. Surpris-
ingly, functions of down-regulated genes in COPD were 
coincident in encoding immunoglobulins, indicating a 
possible declined capacity of PBMCs in generating anti-
bodies. Furthermore, immunoglobulin level was reported 
to be elevated in local pulmonary tissue in COPD 
patients [42], which from another side indicate the over-
whelmed immune response in COPD. In terms of T cells, 
the pathways enriched by cluster 2 (CD8 + Tem) DEGs 

seem to have robust interconnections (Fig.  7D). Viral 
infections could lead to the emission of DAMPs, which 
activate Toll-like receptors and other downstream effec-
tors regulated by TNF receptor-associated factor (TRAF) 
[43]. Pathways enriched by DEGs of T cells across sub-
clusters were predominantly associated with Salmonella 
infection and rheumatoid arthritis (Fig. 7B). It has been 
reported that the response to Salmonella species and 
other gram-negative bacteria is correlated with lung 
function parameters and cigarette smoking [44]. Moreo-
ver, COPD may encompass some features of autoimmune 
diseases like RA [45], since patients with COPD also have 
a higher risk for incident RA [46].

PPI network (Fig. 8), CXCL8, IFNG, CD79B, and RPS18 
merit attention, considering their dual identity as molec-
ular signatures in both exosome and PBMC. All of these 
genes participate in immune reactions especially defend-
ing against viral or microbial infections. Based on pre-
vious evidence and our findings, we hypothesized that 
COPD development may be initially induced by expo-
sure to pathogens and other individual factors, such as 
cigarette smoke, air pollution and immune-compromised 
airway, whose signals could be transduced from local 
lung tissue to peripheral immune system via exosomes 
and other mediators. Long-term pathogenic stimuli 
might dampen innate immunity, the first barrier against 
pathogens in COPD patients like phagocytosis by mac-
rophages, resulting prolonged infection, resorting to 
adaptive immune system. As a result, continuous expo-
sure to antigens could cause the depletion of peripheral 
naïve T cell pools in patients with COPD, depriving their 
capacity to elicit rapid and robust responses against path-
ogens, instead increasing their susceptibility to bacterial 
and viral pathogens, which forms a vicious circle.

Our research has several limitations. An obvious limi-
tation is the small sample size, which only sequenced 
exosomes from six patients and profiled single-cell tran-
scriptome in one patient. Our findings definitely need 
more studies with larger sample size for validation. Sec-
ond, the isolated exosomes in our study were relatively 
sparse, which limited the amount of exosomal infor-
mation available. Exosome as a new hotspot of medi-
cal research emerged in the last decade, is still lacking 
effective means of isolation, demanding more efforts to 
upscale this technology. Finally, our analyses were virtu-
ally based on comprehensive sequencing profiles, albeit 
without further validation, which warrants a large num-
ber of experimental verification in the future.

Conclusions
By sequencing exosomal RNA and single-cell transcrip-
tome of PBMC in COPD, we characterised several pos-
sible molecular signatures for COPD, delineated the 
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potential interconnection between impaired immune 
function and COPD progression, and identified the 
possible role of exosomes in mediating local and sys-
temic immune reactions, which requires extensive 
experimentation and larger-scale COPD population for 
validation.
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